References: Difference between revisions
From phys824
Jump to navigationJump to search
(67 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | == Quantum Mechanics == | ||
* C. Cohen-Tannoudji, B. Diu, and F. Laloe: ''Quantum Mechanics'', 2 Volume Set (Wiley, Hoboken, 2006). | |||
== Statistical Mechanics == | |||
*M. Kardar, ''Statistical Physics of Particles'' (Cambridge University Press, Cambridge, 2007). | |||
==Solid State Physics== | |||
*G. Grosso and G. Pastori Parravicini, ''Solid State Physics'' (Academic Press, San Diego, 2013). | |||
*E. Canadell, M.-L. Doublet, and C. Iung, ''Orbital Approach to the Electronic Structure of Solids'' (Oxford University Press, Oxford, 2012). | |||
== Spintronics == | |||
=== Semiconductor spintronics === | |||
* J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, ''Semiconductor Spintronics'', Acta Physica Slovaca '''57''', 565 (2007) [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/SPINTRONICS/FABIAN=semiconductor_spintronics.pdf [PDF]]. | |||
* B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [http://www.physics.udel.edu/%7Ebnikolic/PDF/spin_currents_oup.pdf [PDF]] | |||
=== Metal spintronics === | |||
* D. C. Ralph and M. A. Stiles, ''Tutorial on spin transfer torque'', Journal of Magnetism and Magnetic Materials '''320''', 1190 (2008). [http://arxiv.org/PS_cache/arxiv/pdf/0711/0711.4608v3.pdf [PDF]] (the arXiv version linked here is corrected and contains additional material compared to officially published JMMM article). | |||
=== Topological Insulators === | |||
* M. Z. Hasan, C. L. Kane, ''COLLOQUIUM: Topological insulators'', Rev.Mod.Phys. '''82''',3045 (2010). [http://dx.doi.org/10.1103/RevModPhys.82.3045 [PDF]] | |||
== Advanced NEGF computational algorithms== | |||
=== Self-energies of semi-infinite electrodes === | |||
* J. Velev and W. Butler, ''On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis'', J. Phys.: Condens. Matter '''16''', R637 (2004). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/BUTLER=on_the_equvalence_of_different_techniques_for_evaluating_green_functions_for_a_semiinfinite_system_using_a_localized_basis.pdf [PDF]] | |||
* H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, ''Krylov subspace method for evaluating the self-energy matrices in electron transport calculations'', Phys. Rev. B '''77''', 155301 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/STOKBRO=krylov_subspace_method_for_evaluating_self_energy_matrices_in_electron_transport_calculations.pdf [PDF]] | |||
* I. Rungger and S. Sanvito, ''Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition'', Phys. Rev. B '''78''', 035407 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/SELF_ENERGY/SANVITO=algorithm_for_construction_of_self_energies_for_electronic_transport_calclations_based_on_singularity_elimination_and_singular_value_decomposition.pdf [PDF]] | |||
===k-point sampling=== | |||
* M.-H. Liu and K. Richter, ''Efficient quantum transport simulation for bulk graphene heterojunctions'', Phys. Rev. B '''86''', 115455 (2012). [http://prb.aps.org/abstract/PRB/v86/i11/e115455 [PDF]]. | |||
=== Recursive algorithms === | |||
== | ==== Two-terminal devices ==== | ||
* | * D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]]. | ||
= | * A. Lassl, P. Schlagheck, and K. Richter, ''Effects of short-range interactions on transport through quantum point contacts: A numerical approach'', Phys. Rev. B '''75''', 045346 (2007). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/RICHTER=effects_of_short-range_interactions_on_transport_through_quantum_point_contacts_numerical_approach.pdf [PDF]] | ||
* | * P. S. Drouvelis, P. Schmelcher, and P. Bastian, ''Parallel implementation of the recursive Green’s function method'', J. Comp. Phys. '''215''', 741 (2006). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/PARALLEL_impementation_of_the_recursive_green_function_method.pdf [PDF]] | ||
== | ==== Multiterminal devices ==== | ||
* M. Wimmer and K. Richter, ''Optimal block-tridiagonalization of matrices for coherent charge transport'', J. Comp. Phys. '''228''', 8548 (2009). [http://dx.doi.org/10.1016/j.jcp.2009.08.001 [PDF]] | |||
