References: Difference between revisions

From phys824
Jump to navigationJump to search
 
(38 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Graphene ==
== Quantum Mechanics ==
* C. Cohen-Tannoudji, B. Diu, and F. Laloe: ''Quantum Mechanics'', 2 Volume Set (Wiley, Hoboken, 2006).


* A. Geim, ''Graphene: Status and Prospects'', Science '''324''', 1530 (2009). [http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/science%20review%202009.pdf[PDF]]
== Statistical Mechanics ==
*A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, ''The electronic properties of graphene'', Rev. Mod. Phys. '''81''', 109 (2009). [http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/RMP_2009.pdf [PDF]]
*M. Kardar, ''Statistical Physics of Particles'' (Cambridge University Press, Cambridge, 2007).
* A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche, ''Charge transport in disordered graphene-based low-dimensional materials'', Nano Research  '''1''', 361 (2008). [http://www-drfmc.cea.fr/Phocea/file.php?class=pisp&reload=1226481222&file=sroche/files/22/22_88_.pdf [PDF]]
 
== Carbon Nanotubes ==
 
* J.-C. Charlier, X. Blase, and S. Roche, ''Electronic and transport properties of nanotubes'', Rev. Mod. Phys. '''79''', 677 (2007). [http://link.aps.org/doi/10.1103/RevModPhys.79.677 [PDF]]
* P. Avouris, Z. Chen,  and  V. Perebeinos, ''Carbon-based electronics'', Nature Nanotechnology '''2''', 605 (2007). [http://www.nature.com/nnano/journal/v2/n10/abs/nnano.2007.300.html [PDF]]
 
== Semiconductor Nanostructures ==


* C. W. J. Beenakker and H. van Houten, ''Quantum transport in semiconductor nanostructures'', arXiv:cond-mat/0412664 [http://arxiv.org/pdf/cond-mat/0412664v1 [PDF]]
==Solid State Physics==
* H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, ''Coulomb-blockade oscillations in semiconductor nanostructures'', arXiv:cond-mat/0508454 [http://arxiv.org/pdf/cond-mat/0508454v1 [PDF]]
*G. Grosso and G. Pastori Parravicini, ''Solid State Physics'' (Academic Press, San Diego, 2013).
* I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, ''Diffusive transport in quasi-2D and quasi-1D electron systems'', Journal of Computational and Theoretical Nanoscience '''6''', 1725 (2009). [http://homepages.cae.wisc.edu/~knezevic/Knezevic_Quasi2D_quasi1D.pdf [PDF]]
*E. Canadell, M.-L. Doublet, and C. Iung, ''Orbital Approach to the Electronic Structure of Solids'' (Oxford University Press, Oxford, 2012).


== Spintronics ==
== Spintronics ==


* J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, ''Semiconductor Spintronics'', Acta Physica Slovaca '''57''', 565 (2007) [http://www.physics.udel.edu/~csb/PDF/fabian_review.pdf [PDF]].
=== Semiconductor spintronics ===
* B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [http://www.physics.udel.edu/%7Ebnikolic/PDF/spin_currents_oup.pdf|[PDF]]
* J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, ''Semiconductor Spintronics'', Acta Physica Slovaca '''57''', 565 (2007) [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/SPINTRONICS/FABIAN=semiconductor_spintronics.pdf [PDF]].
 
* B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [http://www.physics.udel.edu/%7Ebnikolic/PDF/spin_currents_oup.pdf [PDF]]
== Quantum Mechanics ==


* C. Cohen-Tannoudji, B. Diu, and F. Laloe: ''Quantum Mechanics'', 2 Volume Set (Wiley, Hoboken, 2006). [http://www.wiley.com/WileyCDA/WileyTitle/productCd-047116433X.html [Publisher Website]]
=== Metal spintronics ===
* L. E. Ballentine: ''Quantum Mechanics: A Modern Development'' (World Scientific, Singapore, 1998). [http://books.google.com/books?id=sHJRFHz1rYsC&dq=ballentine+quantum+mechanics&printsec=frontcover&source=bl&ots=RnFWSfjiZX&sig=WzeCTKn7EDuW-rd_1cJxjYyRaPk&hl=en&ei=G97GStGqHsuf8Abskq3hCA&sa=X&oi=book_result&ct=result&resnum=2#v=onepage&q=&f=false [Google Books]]
* D. C. Ralph and M. A. Stiles, ''Tutorial on spin transfer torque'', Journal of Magnetism and Magnetic Materials '''320''', 1190 (2008). [http://arxiv.org/PS_cache/arxiv/pdf/0711/0711.4608v3.pdf [PDF]] (the arXiv version linked here is corrected and contains additional material compared to officially published JMMM article).


== Statistical Mechanics ==
=== Topological Insulators ===
* M. Z. Hasan, C. L. Kane, ''COLLOQUIUM: Topological insulators'', Rev.Mod.Phys. '''82''',3045 (2010). [http://dx.doi.org/10.1103/RevModPhys.82.3045 [PDF]]


* H. Gold and J. Tobochnik: ''Thermal and Statistical Physics'' [http://stp.clarku.edu/notes/ [PDF]]
== Advanced NEGF computational algorithms==
* G. Cook and R. H. Dickerson, ''Understanding the chemical potential'', Am. J. Phys. '''63''', 737 (1995). [http://dx.doi.org/10.1119/1.17844 [PDF]]
 
== Condensed Matter Physics ==
 
* E. Kaxiras: ''Atomic and Electronic Structure of Solids'' (Cambridge University Press, Cambridge, 2003). [http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521523397 [Publisher Website]]
 
== Advanced NEGF Computational Algorithms==


=== Self-energies of semi-infinite electrodes ===
=== Self-energies of semi-infinite electrodes ===
Line 44: Line 30:


* I. Rungger and S. Sanvito, ''Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition'', Phys. Rev. B '''78''', 035407 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/SANVITO=algorithm_for_construction_of_self_energies_for_electronic_transport_calclations_based_on_singularity_elimination_and_singular_value_decomposition.pdf [PDF]]
* I. Rungger and S. Sanvito, ''Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition'', Phys. Rev. B '''78''', 035407 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/SANVITO=algorithm_for_construction_of_self_energies_for_electronic_transport_calclations_based_on_singularity_elimination_and_singular_value_decomposition.pdf [PDF]]
===k-point sampling===
* M.-H. Liu and K. Richter, ''Efficient quantum transport simulation for bulk graphene heterojunctions'', Phys. Rev. B '''86''', 115455 (2012).  [http://prb.aps.org/abstract/PRB/v86/i11/e115455 [PDF]].


=== Recursive algorithms ===
=== Recursive algorithms ===
Line 49: Line 38:
==== Two-terminal devices ====
==== Two-terminal devices ====


* D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', arXiv:0909.4568 [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]].  
* D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]].  


* A. Lassl, P. Schlagheck, and K. Richter, ''Effects of short-range interactions on transport through quantum point contacts: A numerical approach'', Phys. Rev. B '''75''', 045346 (2007). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/RICHTER=effects_of_short-range_interactions_on_transport_through_quantum_point_contacts_numerical_approach.pdf [PDF]]
* A. Lassl, P. Schlagheck, and K. Richter, ''Effects of short-range interactions on transport through quantum point contacts: A numerical approach'', Phys. Rev. B '''75''', 045346 (2007). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/RICHTER=effects_of_short-range_interactions_on_transport_through_quantum_point_contacts_numerical_approach.pdf [PDF]]


* P. S. Drouvelis, P. Schmelcher, and P. Bastian, ''Parallel implementation of the recursive Green’s function method'', Journal of Computational Physics '''215''', 741 (2006). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/PARALLEL_impementation_of_the_recursive_green_function_method.pdf [PDF]]
* P. S. Drouvelis, P. Schmelcher, and P. Bastian, ''Parallel implementation of the recursive Green’s function method'', J. Comp. Phys.  '''215''', 741 (2006). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/PARALLEL_impementation_of_the_recursive_green_function_method.pdf [PDF]]


==== Multiterminal devices ====
==== Multiterminal devices ====


* M. Wimmer and K. Richter, ''Optimal block-tridiagonalization of matrices for coherent charge transport'', J. Comp. Phys, '''228''',8548 (2009). [http://dx.doi.org/10.1016/j.jcp.2009.08.001 [PDF]]
* M. Wimmer and K. Richter, ''Optimal block-tridiagonalization of matrices for coherent charge transport'', J. Comp. Phys. '''228''', 8548 (2009). [http://dx.doi.org/10.1016/j.jcp.2009.08.001 [PDF]]


