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Giant spin Nernst effect in a two-dimensional antiferromagnet due to magnetoelastic coupling
induced gaps and interband transitions between magnonlike bands
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We analyze theoretically the origin of the spin Nernst and thermal Hall effects in FePS3 as a realization
of a two-dimensional antiferromagnet (2D AFM). We find that a strong magnetoelastic coupling, hybridizing
magnetic excitations (magnons) and elastic excitations (phonons), combined with time-reversal symmetry
breaking, results in Berry curvature hotspots in the region of anticrossing between the two distinct hybridized
bands. Furthermore, a large spin Berry curvature emerges due to interband transitions between two magnonlike
bands, where a small energy gap is induced by magnetoelastic coupling between such bands that are energetically
distant from anticrossings of hybridized bands. These nonzero Berry curvatures generate topological transverse
transport (i.e., the thermal Hall effect) of hybrid excitations, dubbed magnon-polarons, as well as of the spin
(i.e., the spin Nernst effect) carried by them, in response to an applied longitudinal temperature gradient. We
investigate the dependence of the spin Nernst and thermal Hall conductivities on the applied magnetic field and
temperature, unveiling a very large spin Nernst conductivity even at zero magnetic field. Our results suggest
the FePS3 AFM, which is already available in 2D form experimentally, as a promising platform to explore the
topological transport of magnon-polaron quasiparticles at terahertz frequencies.
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I. INTRODUCTION

Two-dimensional (2D) antiferromagnets (AFMs) [1] are
attracting growing attention due to their potential applica-
tion as material platforms for spintronics, spin-orbitronics,
and spin-caloritronics [2–10]. Because the strong exchange
interaction between their localized spins results in intrinsic
terahertz frequency dynamics, AFMs are particularly promis-
ing for the development of devices with high operating speeds.
For example, magnons in a 2D AFM can be employed to store
and transfer terahertz frequency information without Joule
heating due to the absence of a charge current or a stray
field. Such materials can also provide efficient spin-transport
channels in spintronic devices with low energy consumption
[11–16]. Despite these advantages, the use of magnons in 2D
AFMs as a part of realistic devices is severely limited by the
lack of efficient ways to generate and manipulate magnon
excitations. The hybridization of magnons and phonons may
provide a path toward coherent control of magnons in 2D
AFM material via a manipulation of the hybridized states
[17–21]. For instance, it has been shown that one can elec-
trically generate magnon spin current through the interaction
between magnons and phonons [22,23]. Conversely, it has
also been shown that the dynamics of a phonon can be con-
trolled via its interaction with a magnon [24–26].
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Magnons and phonons are the collective and charge-neutral
excitations of localized spins and lattice vibrations, respec-
tively. They behave as bosonic quasiparticles, obeying the
Bose-Einstein distribution function at finite temperature with
zero chemical potential in equilibrium due to their noncon-
served number. Strong coupling between a magnon and a
phonon results in a hybridized state that includes both spin
and lattice collective excitations in a single coherent mode
[27–31]. As a result, a new type of quasiparticle, dubbed
the magnon-polaron [32,33], is formed. The intriguing and
nontrivial emergent properties of magnon-polarons provide a
possible foundation for novel devices with unique optical and
electrical functionalities [34–40]. In particular, the hybridiza-
tion of magnons and phonons to create a magnon-polaron
can generate finite Berry and spin (generalized) Berry curva-
tures concentrated around anticrossing regions [28–31] of the
magnon and phonon bands. These Berry curvatures then lead
to nontrivial topological transverse transport—the magnon
thermal Hall effect (THE) and magnon spin Nernst effect
(SNE)—which have attracted a lot of attention [27–31,33,41–
48]. In particular, recent studies have demonstrated [32,40,49–
52] possibly strong magnon-phonon coupling in FePS3 as
the realization of 2D AFM. This, together with the exper-
imentally accessible 2D form of this material [33], makes
FePS3 a great candidate for investigation of magnon THE
and SHE.

Let us recall that the magnon THE [43] refers to a phe-
nomenon that occurs when a temperature gradient applied
to a magnetic material generates transverse thermal transport
of magnons, perpendicular to both the temperature gradient
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FIG. 1. (a) Schematic view of the magnon SNE in a 2D AFM
where transverse flow of magnons carrying opposite out-of-plane
spins (± h̄) is induced by temperature gradient ∇T along the longitu-
dinal direction [27]. (b) The quasi-2D lattice of FePS3 formed by Fe
atoms. The arrows indicate the direction of the localized spins within
the zigzag AFM phase considered in this paper. Here, αi, βi, and
γi (i = 1, 2, 3) are the vectors joining the nearest, second-nearest,
and third-nearest neighbors, respectively. A unit cell contains four
Fe atoms forming a rectangularly shaped BZ with periodicity in real
space that is

√
3a or 3a long in the x or y direction (where a is the

lattice constant), respectively.

and the magnetization. The magnon SNE [27], which is
analogous to the electronic spin Hall effect (SHE) [53,54]
where electrons of opposite spin travel in opposite directions
transverse to applied unpolarized charge current, involves the
flow of magnons instead of electrons carrying opposite spin
flow in opposite directions perpendicular to the temperature
gradient [Fig. 1(a)]. The magnon SNE is made possible by
the existence of two magnon species within the AFM car-
rying opposite spin polarization [27]. Recent studies have
shown that the magnon SNE can be observed in the follow-
ing: collinear antiferromagnets [27,41,55] on a honeycomb
lattice, where the Dzyaloshinskii-Moriya interaction (DMI)
acting [56] on magnons plays an analogous role to that played
by spin-orbit coupling (SOC) [53,54] for electrons in the
SHE; noncollinear antiferromagnets [47,57], even without
any SOC responsible for DMI, and in zero applied magnetic
field; and collinear antiferromagnets [29–31] or ferrimagnets
[28] with magnetoelastic coupling hybridizing magnon and
phonon quasiparticle bands whose anticrossing regions are
putatively crucial [28] to obtain the nonzero Berry and spin
Berry curvature driving (see Sec. II B) transverse transport in
the THE and SNE, respectively.

(a)

(b)

FIG. 2. (a) The hybridized magnon-phonon band structure of
FePS3 (Fig. 1), along the �-X -M-Y -�-M high-symmetry path in
the BZ marked in the inset, calculated for an applied magnetic field
of Bz = 30 T. The color scale bar encodes whether the bands have
magnonlike, phononlike, or mixed character. The bands are labeled
as bands 1–8 from the highest to the lowest energy. (b) The counter-
part of (a), but in the absence of magnetoelastic coupling [Hm = 0
in Eq. (4)] and for zero applied magnetic field [Bz = 0 in Eq. (2)].
This means that red lines denote purely magnon bands and blue lines
denote purely phonon bands of FePS3, without any hybridization
between them being present.

In contrast, our study highlights a mechanism [31] where a
significant spin Berry curvature can be induced in an energy
window of magnonlike bands that is energetically distant
[for example, the first and second bands in Fig. 2(a)] from
the magnon-phonon hybridized bands and their anticrossing
within a collinear AFM. The magnonlike bands possess a
small phonon character (Fig. S2(d) in the Supplemental Ma-
terial (SM) [58]) over the entire Brillouin zone (BZ), which
causes opening of slight band gaps between them (Fig. S2(b)
in the SM [58]). These band gaps are actually smaller than the
anticrossing gap between magnonlike and phononlike bands
(Fig. S2(b) in the SM [58]). The smallness of band gaps
between magnonlike bands (Figs. S2(b) and S3(b) in the SM
[58]) and phonon-mediated interband transitions [31] between
them lead to significant spin Berry curvature (Fig. 5) and,
thereby, the possibility of a giant SNE in the FePS3 collinear
AFM.

The paper is organized as follows. In Sec. II we introduce
an effective Hamiltonian to capture the magnon-phonon hy-
bridization within 2D AFMs belonging to the MPX3 (M =
Fe, Mn, Co, Ni; X = S, Se) family hosting localized spins
and their magnetic moments in a zigzag phase. The same sec-
tion also reviews the theoretical framework of linear response
theory that can be used to investigate the transverse transport
of magnon-polaron quasiparticles. In Sec. III we discuss the
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thus-generated SNE and THE for FePS3, including the depen-
dence of the thermal Hall and spin Nernst conductivities on
the applied magnetic field and temperature. We conclude in
Sec. IV.

II. MODELS AND METHODS

A. 2D AFM Hamiltonian describing magnons, phonons,
and their magnetoelastic coupling

The MPX3 (M = Fe, Mn, Co, Ni; X = S, Se) family of
materials are van der Waals magnets [1] forming layered
structures that are weakly bound by van der Waals forces
and possess a stable magnetic order even in the monolayer
limit [59,60] because of a huge single-ion anisotropy energy
[33,49,61–64]. In particular, Fig. 1 shows the layered structure
of FePS3 that is established solely by the Fe atoms. Within
each layer, the Fe atoms are arranged in a honeycomblike
lattice structure with “columns” of spins having opposite spin
moments. We consider the FePS3 magnetic structure in the
so-called zigzag AFM phase in which a unit cell contains two
pairs of equivalent atoms (i.e., having the same spin direction)
that are labeled as ai and bi (i = 1, 2), respectively. Due to the
small value of the interlayer exchange interaction relative to
the intralayer exchange interaction, these AFMs are, to a very
good approximation, quasi-two-dimensional magnets even in
the bulk [61,65–69]. The magnon-phonon hybridization in
FePS3 can therefore be investigated by focusing on the quasi-
2D honeycomb structure of Fe atoms whose Hamiltonian can
be written as

H = Hm + Hp + Hmp. (1)

Here, Hm is the Hamiltonian of localized spins whose low-
energy excited states are magnons [14], Hp is the phonon
Hamiltonian, and Hmp is the term describing magnetoelastic
coupling and thereby-induced hybridization of magnons and
phonons. The term Hm is the anisotropic Heisenberg model
[61,65–67,70]:

Hm =
∑
i, j

Ji jSiS j + �
∑

i

(
Sz

i

)2 + gμBBz

∑
i

Sz
i , (2)

where Si = (Sx
i , Sy

i , Sz
i ) is the operator of total spin localized

at a site i of the lattice; Ji j is the exchange coupling between
localized spins at sites i and j; � is the easy-axis anisotropy
energy; the Zeeman (third on the right) term takes into account
coupling to the applied magnetic field Bz pointing along the z
axis, which is perpendicular to the plane in Fig. 1; g is the
Landé g factor; and μB is the Bohr magneton. The sum

∑
i j

runs over all atom pairs in the lattice up to the third-nearest
neighbor.

We take into account the magnetoelastic coupling by
assuming that it acts only between magnons and out-of-
plane phonons. Such an assumption is particularly relevant
for FePS3 2D AFM, where out-of-plane phonon modes are
closely aligned with the magnon modes in terms of energy
and have been observed to hybridize with them under an
applied magnetic field [49]. Therefore we focus only on the
z component of the lattice vibrations, so that describing them
with a simple harmonic oscillator model yields the following

effective phonon Hamiltonian [45,71]:

Hp =
∑

i

(
pz

i

)2

2M
+ 1

2

∑
i j

uz
i �

z
i, ju

z
j . (3)

Here, pz
i and uz

i are the operators of out-of-plane momen-
tum and displacement of the atom at site i of the lattice,
respectively; �z is a spring constant matrix; and M is the
mass of the atom. Finally, for the magnetoelastic coupling,
which generates hybridization of magnon and phonon bands
[Fig. 2(a)], we adopt a Hamiltonian derived by Kittel [72] to
linear order in the magnon amplitude and adapted [49,73] to
magnons coupled to out-of-plane phonons in FePS3:

Hmp = −ξ
∑

i

[
ε

yz
i

(
Sx

i Sz
i + Sz

i Sx
i

) + εxz
i

(
Sy

i Sz
i + Sz

i Sy
i

)]
, (4)

where ξ is the coupling strength and εxz
i and ε

yz
i are

strain functions at the i site computed by averaging over the
strain from nearest-neighboring ions

ε
αβ
i = 1

N

∑
j

ε
αβ
i j . (5)

The two-ion strain tensor in the small-displacement approxi-
mation is given by [73,74]

ε
αβ
i j = 1

2

[(
rα

i − rα
j

)(
uβ

i − uβ
j

) + (
rβ

i − rβ
j

)(
uα

i − uα
j

)]
, (6)

where rα
i and uα

i are the α components of the location vector
in equilibrium and the displacement of the atom from equilib-
rium, respectively, for site i of the lattice.

The transformation of Eq. (1) into second-quantized no-
tation is given in the SM [58]. Since this Hamiltonian
is quadratic in the creation and annihilation operators for
magnons and phonons, it can be exactly diagonalized to obtain
the quasiparticle band structure in Fig. 2 for a magnon-polaron
quasiparticle. For easy comparison, Fig. 2(b) plots nonhy-
bridized magnon (red curves) and phonon (blue curves) bands
in the absence of magnetoelastic coupling [Hm = 0 in Eq. (4)]
and for zero applied magnetic field [Bz = 0 in Eq. (2)].

B. Transverse thermal and spin transport
in the linear response regime

Within the linear response theory, the equations describing
transverse quasiparticle transport underlying the THE and
SNE are given by [31,47,75–78]

jQ
y = −κxy∂xT, (7)

jSz

y = −ηSz

xy∂xT, (8)

where jQ
y and jSz

y are the thermal current and spin current,
respectively, flowing along the y axis in response to the
temperature gradient ∂xT applied along the x axis (Fig. 1).
The coefficients of proportionality in Eqs. (7) and (8) are the
thermal Hall conductivity

κxy = −k2
BT

h̄

N∑
n=1

∫
F2(ρn)�z

ndk (9)
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and the spin Nernst conductivity

ηSz

xy = kB

h̄

N∑
n=1

∫
F1(ρn)�z

Sz,ndk. (10)

Here, ρn = [eEn/kBT − 1]−1 is the Bose-Einstein distribution
function, with En being the eigenenergy of the nth band, which
enters into the conductivity expressions through functions

F1(ρn) = (1 + ρn) ln (1 + ρn) − ρn ln (ρn) (11)

or

F2(ρn) = (1 + ρn) ln2

(
1 + 1

ρn

)
− ln2 (ρn) − 2 Li2(−ρn),

(12)

where Li2 is the polylogarithm function. Finally, the Berry
�n(k) curvature and spin (generalized) Berry �Sα,n(k) cur-
vature of the nth band are given by [31,47]

�n(k) =
∑
m �=n

ih̄2〈n(k)|v|m(k)〉〈m(k)|σ3|m(k)〉 × 〈m(k)|v|n(k)〉〈n(k)|σ3|n(k)〉[
σ nn

3 En(k) − σ mm
3 Em(k)

]2 (13)

and

�Sα,n(k) =
∑
m �=n

ih̄2〈n(k)| jSα |m(k)〉〈m(k)|σ3|m(k)〉 × 〈m(k)|v|n(k)〉〈n(k)|σ3|n(k)〉[
σ nn

3 En(k) − σ mm
3 Em(k)

]2 , (14)

where we use En(k) and |n(k)〉 to denote the eigenvectors
and eigenvalues, respectively, obtained from Colpa’s diago-
nalization algorithm [79–82] (see the SM [58] for details);
v = (vx, vy, vz ) denotes the velocity vector operator; jSα

de-
notes the spin current tensor operator

jSα = Sασ3v + vσ3Sα; (15)

and the σ3 matrix is given by

σ3 =
(

1N×N 0
0 −1N×N

)
, (16)

where 1N×N is the N × N identity matrix and σ nn
3 =

〈n(k)|σ3|n(k)〉 is the nth diagonal element of σ3. Thus eval-
uating Berry [Eq. (13)] and spin Berry [Eq. (14)] curvatures
directly yields the thermal and spin Nernst conductivities,
respectively.

III. RESULTS AND DISCUSSION

A. Topological transport of magnon-polarons:
Thermal Hall and spin Nernst effects

Topological transport will only emerge when two condi-
tions are met. First, bands must have nonzero Berry curvature,
which can emerge due to hybridization. Second, the integral of
the Berry curvature over the Brillouin zone, which is known
as the Chern number, must also be nonzero. We now show
that both of these conditions are met in FePS3 due to magnon-
phonon coupling.

We first assume that FePS3 is exposed to an applied
magnetic field of 30 T. Figure 3(a) shows a zoom of the
magnon-phonon hybridized bands from Fig. 2 focused on the
fourth (predominantly magnon, as it is mostly red) and fifth
(predominantly phonon, as it is mostly blue) bands in the en-
ergy window between 10 and 20 meV along the X -�-M path.
These two bands are strongly coupled, which results in two
anticrossings [Fig. 3(a)]. In the vicinity of these anticrossings,
the eigenstates are hybridized, ψhybrid = ψmagnon ± ψphonon,
with both magnon and phonon character. The presence of
such superpositions is denoted by the bright green-yellow

color of the bands in the anticrossing region [Fig. 3(a)]. We
note that both an applied magnetic field and magnetoelastic
coupling between magnons and phonons are required for such
hybridization and anticrossing to emerge: The magnetoelastic
coupling provides the necessary interaction, while the mag-
netic field tunes the magnon and phonon bands toward energy
degeneracy.

The hybridization of two distinct excitations leads to a
finite Berry curvature. Let us recall that, e.g., hybridization of
s and p states in HgTe/CdTe semiconductor quantum wells
causes nontrivial topological properties for electrons at the

(a)

(b)

4
5

4th band

FIG. 3. (a) The hybridized magnon-phonon band structure of
2D FePS3, along the X -�-M high-symmetry path, calculated for
an applied magnetic field of Bz = 30 T. (b) The corresponding
Berry curvature �z

n along the X -�-M path calculated for the fourth
band in (a).
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FIG. 4. The Berry curvature �z
n [Eq. (13)] computed for magnon-phonon bands (Fig. 2) of FePS3 as a function of the in-plane wave vector

(kx, ky ) within the first BZ and using applied magnetic field Bz = 30 T. (a)–(h) correspond to bands 1–8 denoted in Fig. 2. Their corresponding
Chern number Cn (n = 1, 2, . . . , 8) in Eq. (17) is provided in the upper left corner of each panel. The insets in (b) and (c) show zooms around
kx = −1.64 (a−1), where the Berry curvature of the corresponding bands is nonzero.

Fermi level [83]. The physics here is analogous: In the region
of the BZ where the magnon band (fourth band) and phonon
band (fifth band) anticross, we expect nonzero Berry curva-
ture. In contrast, we expect that away from the anticrossing
regions, the Berry curvature should vanish because either
band is dominated solely by magnon or phonon character.
Figure 3(b), showing the Berry curvature [Eq. (13)] for the
fourth band along the same X -�-M path, confirms this expec-
tation as �z

n(k) �= 0 in Fig. 3(b) only around the anticrossing
regions identified in Fig. 3(a). In other words, the magnon and
phonon bands acquire nonzero Berry curvature due to their
hybridization via magnetoelastic coupling [Eq. (4)].

Figure 4 shows the Berry curvature for bands 1–8 in Fig. 2
as a function of the in-plane wave vector k = (kx, ky). In each
panel, we also report the Chern number calculated as

Cn = 1

2π

∫
BZ

�z
n(k)dkxdky. (17)

These calculations were performed for an applied magnetic
field Bz = 30 T that causes the lowest magnon band to over-
lap with the out-of-plane optical phonon bands, as shown in
Fig. 3(a). Nonzero Berry curvature is observed in the vicinity
of anticrossing regions in the fourth, fifth, and sixth bands
in the color plot. The first band [Fig. 4(a)] has zero Berry
curvature everywhere, which obviously leads to zero Chern
number. The fourth and sixth bands [Figs. 4(d) and 4(f)]
have nonzero Berry curvature, but the integral of the Berry
curvature over the entire BZ of these bands vanishes. As a
result, the Chern number is zero, and these are topologically
trivial bands. The other bands all have nonzero Chern number,
with the sum of their Chern numbers obeying the sum rule,∑N

i=1 Ci = 0, as expected for a Bogoliubov–de Gennes (BdG)
Hamiltonian [28] (see the SM [58] for more details on the
BdG Hamiltonian construction).

However, it is surprising and quite different from standard
lore [27–30] that nonzero Berry curvature can be found for
the second [Fig. 4(b)], third [Fig. 4(c)], and eighth [Fig. 4(h)]
bands because these bands are well above or well below the
energy window in which magnon and phonon bands become

degenerate in energy and anticross (Fig. 2). These bands
all have nontrivial topology with a Chern number equal to
±1. The finite Berry curvature and nontrivial topological
properties of these bands can be understood as follows. Mag-
netoelastic interaction facilitates coupling between magnon
and phonon bands even when they are not energetically close
together, so that magnon bands have small phononic character
(see Figs. S2(c) and S2(d) in the SM [58] for details) and
vice versa [31]. This effect can open a gap between two
magnonlike bands [such as the second and third bands in
Figs. 4(b) and 4(c)] at kx = ±1.64 (a−1), thereby making pos-
sible interband transitions between these two (see the inset of
Fig. S2(b) in the SM [58] for details). Without magnetoelastic
coupling, these magnon bands are degenerate, i.e., they cross
each other at kx = ±1.64 (a−1) (Fig. S2(a) in the SM [58]). A
precise quantum-mechanical interpretation of this picture can
be obtained from the perturbation theory: The gap opening
between the two magnonlike bands is due to perturbations
from phonons, which appears as a second-order correction
term

δEm
i j ∝

∑
p

[H̄]mi,p[H̄]p,m j

[
1

Ēmi − Ēp
+ 1

Ēm j − Ēp

]
(18)

to the magnon band levels (for a derivation of Eq. (18),
see the SM [58]). Here, the indices p, mi, and m j indi-
cate the phonon states which mediate interband transitions
between magnon states i and j; [H̄]mi,p ([H̄]p,m j) describes
the coupling between i magnon (phonon) band and phonon
( j magnon) states; and Ēmi, Ēm j , and Ēp are eigenenergies
of i magnon, j magnon, and phonon states, respectively, as
obtained from exact diagonalization of the bosonic magnon-
phonon Hamiltonian (see the SM [58] for details). As a
result, the Berry curvature of the second and third bands
at around kx = ±1.64 (a−1), which is associated with the
tiny avoided crossing points between the second and third
magnonlike bands, becomes finite. An analogous effect oc-
curs for the phonon bands. For instance, a magnon-mediated
phonon-phonon interband transition between the seventh and
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FIG. 5. The spin Berry curvature �z
Sz ,n

[Eq. (14)] computed for magnon-phonon bands (Fig. 2) of FePS3 as a function of the in-plane wave
vector (kx, ky ) within the first BZ and in the absence of applied magnetic field Bz = 0. (a)–(h) correspond to bands 1–8 denoted in Fig. 2. The
color bar encodes the magnitude of the function L = sgn(�z

Sz ,n) ln(1 + |�z
Sz ,n|).

eighth bands in Fig. 2(a) generates a finite Berry curvature at
ky ≈ ±1 (a−1) for the eighth (phononlike) band, as confirmed
by Fig. 4(h).