* | * K. Kazymyrenko and X. Waintal, ''Knitting algorithm for calculating Green functions in quantum systems'', Phys. Rev. B '''77''', 115119 (2008). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/COMPUTATIONAL_NEGF/RECURSIVE_METHODS/WAINTAL=knitting_algorithm_for_calculating_green_functions_in_quantum_systems.pdf [PDF]] | ||
* [[Media:Qttg_mahfouzi.pdf | QTTG block-tridiagonalization algorithms]] | |||
* | === NEGF + DFT === | ||
* D. A. Areshkin and B. K. Nikolic, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [http://www.physics.udel.edu/~bnikolic/PDF/negf_dft_gnr.pdf [PDF]]. | |||
* A. Rocha, ''Theoretical and Computational Aspects of Electronic Transport at the Nanoscale'' (PhD thesis for SMEAGOL). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/SMEAGOL=rocha_phd_thesis.pdf [PDF]] | |||
* M. Koentopp, ''Density Functional Calculations of Nanoscale Conductance'' (PhD thesis). [http://www.physics.udel.edu/~bnikolic/QTTG/NOTES/NEGF+DFT/KONTOPP=theory_of_electronic_transport_through_molecular_nanostructures.pdf [PDF]] | |||
* S Kurth and G Stefanucci, Transport through correlated systems with density functional theory, J. Phys.: Condens. Matter {\bf 29}, 413002 (2017). [https://iopscience.iop.org/article/10.1088/1361-648X/aa7e36/pdf [PDF]] |
Latest revision as of 15:13, 2 September 2020
Quantum Mechanics
- C. Cohen-Tannoudji, B. Diu, and F. Laloe: Quantum Mechanics, 2 Volume Set (Wiley, Hoboken, 2006).
Statistical Mechanics
- M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007).
Solid State Physics
- G. Grosso and G. Pastori Parravicini, Solid State Physics (Academic Press, San Diego, 2013).
- E. Canadell, M.-L. Doublet, and C. Iung, Orbital Approach to the Electronic Structure of Solids (Oxford University Press, Oxford, 2012).
Spintronics
Semiconductor spintronics
- J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) [PDF].
- B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [PDF]
Metal spintronics
- D. C. Ralph and M. A. Stiles, Tutorial on spin transfer torque, Journal of Magnetism and Magnetic Materials 320, 1190 (2008). [PDF] (the arXiv version linked here is corrected and contains additional material compared to officially published JMMM article).
Topological Insulators
- M. Z. Hasan, C. L. Kane, COLLOQUIUM: Topological insulators, Rev.Mod.Phys. 82,3045 (2010). [PDF]
Advanced NEGF computational algorithms
Self-energies of semi-infinite electrodes
- J. Velev and W. Butler, On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis, J. Phys.: Condens. Matter 16, R637 (2004). [PDF]
- H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, Krylov subspace method for evaluating the self-energy matrices in electron transport calculations, Phys. Rev. B 77, 155301 (2008). [PDF]
- I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78, 035407 (2008). [PDF]
k-point sampling
- M.-H. Liu and K. Richter, Efficient quantum transport simulation for bulk graphene heterojunctions, Phys. Rev. B 86, 115455 (2012). [PDF].
Recursive algorithms
Two-terminal devices
- D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
- A. Lassl, P. Schlagheck, and K. Richter, Effects of short-range interactions on transport through quantum point contacts: A numerical approach, Phys. Rev. B 75, 045346 (2007). [PDF]
- P. S. Drouvelis, P. Schmelcher, and P. Bastian, Parallel implementation of the recursive Green’s function method, J. Comp. Phys. 215, 741 (2006). [PDF]
Multiterminal devices
- M. Wimmer and K. Richter, Optimal block-tridiagonalization of matrices for coherent charge transport, J. Comp. Phys. 228, 8548 (2009). [PDF]
- K. Kazymyrenko and X. Waintal, Knitting algorithm for calculating Green functions in quantum systems, Phys. Rev. B 77, 115119 (2008). [PDF]
NEGF + DFT
- D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
- A. Rocha, Theoretical and Computational Aspects of Electronic Transport at the Nanoscale (PhD thesis for SMEAGOL). [PDF]
- M. Koentopp, Density Functional Calculations of Nanoscale Conductance (PhD thesis). [PDF]
- S Kurth and G Stefanucci, Transport through correlated systems with density functional theory, J. Phys.: Condens. Matter {\bf 29}, 413002 (2017). [PDF]