* K. Kazymyrenko and X. Waintal, ''Knitting algorithm for calculating Green functions in quantum systems'', Phys. Rev. B '''77''', 115119 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/WAINTAL=knitting_algorithm_for_calculating_green_functions_in_quantum_systems.pdf [PDF]]
* K. Kazymyrenko and X. Waintal, ''Knitting algorithm for calculating Green functions in quantum systems'', Phys. Rev. B '''77''', 115119 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/WAINTAL=knitting_algorithm_for_calculating_green_functions_in_quantum_systems.pdf [PDF]]


== Advanced NEGF Theory ==
* [[Media:Qttg_mahfouzi.pdf | QTTG block-tridiagonalization algorithms]]
 
=== NEGF Fundamentals ===
 
* R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.-O. Almbladh and U. von Barth, ''Introduction to the Keldysh Formalism'', Lect. Notes Phys. '''706''', 33 (2006). [http://theochem.chem.rug.nl/research/vanleeuwen/literature/keldysh.pdf [PDF]]
 
* R. van Leeuwen and N. E. Dahlen, ''An Introduction to Nonequilibrium Green Functions'' [http://theochem.chem.rug.nl/research/vanleeuwen/literature/NGF.pdf [PDF]]
 
* A. Oguri, ''Transport theory for interacting electrons connected to reservoirs'', cond-mat/0606316 [http://www.physics.udel.edu/~bnikolic/QTTG/shared/reviews/transport_theory_for_interacting_electrons_connected_to_reservoirs_oguri.pdf [PDF]]
 
* A.-P. Jauho and H. Haug, ''Quantum Kinetics in Transport and Optics of Semiconductors'' (Springer, Berlin, 2008). [http://books.google.com/books?id=w1am24ZE9jQC&printsec=frontcover&source=gbs_v2_summary_r&cad=0#v=onepage&q=&f=false [Google books]]


=== NEGF + DFT ===
=== NEGF + DFT ===
 
* D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]].
* A. Rocha, ''Theoretical and Computational Aspects of Electronic Transport at the Nanoscale'' (PhD thesis for SMEAGOL).  [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/SMEAGOL=rocha_phd_thesis.pdf [PDF]]
* A. Rocha, ''Theoretical and Computational Aspects of Electronic Transport at the Nanoscale'' (PhD thesis for SMEAGOL).  [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/SMEAGOL=rocha_phd_thesis.pdf [PDF]]
* M. Koentopp, ''Density Functional Calculations of Nanoscale Conductance'' (PhD thesis). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/KONTOPP=theory_of_electronic_transport_through_molecular_nanostructures.pdf [PDF]]
* M. Koentopp, ''Density Functional Calculations of Nanoscale Conductance'' (PhD thesis). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/KONTOPP=theory_of_electronic_transport_through_molecular_nanostructures.pdf [PDF]]
 
* S Kurth and G Stefanucci, Transport through correlated systems with density functional theory, J. Phys.: Condens. Matter {\bf 29}, 413002 (2017). [https://iopscience.iop.org/article/10.1088/1361-648X/aa7e36/pdf [PDF]]
* M. Koentopp, C. Chang, K. Burke, and R. Car, ''Density functional calculations of nanoscale conductance'', J. Phys.: Condens. Matter '''20''', 083203 (2008) (topical review). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/REVIEW_BURKE=density_functional_calculatins_of_nanoscale_conductance.pdf [PDF]]
 
=== NEGF + GW ===
 
* K. S. Thygesen and A. Rubio, ''Correlated electron transport in molecular junctions'', Chapter 23 in Volume I of The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Eds. A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010). [[Media:THYGESEN=correlated_electron_transport_in_molecular_junctions.pdf‎ | [PDF]]]
 
* C. D. Spataru, M. S. Hybertsen, S. G. Louie, and A. J. Millis, ''GW approach to Anderson model out of equilibrium: Coulomb blockade and false hysteresis in the I-V characteristics'', Phys. Rev. B '''79''', 155110 (2009). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+GW/MILLIS=gw_approach_to_anderson_model_out_of_equilibrium_coulomb_blockade_and_false_hysteresis_in_iv_characteristics.pdf [PDF]]
 
* X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis, ''Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model'', Phys. Rev. B '''77''', 045119 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+GW/MILLIS=electronic_correlation_in_nanoscale_junctions_comparison_GW_approximation_to_numerically_exact_solution_to_single_anderson_model.pdf [PDF]]
 
