Main Page: Difference between revisions

From phys824
Jump to navigationJump to search
No edit summary
No edit summary
Line 31: Line 31:
|-
|-
|style="color:#000"|{{Course Topics}}
|style="color:#000"|{{Course Topics}}
|-
! <h2 style="margin:0;background:#cef2e0;font-size:120%;font-weight:bold;border:1px solid #a3bfb1;text-align:left;color:#000;padding:0.2em 0.4em;">Lecture in Progress</h2>
|-
|style="color:#000"|{{Lecture in Progress}}
|-
|-
|}<!-- Start of right-column -->
|}<!-- Start of right-column -->
Line 42: Line 38:
|-
|-
|style="color:#000"|{{News}}
|style="color:#000"|{{News}}
|-
! <h2 style="margin:0;background:#cef2e0;font-size:120%;font-weight:bold;border:1px solid #a3bfb1;text-align:left;color:#000;padding:0.2em 0.4em;">Lecture in Progress</h2>
|-
|style="color:#000"|{{Lecture in Progress}}
|-
|-
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Quick Links</h2>
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Quick Links</h2>

Revision as of 08:12, 19 September 2009

PHYS 824: Introduction to Nanophysics Wiki


The course Website is embedded into UD Sakai
Instructor · UD Physics & Astronomy · Teaching Web Help · WikiLaTeX · Categories · Media · A–Z index

Course Topics

The course provides a hands-on experience for graduate students in sciences (physics, chemistry) and engineering (electrical, chemical, materials), as well as advanced undergraduates, to analyze electronic structure and transport properties of basic classes of carbon, semiconductor, and magnetic nanostructures explored at the current research frontiers.
  • Nanostructures in equilibrium: electronic structure of graphene and other two-dimensional materials, carbon nanotubes, topological insulators, magnetic multilayers.
  • Nanostructure out of equilibrium: quantum transport effects, such as conductance quantization, signatures of quantum interference in conductance, spin-dependent tunneling, spin and quantum Hall effects, spin torque, I-V curves.
  • Theoretical techniques: semi-empirical tight-binding models, density functional theory (DFT) for first-principles modeling, Landauer-Büttiker scattering formalism, nonequilibrium Green's functions (NEGF), NEGF+DFT techniques.
  • Experimental techniques: scanning tunneling and atomic force microscopy.
  • Applications: nanoelectronics, spintronics, thermoelectrics.

News

  • Final Project is posted and is due on 12/15 as a poster to be presented at 14:00 in Sharp Lab 225.

Lecture in Progress

  • Application of NEGF and NEGF+DFT to spin torque and spin pumping


Wiki Getting Started

Consult User's Guide for information on using the wiki software.