References: Difference between revisions

From phys824
Jump to navigationJump to search
No edit summary
Line 9: Line 9:
* J.-C. Charlier, X. Blase, and S. Roche, ''Electronic and transport properties of nanotubes'', Rev. Mod. Phys. '''79''', 677 (2007). [http://link.aps.org/doi/10.1103/RevModPhys.79.677 [PDF]]
* J.-C. Charlier, X. Blase, and S. Roche, ''Electronic and transport properties of nanotubes'', Rev. Mod. Phys. '''79''', 677 (2007). [http://link.aps.org/doi/10.1103/RevModPhys.79.677 [PDF]]
* P. Avouris, Z. Chen,  and  V. Perebeinos, ''Carbon-based electronics'', Nature Nanotechnology '''2''', 605 (2007). [http://www.nature.com/nnano/journal/v2/n10/abs/nnano.2007.300.html [PDF]]
* P. Avouris, Z. Chen,  and  V. Perebeinos, ''Carbon-based electronics'', Nature Nanotechnology '''2''', 605 (2007). [http://www.nature.com/nnano/journal/v2/n10/abs/nnano.2007.300.html [PDF]]


== Semiconductor Nanostructures ==
== Semiconductor Nanostructures ==
Line 15: Line 16:
* H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, ''Coulomb-blockade oscillations in semiconductor nanostructures'', arXiv:cond-mat/0508454 [http://arxiv.org/pdf/cond-mat/0508454v1 [PDF]]
* H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, ''Coulomb-blockade oscillations in semiconductor nanostructures'', arXiv:cond-mat/0508454 [http://arxiv.org/pdf/cond-mat/0508454v1 [PDF]]
* I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, ''Diffusive transport in quasi-2D and quasi-1D electron systems'', Journal of Computational and Theoretical Nanoscience '''6''', 1725 (2009). [http://homepages.cae.wisc.edu/~knezevic/Knezevic_Quasi2D_quasi1D.pdf [PDF]]
* I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, ''Diffusive transport in quasi-2D and quasi-1D electron systems'', Journal of Computational and Theoretical Nanoscience '''6''', 1725 (2009). [http://homepages.cae.wisc.edu/~knezevic/Knezevic_Quasi2D_quasi1D.pdf [PDF]]
== Spintronics ==


== Quantum Mechanics ==
== Quantum Mechanics ==
Line 29: Line 33:


* E. Kaxiras: ''Atomic and Electronic Structure of Solids'' (Cambridge University Press, Cambridge, 2003). [http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521523397 [Publisher Website]]
* E. Kaxiras: ''Atomic and Electronic Structure of Solids'' (Cambridge University Press, Cambridge, 2003). [http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521523397 [Publisher Website]]
== Advanced NEGF ==
=== NEGF Fundamentals ===
* R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.-O. Almbladh and U. von Barth, ''Introduction to the Keldysh Formalism'', Lect. Notes Phys. '''706''', 33 (2006). [http://theochem.chem.rug.nl/research/vanleeuwen/literature/keldysh.pdf [PDF]]
* R. van Leeuwen and N. E. Dahlen, ''An Introduction to Nonequilibrium Green Functions'' [http://theochem.chem.rug.nl/research/vanleeuwen/literature/NGF.pdf [PDF]]
* A. Oguri, ''Transport theory for interacting electrons connected to reservoirs'', cond-mat/0606316 [http://www.physics.udel.edu/~bnikolic/QTTG/shared/reviews/transport_theory_for_interacting_electrons_connected_to_reservoirs_oguri.pdf [PDF]]
* A.-P. Jauho and H. Haug, ''Quantum Kinetics in Transport and Optics of Semiconductors'' (Springer, Berlin, 2007).
=== NEGF + DFT ===
* A. Rocha, ''Theoretical and Computational Aspects of Electronic Transport at the Nanoscale'' (PhD thesis for SMEAGOL).  [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/SMEAGOL=rocha_phd_thesis.pdf [PDF]]
* M. Koentopp, ''Density Functional Calculations of Nanoscale Conductance'' (PhD thesis). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/KONTOPP=theory_of_electronic_transport_through_molecular_nanostructures.pdf [PDF]]
* M. Koentopp, C. Chang, K. Burke, and R. Car, ''Density functional calculations of nanoscale conductance'', J. Phys.: Condens. Matter '''20''', 083203 (2008) (topical review). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/REVIEW_BURKE=density_functional_calculatins_of_nanoscale_conductance.pdf [PDF]]
=== NEGF + GW ===
* K. S. Thygesen and A. Rubio, ''Correlated electron transport in molecular junctions'', Chapter 23 in Volume I of The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Eds. A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010). [[Media:THYGESEN=correlated_electron_transport_in_molecular_junctions.pdf‎ | [PDF]]]
* C. D. Spataru, M. S. Hybertsen, S. G. Louie, and A. J. Millis, ''GW approach to Anderson model out of equilibrium: Coulomb blockade and false hysteresis in the I-V characteristics'', Phys. Rev. B '''79''', 155110 (2009). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+GW/MILLIS=gw_approach_to_anderson_model_out_of_equilibrium_coulomb_blockade_and_false_hysteresis_in_iv_characteristics.pdf [PDF]]
== Computational NEGF ==
=== Self-energies ===
* J. Velev and W. Butler, ''On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis'', J. Phys.: Condens. Matter '''16''', R637 (2004). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/BUTLER=on_the_equvalence_of_different_techniques_for_evaluating_green_functions_for_a_semiinfinite_system_using_a_localized_basis.pdf [PDF]]
* H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, ''Krylov subspace method for evaluating the self-energy matrices in electron transport calculations'', Phys. Rev. B '''77''', 155301 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/STOKBRO=krylov_subspace_method_for_evaluating_self_energy_matrices_in_electron_transport_calculations.pdf [PDF]]
* I. Rungger and S. Sanvito, ''Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition'', Phys. Rev. B '''78''', 035407 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/SANVITO=algorithm_for_construction_of_self_energies_for_electronic_transport_calclations_based_on_singularity_elimination_and_singular_value_decomposition.pdf [PDF]]
=== Recursive algorithms ===
* D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', arXiv:0909.4568 [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]].
* A. Lassl, P. Schlagheck, and K. Richter, ''Effects of short-range interactions on transport through quantum point contacts: A numerical approach'', Phys. Rev. B '''75''', 045346 (2007). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/RICHTER=effects_of_short-range_interactions_on_transport_through_quantum_point_contacts_numerical_approach.pdf [PDF]]
* P. S. Drouvelis, P. Schmelcher, and P. Bastian, ''Parallel implementation of the recursive Green’s function method'', Journal of Computational Physics '''215''', 741 (2006). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/PARALLEL_impementation_of_the_recursive_green_function_method.pdf [PDF]]
* K. Kazymyrenko and X. Waintal, ''Knitting algorithm for calculating Green functions in quantum systems'', Phys. Rev. B '''77''', 115119 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/WAINTAL=knitting_algorithm_for_calculating_green_functions_in_quantum_systems.pdf [PDF]]
* X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis, ''Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model'', Phys. Rev. B '''77''', 045119 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+GW/MILLIS=electronic_correlation_in_nanoscale_junctions_comparison_GW_approximation_to_numerically_exact_solution_to_single_anderson_model.pdf [PDF]]
=== NEGF + DMFT ===
* S. Okamoto, ''Nonlinear transport through strongly correlated two-terminal heterostructures: A dynamical mean-field approach'', Phys. Rev. Lett. '''101''', 116807 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/OKAMOTO=nonlinear_transport_through_strongly_correlated_two_terminal_heterostructures_a_dynamical_mean_field_approach.pdf [PDF]]
* S. Okamoto, ''Nonequilibrium transport and optical properties of model metal–Mott-insulator–metal heterostructures'', Phys. Rev. B '''76''', 035105 (2007) [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/OKAMOTO=nonequilibrium_transport_and_optical_properties_of_model_metal-mott-insulator-metal_heterostructures.pdf [PDF]]
* A. Ishida and A. Liebsch, ''Embedding approach for dynamical mean-field theory of strongly correlated heterostructures'', Phys. Rev. B '''79''', 045130 (2009). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DMFT/ISHIDA=embedding_approach_for_dmft_of_strongly_correlated_heterostructures.pdf [PDF]]
* D. Jacob, K. Haule, and G. Kotliar, ''Kondo effect and conductance of nanocontacts with magnetic impurities'', Phys. Rev. Lett. '''103''', 016803 (2009). [[Media:KOTLIAR=kondo_effect_and_conductance_of_nanocontacts_with_magnetic_impurities.pdf|[PDF]]]

Revision as of 16:58, 11 January 2010

Graphene

  • A. Geim, Graphene: Status and Prospects, Science 324, 1530 (2009). [PDF]
  • A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009). [PDF]
  • A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, and S. Roche, Charge transport in disordered graphene-based low-dimensional materials, Nano Research 1, 361 (2008). [PDF]

Carbon Nanotubes

  • J.-C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677 (2007). [PDF]
  • P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnology 2, 605 (2007). [PDF]


Semiconductor Nanostructures

  • C. W. J. Beenakker and H. van Houten, Quantum transport in semiconductor nanostructures, arXiv:cond-mat/0412664 [PDF]
  • H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Coulomb-blockade oscillations in semiconductor nanostructures, arXiv:cond-mat/0508454 [PDF]
  • I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, Diffusive transport in quasi-2D and quasi-1D electron systems, Journal of Computational and Theoretical Nanoscience 6, 1725 (2009). [PDF]

Spintronics

Quantum Mechanics

  • C. Cohen-Tannoudji, B. Diu, and F. Laloe: Quantum Mechanics, 2 Volume Set (Wiley, Hoboken, 2006). [Publisher Website]
  • L. E. Ballentine: Quantum Mechanics: A Modern Development (World Scientific, Singapore, 1998). [Google Books]

Statistical Mechanics

  • H. Gold and J. Tobochnik: Thermal and Statistical Physics [PDF]
  • G. Cook and R. H. Dickerson, Understanding the chemical potential, Am. J. Phys. 63, 737 (1995). [PDF]

Condensed Matter Physics

  • E. Kaxiras: Atomic and Electronic Structure of Solids (Cambridge University Press, Cambridge, 2003). [Publisher Website]

Advanced NEGF

NEGF Fundamentals

  • R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.-O. Almbladh and U. von Barth, Introduction to the Keldysh Formalism, Lect. Notes Phys. 706, 33 (2006). [PDF]
  • R. van Leeuwen and N. E. Dahlen, An Introduction to Nonequilibrium Green Functions [PDF]
  • A. Oguri, Transport theory for interacting electrons connected to reservoirs, cond-mat/0606316 [PDF]
  • A.-P. Jauho and H. Haug, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2007).

NEGF + DFT

  • A. Rocha, Theoretical and Computational Aspects of Electronic Transport at the Nanoscale (PhD thesis for SMEAGOL). [PDF]
  • M. Koentopp, Density Functional Calculations of Nanoscale Conductance (PhD thesis). [PDF]
  • M. Koentopp, C. Chang, K. Burke, and R. Car, Density functional calculations of nanoscale conductance, J. Phys.: Condens. Matter 20, 083203 (2008) (topical review). [PDF]

NEGF + GW

  • K. S. Thygesen and A. Rubio, Correlated electron transport in molecular junctions, Chapter 23 in Volume I of The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Eds. A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010). [PDF]
  • C. D. Spataru, M. S. Hybertsen, S. G. Louie, and A. J. Millis, GW approach to Anderson model out of equilibrium: Coulomb blockade and false hysteresis in the I-V characteristics, Phys. Rev. B 79, 155110 (2009). [PDF]

Computational NEGF

Self-energies

  • J. Velev and W. Butler, On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis, J. Phys.: Condens. Matter 16, R637 (2004). [PDF]
  • H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, Krylov subspace method for evaluating the self-energy matrices in electron transport calculations, Phys. Rev. B 77, 155301 (2008). [PDF]
  • I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78, 035407 (2008). [PDF]

Recursive algorithms

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, arXiv:0909.4568 [PDF].
  • A. Lassl, P. Schlagheck, and K. Richter, Effects of short-range interactions on transport through quantum point contacts: A numerical approach, Phys. Rev. B 75, 045346 (2007). [PDF]
  • P. S. Drouvelis, P. Schmelcher, and P. Bastian, Parallel implementation of the recursive Green’s function method, Journal of Computational Physics 215, 741 (2006). [PDF]
  • K. Kazymyrenko and X. Waintal, Knitting algorithm for calculating Green functions in quantum systems, Phys. Rev. B 77, 115119 (2008). [PDF]


  • X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis, Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model, Phys. Rev. B 77, 045119 (2008). [PDF]

NEGF + DMFT

  • S. Okamoto, Nonlinear transport through strongly correlated two-terminal heterostructures: A dynamical mean-field approach, Phys. Rev. Lett. 101, 116807 (2008). [PDF]
  • S. Okamoto, Nonequilibrium transport and optical properties of model metal–Mott-insulator–metal heterostructures, Phys. Rev. B 76, 035105 (2007) [PDF]
  • A. Ishida and A. Liebsch, Embedding approach for dynamical mean-field theory of strongly correlated heterostructures, Phys. Rev. B 79, 045130 (2009). [PDF]
  • D. Jacob, K. Haule, and G. Kotliar, Kondo effect and conductance of nanocontacts with magnetic impurities, Phys. Rev. Lett. 103, 016803 (2009). [PDF]