Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 21: Line 21:
===Density of states===
===Density of states===


* local density of states: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E-E_\alpha) \int dE\,  g(r,E) f(E) </math>
* local density of states: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) \int dE\,  g(r,E) f(E) </math>


==Nonequilibrium==
==Nonequilibrium==

Revision as of 14:18, 27 September 2012

Equilibrium

Expectation values

A=Tr[ρ^eqA^]

Density matrix of fermions in equilibrium

ρ^eq=αf(Eα)|EαEα|=f(H^μI^)

  • Fermi-Dirac distribution function: f(E)=1/[exp((Eμ)/kBT)+1]
  • Hamiltonian and its spectral decomposition: H^=αEα|EαEα|
  • function of Hamiltonian: F(H^)=αF(Eα)|EαEα|

Charge density

  • charge density operator: n^(𝐫)=|𝐫𝐫|
  • expectation value: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=𝐫|ρ^eq|𝐫 (in some discrete representation these is just diagonal matrix element)

Density of states

  • local density of states: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=α|Ψα(𝐫)|2f(Eα)=dE[α|Ψα(𝐫)|2δ(EEα)]f(E)dEg(r,E)f(E)

Nonequilibrium

  • Expectation values:
  • Current operator:
  • Spin torque operator: