Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 44: Line 44:


<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math>
<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math>
* total DOS using Green functions:
<math> g(E) = -\frac{1}{\pi} \mathrm{Tr}[ \hat{G}^r(E)] = -\frac{1}{\pi} \int d^3 \mathbf{r} \, \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle  </math>


==Nonequilibrium==
==Nonequilibrium==

Revision as of 14:31, 27 September 2012

Equilibrium

Expectation values

A=Tr[ρ^eqA^]

Density matrix of fermions in equilibrium

  • using spectral decomposition:

ρ^eq=αf(Eα)|EαEα|=f(H^μI^)

  • using Green functions:

ρ^eq=1πdEImGrf(E)

  • Fermi-Dirac distribution function: f(E)=1/[exp((Eμ)/kBT)+1]
  • Hamiltonian and its spectral decomposition: H^=αEα|EαEα|
  • function of Hamiltonian: F(H^)=αF(Eα)|EαEα|
  • Green operators:

G^r,a(E)=[EI^H^±iη]1

ImG^r=(G^rG^a)/2i

Charge density

  • charge density operator: n^(𝐫)=|𝐫𝐫|
  • expectation value: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=𝐫|ρ^eq|𝐫 (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition of total DOS: g(E)=αδ(EEα) (with possible normalization factors like 2s/V)
  • definition of LDOS: g(E)=d3𝐫g(𝐫,E)
  • LDOS using wavefunctions: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=α|Ψα(𝐫)|2f(Eα)=dE[α|Ψα(𝐫)|2δ(EEα)]f(E)=dEg(𝐫,E)f(E)
  • LDOS using Green functions:

g(𝐫,E)=1π𝐫|ImG^r(E)|𝐫

  • total DOS using Green functions:

g(E)=1πTr[G^r(E)]=1πd3𝐫𝐫|ImG^r(E)|𝐫

Nonequilibrium

  • Expectation values:
  • Current operator: