Lectures: Difference between revisions
From phys824
Jump to navigationJump to search
Line 128: | Line 128: | ||
*D. A. Areshkin and B. K. Nikolić, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [https://wiki.physics.udel.edu/wiki_qttg/images/d/dc/Negf_dft_gnr.pdf [PDF]] | *D. A. Areshkin and B. K. Nikolić, ''Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms'', Phys. Rev. B '''81''', 155450 (2010). [https://wiki.physics.udel.edu/wiki_qttg/images/d/dc/Negf_dft_gnr.pdf [PDF]] | ||
*K. K. Saha and B. K. Nikolić, ''Negative differential resistance in graphene-nanoribbon/carbon-nanotube crossbars: A first-principles multiterminal quantum transport study'', J. Comput. Electron. '''12''', 542 (2013). [https://wiki.physics.udel.edu/wiki_qttg/images/d/dd/Jcel_gnr_cnt_crossbar.pdf [PDF]] | *K. K. Saha and B. K. Nikolić, ''Negative differential resistance in graphene-nanoribbon/carbon-nanotube crossbars: A first-principles multiterminal quantum transport study'', J. Comput. Electron. '''12''', 542 (2013). [https://wiki.physics.udel.edu/wiki_qttg/images/d/dd/Jcel_gnr_cnt_crossbar.pdf [PDF]] | ||
*K. K. Saha, A. Blom, K. S. Thygesen, and B. K. Nikolić, ''Magnetoresistance and negative differential resistance in Ni/Graphene/Ni vertical heterostructures driven by finite bias voltage: A first-principles study'', Phys. Rev. B '''85''', 184426 (2012). [https://wiki.physics.udel.edu/wiki_qttg/images/7/70/Ni-gr-ni_mj.pdf] | |||
==Application of NEGF formalism to spin-transfer and spin-orbit torques== | ==Application of NEGF formalism to spin-transfer and spin-orbit torques== |
Revision as of 15:28, 19 November 2020
What is nanophysics: Survey of course topics
Additional references
- Foa Torres et al. textbook Chapters 1 and 3.
- M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Magnetic 2D materials and heterostructures, Nat. Nanotech. 14, (2019). [PDF]
- Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82, 102001 (2013). [PDF]
Survey of quantum statistical tools
Additional references
- Dirac notation and mathematical prerequisites for quantum mechanics (Chapter 1 from L. E. Ballentine: Quantum Mechanics - A modern development, second edition).
- Probability current and current operators in quantum mechanics
- B. K. Nikolić, L. P. Zarbo, and S. Souma, Imaging mesoscopic spin Hall fow: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures, Phys. Rev. B 73, 075303 (2006). [PDF]
- M. M. Odashima, B. G. Prado, and E. Vernek, Pedagogical introduction to equilibrium Green's functions: Condensed matter examples with numerical implementations, Rev. Bras. Ens. Fis. 39, e1303 (2017). [PDF]
From atoms to 1D nanowires: Tight-binding Hamiltonian
- Discretization of 1D continuous Hamiltonian
- Discretization of continuous Hamiltonian for any device shape and dimensionality in KWANT
- How to put magnetic field into tight-binding Hamiltonian
- Wannier functions for 1D nanowires
Additional references
- Ryndyk textbook Chapter 3.
- J. G. Analytis, S. J. Blundell, and A. Ardavan, Landau levels, molecular orbitals, and the Hofstadter butterfly in finite systems, Am. J. Phys. 72, 5 (2004)]. [PDF]
- E. Canadell, M.-L. Doublet, and C. Iung, Orbital Approach to the Electronic Structure of Solids (Oxford University Press, Oxford, 2012).
- D. C. Ralph, Berry curvature, semiclassical electron dynamics, and topological materials: Lecture notes for Introduction to Solid State Physics, arXiv:2001.04797.
Band structure of graphene via tight-binding Hamiltonian
- P. B. Allen and B. K. Nikolic, Band structure of graphene, massless Dirac fermions as low-energy quasiparticles, Berry phase, and all that
- Visualization of graphene electronic energy dispersion using Mathematica
- How to construct matrix representation of tight-binding Hamiltonian of graphene for numerical calculations
- Effective mass of electrons in graphene
- Hofstadter butterfly using graphene in magnetic field
Additional references
- Foa Torres et al. textbook Chapter 2.