=== NEGF + DMFT ===
 
* S. Okamoto, ''Nonlinear transport through strongly correlated two-terminal heterostructures: A dynamical mean-field approach'', Phys. Rev. Lett. '''101''', 116807 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/OKAMOTO=nonlinear_transport_through_strongly_correlated_two_terminal_heterostructures_a_dynamical_mean_field_approach.pdf [PDF]]
 
* S. Okamoto, ''Nonequilibrium transport and optical properties of model metal–Mott-insulator–metal heterostructures'', Phys. Rev. B '''76''', 035105 (2007) [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/OKAMOTO=nonequilibrium_transport_and_optical_properties_of_model_metal-mott-insulator-metal_heterostructures.pdf [PDF]]
 
* A. Ishida and A. Liebsch, ''Embedding approach for dynamical mean-field theory of strongly correlated heterostructures'', Phys. Rev. B '''79''', 045130 (2009). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/ISHIDA=embedding_approach_for_dmft_of_strongly_correlated_heterostructures.pdf [PDF]]
 
* D. Jacob, K. Haule, and G. Kotliar, ''Kondo effect and conductance of nanocontacts with magnetic impurities'', Phys. Rev. Lett. '''103''', 016803 (2009). [http://link.aps.org/doi/10.1103/PhysRevLett.103.016803 [PDF]]

Latest revision as of 16:13, 2 September 2020

Quantum Mechanics

  • C. Cohen-Tannoudji, B. Diu, and F. Laloe: Quantum Mechanics, 2 Volume Set (Wiley, Hoboken, 2006).

Statistical Mechanics

  • M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007).

Solid State Physics

  • G. Grosso and G. Pastori Parravicini, Solid State Physics (Academic Press, San Diego, 2013).
  • E. Canadell, M.-L. Doublet, and C. Iung, Orbital Approach to the Electronic Structure of Solids (Oxford University Press, Oxford, 2012).

Spintronics

Semiconductor spintronics

  • J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) [PDF].
  • B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [PDF]

Metal spintronics

  • D. C. Ralph and M. A. Stiles, Tutorial on spin transfer torque, Journal of Magnetism and Magnetic Materials 320, 1190 (2008). [PDF] (the arXiv version linked here is corrected and contains additional material compared to officially published JMMM article).

Topological Insulators

  • M. Z. Hasan, C. L. Kane, COLLOQUIUM: Topological insulators, Rev.Mod.Phys. 82,3045 (2010). [PDF]

Advanced NEGF computational algorithms

Self-energies of semi-infinite electrodes

  • J. Velev and W. Butler, On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis, J. Phys.: Condens. Matter 16, R637 (2004). [PDF]
  • H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, Krylov subspace method for evaluating the self-energy matrices in electron transport calculations, Phys. Rev. B 77, 155301 (2008). [PDF]
  • I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78, 035407 (2008). [PDF]

k-point sampling

  • M.-H. Liu and K. Richter, Efficient quantum transport simulation for bulk graphene heterojunctions, Phys. Rev. B 86, 115455 (2012). [PDF].

Recursive algorithms

Two-terminal devices

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
  • A. Lassl, P. Schlagheck, and K. Richter, Effects of short-range interactions on transport through quantum point contacts: A numerical approach, Phys. Rev. B 75, 045346 (2007). [PDF]
  • P. S. Drouvelis, P. Schmelcher, and P. Bastian, Parallel implementation of the recursive Green’s function method, J. Comp. Phys. 215, 741 (2006). [PDF]

Multiterminal devices

  • M. Wimmer and K. Richter, Optimal block-tridiagonalization of matrices for coherent charge transport, J. Comp. Phys. 228, 8548 (2009). [PDF]
  • K. Kazymyrenko and X. Waintal, Knitting algorithm for calculating Green functions in quantum systems, Phys. Rev. B 77, 115119 (2008). [PDF]

NEGF + DFT

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
  • A. Rocha, Theoretical and Computational Aspects of Electronic Transport at the Nanoscale (PhD thesis for SMEAGOL). [PDF]
  • M. Koentopp, Density Functional Calculations of Nanoscale Conductance (PhD thesis). [PDF]
  • S Kurth and G Stefanucci, Transport through correlated systems with density functional theory, J. Phys.: Condens. Matter {\bf 29}, 413002 (2017). [PDF]