Another consequence of these phonon-mediated magnon-
magnon and magnon-mediated phonon-phonon interband
transitions is that they induce the topological transverse trans-
port of spin angular momentum carried by magnons with
substantial spin Nernst conductivity even at zero applied mag-
netic field. Figure 5 shows the computed spin (generalized)
Berry curvature [Eq. (5)] for bands 1–8 (Fig. 2) calculated
for Bz = 0. We note that in the absence of both applied
magnetic field and magnon-phonon coupling, the magnon
bands exhibit a double degeneracy, with one set of bands
carrying spin up [such as the first band in Fig. 2(a)] and
another set carrying spin down [such as the second band in
Fig. 2(a)]. Consequently, the band structures of the magnon-
phonon system in FePS3 also exhibit a double degeneracy,
as illustrated in Fig. 2(b). However, the magnetoelastic cou-
pling between the magnetic and elastic degrees of freedom
in FePS3 lifts the degeneracy of these two magnon bands
with opposite spin, therefore making possible interband tran-
sition between these two magnonlike bands of opposite spin,
even in the absence of an applied magnetic field (see the
SM [58] for Fig. S3 and details of the calculations). Such
phonon-mediated interband transitions between magnonlike
bands, which are energetically distant from the usually con-
sidered [27–30] anticrossing regions [Fig. 3(a)] of hybridized
magnon-phonon bands, can result in the very large spin Berry
curvature found in Figs. 5(a)–5(d) because of the small-
ness [31] [with respect to the gap in anticrossing regions in
Fig. 3(a)] of the energy gap between the two magnonlike
bands with opposite spin polarization (Fig. S3(b) in the SM
[58]). The same effect can operate between phononlike bands.
For example, the seventh and eighth (phononlike) bands in
Fig. 2(a) will exhibit magnon-mediated interband transitions,
thereby developing finite spin Berry curvature [Figs. 5(g)
and 5(h)].

B. Magnetic field dependence of the thermal Hall and spin
Nernst effects on applied magnetic field

Using computed Berry (Fig. 4) and spin Berry (Fig. 5)
curvatures, we can obtain directly the thermal Hall [via
Eq. (9)] and spin Nernst [via Eq. (10)] conductivities shown
in Figs. 6(a) and 6(b), respectively, as a function of applied

FIG. 6. (a) Thermal Hall and (b) spin Nernst conductivities as a
function of applied magnetic field Bz. These conductivities are calcu-
lated at T = 100 K using the FePS3 magnon-phonon band structure
(Fig. 2) and its Berry (Fig. 4) and spin Berry (Fig. 5) curvatures. The
inset in (a) shows a zoom for Bz ∈ [−1.5 T, 1.5 T]. The two insets in
(b) show zooms for (1) Bz ∈ [−1 T, 1 T] and (2) Bz ∈ [2 T, 30 T].
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magnetic field at a fixed temperature T = 100 K that is below
the Néel temperature of FePS3. We focus first on the behavior
over a wide range of magnetic fields. As expected, the thermal
Hall conductivity changes sign when we reverse the applied
magnetic field, i.e., κxy(Bz ) = −κxy(−Bz ). In the absence of
applied magnetic field [Bz = 0 point in Fig. 6(a)], the thermal
Hall conductivity vanishes. We can understand this feature by
recognizing that when the applied magnetic field is absent, the
system will be invariant under the time-reversal symmetry op-
eration T combined with the spin rotation symmetry operation
C that flips all spins in the system. The combination of these
operations leads to an effective time-reversal symmetry (TRS)
operation T ′ = T C under which ∂xT is preserved while the
thermal Hall current is transformed as jQ

y → − jQ
y . Because

this system preserves T ′ = T C symmetry, jQ
y = − jQ

y = 0 and
the thermal Hall conductivity κxy must be zero. We note that
even though the thermal Hall conductivity κxy of the magnon-
phonon hybridized system is zero at zero magnetic field, the
Berry curvature �z

n(k) of individual bands may be finite at
specific k points within the BZ, as long as the integral of the
Berry curvature over the entire BZ vanishes (see the SM [58]
for a detailed argument). This ensures that the THE induced
by the magnon-phonon hybridization does not occur without
breaking the effective TRS [29].

In the regime of small applied magnetic fields (Bz ∈
[−1.5 T, 1.5 T]) the thermal Hall conductivity is primarily
influenced by the phonon-mediated magnon-magnon inter-
band transition. Here, the interplay between magnetoelastic
coupling and the applied magnetic field results in intriguing
nonlinear behaviors of the thermal Hall conductivity, as shown
in the inset of Fig. 6(a). At very low applied magnetic fields
(Bz ∈ [−0.1 T, 0.1 T]), the thermal Hall conductivity exhibits
a weak, but nonzero, dependence on the magnetic field Bz. For
magnetic field magnitudes between |Bz| = 0.1 T and |Bz| =
0.6 T the thermal Hall conductivity exhibits a much stronger
dependence on the magnitude of Bz, reaching a remarkably
large value of approximately 4 × 10−12 W/K at Bz ≈ 0.6 T.
For magnetic field magnitudes larger than Bz ≈ 0.6 T the
thermal Hall conductivity starts to decrease as a function of
the magnitude of Bz. This nonlinear behavior can be attributed
to the interplay of two distinct effects: (1) The first effect
is the breaking of time-reversal symmetry. The breaking of
time-reversal symmetry contributes to the increase in thermal
Hall conductivity with respect to the external magnetic field.
This effect dominates at small magnetic fields and leads to the
initial rise in the thermal Hall conductivity as the magnitude
of Bz increases from zero. (2) The second effect is the gap
between opposite-spin magnonlike bands. The gap between
the two magnonlike bands possessing opposite spin increases
as the magnetic field strength increases. Consequently, the
interband transition between magnonlike bands decreases, and
this effect becomes more pronounced as the magnetic field
magnitude increases. As a result of the decreasing interband
transition, the thermal Hall conductivity starts to decline when
the applied magnetic field exceeds 0.6 T. At even higher
magnetic fields, typically above 5 T, the hybridization be-
tween the magnon and phonon modes comes into play. This
hybridization effect significantly contributes to the thermal
Hall conductivity and dominates the increase in thermal Hall

conductivity for magnetic field magnitudes larger than ap-
proximately 10 T.

In contrast to the thermal Hall conductivity, the spin Nernst
conductivity shown in Fig. 6(b) is an even function of Bz, i.e.,
ηSz

xy(Bz ) = ηSz

xy(−Bz ). Moreover, the spin Nernst conductivity
can be finite even in the absence of an applied magnetic
field [31], i.e., under the effective time-reversal symmetry
T ′. Indeed, if we rewrite the thermal spin current [Eq. (8)]
as jSz

y = jSz↑
y − jSz↓

y , then under the T ′ operation the spin-
polarized currents on the right side change the sign and flip
the spin, i.e., T ′ jSz↑

y = − jSz↓
y and T ′ jSz↓

y = − jSz↑
y . This leads

to T ′ jSz

y = − jSz↓
y + jSz↑

y = jSz
y , which is always true because

our system preserves the effective time-reversal symmetry
in the absence of an applied magnetic field. It is therefore
possible for the spin Nernst conductivity to be nonzero at
zero applied magnetic field, as confirmed in Fig. 6(b). At
zero or small applied magnetic field, the giant spin Nernst
conductivity is mainly governed by phonon-mediated inter-
band transitions between magnonlike bands. It then decays
rapidly [inset (1) in Fig. 6] when the applied magnetic field is
Bz � 2 T, dropping eventually by two orders of magnitude, be-
cause the energy spacing between the two magnonlike bands
increases and thus interband transitions between the two are
suppressed.

As the applied magnetic field magnitude increases from ≈2
to 30 T, the spin Nernst conductivity slightly changes while
becoming negative, ηSz

xy < 0 [inset (2) in Fig. 6]. We find that
from ≈2 to ≈5 T, the spin Nernst conductivity originates pri-
marily from magnon-mediated interband transitions between
phononlike bands. Once the phonon bands start hybridizing
with magnon bands at Bz ≈ 5 T, the spin Berry curvature
(Fig. 3) at anticrossing regions of magnon-phonon bands also
contribute, as amply explored in prior literature [27–30]. To
understand why the spin Nernst conductivity becomes more
negative with increasing applied magnetic field, we consider
that in the conserved spin approximation the spin Nernst
conductivity derived from semiclassical theory is given by
[28,55,75]

ηSz

xy = − kB

h̄V

∑
k

N∑
n=1

〈Sz〉n�
z
nF1(En/kBT ), (19)

where 〈Sz〉n is the expectation value of the Sz operator in the
nth magnon state, �z

n is the Berry curvature of the nth band,
and the F1 function was defined in Eq. (11). From Eq. (19),
we see that increasing the applied magnetic field leads to both
larger spin polarization and stronger hybridizations between
magnon and phonon states due to the shift toward energy
degeneracy of the magnon and phonon states. Consequently,
the amplitude of the spin Nernst conductivity ηSz

xy is augmented
within this regime.

Because the computed spin Nernst conductivity of FePS3

around zero applied magnetic field is two orders of magni-
tude (Fig. 6) larger than at Bz ≈ 10 T, it should be possible
to experimentally probe this effect by sweeping the mag-
netic field. Moreover, the spin Nernst conductivity (SNC) of
FePS3 predicted in this paper is approximately four orders
of magnitude larger than the SNC recently reported for other
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FIG. 7. (a) Thermal Hall and (b) spin Nernst conductivities of
FePS3 as a function of temperature T calculated for applied magnetic
field Bz = 30 T in (a) or Bz = 0 T in (b).

2D antiferromagnetic (AFM) materials such as the kagome
antiferromagnet KFe3(OH)6(SO4) [47] and the collinear
antiferromagnet MnPS3 in the Néel phase [30,55]. The SNC
we compute for FePS3 is also approximately five times larger
than the SNC reported recently for CrSiTe3, which itself
had the largest SNC among the other materials studied in
Ref. [30]. From this comparison we see that FePS3 has a
giant SNC in comparison to other 2D AFM materials, which
could have significant implications for spintronics and related
applications.

We also emphasize that in the absence of magnetoelastic
coupling, both the thermal Hall and spin Nernst conductivities
vanish, irrespective of the applied magnetic field. This is be-
cause the system without magnetoelastic coupling preserves
TaMy symmetry, where My is the mirror symmetry about
the plane normal to the y axis and Ta is a translation operator
that moves the system by the vector β2 (Fig. 1). Unlike the
effective time-reversal symmetry T ′, TaMy does not change
the spin direction but does change the sign of both the ther-
mal Hall and thermal spin Nernst current. In other words,
one must have jQ

y = − jQ
y = 0 and jSz

y = − jSz

y = 0; therefore
both the thermal Hall and spin Nernst conductivity must be
zero. It is only when the magnetoelastic interaction breaks
TaMy symmetry that one obtains finite topological trans-
verse transport of quasiparticles and their spin in a 2D AFM
material.

Finally, Fig. 7 shows the thermal Hall and spin Nernst
conductivities as a function of temperature using Bz = 30 T
or Bz = 0 applied magnetic field, respectively. Both conduc-
tivities increase in magnitude with increasing temperature
because there are increasing contributions to Berry and spin
Berry curvature from phonon and magnon bands at higher
energy. They start to saturate at T � 100 K when all magnon
bands at higher energy have already been included. We note
that when T � 0 K, the spin Nernst conductivity is almost
zero, while the thermal Hall conductivity changes from pos-
itive to negative. This is because at very low temperature
the main contributions to the THE come from the acoustic
phonon band [the eighth band in Fig. 2(a)] with positive Chern
number C8 = 1 [Fig. 4(h)]. As the temperature increases even
slightly, the other bands with negative Chern number begin
to contribute to topological transverse transport of quasi-
particles, and thus the thermal Hall conductivity becomes
negative. In contrast, even though the spin Berry curvature
of the lowest phononlike band [the eighth band in Fig. 2(a)]
is finite, the sum of the spin Berry curvature of the eighth
band over the entire BZ vanishes to yield ηSz

xy → 0 at zero
temperature.

IV. CONCLUSIONS

In conclusion, we have investigated the transverse topolog-
ical transport of magnon-polaron quasiparticles in the zigzag
phase of the FePS3 2D AFM. While we reproduce previ-
ous findings [27–30], obtained for different realizations of
2D AFMs, on the magnetoelastic coupling mechanism where
anticrossing regions of hybridized magnon-phonon bands pro-
vide key contributions [28] to the THE and SNE, we also
predict a giant spin Nernst current carried by magnons even
in zero applied magnetic field. This surprising finding was
noticed before [31], but here we explain it thoroughly by
using perturbative equation (18), which reveals that the prin-
cipal contribution to the spin Berry curvature behind the SNE
comes from the interband transition between slightly gapped
magnonlike bands that are far away in energy from the usu-
ally considered anticrossing regions [27–30]. Of relevance to
experimental probing of the THE and SNE, which is currently
lacking [27], our analysis indicates that FePS3 will exhibit
sizable thermal Hall conductivity and giant spin Nernst con-
ductivities at temperatures T � 100 K, which is still below its
Néel temperature TN ≈ 118 K [49,84].
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ral charge and spin pumping and electron-magnon scattering
from time-dependent quantum transport combined with classi-
cal atomistic spin dynamics, Phys. Rev. B 101, 214412 (2020).

[12] X.-X. Zhang, L. Li, D. Weber, J. Goldberger, K. F. Mak, and
J. Shan, Gate-tunable spin waves in antiferromagnetic atomic
bilayers, Nat. Mater. 19, 838 (2020).

[13] A. Suresh, U. Bajpai, M. D. Petrović, H. Yang, and B. K.
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S1. MAGNON-PHONON HAMILTONIAN OF FEPS3 IN BOGOLIUBOV-DE GENNES FORM:
EXACT DIAGONALIZATION AND PERTURBATION THEORY

A. Magnon Hamiltonian via Holstein-Primakoff transformation

To derive a second-quantization version of Eq. (2) in the main text in terms of bosonic operators creating and
annihilating magnons, we employ standard Holstein-Primakoff transformation [1] which maps spin operators [Eq. (2)
in the main text] residing on sublattice A or B of a two-dimensional antiferromagnet (2D AFM), to bosonic ones and
with its square root of operators expanded into Taylor series and then truncated [2] to linear order

S+
A =

√
2Sai S−

A =
√
2Sa†i Sz

A = S − a†iai, (S1)

S+
B =

√
2Sb†j S−

B =
√
2Sbj Sz

B = −S + b†jbj . (S2)

Such truncation is valid as long as the temperature is low, kBT ≪ Jij where Jij is the exchange coupling in Eq. (2)
in the main text, and the number of magnons excited is sufficiently small [2]. Here ai and bj (a†i and b†j) are operators
annihilating (creating) magnon at site i ∈ A or site j ∈ B, respectively. Using the Fourier transform of these operators

ai =
1√
N

∑
k

eik·raiak,i, (S3)

a†i =
1√
N

∑
k

e−ik·raia†k,i, (S4)

bi =
1√
N

∑
k

eik·rbi bk,i, (S5)

b†i =
1√
N

∑
k

e−ik·rbi b†k,i, (S6)

the Heisenberg Hamiltonian in Eq. (2) of the main text can be re-written in second-quantization form as

Hm = E0
m +Hm(k). (S7)

Here E0
m is k-independent energy which simply shifts the energy-momentum dispersion of magnons by a constant value

and, hence, can be neglected. The k-dependent terms, containing operators which create and annihilate magnons in
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momentum ℏk, are collected into Hm(k) which can be written compactly in a matrix-vector multiplication form as

Hm(k) = −2S
∑
k



a†k,1
a†k,2
b†k,1
b†k,2
a−k,1

a−k,2

b−k,1

b−k,2



T 

A1(k) B∗(k) 0 0 0 0 C(k) D(k)
B(k) A1(k) 0 0 0 0 D(k) C∗(k)
0 0 A2(k) B(k) C∗(k) D(k) 0 0
0 0 B∗(k) A2(k) D(k) C(k) 0 0
0 0 C(k) D(k) A1(k) B∗(k) 0 0
0 0 D(k) C∗(k) B(k) A1(k) 0 0

C∗(k) D(k) 0 0 0 0 A2(k) B(k)
D(k) C(k) 0 0 0 0 B∗(k) A2(k)





ak,1
ak,2
bk,1
bk,2
a†−k,1

a†−k,2

b†−k,1

b†−k,2


, (S8)

with the matrix elements given by

A1(k) = 3J3 − J1 +∆+ J2
[
2 + eik·β1 + e−ik·β1

]
+

gµB

2S
Bz, (S9)

A2(k) = 3J3 − J1 +∆+ J2
[
2 + eik·β1 + e−ik·β1

]
− gµB

2S
Bz, (S10)

B(k) = J1
(
eik·α2 + eik·α3

)
, (S11)

C(k) = −J1e−ik·α1 − J3
(
e−ik·γ1 + eik·γ2 + e−ik·γ3

)
, (S12)

D(k) = −J2
[
eik·β2 + e−ik·β2 + eik·β3 + e−ik·β3

]
. (S13)

The vectors αi, βi and γi (i = 1, 2, 3)—connecting the first, second and third nearest neighbor atoms, respectively
(see Fig. 1 in the main text)—are given by

α1 = a(0,−1, 0), α2 = a

(√
3

2
,
1

2
, 0

)
, α3 = a

(
−
√
3

2
,
1

2
, 0

)
, (S14)

β1 = a
(
−
√
3, 0, 0

)
, β2 = a

(√
3

2
,−3

2
, 0

)
, β3 = a

(√
3

2
,
3

2
, 0

)
, (S15)

γ1 = a (0, 2, 0) , γ2 = a
(√

3, 1, 0
)

γ3 = a
(√

3,−1, 0
)
, (S16)

where a is the lattice spacing.

B. Phonon Hamiltonian

Using the Fourier transform of the momentum operator along the z-axis perpendicular to the plane of 2D AFM

pzi =
1√
N

∑
k

pzke
ik·ri , (S17)

and of the lattice displacement operator

uz
i =

1√
N

∑
k

uz
ke

−ik·ri , (S18)

the Hamiltonian of out-of-plane lattice vibration [Eq. (3) in the main text] can be recast as

Hp =
∑
k

pzkp
z
−k

2M
+
∑
k


uz
k,a1

uz
k,a2

uz
k,b1

uz
k,b2


T E1 (k) E2 (k) E3 (k) E4 (k)

c.c E1 (k) E4 (k) E∗
3 (k)

c.c c.c E1 (k) E∗
2 (k)

c.c c.c c.c E1 (k) ,



uz
−k,a1

uz
−k,a2

uz
−k,b1

uz
−k,b2

 (S19)

where the elements of the dynamical matrix are given by

E1 (k) = ζz0 + ζz2
(
eik·β1 + e−ik·β1

)
, (S20)

E2 (k) = ζz1
(
e−ik·α2 + e−ik·α3

)
, (S21)

E3 (k) = ζz1e
−ik·α1 + ζz3

(
e−ik·γ1 + eik·γ2 + e−ik·γ3

)
, (S22)

E4 (k) = ζz2
(
eik·β2 + e−ik·β2 + eik·β3 + e−ik·β3

)
. (S23)
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Here ζ0 = −3(ζ1+ζ3)−6ζ2, with ζzi (i = 1, 2, 3), are the spring constant of the first, second and third nearest neighbor
atoms.

C. Magnetoelastic coupling Hamiltonian

Using Eqs. (S1)–(S6), the Hamiltonian of magnetoelastic coupling [Eq. (4) in the main text] can be recast as

Hmp =
∑
k


uz
k,a1

uz
k,a2

uz
k,b1

uz
k,b2


T

M(k)



ak,1
ak,2
bk,1
bk,2
a†−k,1

a†−k,2

b†−k,1

b†−k,2


+H.c., (S24)

where

M(k) =


0 −AC + BD

2 −Be−ikα1 0 0 −AC − BD
2 Be−ikα1 0

AC∗ − BD∗

2 0 0 Beikα1 AC∗ + BD∗

2 0 0 −Beikα1

Beikα1 0 0 −AC∗ − BD∗

2 −Beikα1 0 0 −AC∗ + BD∗

2
0 −Be−ikα1 AC + BD

2 0 0 Be−ikα1 AC − BD
2 0

 ,

(S25)
with

A =
aS
√
S

2
√
6

ξ, B = i
aS
√
S

3
√
2

ξ, C = e−ik·α2 − e−ik·α3 , D = e−ik·α2 + e−ik·α3 . (S26)

Here, S is the spin value of Fe atom, ξ is the magnetoelastic (or magnon-phonon) coupling strength, and A∗ denotes
complex conjugate of A.

D. Hybridized magnon-phonon band structure of FePS3 from exact diagonalization of BdG Hamiltonian

By adding [Eq. (1) in the main text] magnon [Eq. (S8)], phonon [Eq. (S19)] and magnetoelastic [Eq. (S20)] Hamil-
tonians, we then can construct the total Hamiltonian of magnon and phonons, including their hybridization, in 2D
AFM FePS3. With additional transformations, this Hamiltonian can be recast as bosonic Bogoliubov-de Gennes
(BdG) Hamiltonian [3, 4]

H =
∑
k

Ψ†H(k)Ψ (S27)

where Ψ† = [x†
k,1, x

†
k,2, ..., x

†
k,n, x−k,1, x−k,2, ..., x−k,n] is the Nambu spinor. By using Colpa’s method [5], we diago-

nalize this Hamiltonian to obtain the eigenenergies of the system E(k) satisfying the following eigenvalue equation

σ3H(k)T (k) = T (k)σ3E(k), (S28)

as the generalized eigenvalue problem in which σ3H(k) is a non-Hermitian matrix even though H(k) is Hermitian [6].
In other words, the diagonalization of the BdG Hamiltonian deals with non-Hermitian quantum mechanics [3, 4], but
the eigenvalues E(k) remain real. In Eq. (S28), matrix T (k)

T †(k)σ3T (k) = T (k)σ3T
†(k) = σ3, (S29)

is “paraunitiary”, and σ3 matrix is given in Eq. (16) of the main text.
Table I lists the exchange couplings between localized spins used in Eq. (2) of the main text, spring constants

used in Eq. (3) of the main text, and magnon-phonon coupling strength used in Eq. (4) of the main text. We note
that Liu, et. al have previously reported magnon-phonon coupling in FePS3 and estimated the coupling strength
parameterized by the amplitude of the avoided-crossing splitting between the two magnon and phonon bands at Γ
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Table I. The exchange coupling between localized spins, spring constants, and magnon-phonon coupling strengths for 2D AFM
FePS3.

Materials a (Å) S J1 (meV) J2 (meV) J3 (meV) J′ (meV) ∆ (meV) ζ1 (meV/Å2) ζ2 (meV/Å2) ζ3 (meV/Å2) M ξ (meV/Å)
FePS3 [7, 8] 3.5 2 1.49 0.04 -0.6 -0.0073 -3.6 -129.9 -76.88 -0.769 5.6 0.95

Figure S1. (a) The independent magnon and phonon band of FePS3 along Γ-X-M -Y -Γ-M high symmetry path in the BZ
calculated in the absence of both the applied magnetic field and magnon-phonon coupling. (b) Schematic of lattice vibrations
at the Γ point associating with three modes P1, P2 and P3. The arrows indicate the direction of motion of corresponding Fe
atoms.

point to be 2.93 cm−1[8]. Our Hamiltonian for the magnon and phonon dispersion relations takes the magnetoelastic
coupling strength as an input parameter, which allows us to fit the magnitude of the magnetoelastic coupling strength
to the experimentally measured anticrossing between magnon and phonon modes at the Γ point. From this fit we
find the magnetoelastic coupling strength in FePS3 to be 0.95 meV/Å which is among the highest reported in the
literature for transition metal trichalcogenides [9]. For comparison, the magnetoelastic coupling strengths in CrSiTe3
and NiPSe3 are 0.932 meV/Å and 1.9729 meV/Å, respectively.

Using those parameters, Fig. S1(a) plots independent magnon and phonon bands of FePS3 computed without
applied magnetic field or magnetoelastic coupling—since Bz = 0, the magnon band is doubly-degenerate. The out of
plane vibrational modes, i.e., phonons as the quanta of vibrational energy, include both acoustic and optical branches.
By looking at the eigenvector of the phonon bands at the Γ point, we can specify three optical phonon modes Pi

(i = 1, 2, 3), as denoted in the Fig. S1(b).
Figure S2(a) also shows independent magnon and phonon bands computed in the absence of magnetoelastic coupling,

but with applied magnetic field switched on and along X̄-Γ-X path. Figure S2(a) highlights the crossing of magnon
and phonon bands (near the Γ point), as well as between two magnon-like bands with a zoom in on their crossing
provided in the inset. Once the magnetoelastic coupling is switched on, the magnon and phonon bands hybridize
and all of their crossings become anticrossings in Fig. S2(b). The small anticrossing gap that emerges between two
magnon-like bands [inset of Fig. S2(b)] leads to a finite Berry curvature of the 2nd and 3rd bands, as discussed
in Sec. IIIA in the main text. This feature can be interpreted as magnon bands that have non-negligible phonon



5

character resulting from the magnon-phonon coupling, as illustrated in Fig.S2(d). When the magnetoelastic coupling
is turned on, phonon character is observed in all magnon bands throughout the entire Brillouin zone. Conversely, in
the absence of coupling [Fig. S2(c)], the magnon bands have no phonon character.

(c) (d)

Figure S2. The magnon phonon dispersion in FePS3 along the X̄-Γ-X high symmetry path in the BZ calculated under applied
magnetic field Bz = 30 T and with magnetoelastic coupling [Eq. (S20)] (a,c) switched off or (b,d) switched on. The inset in
panel (b) shows the tiny gap between two magnon-like bands (2nd band and 3rd band) that is a result of magnetoelastic
coupling. In the inset of panel (a) these two bands cross each other because magnetoelastic is switched off. We note that in
panel (b) the gap between the 2nd and 3rd magnon-like band is very small in comparison to the hybridized gap between magnon
and phonon bands (4th and 5th band) near the Γ point. The color bars in panel (a) and (b) encode the distinct magnon (red)
and phonon (blue) character. In contrast, the focus shifts in panel (c) and (d), where the color bars exclusively represent the
phonon character distributions. The bright yellow color indicates the absolute zero phonon character whereas the dark yellow
and purple represent non-zero phonon character.

Figure S3 plots 1st and 2nd magnon-like bands calculated without an applied magnetic field, while zooming in on
the region in the vicinity of the Γ point. In the absence of the magnetoelastic, Fig. S3(a) is the zoomed version of
Fig. S2(a) but without applied magnetic field, showing clearly that magnon bands are degenerate in energy. When
the magnetoelastic coupling is switched on [Fig. S3(b)], this degeneracy is lifter so that the same bands acquire slight
energy splitting. Futhermore, the energy gap that opens between two magnon-like bands possessing opposite spin
[Fig. S3(b)] as the consequence of the influence of perturbations from phonons onto magnon bands, as discussed using
Eq. (18) in the main text, whose complete derivation is provided in Sec. S1 E.
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a a

Figure S3. The 1st and 2nd magnon-like bands, marked in Fig. S2, calculated without the applied magnetic field (Bz = 0)
and: (a) without the magnetoelastic coupling [ξ = 0 in Eqs. (S24)–(S26)]; or (b) with finite magnetoelastic coupling [ξ ̸= 0 in
Eqs. (S24)–(S26)].

E. Löwdin partitioning of BdG Hamiltonian

In order to elucidate the splitting between the first and second magnon-like bands due to perturbations from phonons
[Fig S3(b)], we apply the Löwdin partitioning [10, 11] approach to the BdG Hamiltonian [Eq. (S27)]. A key concept in
Löwdin partitioning, which is also known as the Schrieffer-Wolff transformation [12–17], is investigation of the effect of
a perturbation on a subset of contiguous energy states of a Hermitian Hamiltonian [10]. Because the diagonalization
of our bosonic BdG Hamiltonian requires to diagonalize a non-Hermitian Hamiltonian, in the following we discuss
the Krein-Hermitian [17] and related properties of BdG Hamiltonian and then adapt the Löwdin partitioning to this
case.

From Eq. (S29), we can obtain

T †(k) = σ−1
3 T−1(k)σ3 = σ3T

−1(k)σ3, (S30)

where we use property σ−1
3 = σ3. The congruence transformation of the magnon-phonon Hamiltonian can then be

rewritten in terms of the following transformation

T (k)†H(k)T (k) = σ3

{
T−1(k) [σ3H(k)]T (k)

}
, (S31)

of a non-Hermitian matrix σ3H(k). The matrix σ3H(k) and the paraunitary matrix T (k) are Krein-Hermitian and
Krein-unitary, respectively, with respect to the σ3 [14]. If we define

H̄ = σ3H(k), (S32)

together with a Krein-adjoint of matrix T (k) as

T#(k) = σ−1
3 T †(k)σ3 = σ3T

†(k)σ3, (S33)

then we find their following properties

T#(k)T (k) = T (k)T#(k) = I, (S34)

and

H̄T (k) = T (k)Ē(k), (S35)

where Ē(k) = σ3E(k) and I is the identity matrix. Equations (S34) and (S35) provide an eigenbasis for bosons
analogous to the case of a fermionic system. We can, therefore, adapt the Löwdin partitioning to the Hamiltonian H̄,
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from which we obtain the spectrum of H(k) order by order in its perturbation. In the spirit of Löwdin partitioning,
we decompose H̄ as

H̄ = H̄0 + H̄ ′ (S36)

where H̄0 is the zeroth order diagonal matrix, and H̄
′
is the first order perturbation that can also be decomposed into

two terms—H̄
′
= H̄1 + H̄2 with H̄1 being block-diagonal and composed of two submatrices while H̄2 is composed of

off-diagonal submatrices, as illustrated visually in Fig. S4.

Figure S4. Visualization of the submatrix (or block) structure of the matrix representation of Hamiltonian H̄ [Eq. (S32)] as a
sum of H̄0, H̄1 and H̄2, where H̄0 is truly diagonal; H̄1 is a block-diagonal; and H̄2 is a block off-diagonal matrix.

Our strategy is to find a matrix W that block-diagonalizes H̄ with the Schrieffer-Wolff transformation:

H̃ = e−W H̄eW = H̄ +
[
H̄,W

]
+

1

2

[[
H̄,W

]
,W
]
+ ..., (S37)

Here eW is a paraunitary matrix and W is a block off-diagonal matrix like H̄2. One can see that we must construct
a matrix W such that the transformation in Eq. (S37) converts H̄2 into a block diagonal matrix like H̄1. Moreover,
because eW is Krein-unitary, W must be skew-Krein-unitary, i.e., W = −σ−1

3 W †σ3 = −σ3W
†σ3. To determine W ,

we define W = W (1) + W (2) + ... where W (i) is the ith order perturbation of W . The matrix W is then evaluated
recursively order by order [

H̄0,W (1)
]
= −H̄2, (S38)[

H̄0,W (2)
]
= −

[
H̄1,W (1)

]
, (S39)[

H̄0,W (3)
]
= −

[
H̄1,W (2)

]
− 1

3

[[
H̄2,W (1)

]
,W (1)

]
, (S40)

... = ... (S41)

The eigenbasis T 0(k) and its Krein-adjoint T 0#(k) of H̄0 defined matrix representation of H̄0 which is a diagonal
matrix satisfying

H̄0T 0(k) = T 0(k)Ē0(k). (S42)

Here T 0(k) obeys

T 0#(k)T 0(k) = T 0(k)T 0#(k) = I, (S43)

leading to

T 0#(k)H̄0T 0(k) = Ē0(k). (S44)

We then solve, for instance, Eq. (S38) by multiplying its both sides—by T 0#(k) from the left and by T 0(k) from the
right—to arrive at

T 0#(k)
[
H̄0,W (1)

]
T 0(k) = −T 0#(k)H̄2T 0(k), (S45)

⇒ T 0#(k)H̄0W (1)T 0(k)− T 0#(k)W (1)H̄0T 0(k) = −T 0#(k)H̄2T 0(k). (S46)
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Using Eq. (S43) then leads to

T 0#(k)H̄0T 0(k)T 0#(k)W (1)T 0(k)− T 0#(k)W (1)T 0(k)T 0#(k)H̄0T 0(k) = −T 0#(k)H̄2T 0(k), (S47)

making it possible to write

Ē0(k)
[
W (1)

]
−
[
W (1)

]
Ē0(k) = −

[
H̄2
]
, (S48)

where [M] = T 0#(k)MT 0(k). Since Ē0(k) is a diagonal matrix, the diagonal terms of
[
W (1)

]
vanish, i.e.,[

W (1)
]
nn

= 0. The off-diagonal terms of
[
W (1)

]
obtained from Eq. (S48) are then given by[

W (1)
]
mn

= −
[
H̄2
]
mn

Ē0
m(k)− Ē0

n(k)
, (S49)

where Ē0
i (k) is the ith eigenvalue of H̄0. By repeating the same procedure one can generate expressions for higher

orders of W [
W (2)

]
mn

=
1

Ē0
m(k)− Ē0

n(k)

(∑
m′

[
H̄2
]
mm′

[
H̄1
]
m′n

Ē0
m′(k)− Ē0

n(k)
−
∑
n′

[
H̄1
]
mn′

[
H̄2
]
n′n

Ē0
m(k)− Ē0

n′(k)

)
, (S50)

... = ... (S51)

Using Eqs. (S37), (S38), (S39) and (S40), we then obtain up to the second order

H̃ ≈ H̄0 + H̄1 +
1

2

[
H̄2,W (1) +W (2)

]
. (S52)

The matrix elements of H̃ in the eigenbasis of H̄0 can thus be expressed order by order as follows

H̃
(0)
nn′ =

[
H̄0
]
nn′ , (S53)

H̃
(1)
nn′ =

[
H̄1
]
nn′ , (S54)

H̃
(2)
nn′ =

1

2

∑
m

[
H̄2
]
nm

[
H̄2
]
mn′

(
1

Ē0
n(k)− Ē0

m(k)
+

1

Ē0
n′(k)− Ē0

m(k)

)
. (S55)

Finally, we can describe the energy gap opening [Fig. S3(b)] between the 1st and 2nd magnon bands due to the
perturbations from phonons in the 2D AFM FePS3 without an applied magnetic field (Bz = 0). For this purpose we
suppose the magnetoelastic coupling Hamiltonian Hmp [Eq. (S24)] plays the role of a perturbation for the Hamiltonian
of independent magnons and phonons, Hm +Hp [i.e., the sum of Eqs. (S8) and (S19)]. We then apply the Löwdin
partitioning to H̄0 = Hm+Hp while using H̄

′ ≡ Hmp, to arrive at 2× 2 effective Hamiltonian describing the first two
magnon bands under the perturbation by magnetoelastic coupling. Because Hmp does not couple the two magnon
states, such 2× 2 effective Hamiltonian describing the first two magnon bands obtained from the Löwdin partitioning
can be expressed as

H̃2×2 = H̄0
2×2 + H̄2

2×2, (S56)

where

H̄0
2×2 =

(
Ē1(k) 0

0 Ē2(k)

)
, (S57)

and

H̄2
2×2 =

(
h11 h12

h21 h22

)
. (S58)

Here Ē1(k) = Ē2(k) are the non-perturbed energy-momentum dispersion of the 1st and 2nd magnon bands, which
are degenerate [Fig. S3(a)] in the absence of magnetoelastic coupling and applied magnetic field. The matrix elements
of H̄2

2×2 are given by

hmn =
1

2

∑
l

[
H̄2
]
ml

[
H̄2
]
ln

(
1

Ē0
m(k)− Ē0

l (k)
+

1

Ē0
n(k)− Ē0

l (k)

)
. (S59)
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Using the Maclaurin series, ex =
∑∞

0
xn

n! = 1 + x + x2

2 + ..., in the limit x ≪ 1, so that ex ≈ 1 + x, Eq. (S25)
for magnetoelastic coupling in the vicinity of the Γ-point is found to be linear in the wavevector k. In other words,[
H̄2
]
ml

is linear in k, thereby leading to hmn which is quadratic in the wavevector k. Because hmn determines the
energy splitting between the 1st and 2nd magnon-like bands, the energy gap between them due to magnon-phonon
coupling is quadratic in the wavevector k near the Γ-point. Using the same argument, when the wave vector k
becomes comparable to ∼ a−1 then the higher order terms, specifically the second order in k, would contribute to the
magnetoelastic coupling and the energy gap will acquire quartic dependence on wavevector k.

a a

Figure S5. The energy splitting [Fig. S3(b)] between the 1st and 2nd magnon-like bands along [100] direction induced by
magnetoelastic coupling in the absence of applied magnetic field (Bz = 0).

Figure S5 plot the energy splitting δE between the 1st and 2nd magnon bands [Fig. S3(b)] as a function of
wavevector k along the [100] direction calculated from the total effective magnon-phonon Hamiltonian (with 16× 16
bands), Hm + Hp + Hmp. When the wavevector varies over a wide range, the δE behaves like a quartic function
[Fig. S5(a)]. As shown in Fig. S5(b), when the wavevector is small, typically in a range between ±0.1 a−1, we observe
the expected quadratic (parabolic) dependence of δE on k. This analysis fully explains the origin of the gap opening
between the two magnon-like bands carrying opposite spin [Fig. S3(b)] as the consequence of perturbations from
phonons, despite these two bands being distant in energy from manifestly hybridized magnon-phonon bands [around
15 meV in Fig. S2(b)] and their anticrossings near the Γ-point. Such gap opening between the magnon-like bands
makes possible interband transition inducing spin-Berry curvature, which is very large due to the smallness of the
gap, as discussed in the main text and elaborated further in Sec. S2.

S2. BERRY AND SPIN BERRY CURVATURE OF HYBRIDIZED MAGNON-PHONON BANDS

A. Berry curvature

In this Section, we provide detailed derivation of Eq. (13) in the main text for the Berry curvature of magnon-phonon
bands. Starting from the Berry curvature formula for the BdG Hamiltonian [3, 4]

Ωz
n(k) = iϵxy

[
σ3

∂T †(k)

∂kx
σ3

∂T (k)

∂ky

]
nn

, (S60)

we obtain

Ωz
n(k) = i

∑
m

[
σ3

∂T †(k)

∂kx

]
nm

[
σ3

∂T (k)

∂ky

]
mn

− i
∑
m

[
σ3

∂T †(k)

∂ky

]
nm

[
σ3

∂T (k)

∂kx

]
mn

= i
∑
m

σnn
3

∂
[
T † (k)

]
nm

∂kx
σmm
3

∂ [T (k)]mn

∂ky
− i
∑
m

σnn
3

∂
[
T † (k)

]
nm

∂ky
σmm
3

∂ [T (k)]mn

∂kx
. (S61)
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By defining |n(k)⟩m = [T (k)]mn as the mth element of a column vector |n(k)⟩, so that ⟨n(k)|m =
[
T † (k)

]
nm

is the
mth element of a row vector ⟨n(k)|, Eq. (S34) can be rewritten as∑

n

σnn
3 |n(k)⟩σ3⟨n(k)| =

∑
n

σnn
3 |n(k)⟩⟨n(k)|σ3 = I, (S62)

which is the completeness relation for the BdG Hamiltonian eigenbasis. Using Eq. (S62), we can rewrite Eq. (S61) as

Ωz
n(k) = i

∑
m

σnn
3

∂⟨n(k)|m
∂kx

σmm
3

∂|n(k)⟩m
∂ky

− i
∑
m

σnn
3

∂⟨n(k)|m
∂ky

σmm
3

∂|n(k)⟩m
∂kx

= iσnn
3

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
− iσnn

3

〈
∂n(k)

∂ky

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
= i

∑
m ̸=n

σnn
3 σmm

3

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣m(k)

〉〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
− i

∑
m ̸=n

σnn
3 σmm

3

〈
∂n(k)

∂ky

∣∣∣∣σ3

∣∣∣∣m(k)

〉〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
,

(S63)

leading to

Ωz
n(k) = i

∑
m ̸=n

σnn
3 σmm

3

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣m(k)

〉〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
− (kx ←→ ky). (S64)

By taking the derivative of both sides of Eq. (S28) with respect to kx, and by using ⟨n(k)| =
[
T † (k)

]
n··· (the nth row

of
[
T † (k)

]
matrix) and |n(k)⟩ = [T (k)]···n (the nth column of [T (k)] matrix) we obtain

σ3
∂H(k)

∂kx
|n(k)⟩+ σ3H(k)

∣∣∣∣∂n(k)∂kx

〉
=

[
σ3

∂E(k)

∂kx

]
nn

|n(k)⟩+ [σ3E(k)]nn

∣∣∣∣∂n(k)∂kx

〉
. (S65)

Multiplying both sides of Eq. (S65) with ⟨m(k)|σ3 gives〈
m(k)

∣∣∣∣∂H(k)

∂kx

∣∣∣∣n(k)〉+

〈
m(k)

∣∣∣∣H(k)

∣∣∣∣∂n(k)∂kx

〉
=

[
σ3

∂E(k)

∂kx

]
nn

⟨m(k)|σ3|n(k)⟩+ [σ3E(k)]nn

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
.

(S66)

Note that

⟨m(k)|σ3|n(k)⟩ = 0, (S67)

with m ̸= n and 〈
m(k)

∣∣∣∣H(k)

∣∣∣∣∂n(k)∂kx

〉
= [σ3E(k)]mm

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
. (S68)

Therefore, 〈
m(k)

∣∣∣∣∂H(k)

∂kx

∣∣∣∣n(k)〉 = {[σ3E(k)]nn − [σ3E(k)]mm}
〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
, (S69)

leads to 〈
m(k)

∣∣∣∂H(k)
∂kx

∣∣∣n(k)〉
[σ3E(k)]nn − [σ3E(k)]mm

=

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
, (S70)

and, similarly, we obtain 〈
n(k)

∣∣∣∂H(k)
∂kx

∣∣∣m(k)
〉

[σ3E(k)]nn − [σ3E(k)]mm

=

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣m(k)

〉
, (S71)
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m(k)

∣∣∣∂H(k)
∂ky

∣∣∣n(k)〉
[σ3E(k)]nn − [σ3E(k)]mm

=

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
, (S72)

〈
n(k)

∣∣∣∂H(k)
∂ky

∣∣∣m(k)
〉

[σ3E(k)]nn − [σ3E(k)]mm

=

〈
∂n(k)

∂ky

∣∣∣∣σ3

∣∣∣∣m(k)

〉
. (S73)

Combining Eq. (S64) with Eqs. (S70)– (S73), we finally arrive at the expression for the Berry curvature

Ωz
n(k) =

∑
m ̸=n

iσnn
3 σmm

3

〈
n(k)

∣∣∣∂H(k)
∂kx

∣∣∣m(k)
〉〈

m(k)
∣∣∣∂H(k)

∂ky

∣∣∣n(k)〉
{[σ3E(k)]nn − [σ3E(k)]mm}

2 − (kx ←→ ky)

=
∑
m ̸=n

iσnn
3 σmm

3

〈
n(k)

∣∣∣∂H(k)
∂kx

∣∣∣m(k)
〉〈

m(k)
∣∣∣∂H(k)

∂ky

∣∣∣n(k)〉
[σnn

3 En(k)− σmm
3 Em(k)]

2 − (kx ←→ ky) (S74)

which can also be generalized into

Ωn (k) =
∑
m ̸=n

iℏ2⟨n(k)|v|m(k)⟩⟨m(k)|σ3|m(k)⟩ × ⟨m(k)|v|n(k)⟩⟨n(k)|σ3|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2 , (S75)

thereby completing the derivation of Eq. (13) in the main text.

B. Symmetry constraints on Berry curvature

The two important symmetries constraining the value of the Berry curvature are effective parity-time (PT ) and
time-reversal symmetry (T RS). Under these two symmetries, either the Berry curvature of the magnon-polaron or its
sum over the entire Brillouin zone (BZ) are forced to vanish. This, in turn, results in zero thermal Hall conductivity.

1. Effective parity-time symmetry

Suppose that the bosonic system we consider is invariant under the effective PT operation

[H(k),PT ] = 0. (S76)

Here PT = CK, where C is a paraunitary matrix obeying C†σ3C = Cσ3C† = σ3 and K is the complex conjugate
operator. The BdG Hamiltonian then satisfied the following relation

C†H∗(k)C = H(k), (S77)

Substituting Eq. (S77) into the eigenequation for the magnon-phonon Hamiltonian in Eq. (S28), we obtain

σ3C†H∗(k)CT (k) = σ3H(k)T (k) = T (k)σ3E(k), (S78)

σ3C†H∗(k)CT (k) = T (k)σ3E(k). (S79)

By multiplying both sides of Eq. (S79) by C from the left we obtain

Cσ3C†H∗(k)CT (k) = CT (k)σ3E(k), (S80)

leading to

σ3H
∗(k)CT (k) = CT (k)σ3E(k). (S81)

Taking the complex conjugate of Eq. (S81) gives

[σ3H
∗(k)CT (k)]∗ = [CT (k)σ3E(k)]

∗
. (S82)
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Since both σ3 and E(k) are composed of real numbers, we obtain

σ3H(k)C∗T ∗(k) = C∗T ∗(k)σ3E(k). (S83)

One can see that C∗T ∗(k) plays the same role as T (k), i.e., it obeys the same eigenvalue equation as T (k). This
means that they differ only by a phase factor matrix, i.e., a diagonal matrix with phase factor entries. We can ignore
this phase factor when considering the Berry curvature [4], therefore, allowing us to write

T (k) = C∗T ∗(k). (S84)

Inserting Eq. (S84) into the expression for the Berry curvature written in terms of the paraunitary matrix T (k) gives

Ωz
n(k) = iϵxy

[
σ3

∂T †(k)

∂kx
σ3

∂T (k)

∂ky

]
nn

= iϵxy

{
σ3

∂
[
T †∗(k)C†∗]

∂kx
σ3

∂ [C∗T ∗(k)]

∂ky

}
nn

= iϵxy

[
σ3

∂T †∗(k)

∂kx
C†∗σ3C

∗ ∂T
∗(k)

∂ky

]
nn

= iϵxy

[
σ3

∂T †∗(k)

∂kx
σ3

∂T ∗(k)

∂ky

]
nn

= −iϵxy
[
σ3

∂T †

∂kx
σ3

∂T

∂ky

]
nn

= −Ωz
n(k), (S85)

where we have used σ3 = σ∗
3 =

(
C†σ3C

)∗
= C∗σ∗

3C†∗ = C∗σ3C†∗ together with noticing that C does not depend on the
wave vector k. Equation (S85) implies that the Berry curvature must be zero. In other words, broken PT symmetry
is a necessary requirement for non-zero Berry curvature in the magnon-phonon system.

2. Effective time-reversal symmetry

Even when the Berry curvature is non-zero locally in the k-space, the thermal Hall conductivity will vanish when
the sum of the Berry curvature over the BZ is zero. Specifically, when the system is invariant under the effective time
reversal symmetry, i.e., when the BdG Hamiltonian satisfies

ΘH(k)Θ−1 = H(−k). (S86)

Here Θ is the antiunitary time-reversal operator satisfying Θ2 = +1, which can be written as Θ = D†K where D is a
paraunitary matrix obeying D†σ3D = Dσ3D† = σ3 and K is the complex conjugate operator. The BdG Hamiltonian
then obeys

D†H∗(k)D = H(−k). (S87)

By rewriting Eq. (S28) as

σ3H(−k)T (−k) = T (−k)σ3E(−k) (S88)

and by inserting Eq. (S87) into Eq. (S88), we obtain

σ3D†H∗(k)DT (−k) = T (−k)σ3E(−k). (S89)

Multiplying both sides of Eq. (S89) by D from the left

Dσ3D†H∗(k)DT (−k) = DT (−k)σ3E(−k), (S90)

leads to

σ3H
∗(k)DT (−k) = DT (−k)σ3E(−k). (S91)

Taking complex conjugate of both sides of Eq. (S91) yields

[σ3H
∗(k)DT (−k)]∗ = [DT (−k)σ3E(−k)]∗ , (S92)

so, that finally we obtain

σ3H(k)D∗T ∗(−k) = D∗T ∗(−k)σ3E(−k). (S93)
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Note that the effective time reversal symmetry also imposes E(−k) = E(k), so that

σ3H(k)D∗T ∗(−k) = D∗T ∗(−k)σ3E(k). (S94)

In the same manner as PT symmetry, this leads to T (k) = D∗T ∗(−k). One can easily show that because of this
condition the Berry curvature must satisfy

Ωz
n(k) = −Ωz

n(−k), (S95)

which leads to a zero thermal Hall conductivity when we integrate (or sum) the Berry curvature over the entire
BZ. Applying this result to the case of 2D AFM FePS3 at zero magnetic field (Bz = 0), under which condition the
magnon-phonon system is invariant under the effective time-reversal symmetry Θ = T ′ = T C, leads to zero thermal
Hall conductivity κxy, as discussed in relation to Eq. (9) in the main text.

C. Spin Berry curvature

The out-of-plane spin Berry curvature, involving Sz operator of electron spin, is given by

Ωz
Sz,n =

∑
m ̸=n

iℏ2σnn
3 σmm

3

⟨n(k)|jSz

x |m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2 − (kx ←→ ky)

= −2ℏ2
∑
m̸=n

σnn
3 σmm

3 Im

{
⟨n(k)|jSz

x |m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}

= −2ℏ2
∑
m̸=n

σnn
3 σmm

3 Im

{
⟨n(k)|Szσ3vx + vxσ3S

z|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
. (S96)

Here Im denotes the imaginary part of a complex number. Using the completeness Eq. (S62), and noting that
σ3σ3 = I, we obtain

⟨n(k)|Szσ3vx + vxσ3S
z|m(k)⟩ = ⟨n(k)|Szσ3vx|m(k)⟩+ ⟨n(k)|vxσ3S

z|m(k)⟩

= ⟨n(k)|Sz
∑
l

σll
3 |l(k)⟩⟨l(k)|σ3σ3vx|m(k)⟩+ ⟨n(k)|vx

∑
q

σqq
3 |q(k)⟩⟨q(k)|σ3σ3S

z|m(k)⟩

= ⟨n(k)|Sz
∑
l

σll
3 |l(k)⟩⟨l(k)|vx|m(k)⟩+ ⟨n(k)|vx

∑
q

σqq
3 |q(k)⟩⟨q(k)|Sz|m(k)⟩, (S97)

and, therefore,

⟨n(k)|Szσ3vx + vxσ3S
z|m(k)⟩ = ⟨n(k)|Szσnn

3 |n(k)⟩⟨n(k)|vx|m(k)⟩+ ⟨n(k)|vxσmm
3 |m(k)⟩⟨m(k)|Sz|m(k)⟩

+
∑
l ̸=n

⟨n(k)|Szσll
3 |l(k)⟩⟨l(k)|vx|m(k)⟩+

∑
q ̸=m

⟨n(k)|vxσqq
3 |q(k)⟩⟨q(k)|Sz|m(k)⟩

= (σnn
3 Sz

nn + σmm
3 Sz

mm) ⟨n(k)|vx|m(k)⟩+
∑
l ̸=n

σll
3 S

z,k
nl ⟨l(k)|vx|m(k)⟩+

∑
q ̸=m

σqq
3 Sz,k

qm ⟨n(k)|vx|q(k)⟩. (S98)

By inserting Eq. (S98) into Eq. (S96), we can decompose the spin Berry curvature into two terms

Ωz
Sz,n = Ω

z,(1)
Sz,n +Ω

z,(2)
Sz,n, (S99)

where

Ω
z,(1)
Sz,n = −2ℏ2

∑
m ̸=n

(σnn
3 Sz

nn + σmm
3 Sz

mm)σnn
3 σmm

3 Im

{
⟨n(k)|vx|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
=
∑
m ̸=n

(σnn
3 Sz

nn + σmm
3 Sz

mm) Ωz
nm (k) , (S100)
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Figure S6. The projected spin Berry curvature Ωz

Sz ,nm [Eq. (S103)] of magnon-phonon bands in 2D AFM FePS3 as a function
of the in-plane wave vector (kx, ky) within the first BZ calculated without applied magnetic field (Bz = 0 T). The color bar
encodes the magnitude of the function Lij = sgn(Ωz

Sz ,ij) log(1 + |Ωz
Sz ,ij |).

and

Ω
z,(2)
Sz,n = −2ℏ2

∑
m̸=n

σnn
3 σmm

3 Im

∑
l ̸=n

σll
3 S

z,k
nl

⟨l(k)|vx|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2 +
∑
q ̸=m

σqq
3 Sz,k

qm

⟨m(k)|vy|n(k)⟩⟨n(k)|vx|q(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

 .

(S101)

Here Sz
ii = ⟨i(k)|Sz|i(k)⟩ is the diagonal spin expectation value of the ith band and Sz,k

ij = ⟨i(k)|Sz|j(k)⟩ is the
off-diagonal spin expectation value; and Ωz

nm (k) is the projected Berry curvature of the nth band on the mth band
given by

Ωz
nm (k) = −2ℏ2Im

{
⟨n(k)|vx|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
, (S102)

We define the projected spin Berry curvature as

Ωz
Sz,nm = −2ℏ2σnn

3 σmm
3 Im

{
⟨n(k)|Szσ3vx + vxσ3S

z|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
. (S103)

The first contribution, Ωz,(1)
Sz,n, to the spin Berry curvature reveals a relationship between the topological transverse

transport of spin with the Berry curvature and, therefore, the non-zero Chern number induced by magnon-phonon
hybridization. Conversely, the second contribution, Ωz,(2)

Sz,n, describes the spin Nernst conductivity occurring due to
the spin coupling between different magnon and phonon bands, and it is not related to the Chern number.

At zero applied magnetic field, (σnn
3 Sz

nn + σmm
3 Sz

mm) does not depend on the wave vector k, so the spin Nernst
conductivity originating from the first term [Ωz,(1)

Sz,n] vanishes when we take the sum or integral of Ωz,(1)
Sz,n over the entire

BZ. The spin Nernst conductivity then depends only on the second term, Ωz,(2)
Sz,n, which can reach large magnitude

via interband transitions between magnon-like bands mediated by the coupling to phonons. There are also smaller
contributions from magnon-mediated interband transitions between phonon-like bands, as discussed in the main text.
Figure S6 shows the projected spin Berry curvature Ωz

Sz,nm calculated from Eq. (S103) for the 1st band acting on the
2nd, 3rd, 4th (magnon-like) and 5th (phonon-like) band. The phonon-mediated interband transitions between the two
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Figure S7. The spin Berry curvature of magnon-phonon band in 2D AFM FePS3 as a function of the in-plane wave vector
(kx, ky) within the first BZ calculated with an applied magnetic field Bz = 30 T for (a)–(h) 1st–8th band [Fig. S2], respectively.
The color bar encodes the magnitude of the spin Berry curvature Ωz

Sz ,n of the nth band. The insets in panels (b) and (c) show
a zoom in around kx = −1.64 a−1 where the spin Berry curvature of the corresponding bands is non-zero.

magnon-like bands having opposite helicity dominates the spin Berry curvature of the 1st band—this is made clear
by comparing the magnitude of the projected spin Berry curvature Ωz

Sz,12 with the total spin Berry curvature Ωz
Sz,1

[Fig. 5(a) in the main text]. In contrast, the 3rd, 4th and 5th bands shown in Fig. S5 provide minor contributions to
the spin Berry curvature of the 1st (magnon-like) band.

When a finite magnetic field is applied perpendicular to the system, the second term Ω
z,(2)
Sz,n, accounting for interband

transitions between magnon-like bands mediated by phonons, decays quickly because the gap between two magnon
bands possessing opposite spin polarization increases. In contrast, the second contribution Ω

z,(2)
Sz,n, which accounts for

interband transitions between phonon-like bands mediated by magnons, remains unaffected by the applied magnetic
field. This is because the energy separation between the two phonon bands remains constant. Consequently, in this
region the spin Nersnt conductivity is mainly governed by the Chern number originating from Ω

z,(1)
Sz,n contribution as

well as the interband transitions between phonon bands in the second contribution Ω
z,(2)
Sz,n mediated by magnons. To

illustrate this, Fig. S7 shows the spin Berry curvature of the magnon-phonon bands in the presence of an applied
magnetic field of Bz = 30 T. One can observe the contributions of the Chern number to the spin Nernst conductivity
in this figure through the shape of the spin Berry curvatures of the 1st to 4th magnon bands that is similar to that of
the Berry curvatures in Fig. 4(a)–(d) in the main text. The other phonon bands have mixed contributions from the
Chern number and magnon-mediated interband transitions between phonon-like bands.

D. Handling Berry curvature and spin Berry curvature in a system with exceptional points

We note that both Berry and spin Berry curvatures are not well-defined at band touching points, known as excep-
tional points (EPs), in the dispersion of a bosonic system. In 2D AFM FePS3, EPs occur at the X and M points in
the magnon-phonon band structure [Fig. 2(a) in the main text]. To avoid divergence of the Berry and spin Berry
curvatures at the EPs and calculate the Chern number, we adopt the technique proposed in Ref. [18]. This technique
involves extending to a complex k-space by introducing an imaginary component of the momentum [18]. Using this
approach, we can calculate the Chern number for a specific band in our system without encountering singularities.
Alternatively, we can introduce a small energy gap at the EPs by adding ∆E ≈ 10−4 meV to the denominator of the
expressions for the Berry and spin Berry curvatures [Eqs. (14) and (15) in the main text]. Either way, we find that
the contribution from EPs to the Chern number is negligible, apart from causing the Berry and spin Berry curvatures
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to diverge at specific points in the standard k-space composed of real k vectors.

[1] T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58,
1098 (1940).

[2] U. Bajpai, A. Suresh, and B. K. Nikolić, Quantum many-body states and Green’s functions of nonequilibrium electron-
magnon systems: Localized spin operators versus their mapping to Holstein-Primakoff bosons, Phys. Rev. B 104, 184425
(2021).

[3] S. Park, N. Nagaosa, and B.-J. Yang, Thermal Hall effect, spin Nernst effect, and spin density induced by a thermal
gradient in collinear ferrimagnets from magnon-phonon interaction, Nano Lett. 20, 2741 (2020).

[4] R. Matsumoto, R. Shindou, and S. Murakami, Thermal Hall effect of magnons in magnets with dipolar interaction, Phys.
Rev. B 89, 054420 (2014).

[5] J. H. P. Colpa, Diagonalization of the quadratic boson Hamiltonian, Phys. A: Stat. Mech. Appl. 93, 327 (1978).
[6] R. M. White, M. Sparks, and I. Ortenburger, Diagonalization of the antiferromagnetic magnon-phonon interaction, Phys.

Rev. 139, A450 (1965).
[7] M. Amirabbasi and P. Kratzer, Orbital and magnetic ordering in single-layer FePS3: A DFT+U study, Phys. Rev. B 107,

024401 (2023).
[8] S. Liu, A. Granados del Águila, D. Bhowmick, C. K. Gan, T. Thu Ha Do, M. A. Prosnikov, D. Sedmidubský, Z. Sofer,

P. C. M. Christianen, P. Sengupta, and Q. Xiong, Direct observation of magnon-phonon strong coupling in two-dimensional
antiferromagnet at high magnetic fields, Phys. Rev. Lett. 127, 097401 (2021).

[9] N. Bazazzadeh, M. Hamdi, S. Park, A. Khavasi, S. M. Mohseni, and A. Sadeghi, Magnetoelastic coupling enabled tunability
of magnon spin current generation in two-dimensional antiferromagnets, Phys. Rev. B 104, L180402 (2021).

[10] P.-O. Löwdin, A note on the quantum-mechanical perturbation theory, J. Chem. Phys. 19, 1396 (1951).
[11] P.-O. Löwdin, Partitioning technique, perturbation theory, and rational approximations, Int. J. Quantum Chem. 21, 69

(1982).
[12] L. Jin and Z. Song, Partitioning technique for discrete quantum systems, Phys. Rev. A 83, 062118 (2011).
[13] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians, Phys. Rev. 149, 491 (1966).
[14] S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer-Wolff transformation for quantum many-body systems, Ann. Phys.

326, 2793 (2011).
[15] Z. Zhou, L.-L. Wan, and Z.-F. Xu, Topological classification of excitations in quadratic bosonic systems, J. Phys. A: Math.

Theor. 53, 425203 (2020).
[16] L.-L. Wan, Z. Zhou, and Z.-F. Xu, Squeezing-induced topological gap opening on bosonic Bogoliubov excitations, Phys.

Rev. A 103, 013308 (2021).
[17] G. Massarelli, I. Khait, and A. Paramekanti, Krein-unitary Schrieffer-Wolff transformation and band touchings in bosonic

Bogoliubov-de Gennes and other Krein-Hermitian Hamiltonians, Phys. Rev. B 106, 144434 (2022).
[18] T. Ohashi, S. Kobayashi, and Y. Kawaguchi, Generalized Berry phase for a bosonic Bogoliubov system with exceptional

points, Phys. Rev. A 101, 013625 (2020).

https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevB.104.184425
https://doi.org/10.1103/PhysRevB.104.184425
https://doi.org/10.1021/acs.nanolett.0c00363
https://doi.org/10.1103/PhysRevB.89.054420
https://doi.org/10.1103/PhysRevB.89.054420
https://doi.org/10.1016/0378-4371(78)90160-7
https://doi.org/10.1103/PhysRev.139.A450
https://doi.org/10.1103/PhysRev.139.A450
https://doi.org/10.1103/PhysRevB.107.024401
https://doi.org/10.1103/PhysRevB.107.024401
https://doi.org/10.1103/PhysRevLett.127.097401
https://doi.org/10.1103/PhysRevB.104.L180402
https://doi.org/10.1063/1.1748067
https://doi.org/10.1002/qua.560210105
https://doi.org/10.1002/qua.560210105
https://doi.org/10.1103/PhysRevA.83.062118
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1088/1751-8121/abb92b
https://doi.org/10.1088/1751-8121/abb92b
https://doi.org/10.1103/PhysRevA.103.013308
https://doi.org/10.1103/PhysRevA.103.013308
https://doi.org/10.1103/PhysRevB.106.144434
https://doi.org/10.1103/PhysRevA.101.013625

	xxx.pdf
	Supplemental Material for:Giant spin Nernst effect in a two-dimensional antiferromagnet due to magnetoelastic coupling-induced gaps and interband transitions between magnon-like bands
	Magnon-Phonon Hamiltonian of FePS3 in Bogoliubov-de Gennes form:  Exact diagonalization and perturbation theory
	Magnon Hamiltonian via Holstein-Primakoff transformation
	Phonon Hamiltonian
	Magnetoelastic coupling Hamiltonian
	Hybridized magnon-phonon band structure of FePS3 from exact diagonalization of BdG Hamiltonian
	Löwdin partitioning of BdG Hamiltonian

	Berry and spin Berry curvature of hybridized magnon-phonon bands
	Berry curvature
	Symmetry constraints on Berry curvature
	Effective parity-time symmetry
	Effective time-reversal symmetry

	Spin Berry curvature
	Handling Berry curvature and spin Berry curvature in a system with exceptional points

	References