- B. A. McKinnon and T. C. Choy, A tight-binding model for the density of states of graphite-like structures calculated using Green's functions, Aust. J. Phys. 46, 601 (1993). [PDF]
- A. Matulis and F. M. Peeters, Analogy between one-dimensional chain models and graphene, Am. J. Phys. 77, 595 (2009). [PDF]
- Tight-binding Hamiltonian of other materials using physical intuition:
- S. Mao, A. Yamakage, and Y. Kuramoto, Tight-binding model for topological insulators: Analysis of helical surface modes over the whole Brillouin zone, Phys. Rev. B 84, 115413 (2011). [PDF]
- T. M. McCormick, I. Kimchi, and N. Trivedi, Minimal models for topological Weyl semimetals, Phys. Rev. B 95, 075133 (2017). [PDF]
Density functional theory for first-principles band structure calculations
Additional references
- Foa Torres et al. textbook Appendix A.
- Chapter 6 in C. Fiolhais, F. Nogueira, and M. A. L. Marques, A Primer in Density Functional Theory (Springer-Verlag, Berlin, 2003). [PDF]
- Tight-binding Hamiltonian via fitting of density functional theory calculations:
Textbook tight-binding Hamiltonians are created by assuming the shape of the orbitals---for instance s, p or d orbitals centered around a particular atom---and then using symmetry to calculate orbital-orbital hopping up to a particular range. In a second step the parameters associated with the degrees of freedom are determined by fitting to experimental data or first-principles calculations.
- T. B. Boykin, M. Luisier, G. Klimeck, X. Jiang, N. Kharche, Yu. Zhou, and S. K. Nayak, Accurate six-band nearest-neighbor tight-binding model for the p-bands of bulk graphene and graphene nanoribbons, J. Appl. Phys. 109, 104304 (2011). [PDF]
- J. M. Marmolejo-Tejada, J. H. García, M. Petrović, P.-H. Chang, X.-L. Sheng, A. Cresti, P. Plecháč, S. Roche, and B. K. Nikolić, Deciphering the origin of nonlocal resistance in multiterminal graphene on hexagonal-boron-nitride with ab initio quantum transport: Fermi surface edge currents rather than Fermi sea topological valley currents, J. Phys.: Mater. 1, 0150061 (2018). [PDF]
- E. Ridolfi, D. Le, T. S. Rahman, E. R. Mucciolo, and C. H. Lewenkopf, A tight-binding model for MoS2 monolayers, J. Phys.: Condens. Matter 27, 365501 (2015). [PDF]
- Tight-binding Hamiltonian via Wannierization of density functional theory calculations:
Wannierization of density functional theory (DFT) calculations starts from the diagonal Kohn-Sham Hamiltonian in the Bloch state basis and transforms into a basis of maximally localized Wannier functions (typically via Wannier90 package). The first-principles Wannier tight-binding Hamiltonian preserves the phase and the orbital information from the DFT calculations.
- J. Kuneš, Wannier functions and construction of model Hamiltonians
- S. Fang and E. Kaxiras, Electronic structure theory of weakly interacting bilayers, Phys. Rev. B 93, 235153 (2016). [PDF]
- S. Carr, S. Fang, H. Chun Po, A. Vishwanath, and E. Kaxiras, Derivation of Wannier orbitals and minimal-basis tight-binding Hamiltonians for twisted bilayer graphene: First-principles approach, Phys. Rev. Res. 1, 033072 (2019). [PDF]
- Wannierization vs. fitting:
- A. C. Jacko, Deriving ab initio model Hamiltonians for molecular crystals, arXiv:1508.07735.
- J. Sifuna, P. García-Fernández, G. S. Manyali, G. Amolo, and J. Junquera, Comparison of band-fitting and Wannier-based model construction for WSe2, arXiv:2001.05959.
Landauer formula for ballistic quasi-1D nanowires with application to edge state transport in 2D topological insulators
- Experiment on the electronic energy distribution along mesoscopic wire
- Crash course on topology in condensed matter
- Graphene goes topological -> Haldane model (introduced in video by Haldane himself)
Additional references
- Ryndyk textbook Chapter 2.2.
- M. Payne, Electrostatic and electrochemical potentials in quantum transport, J. Phys.: Condens. Matter 1, 4931 (1989). [PDF]
- U. Bajpai, M. J. H. Ku, and B. K. Nikolić, Robustness of quantized transport through edge states of finite length: Imaging current density in Floquet topological versus quantum spin and anomalous Hall insulators, Phys. Rev. Res. 2, 033438 (2020). [PDF]
- X.-L. Sheng and B. K. Nikolić, Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions, Phys. Rev. B 95, 201402(R) (2017). [PDF]
Graphene nanoribbons and carbon nanotubes
- Subband structure of zigzag and armchair graphene nanoribbons
- From Brillouin zone of graphene to that of single-wall carbon nanotube
- Subband structure of a single-wall carbon nanotube via the zone-folding method
- Subband structure of single-wall CNT via the Wannier tight-binding Hamiltonian
Additional references
- Foa Torres et al. textbook Chapter 10
Landauer-Büttiker formula for two-terminal and multi-terminal quantum-coherent nanostructures
Additional references
- Ryndyk textbook Chapters 2.3 and 2.4.
- J. Walker and J. Gathright, Exploring one-dimensional quantum mechanics with transfer matrices, Am. J. Phys. 62, 408 (1994)]. [PDF]
Application of Landauer-Büttiker formula to quantum interference effects in electronic transport
Additional references
- G. B. Lesovik and I. A. Sadovskyy, Scattering matrix approach to the description of quantum electron transport, Physics Uspekhi 54, 1007 (2011). [PDF]
Quantum transport via Nonequilibrium Green function (NEGF) formalism
Additional references
- Ryndyk textbook Chapter 3
- S. Datta, Nanoscale device modeling: The Green's function method
- R. Golizadeh-Mojarad and S. Datta, Nonequilibrium Green’s function based models for dephasing in quantum transport, Phys. Rev. B 75, 081301(R) (2007). [PDF]
- C.-L. Chen, C.-R. Chang, and B. K. Nikolić, Quantum coherence and its dephasing in the giant spin Hall effect and nonlocal voltage generated by magnetotransport through multiterminal graphene bars, Phys. Rev. B 85, 155414 (2012). [PDF]
Application of NEGF and NEGF+DFT formalism to magnetic tunnel junctions
Additional references
- Foa Torres et al. textbook Appendix C.
- W. H. Butler, Tunneling magnetoresistance from a symmetry filtering effect, Sci. Technol. Adv. Mater. 9, 014106 (2008). [PDF]
- S. Sanvito, Electron transport theory for large systems.
- D. A. Areshkin and B. K. Nikolić, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF]
- K. K. Saha and B. K. Nikolić, Negative differential resistance in graphene-nanoribbon/carbon-nanotube crossbars: A first-principles multiterminal quantum transport study, J. Comput. Electron. 12, 542 (2013). [PDF]
- K. K. Saha, A. Blom, K. S. Thygesen, and B. K. Nikolić, Magnetoresistance and negative differential resistance in Ni/Graphene/Ni vertical heterostructures driven by finite bias voltage: A first-principles study, Phys. Rev. B 85, 184426 (2012). [1]
Application of NEGF formalism to spin-transfer and spin-orbit torques
Additional references
- B. K. Nikolić, K. Dolui, M. Petrović, P. Plecháč, T. Markussen, and K. Stokbro, First-principles quantum transport modeling of spin-transfer and spin-orbit torques in magnetic multilayers (Chapter of Handbook of Materials Modeling, Volume 2 Applications: Current and Emerging Materials (Springer, Cham, 2018). | [PDF]
- D. C. Ralph and M. D. Stiles, Tutorial on spin transfer torque [NOTE: arXiv:0711.4608 version linked here is corrected and contains additional material compared to the officially published J. Magn. Magn. Mater. 320, 1190 (2008)].
- N. Locatelli, V. Cros, and J. Grollier, Spin-torque building blocks, Nature Mater. 13, 11 (2014). [PDF]
Application of NEGF formalism to nanoscale thermoelectrics
Additional references
- B. K. Nikolić, K. K. Saha, T. Markussen, and K. S. Thygesen, First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes, J. Comp. Electronics 11, 78 (2012). [PDF]
Coulomb blockade
Additional references
- Ryndyk textbook Chapter 5.