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20080 San Sebastián, Spain

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at http://dnb.ddb.de

ISSN 0075-8450
ISBN 3-540-03082-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

c© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Theuse of general descriptive names, registerednames, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors/editor
Camera-data conversion by Steingraeber Satztechnik GmbH Heidelberg
Cover design: design & production, Heidelberg

Printed on acid-free paper
54/3141/du - 5 4 3 2 1 0



Preface

Density functional theory is a clever way to solve the Schrödinger equation
for a many-body system. In the formulation given by Kohn, Hohenberg, and
Sham in the 1960’s the real system is described by an effective one-body
system. To achieve that goal, the complex many-body wave function, which
is the solution of the Schrödinger equation, is abandoned in favour of the
density which only depends on the three spatial coordinates. The energy is
just a function of this function, i.e., a density functional.

This book, which intends to be an introduction to density functional the-
ory, collects the lectures presented in the second Coimbra School on Com-
putational Physics. In a way, it is a sequel to the sold-out Lecture Notes in
Physics vol. 500 (ed. D. Joubert). This Summer School took place in late
August of 2001 in the nice scenery of the Caramulo mountains, in central
Portugal, some 50 km away from the old University of Coimbra. It was or-
ganized by the recently established (1998) Center for Computational Physics
of the University of Coimbra, and was the second of a series which started,
in 1999, with a school on ”Monte Carlo Methods in Physics”.

Like the summer school in South-Africa which originated the volume 500,
the Coimbra School on Computational Physics devoted to density functional
methods was a good opportunity for graduate students to enter the realm
of density functionals, or to enlarge their previous knowledge in this fast ex-
panding branch of physics and chemistry. About 50 students from different
countries attended the School. Some teachers, who were also present at the
South-African School (John Perdew, Reiner Dreizler and Eberhard Gross),
were joined by new ones (Eberhard Engel, Rex Godby, Fernando Nogueira
and Miguel Marques). The school was possible due to the support of Fundação
para a Ciência e Tecnologia, Fundação Calouste Gulbenkian and the Univer-
sity of Coimbra, whom we would like to acknowledge here.

The contents of this volume are as follows. The theoretical foundations of
the theory are reviewed by Stefan Kurth and John Perdew, in a chapter which
is essentially an updated version of the article published in the above men-
tioned volume 500. The recent orbital dependent functionals are presented
by Eberhard Engel. Two important extensions to the standard theory follow:
relativistic systems, by Reiner Dreizler; and time-dependent non-relativistic
problems by Miguel Marques and Eberhard Gross. In the next chapter Rex
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Godby and Pablo Garćıa-González discuss some of the shortcomings of den-
sity functional theory and contrast it with conventional many-body theory.
A tutorial, by Fernando Nogueira, Alberto Castro, and Miguel Marques, on
practical applications of the formalism to atoms, molecules, and solids closes
this book.

From the school and from this book emerges the view that, even though
the “divine functional” – the energy functional with exact exchange and ex-
act correlation – is yet a vision far on the horizon, extraordinary progress
has been made since the seminal works of Kohn, Hohenberg, and Sham (not
to speak about the early work in the thirties by Thomas and Fermi). The
local density approximation to exchange and correlation from the sixties has
been surpassed by the now standard generalized-gradient approximations. In
principle more precise approaches like the meta-generalized gradient approx-
imation or hybrid functionals are now being developed and applied, climbing
what John Perdew called picturesquely “Jacob’s Ladder” towards the “divine
functional”. The Chemistry Nobel prize awarded in 1998 to John Pople and
Walter Kohn indeed gave a major impulse to the dissemination of density
functional theory in physics and chemistry (several applications in biology
and geology have also appeared!), but in order to have “chemical accuracy”
further steps have to be taken.

It is the task of the new generation to continue the past and present
efforts in this exciting field. We hope with this “primer” in density functional
theory to provide students, and even established researchers, an overview of
the present state and prospects of density functional methods.

Last but not least, the Coimbra school was also an opportunity to rec-
ognize the work of an active player in the field – Reiner Dreizler – on the
occasion of his retirement, which took place in September 2001. The orga-
nizers would like to dedicate the present book to him. Although they know
that he is not keen of homages and that his activity in physics is not over, we
think that it is fully justified to summarize here his curriculum, emphasizing
some of his achievements.

Reiner Dreizler was born 1936 in Stuttgart, Germany. In 1961, he received
his “Diploma” in theoretical physics at the Albert Ludwigs Universität, in
Freiburg, and in 1964, the title of Doctor of Philosophy in theoretical physics
at the Australian National University, Canberra. From 1964 to 1966 he was
Research Associate at the University of Pennsylvania, Philadelphia, USA and
thereafter, until 1972, Assistant Professor of Physics at the same University.
From 1972 to his retirement, he was Full Professor of Theoretical Physics at
the Johann Wolfgang Goethe Universität, Frankfurt am Main, Germany. He
has been guest lecturer all around the world, namely in Romania, Australia,
Portugal, Russia, Ukraine, Japan, the USA and Brazil. Regarding positions
and honours: He was Dean in 1981/1982 of the Faculty of Physics, Universität
Frankfurt, and became Fellow of the American Physical Society in 1995; In
1999 he received the endowed chair “S. Lyson Professor der Physik”.
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His research interests have been very diverse. Besides the development
and application of density functional methods, he studied the many-body
problem in nuclear, atomic and molecular physics, and the theory of atomic
scattering processes. He also investigated variational, iterative and projec-
tive techniques in handling quantum-mechanical problems and made contri-
butions to the quantum-field description of many-body systems. Over the
years he accumulated more than 230 contributions to refereed journals, 27
conference contributions, and four books. These include two Plenum Press
Proceedings volumes, that stemmed from schools on density functinal the-
ory (one of them in Alcabideche, Lisbon), and the famous Springer texbook
on density functional theory co-authored by his ex-student and friend Eber-
hard Gross. He was supervisor of many PhDs. (including one of the school
organizers and two of the school speakers) and Diploma theses.

In a world where science is more and more specialized, it is more and
more difficult to meet someone like Reiner Dreizler, who covered with his
work the whole spectrum of quantum mechanics from Particle to Solid State
Physics, through Atomic, Molecular and Cluster Physics. May his example
be followed by others!

Coimbra, Carlos Fiolhais
December 2002 Fernando Nogueira

Miguel Marques
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1.1 Introduction

1.1.1 Quantum Mechanical Many-Electron Problem

The material world of everyday experience, as studied by chemistry and con-
densed-matter physics, is built up from electrons and a few (or at most a few
hundred) kinds of nuclei . The basic interaction is electrostatic or Coulom-
bic: An electron at position r is attracted to a nucleus of charge Z at R by
the potential energy −Z/|r − R|, a pair of electrons at r and r′ repel one
another by the potential energy 1/|r− r′|, and two nuclei at R and R′ repel
one another as Z ′Z/|R − R′|. The electrons must be described by quantum
mechanics, while the more massive nuclei can sometimes be regarded as clas-
sical particles. All of the electrons in the lighter elements, and the chemically
important valence electrons in most elements, move at speeds much less than
the speed of light, and so are non-relativistic.

In essence, that is the simple story of practically everything. But there
is still a long path from these general principles to theoretical prediction of
the structures and properties of atoms, molecules, and solids, and eventually
to the design of new chemicals or materials. If we restrict our focus to the
important class of ground-state properties, we can take a shortcut through
density functional theory.

These lectures present an introduction to density functionals for non-
relativistic Coulomb systems. The reader is assumed to have a working knowl-
edge of quantum mechanics at the level of one-particle wavefunctions ψ(r) [1].
The many-electron wavefunction Ψ(r1, r2, . . . , rN ) [2] is briefly introduced
here, and then replaced as basic variable by the electron density n(r). Various
terms of the total energy are defined as functionals of the electron density, and
some formal properties of these functionals are discussed. The most widely-
used density functionals – the local spin density and generalized gradient
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approximations – are then introduced and discussed. At the end, the reader
should be prepared to approach the broad literature of quantum chemistry
and condensed-matter physics in which these density functionals are applied
to predict diverse properties: the shapes and sizes of molecules, the crys-
tal structures of solids, binding or atomization energies, ionization energies
and electron affinities, the heights of energy barriers to various processes,
static response functions, vibrational frequencies of nuclei, etc. Moreover,
the reader’s approach will be an informed and discerning one, based upon
an understanding of where these functionals come from, why they work, and
how they work.

These lectures are intended to teach at the introductory level, and not
to serve as a comprehensive treatise. The reader who wants more can go to
several excellent general sources [3,4,5] or to the original literature. Atomic
units (in which all electromagnetic equations are written in cgs form, and
the fundamental constants �, e2, and m are set to unity) have been used
throughout.

1.1.2 Summary of Kohn–Sham Spin-Density Functional Theory

This introduction closes with a brief presentation of the Kohn-Sham [6]
spin-density functional method, the most widely-used method of electronic-
structure calculation in condensed-matter physics and one of the most widely-
used methods in quantum chemistry. We seek the ground-state total energy
E and spin densities n↑(r), n↓(r) for a collection of N electrons interacting
with one another and with an external potential v(r) (due to the nuclei in
most practical cases). These are found by the selfconsistent solution of an
auxiliary (fictitious) one-electron Schrödinger equation:(

−1
2
∇2 + v(r) + u([n]; r) + vσ

xc([n↑, n↓]; r)
)
ψασ(r) = εασψασ(r) , (1.1)

nσ(r) =
∑
α

θ(µ − εασ)|ψασ(r)|2 . (1.2)

Here σ =↑ or ↓ is the z-component of spin, and α stands for the set of
remaining one-electron quantum numbers. The effective potential includes a
classical Hartree potential

u([n]; r) =
∫
d3r′ n(r′)

|r− r′| , (1.3)

n(r) = n↑(r) + n↓(r) , (1.4)

and vσ
xc([n↑, n↓]; r), a multiplicative spin-dependent exchange-correlation po-

tential which is a functional of the spin densities. The step function θ(µ−εασ)
in (1.2) ensures that all Kohn-Sham spin orbitals with εασ < µ are singly
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occupied, and those with εασ > µ are empty. The chemical potential µ is
chosen to satisfy ∫

d3r n(r) = N . (1.5)

Because (1.1) and (1.2) are interlinked, they can only be solved by iteration
to selfconsistency.

The total energy is

E = Ts[n↑, n↓] +
∫
d3r n(r)v(r) + U [n] + Exc[n↑, n↓] , (1.6)

where
Ts[n↑, n↓] =

∑
σ

∑
α

θ(µ − εασ)〈ψασ| − 1
2
∇2|ψασ〉 (1.7)

is the non-interacting kinetic energy, a functional of the spin densities because
(as we shall see) the external potential v(r) and hence the Kohn-Sham orbitals
are functionals of the spin densities. In our notation,

〈ψασ|Ô|ψασ〉 =
∫
d3r ψ∗

ασ(r)Ôψασ(r) . (1.8)

The second term of (1.6) is the interaction of the electrons with the external
potential. The third term of (1.6) is the Hartree electrostatic self-repulsion
of the electron density

U [n] =
1
2

∫
d3r
∫
d3r′ n(r)n(r

′)
|r− r′| . (1.9)

The last term of (1.6) is the exchange-correlation energy, whose functional
derivative (as explained later) yields the exchange-correlation potential

vσ
xc([n↑, n↓]; r) =

δExc
δnσ(r)

. (1.10)

Not displayed in (1.6), but needed for a system of electrons and nuclei, is the
electrostatic repulsion among the nuclei. Exc is defined to include everything
else omitted from the first three terms of (1.6).

If the exact dependence of Exc upon n↑ and n↓ were known, these equa-
tions would predict the exact ground-state energy and spin-densities of a
many-electron system. The forces on the nuclei, and their equilibrium posi-
tions, could then be found from − ∂E

∂R .
In practice, the exchange-correlation energy functional must be approxi-

mated. The local spin density [6,7] (LSD) approximation has long been pop-
ular in solid state physics:

ELSDxc [n↑, n↓] =
∫
d3r n(r)exc(n↑(r), n↓(r)) , (1.11)
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where exc(n↑, n↓) is the known [8,9,10] exchange-correlation energy per par-
ticle for an electron gas of uniform spin densities n↑, n↓. More recently, gen-
eralized gradient approximations (GGA’s) [11,12,13,14,15,16,17,18,19,20,21]
have become popular in quantum chemistry:

EGGAxc [n↑, n↓] =
∫
d3r f(n↑, n↓,∇n↑,∇n↓) . (1.12)

The input exc(n↑, n↓) to LSD is in principle unique, since there is a pos-
sible system in which n↑ and n↓ are constant and for which LSD is ex-
act. At least in this sense, there is no unique input f(n↑, n↓,∇n↑,∇n↓) to
GGA. These lectures will stress a conservative “philosophy of approxima-
tion” [20,21], in which we construct a nearly-unique GGA with all the known
correct formal features of LSD, plus others. We will also discuss how to go
beyond GGA.

The equations presented here are really all that we need to do a practical
calculation for a many-electron system. They allow us to draw upon the
intuition and experience we have developed for one-particle systems. The
many-body effects are in U [n] (trivially) and Exc[n↑, n↓] (less trivially), but
we shall also develop an intuitive appreciation for Exc.

While Exc is often a relatively small fraction of the total energy of an
atom, molecule, or solid (minus the work needed to break up the system
into separated electrons and nuclei), the contribution from Exc is typically
about 100% or more of the chemical bonding or atomization energy (the work
needed to break up the system into separated neutral atoms). Exc is a kind of
“glue”, without which atoms would bond weakly if at all. Thus, accurate ap-
proximations to Exc are essential to the whole enterprise of density functional
theory. Table 1.1 shows the typical relative errors we find from selfconsistent
calculations within the LSD or GGA approximations of (1.11) and (1.12).
Table 1.2 shows the mean absolute errors in the atomization energies of 20
molecules when calculated by LSD, by GGA, and in the Hartree-Fock ap-
proximation. Hartree-Fock treats exchange exactly, but neglects correlation
completely. While the Hartree-Fock total energy is an upper bound to the
true ground-state total energy, the LSD and GGA energies are not.

In most cases we are only interested in small total-energy changes asso-
ciated with re-arrangements of the outer or valence electrons, to which the
inner or core electrons of the atoms do not contribute. In these cases, we
can replace each core by the pseudopotential [22] it presents to the valence
electrons, and then expand the valence-electron orbitals in an economical
and convenient basis of plane waves. Pseudopotentials are routinely com-
bined with density functionals. Although the most realistic pseudopotentials
are nonlocal operators and not simply local or multiplication operators, and
although density functional theory in principle requires a local external po-
tential, this inconsistency does not seem to cause any practical difficulties.

There are empirical versions of LSD and GGA, but these lectures will
only discuss non-empirical versions. If every electronic-structure calculation
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Table 1.1. Typical errors for atoms, molecules, and solids from selfconsistent Kohn-
Sham calculations within the LSD and GGA approximations of (1.11) and (1.12).
Note that there is typically some cancellation of errors between the exchange (Ex)
and correlation (Ec) contributions to Exc. The “energy barrier” is the barrier to a
chemical reaction that arises at a highly-bonded intermediate state

Property LSD GGA

Ex 5% (not negative enough) 0.5%
Ec 100% (too negative) 5%
bond length 1% (too short) 1% (too long)
structure overly favors close packing more correct
energy barrier 100% (too low) 30% (too low)

Table 1.2. Mean absolute error of the atomization energies for 20 molecules, eval-
uated by various approximations. (1 hartree = 27.21 eV) (From [20])

Approximation Mean absolute error (eV)

Unrestricted Hartree-Fock 3.1 (underbinding)
LSD 1.3 (overbinding)
GGA 0.3 (mostly overbinding)
Desired “chemical accuracy” 0.05

were done at least twice, once with nonempirical LSD and once with nonem-
pirical GGA, the results would be useful not only to those interested in the
systems under consideration but also to those interested in the development
and understanding of density functionals.

1.2 Wavefunction Theory

1.2.1 Wavefunctions and Their Interpretation

We begin with a brief review of one-particle quantum mechanics [1]. An
electron has spin s = 1

2 and z-component of spin σ = + 1
2 (↑) or − 1

2 (↓).
The Hamiltonian or energy operator for one electron in the presence of an
external potential v(r) is

ĥ = −1
2
∇2 + v(r) . (1.13)

The energy eigenstates ψα(r, σ) and eigenvalues εα are solutions of the time-
independent Schrödinger equation

ĥψα(r, σ) = εαψα(r, σ) , (1.14)
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and |ψα(r, σ)|2d3r is the probability to find the electron with spin σ in volume
element d3r at r, given that it is in energy eigenstate ψα. Thus∑

σ

∫
d3r |ψα(r, σ)|2 = 〈ψ|ψ〉 = 1 . (1.15)

Since ĥ commutes with ŝz, we can choose the ψα to be eigenstates of ŝz, i.e.,
we can choose σ =↑ or ↓ as a one-electron quantum number.

The Hamiltonian for N electrons in the presence of an external potential
v(r) is [2]

Ĥ = −1
2

N∑
i=1

∇2
i +

N∑
i=1

v(ri) +
1
2

∑
i

∑
j �=i

1
|ri − rj |

= T̂ + V̂ext + V̂ee . (1.16)

The electron-electron repulsion V̂ee sums over distinct pairs of different elec-
trons. The states of well-defined energy are the eigenstates of Ĥ:

ĤΨk(r1σ1, . . . , rNσN ) = EkΨk(r1σ1, . . . , rNσN ) , (1.17)

where k is a complete set of many-electron quantum numbers; we shall be
interested mainly in the ground state or state of lowest energy, the zero-
temperature equilibrium state for the electrons.

Because electrons are fermions, the only physical solutions of (1.17) are
those wavefunctions that are antisymmetric [2] under exchange of two elec-
tron labels i and j:

Ψ(r1σ1, . . . , riσi, . . . , rjσj , . . . , rNσN ) =
− Ψ(r1σ1, . . . , rjσj , . . . , riσi, . . . , rNσN ) . (1.18)

There are N ! distinct permutations of the labels 1, 2, . . . , N, which by (1.18)
all have the same |Ψ |2. Thus N ! |Ψ(r1σ1, . . . , rNσN )|2d3r1 . . .d3rN is the
probability to find any electron with spin σ1 in volume element d3r1, etc.,
and
1
N !

∑
σ1...σN

∫
d3r1 . . .

∫
d3rN N ! |Ψ(r1σ1, . . . , rNσN )|2 =

∫
|Ψ |2 = 〈Ψ |Ψ〉 = 1 .

(1.19)
We define the electron spin density nσ(r) so that nσ(r)d3r is the probabil-

ity to find an electron with spin σ in volume element d3r at r. We find nσ(r)
by integrating over the coordinates and spins of the (N − 1) other electrons,
i.e.,

nσ(r) =
1

(N − 1)!

∑
σ2...σN

∫
d3r2 . . .

∫
d3rN N !|Ψ(rσ, r2σ2, . . . , rNσN )|2

= N
∑

σ2...σN

∫
d3r2 . . .

∫
d3rN |Ψ(rσ, r2σ2, . . . , rNσN )|2 . (1.20)
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Equations (1.19) and (1.20) yield

∑
σ

∫
d3r nσ(r) = N . (1.21)

Based on the probability interpretation of nσ(r), we might have expected the
right hand side of (1.21) to be 1, but that is wrong; the sum of probabilities
of all mutually-exclusive events equals 1, but finding an electron at r does not
exclude the possibility of finding one at r′, except in a one-electron system.
Equation (1.21) shows that nσ(r)d3r is the average number of electrons of
spin σ in volume element d3r. Moreover, the expectation value of the external
potential is

〈V̂ext〉 = 〈Ψ |
N∑

i=1

v(ri)|Ψ〉 =
∫
d3r n(r)v(r) , (1.22)

with the electron density n(r) given by (1.4).

1.2.2 Wavefunctions for Non-interacting Electrons

As an important special case, consider the Hamiltonian for N non-interacting
electrons:

Ĥnon =
N∑

i=1

[
−1
2
∇2

i + v(ri)
]
. (1.23)

The eigenfunctions of the one-electron problem of (1.13) and (1.14) are spin
orbitals which can be used to construct the antisymmetric eigenfunctions Φ
of Ĥnon:

ĤnonΦ = EnonΦ . (1.24)

Let i stand for ri, σi and construct the Slater determinant or antisymmetrized
product [2]

Φ =
1√
N !

∑
P

(−1)Pψα1(P1)ψα2(P2) . . . ψαN
(PN) , (1.25)

where the quantum label αi now includes the spin quantum number σ. Here
P is any permutation of the labels 1, 2, . . . , N, and (−1)P equals +1 for an
even permutation and −1 for an odd permutation. The total energy is

Enon = εα1 + εα2 + . . .+ εαN
, (1.26)

and the density is given by the sum of |ψαi(r)|2. If any αi equals any αj

in (1.25), we find Φ = 0, which is not a normalizable wavefunction. This is
the Pauli exclusion principle: two or more non-interacting electrons may not
occupy the same spin orbital.
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As an example, consider the ground state for the non-interacting helium
atom (N = 2). The occupied spin orbitals are

ψ1(r, σ) = ψ1s(r)δσ,↑ , (1.27)

ψ2(r, σ) = ψ1s(r)δσ,↓ , (1.28)

and the 2-electron Slater determinant is

Φ(1, 2) =
1√
2

∣∣∣∣ψ1(r1, σ1) ψ2(r1, σ1)ψ1(r2, σ2) ψ2(r2, σ2)

∣∣∣∣
= ψ1s(r1)ψ1s(r2)

1√
2
(δσ1,↑δσ2,↓ − δσ2,↑δσ1,↓) , (1.29)

which is symmetric in space but antisymmetric in spin (whence the total spin
is S = 0).

If several different Slater determinants yield the same non-interacting en-
ergy Enon, then a linear combination of them will be another antisymmet-
ric eigenstate of Ĥnon. More generally, the Slater-determinant eigenstates of
Ĥnon define a complete orthonormal basis for expansion of the antisymmetric
eigenstates of Ĥ, the interacting Hamiltonian of (1.16).

1.2.3 Wavefunction Variational Principle

The Schrödinger equation (1.17) is equivalent to a wavefunction variational
principle [2]: Extremize 〈Ψ |Ĥ|Ψ〉 subject to the constraint 〈Ψ |Ψ〉 = 1, i.e., set
the following first variation to zero:

δ
{

〈Ψ |Ĥ|Ψ〉/〈Ψ |Ψ〉
}
= 0 . (1.30)

The ground state energy and wavefunction are found by minimizing the ex-
pression in curly brackets.

The Rayleigh-Ritz method finds the extrema or the minimum in a re-
stricted space of wavefunctions. For example, the Hartree-Fock approximation
to the ground-state wavefunction is the single Slater determinant Φ that min-
imizes 〈Φ|Ĥ|Φ〉/〈Φ|Φ〉. The configuration-interaction ground-state wavefunc-
tion [23] is an energy-minimizing linear combination of Slater determinants,
restricted to certain kinds of excitations out of a reference determinant. The
Quantum Monte Carlo method typically employs a trial wavefunction which
is a single Slater determinant times a Jastrow pair-correlation factor [24].
Those widely-used many-electron wavefunction methods are both approx-
imate and computationally demanding, especially for large systems where
density functional methods are distinctly more efficient.

The unrestricted solution of (1.30) is equivalent by the method of La-
grange multipliers to the unconstrained solution of

δ
{

〈Ψ |Ĥ|Ψ〉 − E〈Ψ |Ψ〉
}
= 0 , (1.31)
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i.e.,
〈δΨ |(Ĥ − E)|Ψ〉 = 0 . (1.32)

Since δΨ is an arbitrary variation, we recover the Schrödinger equation (1.17).
Every eigenstate of Ĥ is an extremum of 〈Ψ |Ĥ|Ψ〉/〈Ψ |Ψ〉 and vice versa.

The wavefunction variational principle implies the Hellmann-Feynman
and virial theorems below and also implies the Hohenberg-Kohn [25] density
functional variational principle to be presented later.

1.2.4 Hellmann–Feynman Theorem

Often the Hamiltonian Ĥλ depends upon a parameter λ, and we want to
know how the energy Eλ depends upon this parameter. For any normalized
variational solution Ψλ (including in particular any eigenstate of Ĥλ), we
define

Eλ = 〈Ψλ|Ĥλ|Ψλ〉 . (1.33)

Then
dEλ

dλ
=

d
dλ′ 〈Ψλ′ |Ĥλ|Ψλ′〉

∣∣∣∣
λ′=λ

+ 〈Ψλ|∂Ĥλ

∂λ
|Ψλ〉 . (1.34)

The first term of (1.34) vanishes by the variational principle, and we find the
Hellmann-Feynman theorem [26]

dEλ

dλ
= 〈Ψλ|∂Ĥλ

∂λ
|Ψλ〉 . (1.35)

Equation (1.35) will be useful later for our understanding of Exc. For now,
we shall use (1.35) to derive the electrostatic force theorem [26]. Let ri be
the position of the i-th electron, and RI the position of the (static) nucleus
I with atomic number ZI . The Hamiltonian

Ĥ =
N∑

i=1

−1
2
∇2

i +
∑

i

∑
I

−ZI

|ri −RI |+
1
2

∑
i

∑
j �=i

1
|ri − rj |+

1
2

∑
I

∑
J �=I

ZIZJ

|RI −RJ |
(1.36)

depends parametrically upon the position RI , so the force on nucleus I is

− ∂E

∂RI
=

〈
Ψ

∣∣∣∣∣− ∂Ĥ

∂RI

∣∣∣∣∣Ψ
〉

=
∫
d3r n(r)

ZI(r−RI)
|r−RI |3 +

∑
J �=I

ZIZJ(RI −RJ)
|RI −RJ |3 , (1.37)

just as classical electrostatics would predict. Equation (1.37) can be used
to find the equilibrium geometries of a molecule or solid by varying all the
RI until the energy is a minimum and −∂E/∂RI = 0. Equation (1.37) also
forms the basis for a possible density functional molecular dynamics, in which
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the nuclei move under these forces by Newton’s second law. In principle, all
we need for either application is an accurate electron density for each set of
nuclear positions.

1.2.5 Virial Theorem

The density scaling relations to be presented in Sect. 1.4, which constitute
important constraints on the density functionals, are rooted in the same
wavefunction scaling that will be used here to derive the virial theorem [26].

Let Ψ(r1, . . . , rN ) be any extremum of 〈Ψ |Ĥ|Ψ〉 over normalized wavefunc-
tions, i.e., any eigenstate or optimized restricted trial wavefunction (where ir-
relevant spin variables have been suppressed). For any scale parameter γ > 0,
define the uniformly-scaled wavefunction

Ψγ(r1, . . . , rN ) = γ3N/2 Ψ(γr1, . . . , γrN ) (1.38)

and observe that
〈Ψγ |Ψγ〉 = 〈Ψ |Ψ〉 = 1 . (1.39)

The density corresponding to the scaled wavefunction is the scaled density

nγ(r) = γ3 n(γr) , (1.40)

which clearly conserves the electron number:∫
d3r nγ(r) =

∫
d3r n(r) = N . (1.41)

γ > 1 leads to densities nγ(r) that are higher (on average) and more con-
tracted than n(r), while γ < 1 produces densities that are lower and more
expanded.

Now consider what happens to 〈Ĥ〉 = 〈T̂+V̂ 〉 under scaling. By definition
of Ψ ,

d
dγ

〈Ψγ |T̂ + V̂ |Ψγ〉
∣∣∣∣
γ=1

= 0 . (1.42)

But T̂ is homogeneous of degree -2 in r, so

〈Ψγ |T̂ |Ψγ〉 = γ2 〈Ψ |T̂ |Ψ〉 , (1.43)

and (1.42) becomes

2〈Ψ |T̂ |Ψ〉 + d
dγ

〈Ψγ |V̂ |Ψγ〉
∣∣∣∣
γ=1

= 0 , (1.44)

or

2〈T̂ 〉 − 〈
N∑

i=1

ri · ∂V̂
∂ri

〉 = 0 . (1.45)
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If the potential energy V̂ is homogeneous of degree n, i.e., if

V (γri, . . . , γrN ) = γn V (ri, . . . , rN ) , (1.46)

then
〈Ψγ |V̂ |Ψγ〉 = γ−n〈Ψ |V̂ |Ψ〉 , (1.47)

and (1.44) becomes simply

2〈Ψ |T̂ |Ψ〉 − n〈Ψ |V̂ |Ψ〉 = 0 . (1.48)

For example, n = −1 for the Hamiltonian of (1.36) in the presence of a
single nucleus, or more generally when the Hellmann-Feynman forces of (1.37)
vanish for the state Ψ .

1.3 Definitions of Density Functionals

1.3.1 Introduction to Density Functionals

The many-electron wavefunction Ψ(r1σ1, . . . , rNσN ) contains a great deal of
information – all we could ever have, but more than we usually want. Because
it is a function of many variables, it is not easy to calculate, store, apply or
even think about. Often we want no more than the total energy E (and its
changes), or perhaps also the spin densities n↑(r) and n↓(r), for the ground
state. As we shall see, we can formally replace Ψ by the observables n↑ and
n↓ as the basic variational objects.

While a function is a rule which assigns a number f(x) to a number
x, a functional is a rule which assigns a number F [f ] to a function f . For
example, h[Ψ ] = 〈Ψ |Ĥ|Ψ〉 is a functional of the trial wavefunction Ψ , given
the Hamiltonian Ĥ. U [n] of (1.9) is a functional of the density n(r), as is the
local density approximation for the exchange energy:

ELDAx [n] = Ax

∫
d3r n(r)4/3 . (1.49)

The functional derivative δF/δn(r) tells us how the functional F [n]
changes under a small variation δn(r):

δF =
∫
d3r

(
δF

δn(r)

)
δn(r) . (1.50)

For example,

δELDAx = Ax

∫
d3r

{
[n(r) + δn(r)]4/3 − n(r)4/3

}
= Ax

∫
d3r

4
3
n(r)1/3δn(r) ,
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so
δELDAx

δn(r)
= Ax

4
3
n(r)1/3 . (1.51)

Similarly,
δU [n]
δn(r)

= u([n]; r) , (1.52)

where the right hand side is given by (1.3). Functional derivatives of various
orders can be linked through the translational and rotational symmetries of
empty space [27].

1.3.2 Density Variational Principle

We seek a density functional analog of (1.30). Instead of the original deriva-
tion of Hohenberg, Kohn and Sham [25,6], which was based upon “reductio ad
absurdum”, we follow the “constrained search” approach of Levy [28], which
is in some respects simpler and more constructive.

Equation (1.30) tells us that the ground state energy can be found by mini-
mizing 〈Ψ |Ĥ|Ψ〉 over all normalized, antisymmetricN -particle wavefunctions:

E = min
Ψ

〈Ψ |Ĥ|Ψ〉 . (1.53)

We now separate the minimization of (1.53) into two steps. First we consider
all wavefunctions Ψ which yield a given density n(r), and minimize over those
wavefunctions:

min
Ψ→n

〈Ψ |Ĥ|Ψ〉 = min
Ψ→n

〈Ψ |T̂ + V̂ee|Ψ〉 +
∫
d3r v(r)n(r) , (1.54)

where we have exploited the fact that all wavefunctions that yield the same
n(r) also yield the same 〈Ψ |V̂ext|Ψ〉. Then we define the universal functional

F [n] = min
Ψ→n

〈Ψ |T̂ + V̂ee|Ψ〉 = 〈Ψminn |T̂ + V̂ee|Ψminn 〉 , (1.55)

where Ψminn is that wavefunction which delivers the minimum for a given n.
Finally we minimize over all N -electron densities n(r):

E = min
n

Ev[n]

= min
n

{
F [n] +

∫
d3r v(r)n(r)

}
, (1.56)

where of course v(r) is held fixed during the minimization. The minimizing
density is then the ground-state density.

The constraint of fixed N can be handled formally through introduction
of a Lagrange multiplier µ:

δ

{
F [n] +

∫
d3r v(r)n(r) − µ

∫
d3r n(r)

}
= 0 , (1.57)
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which is equivalent to the Euler equation

δF

δn(r)
+ v(r) = µ . (1.58)

µ is to be adjusted until (1.5) is satisfied. Equation (1.58) shows that the
external potential v(r) is uniquely determined by the ground state density
(or by any one of them, if the ground state is degenerate).

The functional F [n] is defined via (1.55) for all densities n(r) which
are “N -representable”, i.e., come from an antisymmetric N -electron wave-
function. We shall discuss the extension from wavefunctions to ensembles in
Sect. 1.4.5. The functional derivative δF/δn(r) is defined via (1.58) for all den-
sities which are “v-representable”, i.e., come from antisymmetric N -electron
ground-state wavefunctions for some choice of external potential v(r).

This formal development requires only the total density of (1.4), and not
the separate spin densities n↑(r) and n↓(r). However, it is clear how to get
to a spin-density functional theory: just replace the constraint of fixed n
in (1.54) and subsequent equations by that of fixed n↑ and n↓. There are two
practical reasons to do so: (1) This extension is required when the external
potential is spin-dependent, i.e., v(r) → vσ(r), as when an external magnetic
field couples to the z-component of electron spin. (If this field also couples to
the current density j(r), then we must resort to a current-density functional
theory.) (2) Even when v(r) is spin-independent, we may be interested in
the physical spin magnetization (e.g., in magnetic materials). (3) Even when
neither (1) nor (2) applies, our local and semi-local approximations (see (1.11)
and (1.12)) typically work better when we use n↑ and n↓ instead of n.

1.3.3 Kohn–Sham Non-interacting System

For a system of non-interacting electrons, V̂ee of (1.16) vanishes so F [n]
of (1.55) reduces to

Ts[n] = min
Ψ→n

〈Ψ |T̂ |Ψ〉 = 〈Φminn |T̂ |Φminn 〉 . (1.59)

Although we can search over all antisymmetric N -electron wavefunctions
in (1.59), the minimizing wavefunction Φminn for a given density will be a non-
interacting wavefunction (a single Slater determinant or a linear combination
of a few) for some external potential V̂s such that

δTs
δn(r)

+ vs(r) = µ , (1.60)

as in (1.58). In (1.60), the Kohn-Sham potential vs(r) is a functional of n(r). If
there were any difference between µ and µs, the chemical potentials for inter-
acting and non-interacting systems of the same density, it could be absorbed
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into vs(r). We have assumed that n(r) is both interacting and non-interacting
v-representable.

Now we define the exchange-correlation energy Exc[n] by

F [n] = Ts[n] + U [n] + Exc[n] , (1.61)

where U [n] is given by (1.9). The Euler equations (1.58) and (1.60) are con-
sistent with one another if and only if

vs(r) = v(r) +
δU [n]
δn(r)

+
δExc[n]
δn(r)

. (1.62)

Thus we have derived the Kohn-Sham method [6] of Sect. 1.1.2.
The Kohn-Sham method treats Ts[n] exactly, leaving only Exc[n] to be

approximated. This makes good sense, for several reasons: (1) Ts[n] is typi-
cally a very large part of the energy, while Exc[n] is a smaller part. (2) Ts[n]
is largely responsible for density oscillations of the shell structure and Friedel
types, which are accurately described by the Kohn-Sham method. (3) Exc[n]
is somewhat better suited to the local and semi-local approximations than is
Ts[n], for reasons to be discussed later. The price to be paid for these benefits
is the appearance of orbitals. If we had a very accurate approximation for
Ts directly in terms of n, we could dispense with the orbitals and solve the
Euler equation (1.60) directly for n(r).

The total energy of (1.6) may also be written as

E =
∑
ασ

θ(µ − εασ)εασ − U [n] −
∫
d3r n(r)vxc([n]; r) + Exc[n] , (1.63)

where the second and third terms on the right hand side simply remove
contributions to the first term which do not belong in the total energy. The
first term on the right of (1.63), the non-interacting energy Enon, is the only
term that appears in the semi-empirical Hückel theory [26]. This first term
includes most of the electronic shell structure effects which arise when Ts[n]
is treated exactly (but not when Ts[n] is treated in a continuum model like
the Thomas-Fermi approximation or the gradient expansion).

1.3.4 Exchange Energy and Correlation Energy

Exc[n] is the sum of distinct exchange and correlation terms:

Exc[n] = Ex[n] + Ec[n] , (1.64)

where [29]
Ex[n] = 〈Φminn |V̂ee|Φminn 〉 − U [n] . (1.65)

When Φminn is a single Slater determinant, (1.65) is just the usual Fock inte-
gral applied to the Kohn-Sham orbitals, i.e., it differs from the Hartree-Fock
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exchange energy only to the extent that the Kohn-Sham orbitals differ from
the Hartree-Fock orbitals for a given system or density (in the same way that
Ts[n] differs from the Hartree-Fock kinetic energy). We note that

〈Φminn |T̂ + V̂ee|Φminn 〉 = Ts[n] + U [n] + Ex[n] , (1.66)

and that, in the one-electron (V̂ee = 0) limit [9],

Ex[n] = −U [n] (N = 1) . (1.67)

The correlation energy is

Ec[n] = F [n] − {Ts[n] + U [n] + Ex[n]}
= 〈Ψminn |T̂ + V̂ee|Ψminn 〉 − 〈Φminn |T̂ + V̂ee|Φminn 〉 . (1.68)

Since Ψminn is that wavefunction which yields density n and minimizes 〈T̂ +
V̂ee〉, (1.68) shows that

Ec[n] ≤ 0 . (1.69)

Since Φminn is that wavefunction which yields density n and minimizes 〈T̂ 〉,
(1.68) shows that Ec[n] is the sum of a positive kinetic energy piece and a
negative potential energy piece. These pieces of Ec contribute respectively
to the first and second terms of the virial theorem, (1.45). Clearly for any
one-electron system [9]

Ec[n] = 0 (N = 1) . (1.70)

Equations (1.67) and (1.70) show that the exchange-correlation energy
of a one-electron system simply cancels the spurious self-interaction U [n]. In
the same way, the exchange-correlation potential cancels the spurious self-
interaction in the Kohn-Sham potential [9]

δEx[n]
δn(r)

= −u([n]; r) (N = 1) , (1.71)

δEc[n]
δn(r)

= 0 (N = 1) . (1.72)

Thus

lim
r→∞

δExc[n]
δn(r)

= −1
r

(N = 1) . (1.73)

The extension of these one-electron results to spin-density functional theory
is straightforward, since a one-electron system is fully spin-polarized.
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1.3.5 Coupling-Constant Integration

The definitions (1.65) and (1.68) are formal ones, and do not provide much
intuitive or physical insight into the exchange and correlation energies, or
much guidance for the approximation of their density functionals. These in-
sights are provided by the coupling-constant integration [30,31,32,33] to be
derived below.

Let us define Ψmin,λ
n as that normalized, antisymmetric wavefunction

which yields density n(r) and minimizes the expectation value of T̂ + λV̂ee,
where we have introduced a non-negative coupling constant λ. When λ = 1,
Ψmin,λ

n is Ψminn , the interacting ground-state wavefunction for density n. When
λ = 0, Ψmin,λ

n is Φminn , the non-interacting or Kohn-Sham wavefunction for
density n. Varying λ at fixed n(r) amounts to varying the external potential
vλ(r): At λ = 1, vλ(r) is the true external potential, while at λ = 0 it is the
Kohn-Sham effective potential vs(r). We normally assume a smooth, “adia-
batic connection” between the interacting and non-interacting ground states
as λ is reduced from 1 to 0.

Now we write (1.64), (1.65) and (1.68) as

Exc[n]

= 〈Ψmin,λ
n |T̂ + λV̂ee|Ψmin,λ

n 〉
∣∣∣
λ=1

− 〈Ψmin,λ
n |T̂ + λV̂ee|Ψmin,λ

n 〉
∣∣∣
λ=0

− U [n]

=
∫ 1

0
dλ

d
dλ

〈Ψmin,λ
n |T̂ + λV̂ee|Ψmin,λ

n 〉 − U [n] . (1.74)

The Hellmann-Feynman theorem of Sect. 1.2.4 allows us to simplify (1.74)
to

Exc[n] =
∫ 1

0
dλ〈Ψmin,λ

n |V̂ee|Ψmin,λ
n 〉 − U [n] . (1.75)

Equation (1.75) “looks like” a potential energy; the kinetic energy contri-
bution to Exc has been subsumed by the coupling-constant integration. We
should remember, of course, that only λ = 1 is real or physical. The Kohn-
Sham system at λ = 0, and all the intermediate values of λ, are convenient
mathematical fictions.

To make further progress, we need to know how to evaluate theN -electron
expectation value of a sum of one-body operators like T̂ , or a sum of two-
body operators like V̂ee. For this purpose, we introduce one-electron (ρ1) and
two-electron (ρ2) reduced density matrices [34] :

ρ1(r′σ, rσ) ≡ N
∑

σ2...σN

∫
d3r2 . . .

∫
d3rN

Ψ∗(r′σ, r2σ2, . . . , rNσN )Ψ(rσ, r2σ2, . . . , rNσN ) , (1.76)

ρ2(r′, r) ≡ N(N − 1)
∑

σ1...σN

∫
d3r3 . . .

∫
d3rN

|Ψ(r′σ1, rσ2, . . . , rNσN )|2 . (1.77)
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From (1.20),
nσ(r) = ρ1(rσ, rσ) . (1.78)

Clearly also

〈T̂ 〉 = −1
2

∑
σ

∫
d3r

∂

∂r
· ∂

∂r
ρ1(r′σ, rσ)

∣∣∣∣∣
r′=r

, (1.79)

〈V̂ee〉 = 1
2

∫
d3r
∫
d3r′ ρ2(r

′, r)
|r− r′| . (1.80)

We interpret the positive number ρ2(r′, r)d3r′d3r as the joint probability of
finding an electron in volume element d3r′ at r′, and an electron in d3r at
r. By standard probability theory, this is the product of the probability of
finding an electron in d3r (n(r)d3r) and the conditional probability of finding
an electron in d3r′, given that there is one at r (n2(r, r′)d3r′):

ρ2(r′, r) = n(r)n2(r, r′) . (1.81)

By arguments similar to those used in Sect. 1.2.1, we interpret n2(r, r′) as
the average density of electrons at r′, given that there is an electron at r.
Clearly then ∫

d3r′ n2(r, r′) = N − 1 . (1.82)

For the wavefunction Ψmin,λ
n , we write

n2(r, r′) = n(r′) + nλ
xc(r, r

′) , (1.83)

an equation which defines nλ
xc(r, r

′), the density at r′ of the exchange-
correlation hole [33] about an electron at r. Equations (1.5) and (1.83) imply
that ∫

d3r′ nλ
xc(r, r

′) = −1 , (1.84)

which says that, if an electron is definitely at r, it is missing from the rest of
the system.

Because the Coulomb interaction 1/u is singular as u = |r− r′| → 0, the
exchange-correlation hole density has a cusp [35,34] around u = 0:

∂

∂u

∫
dΩu

4π
nλ
xc(r, r+ u)

∣∣∣∣
u=0

= λ
[
n(r) + nλ

xc(r, r)
]
, (1.85)

where
∫
dΩu/(4π) is an angular average. This cusp vanishes when λ = 0,

and also in the fully-spin-polarized and low-density limits, in which all other
electrons are excluded from the position of a given electron: nλ

xc(r, r) = −n(r).
We can now rewrite (1.75) as [33]

Exc[n] =
1
2

∫
d3r
∫
d3r′ n(r)n̄xc(r, r

′)
|r− r′| , (1.86)
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where

n̄xc(r, r′) =
∫ 1

0
dλnλ

xc(r, r
′) (1.87)

is the coupling-constant averaged hole density. The exchange-correlation en-
ergy is just the electrostatic interaction between each electron and the
coupling-constant-averaged exchange-correlation hole which surrounds it.
The hole is created by three effects: (1) self-interaction correction, a classical
effect which guarantees that an electron cannot interact with itself, (2) the
Pauli exclusion principle, which tends to keep two electrons with parallel
spins apart in space, and (3) the Coulomb repulsion, which tends to keep
any two electrons apart in space. Effects (1) and (2) are responsible for the
exchange energy, which is present even at λ = 0, while effect (3) is responsible
for the correlation energy, and arises only for λ �= 0.

If Ψmin,λ=0
n is a single Slater determinant, as it typically is, then the one-

and two-electron density matrices at λ = 0 can be constructed explicitly from
the Kohn-Sham spin orbitals ψασ(r):

ρλ=0
1 (r′σ, rσ) =

∑
α

θ(µ − εασ)ψ∗
ασ(r

′)ψασ(r) , (1.88)

ρλ=0
2 (r′, r) = n(r)n(r′) + n(r)nx(r, r′) , (1.89)

where

nx(r, r′) = nλ=0
xc (r, r′) = −

∑
σ

|ρλ=0
1 (r′σ, rσ)|2

n(r)
(1.90)

is the exact exchange-hole density. Equation (1.90) shows that

nx(r, r′) ≤ 0 , (1.91)

so the exact exchange energy

Ex[n] =
1
2

∫
d3r

∫
d3r′n(r)nx(r, r

′)
|r− r′| (1.92)

is also negative, and can be written as the sum of up-spin and down-spin
contributions:

Ex = E↑
x + E↓

x < 0 . (1.93)

Equation (1.84) provides a sum rule for the exchange hole:∫
d3r′ nx(r, r′) = −1 . (1.94)

Equations (1.90) and (1.78) show that the “on-top” exchange hole density
is [36]

nx(r, r) = −n2↑(r) + n2↓(r)
n(r)

, (1.95)
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which is determined by just the local spin densities at position r – suggesting
a reason why local spin density approximations work better than local density
approximations.

The correlation hole density is defined by

n̄xc(r, r′) = nx(r, r′) + n̄c(r, r′) , (1.96)

and satisfies the sum rule ∫
d3r′ n̄c(r, r′) = 0 , (1.97)

which says that Coulomb repulsion changes the shape of the hole but not
its integral. In fact, this repulsion typically makes the hole deeper but more
short-ranged, with a negative on-top correlation hole density:

n̄c(r, r) ≤ 0 . (1.98)

The positivity of (1.77) is equivalent via (1.81) and (1.83) to the inequality

n̄xc(r, r′) ≥ −n(r′) , (1.99)

which asserts that the hole cannot take away electrons that were not there
initially. By the sum rule (1.97), the correlation hole density n̄c(r, r′) must
have positive as well as negative contributions. Moreover, unlike the exchange
hole density nx(r, r′), the exchange-correlation hole density n̄xc(r, r′) can be
positive.

To better understand Exc, we can simplify (1.86) to the “real-space ana-
lysis” [37]

Exc[n] =
N

2

∫ ∞

0
du 4πu2

〈n̄xc(u)〉
u

, (1.100)

where
〈n̄xc(u)〉 = 1

N

∫
d3r n(r)

∫
dΩu

4π
n̄xc(r, r+ u) (1.101)

is the system- and spherical-average of the coupling-constant-averaged hole
density. The sum rule of (1.84) becomes∫ ∞

0
du 4πu2〈n̄xc(u)〉 = −1 . (1.102)

As u increases from 0, 〈nx(u)〉 rises analytically like 〈nx(0)〉+O(u2), while
〈n̄c(u)〉 rises like 〈n̄c(0)〉 + O(|u|) as a consequence of the cusp of (1.85).
Because of the constraint of (1.102) and because of the factor 1/u in (1.100),
Exc typically becomes more negative as the on-top hole density 〈n̄xc(u)〉 gets
more negative.
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1.4 Formal Properties of Functionals

1.4.1 Uniform Coordinate Scaling

The more we know of the exact properties of the density functionals Exc[n]
and Ts[n], the better we shall understand and be able to approximate these
functionals. We start with the behavior of the functionals under a uniform
coordinate scaling of the density, (1.40).

The Hartree electrostatic self-repulsion of the electrons is known exactly
(see (1.9)), and has a simple coordinate scaling:

U [nγ ] =
1
2

∫
d3(γr)

∫
d3(γr′)

n(γr)n(γr′)
|r− r′|

= γ
1
2

∫
d3r1

∫
d3r′

1
n(r1)n(r′

1)
|r1 − r′

1|
= γU [n] , (1.103)

where r1 = γr and r′
1 = γr′.

Next consider the non-interacting kinetic energy of (1.59). Scaling all the
wavefunctions Ψ in the constrained search as in (1.38) will scale the density as
in (1.40) and scale each kinetic energy expectation value as in (1.43). Thus
the constrained search for the unscaled density maps into the constrained
search for the scaled density, and [38]

Ts[nγ ] = γ2 Ts[n] . (1.104)

We turn now to the exchange energy of (1.65). By the argument of the
last paragraph, Φminnγ

is the scaled version of Φminn . Since also

V̂ee(γr1, . . . , γrN ) = γ−1 V̂ee(r1, . . . , rN ) , (1.105)

and with the help of (1.103), we find [38]

Ex[nγ ] = γ Ex[n] . (1.106)

In the high-density (γ → ∞) limit, Ts[nγ ] dominates U [nγ ] and Ex[nγ ].
An example would be an ion with a fixed number of electrons N and a
nuclear charge Z which tends to infinity; in this limit, the density and energy
become essentially hydrogenic, and the effects of U and Ex become relatively
negligible. In the low-density (γ → 0) limit, U [nγ ] and Ex[nγ ] dominate
Ts[nγ ].

We can use coordinate scaling relations to fix the form of a local density
approximation

F [n] =
∫
d3r f(n(r)) . (1.107)

If F [nλ] = λpF [n], then

λ−3
∫
d3(λr) f

(
λ3n(λr)

)
= λp

∫
d3r f(n(r)) , (1.108)
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or f(λ3n) = λp+3f(n), whence

f(n) = n1+p/3 . (1.109)

For the exchange energy of (1.106), p = 1 so (1.107) and (1.109) imply (1.49).
For the non-interacting kinetic energy of (1.104), p = 2 so (1.107) and (1.109)
imply the Thomas-Fermi approximation

T0[n] = As

∫
d3r n5/3(r) . (1.110)

U [n] of (1.9) is too strongly nonlocal for any local approximation.
While Ts[n], U [n] and Ex[n] have simple scalings, Ec[n] of (1.68) does not.

This is because Ψminnγ
, the wavefunction which via (1.55) yields the scaled den-

sity nγ(r) and minimizes the expectation value of T̂ + V̂ee, is not the scaled
wavefunction γ3N/2Ψminn (γr1, . . . , γrN ). The scaled wavefunction yields nγ(r)
but minimizes the expectation value of T̂ + γV̂ee, and it is this latter expec-
tation value which scales like γ2 under wavefunction scaling. Thus [39]

Ec[nγ ] = γ2E1/γ
c [n] , (1.111)

where E1/γ
c [n] is the density functional for the correlation energy in a system

for which the electron-electron interaction is not V̂ee but γ−1V̂ee.
To understand these results, let us assume that the Kohn-Sham non-inter-

acting Hamiltonian has a non-degenerate ground state. In the high-density
limit (γ → ∞), Ψminnγ

minimizes just 〈T̂ 〉 and reduces to Φminnγ
. Now we treat

∆ ≡ V̂ee −
N∑

i=1

[
δU [n]
δn(ri)

+
δEx[n]
δn(ri)

]
(1.112)

as a weak perturbation [40,41] on the Kohn-Sham non-interacting Hamilto-
nian, and find

Ec[n] =
∑
k �=0

|〈k|∆|0〉|2
E0 − Ek

, (1.113)

where the |k〉 are the eigenfunctions of the Kohn-Sham non-interacting Hamil-
tonian, and |0〉 is its ground state. Both the numerator and the denominator
of (1.113) scale like γ2, so [42]

lim
γ→∞Ec[nγ ] = constant . (1.114)

In the low-density limit, Ψminnγ
minimizes just 〈V̂ee〉, and (1.68) then shows

that [43]
Ec[nγ ] ≈ γD[n] (γ → 0) , (1.115)

with an appropriately chosen density functional D[n].
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Generally, we have a scaling inequality [38]

Ec[nγ ] > γEc[n] (γ > 1) , (1.116)

Ec[nγ ] < γEc[n] (γ < 1) . (1.117)

If we choose a density n, we can plot Ec[nγ ] versus γ, and compare the result
to the straight line γEc[n]. These two curves will drop away from zero as γ
increases from zero (with different initial slopes), then cross at γ = 1. The
convex Ec[nγ ] will then approach a negative constant as γ → ∞.

1.4.2 Local Lower Bounds

Because of the importance of local and semilocal approximations like (1.11)
and (1.12), bounds on the exact functionals are especially useful when the
bounds are themselves local functionals.

Lieb and Thirring [44] have conjectured that Ts[n] is bounded from below
by the Thomas-Fermi functional

Ts[n] ≥ T0[n] , (1.118)

where T0[n] is given by (1.110) with

As =
3
10

(3π2)2/3 . (1.119)

We have already established that

Ex[n] ≥ Exc[n] ≥ Eλ=1
xc [n] , (1.120)

where the final term of (1.120) is the integrand Eλ
xc[n] of the coupling-constant

integration of (1.75),

Eλ
xc[n] = 〈Ψmin,λ

n |V̂ee|Ψmin,λ
n 〉 − U [n] , (1.121)

evaluated at the upper limit λ = 1. Lieb and Oxford [45] have proved that

Eλ=1
xc [n] ≥ 2.273 ELDAx [n] , (1.122)

where ELDAx [n] is the local density approximation for the exchange energy,
(1.49), with

Ax = − 3
4π

(3π2)1/3 . (1.123)
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1.4.3 Spin Scaling Relations

Spin scaling relations can be used to convert density functionals into spin-
density functionals.

For example, the non-interacting kinetic energy is the sum of the separate
kinetic energies of the spin-up and spin-down electrons:

Ts[n↑, n↓] = Ts[n↑, 0] + Ts[0, n↓] . (1.124)

The corresponding density functional, appropriate to a spin-unpolarized sys-
tem, is [46]

Ts[n] = Ts[n/2, n/2] = 2Ts[n/2, 0] , (1.125)

whence Ts[n/2, 0] = 1
2Ts[n] and (1.124) becomes

Ts[n↑, n↓] =
1
2
Ts[2n↑] +

1
2
Ts[2n↓] . (1.126)

Similarly, (1.93) implies [46]

Ex[n↑, n↓] =
1
2
Ex[2n↑] +

1
2
Ex[2n↓] . (1.127)

For example, we can start with the local density approximations (1.110) and
(1.49), then apply (1.126) and (1.127) to generate the corresponding local
spin density approximations.

Because two electrons of anti-parallel spin repel one another coulombi-
cally, making an important contribution to the correlation energy, there is no
simple spin scaling relation for Ec.

1.4.4 Size Consistency

Common sense tells us that the total energy E and density n(r) for a system,
comprised of two well-separated subsystems with energies E1 and E2 and
densities n1(r) and n2(r), must be E = E1 + E2 and n(r) = n1(r) + n2(r).
Approximations which satisfy this expectation, such as the LSD of (1.11) or
the GGA of (1.12), are properly size consistent [47]. Size consistency is not
only a principle of physics, it is almost a principle of epistemology: How could
we analyze or understand complex systems, if they could not be separated
into simpler components?

Density functionals which are not size consistent are to be avoided. An
example is the Fermi-Amaldi [48] approximation for the exchange energy,

EFAx [n] = −U [n/N ] , (1.128)

where N is given by (1.5), which was constructed to satisfy (1.67).
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1.4.5 Derivative Discontinuity

In Sect. 1.3, our density functionals were defined as constrained searches over
wavefunctions. Because all wavefunctions searched have the same electron
number, there is no way to make a number-nonconserving density variation
δn(r). The functional derivatives are defined only up to an arbitrary constant,
which has no effect on (1.50) when

∫
d3r δn(r) = 0.

To complete the definition of the functional derivatives and of the chemical
potential µ, we extend the constrained search from wavefunctions to ensem-
bles [49,50]. An ensemble or mixed state is a set of wavefunctions or pure
states and their respective probabilities. By including wavefunctions with
different electron numbers in the same ensemble, we can develop a density
functional theory for non-integer particle number. Fractional particle num-
bers can arise in an open system that shares electrons with its environment,
and in which the electron number fluctuates between integers.

The upshot is that the ground-state energy E(N) varies linearly between
two adjacent integers, and has a derivative discontinuity at each integer. This
discontinuity arises in part from the exchange-correlation energy (and entirely
so in cases for which the integer does not fall on the boundary of an electronic
shell or subshell, e.g., for N = 6 in the carbon atom but not for N = 10 in
the neon atom).

By Janak’s theorem [51], the highest partly-occupied Kohn-Sham eigen-
value εHO equals ∂E/∂N = µ, and so changes discontinuously [49,50] at an
integer Z:

εHO =
{−IZ (Z − 1 < N < Z)

−AZ (Z < N < Z + 1) , (1.129)

where IZ is the first ionization energy of the Z-electron system (i.e., the least
energy needed to remove an electron from this system), and AZ is the electron
affinity of the Z-electron system (i.e., AZ = IZ+1). If Z does not fall on the
boundary of an electronic shell or subshell, all of the difference between −IZ

and −AZ must arise from a discontinuous jump in the exchange-correlation
potential δExc/δn(r) as the electron number N crosses the integer Z.

Since the asymptotic decay of the density of a finite system with Z elec-
trons is controlled by IZ , we can show that the exchange-correlation potential
tends to zero as |r| → ∞ [52]:

lim
|r|→∞

δExc
δn(r)

= 0 (Z − 1 < N < Z) , (1.130)

or more precisely

lim
|r|→∞

δExc
δn(r)

= −1
r

(Z − 1 < N < Z) . (1.131)

As N increases through the integer Z, δExc/δn(r) jumps up by a positive
additive constant. With further increases in N above Z, this “constant” van-
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ishes, first at very large |r| and then at smaller and smaller |r|, until it is all
gone in the limit where N approaches the integer Z + 1 from below.

Simple continuum approximations to Exc[n↑, n↓], such as the LSD
of (1.11) or the GGA of (1.12), miss much or all the derivative discontinuity,
and can at best average over it. For example, the highest occupied orbital
energy for a neutral atom becomes approximately − 1

2 (IZ +AZ), the average
of (1.129) from the electron-deficient and electron-rich sides of neutrality. We
must never forget, when we make these approximations, that we are fitting
a round peg into a square hole. The areas (integrated properties) of a circle
and a square can be matched, but their perimeters (differential properties)
will remain stubbornly different.

1.5 Uniform Electron Gas

1.5.1 Kinetic Energy

Simple systems play an important paradigmatic role in science. For example,
the hydrogen atom is a paradigm for all of atomic physics. In the same way,
the uniform electron gas [24] is a paradigm for solid-state physics, and also for
density functional theory. In this system, the electron density n(r) is uniform
or constant over space, and thus the electron number is infinite. The negative
charge of the electrons is neutralized by a rigid uniform positive background.
We could imagine creating such a system by starting with a simple metal,
regarded as a perfect crystal of valence electrons and ions, and then smearing
out the ions to make the uniform background of positive charge. In fact, the
simple metal sodium is physically very much like a uniform electron gas.

We begin by evaluating the non-interacting kinetic energy (this section)
and exchange energy (next section) per electron for a spin-unpolarized elec-
tron gas of uniform density n. The corresponding energies for the spin-
polarized case can then be found from (1.126) and (1.127).

By symmetry, the Kohn-Sham potential vs(r) must be uniform or con-
stant, and we take it to be zero. We impose boundary conditions within a
cube of volume V → ∞, i.e., we require that the orbitals repeat from one face
of the cube to its opposite face. (Presumably any choice of boundary condi-
tions would give the same answer as V → ∞.) The Kohn-Sham orbitals are
then plane waves exp(ik · r)/√V, with momenta or wavevectors k and ener-
gies k2/2. The number of orbitals of both spins in a volume d3k of wavevector
space is 2[V/(2π)3]d3k, by an elementary geometrical argument [53].

Let N = nV be the number of electrons in volume V. These electrons
occupy the N lowest Kohn-Sham spin orbitals, i.e., those with k < kF:

N = 2
∑
k

θ(kF − k) = 2
V

(2π)3

∫ kF

0
dk 4πk2 = V k3F

3π2
, (1.132)
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where kF is called the Fermi wavevector. The Fermi wavelength 2π/kF is the
shortest de Broglie wavelength for the non-interacting electrons. Clearly

n =
k3F
3π2

=
3

4πr3s
, (1.133)

where we have introduced the Seitz radius rs – the radius of a sphere which
on average contains one electron.

The kinetic energy of an orbital is k2/2, and the average kinetic energy
per electron is

ts(n) =
2
N

∑
k

θ(kF − k)
k2

2
=

2V
N(2π)3

∫ kF

0
dk 4πk2

k2

2
=

3
5
k2F
2

, (1.134)

or 3/5 of the Fermi energy. In other notation,

ts(n) =
3
10

(3π2n)2/3 =
3
10

(9π/4)2/3

r2s
. (1.135)

All of this kinetic energy follows from the Pauli exclusion principle, i.e., from
the fermion character of the electron.

1.5.2 Exchange Energy

To evaluate the exchange energy, we need the Kohn-Sham one-matrix for
electrons of spin σ, as defined in (1.88):

ρλ=0
1 (r+ uσ, rσ) =

∑
k

θ(kF − k)
exp(−ik · (r+ u))√V

exp(ik · r)√V

=
1

(2π)3

∫ kF

0
dk 4πk2

∫
dΩk

4π
exp(−ik · u)

=
1

2π2

∫ kF

0
dk k2

sin(ku)
ku

=
k3F
2π2

sin(kFu) − kFu cos(kFu)
(kFu)3

. (1.136)

The exchange hole density at distance u from an electron is, by (1.90),

nx(u) = −2
|ρλ=0
1 (r+ uσ, rσ)|2

n
, (1.137)

which ranges from −n/2 at u = 0 (where all other electrons of the same spin
are excluded by the Pauli principle) to 0 (like 1/u4) as u → ∞. The exchange
energy per electron is

ex(n) =
∫ ∞

0
du 2πunx(u) = − 3

4π
kF . (1.138)
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In other notation,

ex(n) = − 3
4π

(3π2n)1/3 = − 3
4π

(9π/4)1/3

rs
. (1.139)

Since the self-interaction correction vanishes for the diffuse orbitals of the
uniform gas, all of this exchange energy is due to the Pauli exclusion principle.

1.5.3 Correlation Energy

Exact analytic expressions for ec(n), the correlation energy per electron of
the uniform gas, are known only in extreme limits. The high-density (rs → 0)
limit is also the weak-coupling limit, in which

ec(n) = c0 ln rs − c1 + c2rs ln rs − c3rs + . . . (rs → 0) (1.140)

from many-body perturbation theory [54]. The two positive constants c0 =
0.031091 [54] and c1 = 0.046644 [55] are known. Equation (1.140) does not
quite tend to a constant when rs → 0, as (1.114) would suggest, because the
excited states of the non-interacting system lie arbitrarily close in energy to
the ground state.

The low-density (rs → ∞) limit is also the strong coupling limit in which
the uniform fluid phase is unstable against the formation of a close-packed
Wigner lattice of localized electrons. Because the energies of these two phases
remain nearly degenerate as rs → ∞, they have the same kind of dependence
upon rs [56]:

ec(n) → −d0
rs

+
d1

r
3/2
s

+ . . . (rs → ∞) . (1.141)

The constants d0 and d1 in (1.141) can be estimated from the Madelung
electrostatic and zero-point vibrational energies of the Wigner crystal, re-
spectively. The estimate

d0 ≈ − 9
10

(1.142)

can be found from the electrostatic energy of a neutral spherical cell: Just
add the electrostatic self-repulsion 3/5rs of a sphere of uniform positive back-
ground (with radius rs) to the interaction −3/2rs between this background
and the electron at its center. The origin of the r−3/2

s term in (1.141) is also
simple: Think of the potential energy of the electron at small distance u from
the center of the sphere as −3/2rs+ 1

2ku
2, where k is a spring constant. Since

this potential energy must vanish for u ≈ rs, we find that k ∼ r−3
s and thus

the zero-point vibrational energy is 3ω/2 = 1.5
√
k/m ∼ r

−3/2
s .

An expression which encompasses both limits (1.140)and (1.141) is [8]

ec(n) = −2c0(1 + α1rs) ln

[
1 +

1

2c0(β1r
1/2
s + β2rs + β3r

3/2
s + β4r2s )

]
,

(1.143)
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where
β1 =

1
2c0

exp (− c1
2c0

) , (1.144)

β2 = 2c0β21 . (1.145)

The coefficients α1 = 0.21370, β3 = 1.6382, and β4 = 0.49294 are found by
fitting to accurate Quantum Monte Carlo correlation energies [57] for rs =2,
5, 10, 20, 50, and 100.

The uniform electron gas is in equilibrium when the density n minimizes
the total energy per electron, i.e., when

∂

∂n
[ts(n) + ex(n) + ec(n)] = 0 . (1.146)

This condition is met at rs = 4.1, close to the observed valence electron
density of sodium. At any rs, we have

δTs
δn(r)

=
∂

∂n
[nts(n)] =

1
2
k2F , (1.147)

δEx
δn(r)

=
∂

∂n
[nex(n)] = − 1

π
kF . (1.148)

Equation (1.143) with the parameters listed above provides a rep-
resentation of ec(n↑, n↓) for n↑ = n↓ = n/2; other accurate representa-
tions are also available [9,10]. Equation (1.143) with different parameters
(c0 = 0.015545, c1 = 0.025599, α1 = 0.20548, β3 = 3.3662, β4 = 0.62517)
can represent ec(n↑, n↓) for n↑ = n and n↓ = 0, the correlation energy per
electron for a fully spin-polarized uniform gas. But we shall need ec(n↑, n↓)
for arbitrary relative spin polarization

ζ =
(n↑ − n↓)
(n↑ + n↓)

, (1.149)

which ranges from 0 for an unpolarized system to ±1 for a fully-spin-polarized
system. A useful interpolation formula, based upon a study of the random
phase approximation, is [10]

ec(n↑, n↓) = ec(n) + αc(n)
f(ζ)
f ′′(0)

(1 − ζ4) + [ec(n, 0) − ec(n)]f(ζ)ζ4

= ec(n) + αc(n)ζ2 + O(ζ4) , (1.150)

where

f(ζ) =
[(1 + ζ)4/3 + (1 − ζ)4/3 − 2]

(24/3 − 2)
. (1.151)

In (1.150), αc(n) is the correlation contribution to the spin stiffness. Roughly
αc(n) ≈ ec(n, 0) − ec(n), but more precisely −αc(n) can be parametrized
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in the form of (1.143) (with c0 = 0.016887, c1 = 0.035475, α1 = 0.11125,
β3 = 0.88026, β4 = 0.49671).

For completeness, we note that the spin-scaling relations (1.126) and
(1.127) imply that

ex(n↑, n↓) = ex(n)

[
(1 + ζ)4/3 + (1 − ζ)4/3

]
2

, (1.152)

ts(n↑, n↓) = ts(n)

[
(1 + ζ)5/3 + (1 − ζ)5/3

]
2

. (1.153)

The exchange-hole density of (1.137) can also be spin scaled. Expressions for
the exchange and correlation holes for arbitrary rs and ζ are given in [58].

1.5.4 Linear Response

We now discuss the linear response of the spin-unpolarized uniform electron
gas to a weak, static, external potential δv(r). This is a well-studied prob-
lem [59], and a practical one for the local-pseudopotential description of a
simple metal [60].

Because the unperturbed system is homogeneous, we find that, to first
order in δv(r), the electron density response is

δn(r) =
∫
d3r′ χ(|r− r′|)δv(r′) (1.154)

where χ is a linear response function. If

δv(r) = δv(q) exp(iq · r) (1.155)

is a wave of wavevector q and small amplitude δv(q), then (1.154) becomes
δn(r) = δn(q) exp(iq · r), where

δn(q) = χ(q)δv(q) , (1.156)

and
χ(q) =

∫
d3x exp(−iq · x)χ(|x|) (1.157)

is the Fourier transform of χ(|r− r′|) with respect to x = r− r′. (In (1.155),
the real part of the complex exponential exp(iα) = cos(α)+ i sin(α) is under-
stood.)

By the Kohn-Sham theorem, we also have

δn(q) = χs(q)δvs(q) , (1.158)

where δvs(q) is the change in the Kohn-Sham effective one-electron potential
of (1.62), and

χs(q) = −kF
π2

F (q/2kF) (1.159)
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is the density response function for the non-interacting uniform electron gas.
The Lindhard function

F (x) =
1
2
+

1 − x2

4x
ln
∣∣∣∣1 + x

1 − x

∣∣∣∣ (1.160)

equals 1 − x2/3 − x4/15 as x → 0, 1/2 at x = 1, and 1/(3x2) + 1/(15x4) as
x → ∞. dF/dx diverges logarithmically as x → 1.

Besides δv(r), the other contributions to δvs(r) of (1.62) are

δ

(
δU

δn(r)

)
=
∫
d3r′ δn(r′)

|r− r′| , (1.161)

δ

(
δExc
δn(r)

)
=
∫
d3r′ δ2Exc

δn(r)δn(r′)
δn(r′) . (1.162)

In other words,

δvs(q) = δv(q) +
4π
q2

δn(q) − π

k2F
γxc(q)δn(q) , (1.163)

where the coefficient of the first δn(q) is the Fourier transform of the Coulomb
interaction 1/|r − r′|, and the coefficient of the second δn(q) is the Fourier
transform of δ2Exc/δn(r)δn(r′).

We re-write (1.163) as

δvs(q) = δv(q) +
4π
q2

[1 − Gxc(q)] δn(q) , (1.164)

where

Gxc(q) = γxc(q)
(

q

2kF

)2
(1.165)

is the so-called local-field factor. Then we insert (1.158) into (1.164) and find

δvs(q) =
δv(q)
εs(q)

(1.166)

where
εs(q) = 1 − 4π

q2
[1 − Gxc(q)]χs(q) . (1.167)

In other words, the density response function of the interacting uniform elec-
tron gas is

χ(q) =
χs(q)
εs(q)

. (1.168)

These results are particularly simple in the long-wavelength (q → 0) limit,
in which γxc(q) tends to a constant and

εs(q) → 1 − γxc(q = 0)
πkF

+
k2s
q2

(q → 0) , (1.169)
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where

ks =
(
4kF
π

)1/2
=
(
4
π

)1/2(9π
4

)1/6 1

r
1/2
s

(1.170)

is the inverse of the Thomas-Fermi screening length – the characteristic dis-
tance over which an external perturbation is screened out. Equations (1.166)
and (1.167) show that a slowly-varying external perturbation δv(q) is strongly
“screened out” by the uniform electron gas, leaving only a very weak Kohn-
Sham potential δvs(q). Equation (1.168) shows that the response function
χ(q) is weaker than χs(q) by a factor (q/ks)2 in the limit q → 0.

In (1.166), εs(q) is a kind of dielectric function, but it is not the stan-
dard dielectric function ε(q) which predicts the response of the electrostatic
potential alone:

δv(q) +
4π
q2

δn(q) =
δv(q)
ε(q)

. (1.171)

By inserting (1.156) into (1.171), we find

1
ε(q)

= 1 +
4π
q2

χ(q) . (1.172)

It is only when we neglect exchange and correlation that we find the simple
Lindhard result

ε(q) → εs(q) → εL(q) = 1 − 4π
q2

χs(q) (γxc → 0) . (1.173)

Neglecting correlation, γx is a numerically-tabulated function of (q/2kF)
with the small-q expansion [61]

γx(q) = 1 +
5
9

(
q

2kF

)2
+

73
225

(
q

2kF

)4
(q → 0) . (1.174)

When correlation is included, γxc(q) depends upon rs as well as (q/2kF), in
a way that is known from Quantum Monte Carlo studies [62] of the weakly-
perturbed uniform gas.

The second-order change δE in the total energy may be found from the
Hellmann-Feynman theorem of Sect. 1.2.4. Replace δv(r) by vλ(r) = λδv(r)
and δn(r) by λδn(r), to find

δE =
∫ 1

0
dλ
∫
d3r nλ(r)

d
dλ

vλ(r)

=
∫ 1

0
dλ
∫
d3r [n+ λδn(r)]δv(r)

=
1
2

∫
d3r δn(r)δv(r)

=
1
2
δn(−q)δv(q) . (1.175)
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1.5.5 Clumping and Adiabatic Connection

The uniform electron gas for rs ≤ 30 provides a nice example of the adiabatic
connection discussed in Sect. 1.3.5. As the coupling constant λ turns on
from 0 to 1, the ground state wavefunction evolves continuously from the
Kohn-Sham determinant of plane waves to the ground state of interacting
electrons in the presence of the external potential, while the density remains
fixed. (One should of course regard the infinite system as the infinite-volume
limit of a finite chunk of uniform background neutralized by electrons.)

The adiabatic connection between non-interacting and interacting
uniform-density ground states could be destroyed by any tendency of the
density to clump. A fictitious attractive interaction between electrons would
yield such a tendency. Even in the absence of attractive interactions, clump-
ing appears in the very-low-density electron gas as a charge density wave or
Wigner crystallization [56,59]. Then there is probably no external potential
which will hold the interacting system in a uniform-density ground state,
but one can still find the energy of the uniform state by imposing density
uniformity as a constraint on a trial interacting wavefunction.

The uniform phase becomes unstable against a charge density wave of
wavevector q and infinitesimal amplitude when εs(q) of (1.167) vanishes [59].
This instability for q ≈ 2kF arises at low density as a consequence of exchange
and correlation.

1.6 Local, Semi-local and Non-local Approximations

1.6.1 Local Spin Density Approximation

The local spin density approximation (LSD) for the exchange-correlation en-
ergy, (1.11), was proposed in the original work of Kohn and Sham [6], and
has proved to be remarkably accurate, useful, and hard to improve upon.
The generalized gradient approximation (GGA) of (1.12), a kind of simple
extension of LSD, is now more widely used in quantum chemistry, but LSD
remains the most popular way to do electronic-structure calculations in solid
state physics. Tables 1.1 and 1.2 provide a summary of typical errors for LSD
and GGA, while Tables 1.3 and 1.4 make this comparison for a few specific
atoms and molecules. The LSD is parametrized as in Sect. 1.5, while the
GGA is the non-empirical one of Perdew, Burke, and Ernzerhof [20], to be
presented later.

The LSD approximation to any energy component G is

GLSD[n↑, n↓] =
∫
d3r n(r)g(n↑(r), n↓(r)) , (1.176)

where g(n↑, n↓) is that energy component per particle in an electron gas
with uniform spin densities n↑ and n↓, and n(r)d3r is the average number of
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Table 1.3. Exchange-correlation energies of atoms, in hartree

Atom LSD GGA Exact

H −0.29 −0.31 −0.31
He −1.00 −1.06 −1.09
Li −1.69 −1.81 −1.83
Be −2.54 −2.72 −2.76
N −6.32 −6.73 −6.78
Ne −11.78 −12.42 −12.50

Table 1.4. Atomization energies of molecules, in eV. (1 hartree = 27.21 eV).
From [20]

Molecule LSD GGA Exact

H2 4.9 4.6 4.7
CH4 20.0 18.2 18.2
NH3 14.6 13.1 12.9
H2O 11.6 10.1 10.1
CO 13.0 11.7 11.2
O2 7.6 6.2 5.2

electrons in volume element d3r. Sections 1.5.1–1.5.3 provide the ingredients
for TLSDs = T0, ELSDx , and ELSDc . The functional derivative of (1.176) is

δGLSD

δnσ(r)
=

∂

∂nσ
[(n↑ + n↓)g(n↑, n↓)] . (1.177)

By construction, LSD is exact for a uniform density, or more generally
for a density that varies slowly over space [6]. More precisely, LSD should
be valid when the length scale of the density variation is large in comparison
with length scales set by the local density, such as the Fermi wavelength
2π/kF or the screening length 1/ks. This condition is rarely satisfied in real
electronic systems, so we must look elsewhere to understand why LSD works.

We need to understand why LSD works, for three reasons: to justify LSD
calculations, to understand the physics, and to develop improved density
functional approximations. Thus we will start with the good news about
LSD, proceed to the mixed good/bad news, and close with the bad news.

LSD has many correct formal features. It is exact for uniform densities
and nearly-exact for slowly-varying ones, a feature that makes LSD well
suited at least to the description of the crystalline simple metals. It satis-
fies the inequalities Ex < 0 (see (1.93)) and Ec < 0 (see (1.69)), the correct
uniform coordinate scaling of Ex (see (1.106)), the correct spin scaling of
Ex (see (1.127)), the correct coordinate scaling for Ec (see (1.111), (1.116),
(1.117)), the correct low-density behavior of Ec (see (1.115)), and the cor-
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rect Lieb-Oxford bound on Exc (see (1.120) and (1.122)). LSD is properly
size-consistent (Sect. 1.4.4).

LSD provides a surprisingly good account of the linear response of the
spin-unpolarized uniform electron gas (Sect. 1.5.4). Since

δ2ELSDxc

δn(r)δn(r′)
= δ(r− r′)

∂2[nexc(n)]
∂n2

, (1.178)

where δ(r− r′) is the Dirac delta function, we find

γLSDxc (q) = 1 − k2F
π

∂2

∂n2
[nec(n)] , (1.179)

a constant independent of q, which must be the exact q → 0 or slowly-
varying limit of γxc(q). Figure 1 of [20] shows that the “exact” γxc(q) from a
Quantum Monte Carlo calculation [62] for rs = 4 is remarkably close to the
LSD prediction for q ≤ 2kF. The same is true over the whole valence-electron
density range 2 ≤ rs ≤ 5, and results from a strong cancellation between
the nonlocalities of exchange and correlation. Indeed the exact result for
exchange (neglecting correlation), equation (1.174), is strongly q-dependent
or nonlocal. The displayed terms of (1.174) suffice for q ≤ 2kF.

Powerful reasons for the success of LSD are provided by the coupling
constant integration of Sect. 1.3.5. Comparison of (1.86) and (1.11) reveals
that the LSD approximations for the exchange and correlation holes of an
inhomogeneous system are

nLSDx (r, r′) = nunifx (n↑(r), n↓(r); |r− r′|) , (1.180)

nLSDc (r, r′) = nunifc (n↑(r), n↓(r); |r− r′|) , (1.181)

where nunifxc (n↑, n↓;u) is the hole in an electron gas with uniform spin densities
n↑ and n↓. Since the uniform gas is a possible physical system, (1.180) and
(1.181) obey the exact constraints of (1.91) (negativity of nx), (1.94) (sum rule
on nx), (1.95), (1.97) (sum rule on n̄c), (1.98), and (1.85) (cusp condition).

By (1.95), the LSD on-top exchange hole nLSDx (r, r) is exact, at least when
the Kohn-Sham wavefunction is a single Slater determinant. The LSD on-top
correlation hole n̄LSDc (r, r) is not exact [63] (except in the high-density, low-
density, fully spin-polarized, or slowly-varying limit), but it is often quite
realistic [64]. By (1.85), its cusp is then also realistic.

Because it satisfies all these constraints, the LSD model for the system-,
spherically-, and coupling-constant-averaged hole of (1.101),

〈n̄LSDxc (u)〉 = 1
N

∫
d3r n(r)n̄unifxc (n↑(r), n↓(r);u) , (1.182)

can be very physical. Moreover, the system average in (1.182) “unweights”
regions of space where LSD is expected to be least reliable, such as near a
nucleus or in the evanescent tail of the electron density [65,64].
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Since correlation makes 〈n̄xc(u = 0)〉 deeper, and thus by (1.102) makes
〈n̄xc(u)〉 more short-ranged, Exc can be “more local” than either Ex or Ec.
In other words, LSD often benefits from a cancellation of errors between
exchange and correlation.

Mixed good and bad news about LSD is the fact that selfconsistent
LSD calculations can break exact spin symmetries. As an example, consider
“stretched H2”, the hydrogen molecule (N = 2) with a very large separation
between the two nuclei. The exact ground state is a spin singlet (S = 0),
with n↑(r) = n↓(r) = n(r)/2. But the LSD ground state localizes all of the
spin-up density on one of the nuclei, and all of the spin-down density on
the other. Although (or rather because) the LSD spin densities are wrong,
the LSD total energy is correctly the sum of the energies of two isolated
hydrogen atoms, so this symmetry breaking is by no means entirely a bad
thing [66,67]. The selfconsistent LSD on-top hole density 〈n̄xc(0)〉 = −〈n〉
is also right: Heitler-London correlation ensues that two electrons are never
found near one another, or on the same nucleus at the same time.

Finally, we present the bad news about LSD: (1) LSD does not incorpo-
rate known inhomogeneity or gradient corrections to the exchange-correlation
hole near the electron (Sect. 1.6.2) (2) It does not satisfy the high-density cor-
relation scaling requirement of (1.114), but shows a ln γ divergence associated
with the ln rs term of (1.140). (3) LSD is not exact in the one-electron limit,
i.e., does not satisfy (1.67), and (1.70)–(1.73). Although the “self-interaction
error” is small for the exchange-correlation energy, it is more substantial for
the exchange-correlation potential and orbital eigenvalues. (4) As a “con-
tinuum approximation”, based as it is on the uniform electron gas and its
continuous one-electron energy spectrum, LSD misses the derivative discon-
tinuity of Sect. 1.4.5. Effectively, LSD averages over the discontinuity, so
its highest occupied orbital energy for a Z-electron system is not (1.129)
but εHO ≈ −(IZ + AZ)/2. A second consequence is that LSD predicts an
incorrect dissociation of a hetero-nuclear molecule or solid to fractionally
charged fragments. (In LSD calculations of atomization energies, the dissoci-
ation products are constrained to be neutral atoms, and not these unphysical
fragments.) (5) LSD does not guarantee satisfaction of (1.99), an inherently
nonlocal constraint.

The GGA to be derived in Sect. 1.6.4 will preserve all the good or mixed
features of LSD listed above, while eliminating bad features (1) and (2) but
not (3)–(5). Elimination of (3)–(5) will probably require the construction
of Exc[n↑, n↓] from the Kohn-Sham orbitals (which are themselves highly-
nonlocal functionals of the density). For example, the self-interaction correc-
tion [9,68] to LSD eliminates most of the bad features (3) and (4), but not
in an entirely satisfactory way.
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1.6.2 Gradient Expansion

Gradient expansions [6,69], which offer systematic corrections to LSD for
electron densities that vary slowly over space, might appear to be the natural
next step beyond LSD. As we shall see, they are not; understanding why not
will light the path to the generalized gradient approximations of Sect. 1.6.3.

As a first measure of inhomogeneity, we define the reduced density gradi-
ent

s =
|∇n|
2kFn

=
|∇n|

2(3π2)1/3n4/3
=

3
2

(
4
9π

)1/3
|∇rs| , (1.183)

which measures how fast and how much the density varies on the scale of the
local Fermi wavelength 2π/kF. For the energy of an atom, molecule, or solid,
the range 0 ≤ s ≤ 1 is very important. The range 1 ≤ s ≤ 3 is somewhat
important, more so in atoms than in solids, while s > 3 (as in the exponential
tail of the density) is unimportant [70,71].

Other measures of density inhomogeneity, such as p = ∇2n/(2kF)2n, are
also possible. Note that s and p are small not only for a slow density variation
but also for a density variation of small amplitude (as in Sect. 1.5.4). The
slowly-varying limit is one in which p/s is also small [6].

Under the uniform density scaling of (1.40), s(r) → sγ(r) = s(γr). The
functionals Ts[n] and Ex[n] must scale as in (1.104) and (1.106), so their
gradient expansions are

Ts[n] = As

∫
d3r n5/3[1 + αs2 + . . .] , (1.184)

Ex[n] = Ax

∫
d3r n4/3[1 + µs2 + . . .] , (1.185)

Because there is no special direction in the uniform electron gas, there can
be no term linear in ∇n. Moreover, terms linear in ∇2n can be recast as s2

terms, since ∫
d3r f(n)∇2n = −

∫
d3r

(
∂f

∂n

)
|∇n|2 (1.186)

via integration by parts. Neglecting the dotted terms in (1.184) and (1.185),
which are fourth or higher-order in ∇, amounts to the second-order gradient
expansion, which we call the gradient expansion approximation (GEA).

Correlation introduces a second length scale, the screening length 1/ks,
and thus another reduced density gradient

t =
|∇n|
2ksn

=
(π
4

)1/2(9π
4

)1/6
s

r
1/2
s

. (1.187)

In the high-density (rs → 0) limit, the screening length (1/ks ∼ r
1/2
s ) is the

only important length scale for the correlation hole. The gradient expansion
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of the correlation energy is

Ec[n] =
∫
d3r n

[
ec(n) + β(n)t2 + . . .

]
. (1.188)

While ec(n) does not quite approach a constant as n → ∞, β(n) does [69].
While the form of the gradient expansion is easy to guess, the coefficients

can only be calculated by hard work. Start with the uniform electron gas, in
either its non-interacting (Ts, Ex) or interacting (Ec) ground state, and apply
a weak external perturbation δvs(q) exp(iq·r) or δv(q) exp(iq·r), respectively.
Find the linear response δn(q) of the density, and the second-order response
δG of the energy component G of interest. Use the linear response of the
density (as in (1.157) or (1.156)) to express δG entirely in terms of δn(q).
Finally, expand δG in powers of q2, observing that |∇n|2 ∼ q2|δn(q)|2, and
extract the gradient coefficient.

In this way, Kirzhnits [72] found the gradient coefficient for Ts,

α =
5
27

(1.189)

(which respects the conjectured bound of (1.118)), Sham [73] found the co-
efficient of Ex,

µSham =
7
81

, (1.190)

and Ma and Brueckner [69] found the high-density limit of β(n):

βMB = 0.066725 . (1.191)

The weak density dependence of β(n) is also known [74], as is its spin-
dependence [75]. Neglecting small ∇ζ contributions, the gradient coefficients
(coefficients of |∇n|2/n4/3) for both exchange and correlation at arbitrary
relative spin polarization ζ are found from those for ζ = 0 through multipli-
cation by [76]

φ(ζ) =
1
2

[
(1 + ζ)2/3 + (1 − ζ)2/3

]
. (1.192)

For exchange, this is easily verified by applying the spin-scaling relation
of (1.127) to (1.185) and (1.183).

There is another interesting similarity between the gradient coefficients
for exchange and correlation. Generalize the definition of t (see (1.187)) to

t =
|∇n|
2φksn

=
(π
4

)1/2(9π
4

)1/6
s

φ r
1/2
s

. (1.193)

Then
βMBφ

3nt2 = µCxφn
4/3s2 , (1.194)

where

µ = βMB
π2

3
= 0.21951 . (1.195)
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Sham’s derivation [73] of (1.190) starts with a screened Coulomb interac-
tion (1/u) exp(−κu), and takes the limit κ → 0 at the end of the calculation.
Antoniewicz and Kleinman [77] showed that the correct gradient coefficient
for the unscreened Coulomb interaction is not µSham but

µAK =
10
81

. (1.196)

It is believed [78] that a similar order-of limits problem exists for β, in such
a way that the combination of Sham’s exchange coefficient with the Ma-
Brueckner [69] correlation coefficient yields the correct gradient expansion of
Exc in the slowly-varying high-density limit.

Numerical tests of these gradient expansions for atoms show that the
second-order gradient term provides a useful correction to the Thomas-Fermi
or local density approximation for Ts, and a modestly useful correction to
the local density approximation for Ex, but seriously worsens the local spin
density results for Ec and Exc. In fact, the GEA correlation energies are
positive! The latter fact was pointed out in the original work of Ma and
Brueckner [69], who suggested the first generalized gradient approximation
as a remedy.

The local spin density approximation to Exc, which is the leading term of
the gradient expansion, provides rather realistic results for atoms, molecules,
and solids. But the second-order term, which is the next systematic correction
for slowly-varying densities, makes Exc worse.

There are two answers to the seeming paradox of the previous paragraph.
The first is that realistic electron densities are not very close to the slowly-
varying limit (s � 1, p/s � 1, t � 1, etc.). The second is this: The LSD
approximation to the exchange-correlation hole is the hole of a possible phys-
ical system, the uniform electron gas, and so satisfies many exact constraints,
as discussed in Sect. 1.6.1. The second-order gradient expansion or GEA ap-
proximation to the hole is not, and does not.

The second-order gradient expansion or GEA models are known for both
the exchange hole [12,13] nx(r, r+u) and the correlation hole n̄c(r, r+u) [79].
They appear to be more realistic than the corresponding LSD models at small
u, but far less realistic at large u, where several spurious features appear:
nx(r, r + u)GEA has an undamped cos(2kFu) oscillation which violates the
negativity constraint of (1.91), and integrates to -1 (see (1.94)) only with
the help of a convergence factor exp(−κu) (κ → 0). n̄c(r, r + u)GEA has a
positive u−4 tail, and integrates not to zero (see (1.97)) but to a positive
number ∼ s2. These spurious large-u behaviors are sampled by the long
range of the Coulomb interaction 1/u, leading to unsatisfactory energies for
real systems.

The gradient expansion for the exchange hole density is known [80] to
third order in ∇, and suggests the following interpretation of the gradient
expansion: When the density does not vary too rapidly over space (e.g., in
the weak-pseudopotential description of a simple metal), the addition of each
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successive order of the gradient expansion improves the description of the hole
at small u while worsening it at large u. The bad large-u behavior thwarts
our expectation that the hole will remain normalized to each order in ∇.

The non-interacting kinetic energy Ts does not sample the spurious large-
u part of the gradient expansion, so its gradient expansion (see (1.184) and
(1.189)) works reasonably well even for realistic electron densities. In fact,
we can use (1.79) to show that

Ts[n] = −1
2

∑
σ

∫
d3r

∂

∂r
· ∂

∂r
ρλ=0
1 (r′σ, rσ)

∣∣∣∣
r′=r

(1.197)

samples only the small-u part of the gradient expansion of the Kohn-Sham
one-electron reduced density matrix, while Ex[n] of (1.90) and (1.92) also
samples large values of u. The GEA for Ts[n] is, in a sense, its own GGA [81].
Moreover, the sixth-order gradient expansion of Ts is also known: it diverges
for finite systems, but provides accurate monovacancy formation energies for
jellium [82].

The GEA form of (1.184), (1.185), and (1.188) is a special case of the
GGA form of (1.12). To find the functional derivative, note that

δF =
∫
d3r δf(n↑, n↓,∇n↑,∇n↓)

=
∑

σ

∫
d3r

[
∂f

∂nσ(r)
δnσ(r) +

∂f

∂∇nσ(r)
· ∇δnσ(r)

]

=
∑

σ

∫
d3r

δF

δnσ(r)
δnσ(r) . (1.198)

Integration by parts gives

δF

δnσ(r)
=

∂f

∂nσ(r)
− ∇ · ∂f

∂∇nσ(r)
. (1.199)

For example, the functional derivative of the gradient term in the spin-unpola-
rized high-density limit is

δ

δn(r)

∫
d3r Cxc

|∇n(r)|2
n4/3

= Cxc

[
4
3

|∇n(r)|2
n7/3

− 2
∇2n

n4/3

]
, (1.200)

which involves second as well as first derivatives of the density.
The GEA for the linear response function γxc(q) of (1.163) is found by

inserting n(r) = n+ δn(q) exp(iq · r) into (1.199) and linearizing in δn(q):

γGEAxc (q) = γLSDxc − 24π(3π2)1/3Cxc

(
q

2kF

)2
. (1.201)

For example, the Antoniewicz-Kleinman gradient coefficient [77] for exchange
of (1.196), inserted into (1.200) and (1.201), yields the q2 term of (1.174).
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1.6.3 History of Several Generalized Gradient Approximations

In 1968, Ma and Brueckner [69] derived the second-order gradient expansion
for the correlation energy in the high-density limit, (1.188) and (1.191).
In numerical tests, they found that it led to improperly positive correlation
energies for atoms, because of the large size of the positive gradient term. As
a remedy, they proposed the first GGA,

EMBc [n] =
∫
d3r nec(n)

[
1 − βMBt

2

νnec(n)

]−ν

, (1.202)

where ν ≈ 0.32 was fitted to known correlation energies. Equation (1.202) re-
duces to (1.188) and (1.191) in the slowly-varying (t → 0) limit, but provides
a strictly negative “energy density” which tends to zero as t → ∞. In this
respect, it is strikingly like the nonempirical GGA’s that were developed in
1991 or later, differing from them mainly in the presence of an empirical pa-
rameter, the absence of a spin-density generalization, and a less satisfactory
high-density limit.

Under the uniform scaling of (1.40), n(r) → nγ(r), we find rs(r) →
γ−1rs(γr), ζ(r) → ζ(γr), s(r) → s(γr), and t(r) → γ1/2t(γr). Thus EMBc [nγ ]
tends to ELSDc [nγ ] as γ → ∞, and not to a negative constant as required
by (1.114).

In 1980, Langreth and Perdew [83] explained the failure of the second-
order gradient expansion (GEA) for Ec. They made a complete wavevector
analysis of Exc, i.e., they replaced the Coulomb interaction 1/u in (1.100) by
its Fourier transform and found

Exc[n] =
N

2

∫ ∞

0
dk

4πk2

(2π)3
〈n̄xc(k)〉4π

k2
, (1.203)

where

〈n̄xc(k)〉 =
∫ ∞

0
du 4πu2〈n̄xc(u)〉 sin(ku)

ku
(1.204)

is the Fourier transform of the system- and spherically-averaged exchange-
correlation hole. In (1.203), Exc is decomposed into contributions from dy-
namic density fluctuations of various wavevectors k.

The sum rule of (1.102) should emerge from (1.204) in the k → 0 limit
(since sin(x)/x → 1 as x → 0), and does so for the exchange energy at
the GEA level. But the k → 0 limit of n̄GEAc (k) turns out to be a positive
number proportional to t2, and not zero. The reason seems to be that the
GEA correlation hole is only a truncated expansion, and not the exact hole
for any physical system, so it can and does violate the sum rule.

Langreth and Mehl [11] (1983) proposed a GGA based upon the wavevec-
tor analysis of (1.203). They introduced a sharp cutoff of the spurious small-
k contributions to EGEAc : All contributions were set to zero for k < kc =
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f |∇n/n|, where f ≈ 0.15 is only semi-empirical since f ≈ 1/6 was esti-
mated theoretically. Extension of the Langreth-Mehl EGGAc beyond the ran-
dom phase approximation was made by Perdew [14] in 1986.

The errors of the GEA for the exchange energy are best revealed in real
space (see (1.100)), not in wavevector space (see (1.203)). In 1985, Perdew [12]
showed that the GEA for the exchange hole density nx(r, r + u) contains
a spurious undamped cos(2kFu) oscillation as u → ∞, which violates the
negativity constraint of (1.91) and respects the sum rule of (1.94) only with
the help of a convergence factor (e.g., exp(−κu) as κ → 0). This suggested
that the required cutoffs should be done in real space, not in wavevector space.
The GEA hole density nGEAx (r, r + u) was replaced by zero for all u where
nGEAx was positive, and for all u > ux(r) where the cutoff radius ux(r) was
chosen to recover (1.94). Equation (1.92) then provided a numerically-defined
GGA for Ex, which turned out to be more accurate than either LSD or GEA.
In 1986, Perdew and Wang [13] simplified this GGA in two ways: (1) They
replaced nGEAx (r, r+u), which depends upon both first and second derivatives
of n(r), by ñGEAx (r, r+u), an equivalent expression found through integration
by parts, which depends only upon ∇n(r). (2) The resulting numerical GGA
has the form

EGGAx [n] = Ax

∫
d3r n4/3Fx(s) , (1.205)

which scales properly as in (1.106). The function Fx(s) was plotted and fitted
by an analytic form. The spin-scaling relation (1.127) was used to generate
a spin-density generalization. Perdew and Wang [13] also coined the term
“generalized gradient approximation”.

A parallel but more empirical line of GGA development arose in quantum
chemistry around 1986. Becke [15,16] showed that a GGA for Ex could be
constructed with the help of one or two parameters fitted to exchange energies
of atoms, and demonstrated numerically that these functionals could greatly
reduce the LSD overestimate of atomization energies of molecules. Lee, Yang,
and Parr [17] transformed the Colle-Salvetti [84] expression for the correlation
energy from a functional of the Kohn-Sham one-particle density matrix into
a functional of the density. This functional contains one empirical parameter
and works well in conjunction with Becke [16] exchange for many atoms and
molecules, although it underestimates the correlation energy of the uniform
electron gas by about a factor of two at valence-electron densities.

The real-space cutoff of the GEA hole provides a powerful nonempirical
way to construct GGA’s. Since exchange and correlation should be treated
in a balanced way, there was a need to extend the 1986 real-space cutoff
construction [13] from exchange to correlation with the help of a second
cutoff radius uc(r) chosen to satisfy (1.97). Without accurate formulas for
the correlation hole of the uniform electron gas, this extension had to wait
until 1991, when it led to the Perdew-Wang 1991 (PW91) [18,79] GGA for
Exc. For most practical purposes, PW91 is equivalent to the Perdew-Burke-
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Ernzerhof [20,21] “GGA made simple”, which will be derived, presented, and
discussed in the next two sections.

1.6.4 Construction of a “GGA Made Simple”

The PW91 GGA and its construction [18,79] are simple in principle, but
complicated in practice by a mass of detail. In 1996, Perdew, Burke and
Ernzerhof [20,21] (PBE) showed how to construct essentially the same GGA
in a much simpler form and with a much simpler derivation.

Ideally, an approximate density functional Exc[n↑, n↓] should have all of
the following features: (1) a non-empirical derivation, since the principles of
quantum mechanics are well-known and sufficient; (2) universality, since in
principle one functional should work for diverse systems (atoms, molecules,
solids) with different bonding characters (covalent, ionic, metallic, hydrogen,
and van der Waals); (3) simplicity, since this is our only hope for intuitive
understanding and our best hope for practical calculation; and (4) accuracy
enough to be useful in calculations for real systems.

The LSD of (1.11) and the non-empirical GGA of (1.12) nicely balance
these desiderata. Both are exact only for the electron gas of uniform density,
and represent controlled extrapolations away from the slowly-varying limit
(unlike the GEA of Sect. 1.6.2, which is an uncontrolled extrapolation). LSD
is a controlled extrapolation because, even when applied to a density that
varies rapidly over space, it preserves many features of the exact Exc, as
discussed in Sect. 1.6.1. LSD has worked well in solid state applications for
thirty years.

Our conservative philosophy of GGA construction is to try to retain all
the correct features of LSD, while adding others. In particular, we retain the
correct uniform-gas limit, for two reasons: (1) This is the only limit in which
the restricted GGA form can be exact. (2) Nature’s data set includes the
crystalline simple metals like Na and Al. The success of the stabilized jellium
model [85] reaffirms that the valence electrons in these systems are correlated
very much as in a uniform gas. Among the welter of possible conditions which
could be imposed to construct a GGA, the most natural and important are
those respected by LSD or by the real-space cutoff construction of PW91,
and these are the conditions chosen in the PBE derivation [20] below. The
resulting GGA is one in which all parameters (other than those in LSD) are
fundamental constants.

We start by writing the correlation energy in the form

EGGAc [n↑, n↓] =
∫
d3r n[ec(rs, ζ) +H(rs, ζ, t)] , (1.206)

where the local density parameters rs and ζ are defined in (1.133) and (1.149),
and the reduced density gradient t in (1.193). The small-t behavior of nH
should be given by the left-hand side of (1.194), which emerges naturally
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from the real-space cutoff construction of PW91 [79]. In the opposite or
t → ∞ limit, we expect that H → −ec(rs, ζ), the correlation energy per
electron of the uniform gas, as it does in the PW91 construction or in the
Ma-Brueckner GGA of (1.202). Finally, under the uniform scaling of (1.40) to
the high-density (γ → ∞) limit, (1.206) should tend to a negative constant,
as in (1.114) or in the numerically-constructed PW91. This means that H
must cancel the logarithmic singularity of ec (see (1.140)) in this limit.

A simple function which meets these expectations is

H = c0φ
3 ln

{
1 +

βMB
c0

t2
[

1 +At2

1 +At2 +A2t4

]}
, (1.207)

where φ is given by (1.192) and

A =
βMB
c0

1
exp [−ec(rs, ζ)/c0φ3] − 1

. (1.208)

We now check the required limits:

t → 0 : H → c0φ
3 ln

{
1 +

βMB
c0

t2
}

→ βMBφ
3t2 . (1.209)

t → ∞ : H → c0φ
3 ln

{
1 +

βMB
c0A

}

→ c0φ
3 ln

{
exp

[
−ec(rs, ζ)

c0φ3

]}
→ −ec(rs, ζ) . (1.210)

rs → 0 at fixed s: H → c0φ
3 ln t2 → −c0φ

3 ln rs . (1.211)

To a good approximation, (1.140) can be generalized to

ec(rs, ζ) = φ3[c0 ln rs − c1 + . . .] , (1.212)

which cancels the log singularity of (1.211).
Under uniform density scaling to the high-density limit, we find

γ → ∞ : EGGAc [nγ ] → −c0

∫
d3r nφ3 ln

[
1 +

1
χs2/φ2 + (χs2/φ2)2

]
(1.213)

(where s is defined by (1.183)), a negative constant as required by (1.114),
with

χ =
(
3π2

16

)2/3
βMB
c0

exp(−c1/c0) . (1.214)
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For a two-electron ion of nuclear charge Z in the limit Z → ∞, (1.213) is
−0.0479 hartree and the exact value is −0.0467. Realistic results from (1.213)
in the Z → ∞ limit have also be found [86] for ions with 3, 9, 10, and 11
electrons.

Now we turn to the construction of a GGA for the exchange energy. Be-
cause of the spin-scaling relation (1.127), we only need to construct EGGAx [n],
which must be of the form of (1.205). To recover the good LSD description
of the linear response of the uniform gas (Sect. 1.5.4), we choose the gradient
coefficient for exchange to cancel that for correlation, i.e., we take advantage
of (1.194) to write

s → 0 : Fx(s) = 1 + µs2 . (1.215)

Then the gradient coefficients for exchange and correlation will cancel for all
rs and ζ, apart from small ∇ζ contributions to EGGAx , as discussed in the
next section.

The value of µ of (1.195) is 1.78 times bigger than µAK of (1.196), the
proper gradient coefficient for exchange in the slowly-varying limit. But this
choice can be justified in two other ways as well: (a) It provides a decent fit
to the results of the real-space cutoff construction [79] of the PW91 exchange
energy, which does not recover µAK in the slowly-varying limit. (b) It pro-
vides a reasonable emulation of the exact-exchange linear response function
of (1.174) over the important range of 0 < q/2kF ≤ 1 (but not of course in
the limit q → 0, where µAK is needed).

Finally, we want to satisfy the Lieb-Oxford bound of (1.120) and (1.122),
which LSD respects. We can achieve this, and also recover the limit of (1.215),
with the simple form

Fx(s) = 1 + κ − κ

(1 + µs2/κ)
, (1.216)

where κ is a constant less than or equal to 0.804. Taking κ = 0.804 gives a
GGA which is virtually identical to PW91 over the range of densities and
reduced density gradients important in most real systems. We shall complete
the discussion of this paragraph in the next section.

1.6.5 GGA Nonlocality: Its Character, Origins, and Effects

A useful way to visualize and think about gradient-corrected nonlocality, or
to compare one GGA with another, is to write [19,87]

EGGAxc [n↑, n↓] ≈
∫
d3r n

(
− c

rs

)
Fxc(rs, ζ, s) , (1.217)

where c = (3/4π)(9π/4)1/3 and −c/rs = ex(rs, ζ = 0) is the exchange energy
per electron of a spin-unpolarized uniform electron gas. The enhancement fac-
tor Fxc(rs, ζ, s) shows the effects of correlation (through its rs dependence),
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spin polarization (ζ), and inhomogeneity or nonlocality (s). Fxc is the analog
of 3α/2 in Slater’s Xα method [88], so its variation is bounded and plot-
table. Figure 1.1 shows Fxc(rs, ζ = 0, s), the enhancement factor for a spin-
unpolarized system. Figure 1.2 shows Fxc(rs, ζ = 1, s)− Fxc(rs, ζ = 0, s), the
enhancement factor for the spin polarization energy. (Roughly, Fxc(rs, ζ, s) ≈
Fxc(rs, ζ = 0, s) + ζ2[Fxc(rs, ζ = 1, s) − Fxc(rs, ζ = 0, s)]). The nonlocality is
the s-dependence, and

FLSDxc (rs, ζ, s) = Fxc(rs, ζ, s = 0) (1.218)

is visualized as a set of horizontal straight lines coinciding with the GGA
curves in the limit s → 0.

0 0.5 1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

rs = ∞

rs = 50

rs = 10

rs = 5

rs = 2

rs = 1

rs = 0

s

Fxc(rs, ζ = 0, s)

Fig. 1.1. The enhancement factor Fxc of (1.217) for the GGA of Perdew, Burke,
and Ernzerhof [20], as a function of the reduced density gradient s of (1.183), for
ζ = 0. The local density parameter rs and the relative spin polarization ζ are
defined in (1.133) and (1.149), respectively
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Fig. 1.2. Same as Fig. 1.1, but for the difference between the fully spin-polarized
(ζ = 1) and unpolarized (ζ = 0) enhancement factors

Clearly, the correlation energy of (1.206) can be written in the form
of (1.217). To get the exchange energy into this form, apply the spin-scaling
relation (1.127) to (1.205), then drop small ∇s contributions to find

Fx(ζ, s) =
1
2
(1 + ζ)4/3Fx

(
s/(1 + ζ)1/3

)
+

1
2
(1 − ζ)4/3Fx

(
s/(1 − ζ)1/3

)
=

1
2

[
(1 + ζ)4/3 + (1 − ζ)4/3

]
+ µφs2 + . . . (1.219)

Now
Fxc(rs, ζ, s) = Fx(ζ, s) + Fc(rs, ζ, s) , (1.220)

where
lim

rs→0
Fc(rs, ζ, s) = 0 (1.221)

by (1.106) and (1.114). Thus the rs = 0 or high-density-limit curve in each
figure is the exchange-only enhancement factor. Clearly Fx > 0, Fc > 0, and
Fx(ζ = 0, s = 0) = 1 by definition.

The Lieb-Oxford bound of (1.122) will be satisfied for all densities n(r) if
and only if

Fxc(rs, ζ, s) ≥ 2.273 . (1.222)
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For the PBE GGA of (1.206) and (1.216), this requires that

21/3Fx(s/21/3) ≤ 2.273 , (1.223)

or
κ ≤ 2.273/21/3 − 1 = 0.804 , (1.224)

as stated in Sect. 1.6.4.
There is much to be seen and explained [21] in (1.217) and Figs. 1.1

and 1.2. However, the main qualitative features are simply stated: When we
make a density variation in which rs decreases, ζ increases, or s increases
everywhere, we find that |Ex| increases and |Ec/Ex| decreases.

To understand this pattern [21], we note that the second-order gradient
expansion for the non-interacting kinetic energy Ts[n↑, n↓], which is arguably
its own GGA [81], can be written as

TGGAs [n↑, n↓] =
∫
d3r n

3
10

( 9π
4

)2/3
r2s

G(ζ, s) , (1.225)

G(ζ, s) =
1
2

[
(1 + ζ)5/3 + (1 − ζ)5/3

]
+

5
27

s2 , (1.226)

using approximate spin scaling (see (1.126) plus neglect of ∇ζ contributions).
Equations (1.225) and (1.226) respect (1.104) and confirm our intuition based
upon the Pauli exclusion and uncertainty principles: Under a density variation
in which rs decreases, ζ increases, or s increases everywhere, we find that
Ts[n↑, n↓] increases.

The first effect of such an increase in Ts is an increase in |Ex|. Ts and |Ex|
are “conjoint” [89], in the sense that both can be constructed from the oc-
cupied Kohn-Sham orbitals (see (1.7), (1.88), (1.90) and (1.92)). With more
kinetic energy, these occupied orbitals will have shorter de Broglie wave-
lengths. By the uncertainty principle, they can then dig a more short-ranged
and deeper exchange hole with a more negative exchange energy. Thus ex-
change turns on when we decrease rs, increase ζ, or increase s.

The second effect of such an increase in Ts is to strengthen the Kohn-Sham
Hamiltonian which holds non-interacting electrons at the spin densities n↑(r)
and n↓(r). This makes the electron-electron repulsion of (1.112) a relatively
weaker perturbation on the Kohn-Sham problem, and so reduces the ratio
|Ec/Ex|. Thus correlation turns off relative to exchange when we decrease rs,
increase ζ, or increase s.

We note in particular that Fx(rs, ζ, s) increases while Fc(rs, ζ, s) decreases
with increasing s. The nonlocalities of exchange and correlation are opposite,
and tend to cancel for valence-electron densities (1 ≤ rs ≤ 10) in the range
0 ≤ s ≤ 1. The same remarkable cancellation occurs [62,21] in the linear
response function for the uniform gas of (1.163), i.e., γxc(q) ≈ γLSDxc (q) =
γxc(q = 0) for 0 ≤ q/2kF ≤ 1.
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The core electrons in any system, and the valence electrons in solids,
sample primarily the range 0 ≤ s ≤ 1. The high-density core electrons see
a strong, exchange-like nonlocality of Exc which provides an important cor-
rection to the LSD total energy. But the valence electrons in solids see an
almost-complete cancellation between the nonlocalities of exchange and cor-
relation. This helps to explain why LSD has been so successful in solid state
physics, and why the small residue of GGA nonlocality in solids does not
provide a universally-better description than LSD.

The valence electrons in atoms and molecules see 0 ≤ s ≤ ∞, when s
diverges in the exponential tail of the density, but the energetically-important
range is 0 ≤ s ≤ 3 [70,71]. Figures 1.1 and 1.2 show that GGA nonlocality is
important in this range, so GGA is almost-always better than LSD for atoms
and molecules.

For rs ≤ 10, the residual GGA nonlocality is exchange-like, i.e., exchange
and correlation together turn on stronger with increasing inhomogeneity. It
can then be seen from (1.217) that gradient corrections will favor greater
density inhomogeneity and higher density [70]. Defining average density pa-
rameters 〈rs〉, 〈ζ〉, and 〈s〉 as in [70], we find that gradient corrections favor
changes d〈s〉 > 0 and d〈rs〉 < 0. Gradient corrections tend to drive a process
forward when [70]

d〈s〉
〈s〉 ≥ d〈rs〉

〈rs〉 . (1.227)

In a typical process (bond stretching, transition to a more open struc-
ture, fragmentation, or atomization), one has d〈s〉 > 0 and d〈rs〉 > 0. Thus,
by (1.227), these effects compete – another reason why LSD has met with
some success. In most such cases, the left-hand side of (1.227) is bigger than
the right, so typically gradient corrections favor larger bond lengths or lattice
constants (and thus softer vibration frequencies), more open structures, frag-
mentation of a highly-bonded transition state, or atomization of a molecule.
In the case of bond stretching in H2, however, the right hand side of (1.227)
exceeds the left, so gradient corrections actually and correctly shrink the
equilibrium bond length relative to LSD.

There have been many interesting tests and applications of GGA to a
wide range of atoms, molecules, and solids. Some references will be found
in [19,90,79,21].

We close by discussing those situations in which LSD or GGA can fail
badly. They seem to be of two types: (1) When the Kohn-Sham non-
interacting wavefunction is not a single Slater determinant, or when the
non-interacting energies are nearly degenerate, the LSD and GGA exchange-
correlation holes can be unrealistic even very close to or on top of the elec-
tron [36,91,66]. (2) In an extended system, the exact hole may display a
diffuse long-range tail which is not properly captured by either LSD or GGA.
To a limited extent, this effect could be mimicked by reducing the parameter
κ in (1.216). An example of a diffuse hole arises in the calculation of the sur-
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face energy of a metal [19,32]: When an electron wanders out into the vacuum
region, the exchange-correlation hole around it can extend significantly back-
ward into the interior of the metal. A more extreme example is “stretched
H+2 ”, the ground state of one electron in the presence of two protons at very
large separation: Half of the exact hole is localized on each proton, a situation
which has no analog in the electron gas of uniform or slowly-varying density,
and for which LSD and GGA make large self-interaction errors [9,92,68].

“Stretched H+2 ” and related systems are of course unusual. In most sys-
tems, the exact exchange-correlation hole is reasonably localized around its
electron, as it is in LSD or GGA – and that fact is one of the reasons [93]
why LSD and GGA work as well as they do.

1.6.6 Hybrid Functionals

At the lower limit (λ = 0) of the coupling constant integration of (1.87)
is the exact exchange hole. This observation led Becke [94,95] to conclude
that a fraction of exact exchange should be mixed with GGA exchange and
correlation. The simplest such hybrid functional is

Ehybxc = aEexactx + (1 − a)EGGAx + EGGAc , (1.228)

where the constant a can be fitted empirically or estimated theoretically [96,97,98]
as a ≈ 1/4 for molecules.

The mixing coefficient a is not equal to or close to 1, because full exact
exchange is incompatible with GGA correlation. The exact exchange hole in
a molecule can have a highly nonlocal, multi-center character which is largely
cancelled by an almost equal-but-opposite nonlocal, multicenter character in
the exact correlation hole. The GGA exchange and correlation holes are more
local, and more localized around the reference electron.

Equation (1.228) can be re-written as

Ehybxc = Eexactx + (1 − a)(EGGAx − Eexactx ) + EGGAc . (1.229)

In this form, we can think of the correlation energy as the sum of two pieces:
The dynamic correlation energy modelled by EGGAc results from the tendency
of electrons to avoid one another by “swerving” upon close approach, while
the static correlation energy modelled by (1−a)(EGGAx −Eexactx ) results from
the tendency of electrons to avoid one another by sitting on different atomic
sites [99]. This model for static correlation must fail in the high-density limit,
since it does not satisfy (1.114).

Hybrid functionals are perhaps the most accurate density functionals in
use for quantum chemical calculations. Although based upon a valid physical
insight, they do not satisfy any exact constraints that their underlying GGA’s
do not satisfy.
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1.6.7 Meta-generalized Gradient Approximations

While GGA’s take the form

EGGAxc =
∫
d3r n eGGAxc (n↑, n↓,∇n↑,∇n↓) , (1.230)

meta-GGA’s take the more general form

EMGGAxc =
∫
d3r n eMGGAxc (n↑, n↓,∇n↑,∇n↓,∇2n↑,∇2n↓, τ↑, τ↓) , (1.231)

where τσ(r) = 1
2

∑
α θ(µ − εασ)|∇ψασ(r)|2 is the Kohn-Sham orbital kinetic

energy density for electrons of spin σ. The added ingredients are natural ones
from several points of view:

Becke [100,101] noted that, while the on-top (r = r′) exchange hole
nx(r, r′) is determined by n↑(r) and n↓(r), the leading correction for small
|r−r′| depends upon all the ingredients in (1.231). He also observed that one-
electron regions of space can be recognized by the condition τσ(r) = τWσ (r)
(where τWσ (r) = |∇nσ(r)|2/[8nσ(r)]), and nσ/n = 1, and that the correlation
energy density can be zeroed out in these regions [102], achieving satisfaction
of the exact condition of (1.70).

Several meta-GGA’s have been constructed by a combination of theo-
retical constraints and fitting to chemical data [103,104,105,106,107]. While
some of these functionals use up to 20 fit parameters, there is only one em-
pirical parameter in the meta-GGA of Perdew, Kurth, Zupan, and Blaha
(PKZB) [107], who realized that the extra meta-GGA ingredients could be
used to recover the fourth-order gradient expansion for the exchange en-
ergy, and that the self-interaction correction to GGA could be made without
destroying the correct second-order gradient expansion for the correlation
energy.

The PKZB meta-GGA achieves very accurate atomization energies of
molecules, surface energies of metals, and lattice constants of solids [108].
These properties are greatly improved over GGA. On the other hand, meta-
GGA’s that are heavily fitted to molecular properties tend to give surface en-
ergies and lattice constants that are less accurate than those of non-empirical
GGA’s or even LSD [108].

The PKZB self-correlation correction to the PBE GGA has a remarkable
feature: Under uniform scaling to the low-density or strongly-interacting limit
(see (1.115)), it yields essentially correct correlation energies while LSD and
GGA yield correlation energies that are much too negative [109].

There are two problems with the PKZB meta-GGA: (1) It depends upon
one empirical parameter, which is one too many in the view of the authors.
(2) It predicts bond lengths for molecules which are typically longer and less
accurate than those of GGA [110]. These problems have been eliminated in a
new, fully-nonempirical meta-GGA of Perdew and Tao [111]. While the PKZB
correlation is merely refined in this work, the PKZB exchange is revised to
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reflect exact constraints on iso-orbital densities, i.e., those where the density
and kinetic-energy density are dominated by a single orbital shape (τ = τW =
1
8 |∇n|2/n), such as one- and two-electron ground states.

The PKZB and Perdew-Tao meta-GGA’s do not make use of the Lapla-
cians ∇2n↑ and ∇2n↓. This has two advantages: (a) it avoids the singularities
of these Laplacians at the nucleus, and (b) it reduces the number of ingredi-
ents, making the functionals easier to visualize [108].

1.6.8 Jacob’s Ladder of Density Functional Approximations

The main line of development of density functionals for the exchange-correla-
tion energy suggests a Jacob’s Ladder stretching from the Hartree world up
to the heaven of chemical accuracy [112]. This ladder has five rungs, corre-
sponding to increasingly complex choices for the ingredients of the “energy
density”:

(1) The local spin density approximation, the “mother of all approxima-
tions”, constitutes the lowest and most basic rung, using only n↑(r) and n↓(r)
as its ingredients.

(2) The generalized gradient approximation adds the ingredients ∇n↑ and
∇n↓.

(3) The meta-GGA adds the further ingredients ∇2n↑, ∇2n↓, τ↑, and τ↓,
or at least some of them. While τ↑ and τ↓ are fully nonlocal functionals of
the density, they are semi-local functionals of the occupied orbitals which are
available in any Kohn-Sham calculation.

(4) The hyper-GGA [112] adds another ingredient: the exact exchange
energy density, a fully nonlocal functional of the occupied Kohn-Sham or-
bitals. The hybrid functionals of Sect. 1.6.6 are in a sense hyper-GGA’s, but
hyper-GGA’s can also make use of full exact exchange and a fully nonlocal
correlation functional which incorporates the exact exchange energy den-
sity [112], achieving an Exc with full freedom from self-interaction error and
the correct high-density limit under uniform scaling.

(5) Exact exchange can be combined with exact partial correlation, mak-
ing use not only of the occupied Kohn-Sham orbitals but also of the unoccu-
pied ones. Examples are the random phase approximation using Kohn-Sham
orbitals [83,113,114,115], with or without a correction for short-range corre-
lation [116,117], or the interaction strength interpolation [118].

All of these approximations are density functionals, because the Kohn-
Sham orbitals are implicit functionals of the density. Finding the exchange-
correlation potential for rungs (3)–(5) requires the construction of the opti-
mized effective potential [119], which is now practical even for fully three-
dimensional densities [120]. For many purposes a non-selfconsistent imple-
mentation of rungs (3)–(5) using GGA orbitals will suffice.



52 John P. Perdew and Stefan Kurth

Acknowledgements

Work supported in part by the U.S. National Science Foundation under Grant
No. DMR95-21353 and DMR01-35678. We thank Matthias Ernzerhof for help
with the figures.

References

1. D. Park, Introduction to the Quantum Theory (McGraw-Hill, New York,
1974).

2. H.A. Bethe, Intermediate Quantum Mechanics (Benjamin, New York, 1964).
3. R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
4. R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer,

Berlin, 1990).
5. R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules

(Oxford University Press, New York, 1989).
6. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
7. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
8. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
9. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
10. S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
11. D.C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983).
12. J. P. Perdew, Phys. Rev. Lett. 55, 1665 (1985).
13. J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986); ibid. 40, 3399

(1989) (E).
14. J. P. Perdew, Phys. Rev. B 33, 8822 (1986); ibid. 34, 7406 (1986) (E).
15. A.D. Becke, J. Chem. Phys. 84, 4524 (1986).
16. A.D. Becke, Phys. Rev. A 38, 3098 (1988).
17. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).
18. J. P. Perdew, in Electronic Structure of Solids ’91, edited by P. Ziesche and

H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11.
19. J. P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson,

D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); ibid., 48, 4978
(1993)(E).

20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
ibid. 78, 1396 (1997)(E).

21. J. P. Perdew, M. Ernzerhof, A. Zupan, and K. Burke, J. Chem. Phys. 108,
1522 (1998).

22. J. Hafner, From Hamiltonians to Phase Diagrams (Dover, New York, 1988).
23. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (MacMillan, New

York, 1982).
24. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin,

1993).
25. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
26. I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, 1974).
27. D. P. Joubert, Int. J. Quantum Chem. 61, 355 (1997).
28. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).



1 Density Functionals for Non-relativistic Coulomb Systems 53

29. M. Levy, in Recent Developments and Applications of Modern Density Func-
tional Theory, edited by J.M. Seminario (Elsevier, Amsterdam, 1996), p. 3.

30. J. Harris and R.O. Jones, J. Phys. F 4, 1170 (1974).
31. D.C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425 (1975).
32. D.C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
33. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
34. E.R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic

Press, New York, 1976).
35. J. C. Kimball, Phys. Rev. A 7, 1648 (1973).
36. T. Ziegler, A. Rauk, and E. J. Baerends, Theoret. Chim. Acta 43, 261 (1977).
37. K. Burke and J. P. Perdew, Int. J. Quantum Chem. 56, 199 (1995).
38. M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
39. M. Levy, in Single-Particle Density in Physics and Chemistry, edited by

N.H. March and B.M. Deb (Academic, London, 1987), p. 45.
40. A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).
41. A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994).
42. M. Levy, Phys. Rev. A 43, 4637 (1991).
43. M. Levy and J. P. Perdew, Phys. Rev. B 48, 11638 (1993); ibid., 55, 13321

(1997)(E).
44. E.H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
45. E.H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).
46. G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979).
47. J. P. Perdew, in Density Functional Theory of Many-Fermion Systems, Vol. 21

of Advances in Quantum Chemistry, edited by S.B. Trickey (Academic, New
York, 1990), p. 113.

48. E. Fermi and E. Amaldi, Accad. Ital. Rome 6, 119 (1934).
49. J. P. Perdew, R.G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691

(1982).
50. J. P. Perdew, in Density Functional Methods in Physics, Vol. B123 of NATO

ASI Series, edited by R.M. Dreizler and J. da Providencia (Plenum Press,
New York, 1985), p. 265.

51. J. F. Janak, Phys. Rev. B 18, 7165 (1978).
52. M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984).
53. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart, and

Winston, New York, 1976).
54. M. Gell-Mann and K.A. Brueckner, Phys. Rev. 106, 364 (1957).
55. L. Onsager, L. Mittag, and M. J. Stephen, Ann. Phys. (Leipzig) 18, 71 (1966).
56. R.A. Coldwell-Horsfall and A.A. Maradudin, J. Math. Phys. 1, 395 (1960).
57. D.M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
58. J. P. Perdew and Y. Wang, Phys. Rev. B 46, 12947 (1992); ibid. 56, 7018

(1997)(E). See also P. Gori-Giorgi and J. P. Perdew, Phys. Rev. B 66, 165118
(2002).

59. J. P. Perdew and T. Datta, Phys. Stat. Sol. (b) 102, 283 (1980).
60. C. Fiolhais, J. P. Perdew, S.Q. Armster, J.M. MacLaren, and M. Bra-

jczewska, Phys. Rev. B 51, 14001 (1995); ibid., 53, 13193 (1996)(E).
61. E. Engel and S.H. Vosko, Phys. Rev. B 42, 4940 (1990); ibid., 44, 1446

(1991)(E).
62. S. Moroni, D.M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75, 689 (1995).
63. K. Burke, J. P. Perdew, and D.C. Langreth, Phys. Rev. Lett. 73, 1283 (1994).



54 John P. Perdew and Stefan Kurth

64. K. Burke, J. P. Perdew, and M. Ernzerhof, J. Chem. Phys. 109, 3760 (1998).
65. M. Ernzerhof, in Macmillan Encyclopedia of Physics (Macmillan Publishing

Company, New York, 1996), Vol. 2, p. 733.
66. J. P. Perdew, A. Savin, and K. Burke, Phys. Rev. A 51, 4531 (1995).
67. J. P. Perdew, M. Ernzerhof, K. Burke, and A. Savin, Int. J. Quantum Chem.

61, 197 (1997).
68. J. P. Perdew and M. Ernzerhof, in Electronic Density Functional Theory: Re-

cent Progress and New Directions, edited by J. F. Dobson, G. Vignale, and
M. Das (Plenum Press, New York, 1997).

69. S.-K. Ma and K.A. Brueckner, Phys. Rev. 165, 18 (1968).
70. A. Zupan, K. Burke, M. Ernzerhof, and J. P. Perdew, J. Chem. Phys. 106,

10184 (1997).
71. A. Zupan, J. P. Perdew, K. Burke, and M. Causá, Int. J. Quantum Chem.
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2.1 Introduction

This chapter is devoted to orbital-dependent exchange-correlation (xc) func-
tionals, a concept that has attracted more and more attention during the
last ten years. After a few preliminary remarks, which clarify the scope of
this review and introduce the basic notation, some motivation will be given
why such implicit density functionals are of definite interest, in spite of the
fact that one has to cope with additional complications (compared to the
standard xc-functionals). The basic idea of orbital-dependent xc-functionals
is then illustrated by the simplest and, at the same time, most important
functional of this type, the exact exchange of density functional theory (DFT
– for a review see e.g. [1], or the chapter by J. Perdew and S. Kurth in this
volume).

Given some orbital-dependent xc-functional Exc the first question to be
addressed is the evaluation of the corresponding multiplicative xc-potential
vxc. This is possible via the optimized potential method1 (OPM) [2,3], which
is described in Sect. 2.2. After an outline of three different strategies for the
derivation of the crucial OPM integral equation, a few exact relations for the
OPM xc-potential are summarized. In addition, the Krieger-Li-Iafrate (KLI)
approximation [4] to the OPM integral equation is presented.

Once one has all basic ingredients of this third generation of DFT to-
gether, it is very instructive to analyze, in some detail, the exchange-only
(x-only) limit, in which correlation is completely neglected (Sect. 2.3). On the
1 The method is sometimes also termed optimized effective potential (OEP).
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one hand, the simple functional form of the exact exchange and its universal
applicability allows a quantitative examination of the KLI approximation for
a variety of systems. In this way one can explicitly verify the high accuracy
of the KLI approximation, which makes it an important tool for the applica-
tion of orbital-dependent xc-functionals. On the other hand, the exact x-only
results can be used to investigate the properties of the standard functionals
like the local density approximation (LDA) [5] and the generalized gradient
approximation (GGA) [6,7,8,9,10,11,12,13,14,15].

The systematic derivation of implicit correlation functionals is discussed
in Sect. 2.4. In particular, perturbation theory based on the Kohn-Sham
(KS) Hamiltonian [16,17,18] is used to derive an exact relation for Exc. This
expression is then expanded to second order in the electron-electron cou-
pling constant e2 in order to obtain the simplest first-principles correlation
functional [18]. The corresponding OPM integral equation as well as exten-
sions like the random phase approximation (RPA) [19,20] and the interaction
strength interpolation (ISI) [21] are also introduced.

Two semi-empirical orbital-dependent xc-functionals are reviewed in Sect.
2.5. Both functionals had been in the literature for quite some time before it
was realized that they should be understood as implicit density functionals
in the same sense as the exact exchange. The first is the self-interaction
corrected (SIC) form of the LDA [22], and the second is the Colle-Salvetti
correlation functional [23].

Finally, the performance of the presently available implicit correlation
functionals is studied in Sect. 2.6. In particular, the success of the first-
principles perturbative correlation functional with the description of disper-
sion forces is demonstrated [24]. On the other hand, this functional leads to a
divergent correlation potential in the case of finite systems [25]. This failure
prompts an approximate handling of the associated OPM integral equation in
the spirit of the KLI approximation, which avoids the asymptotic divergence
and produces comparatively accurate atomic correlation potentials.

The status of implicit functionals is summarized in Sect. 2.7. In addition,
it is shown that the concept of implicit functionals is not restricted to the
xc-energy, but can equally well be applied to such quantities as the 2-particle
density. In this way implicit functionals provide access to quantities which
are beyond the traditional realm of DFT.

2.1.1 Preliminaries and Notation

First of all, a few words on the scope of this review seem to be appropriate.
For simplicity, all explicit formulae in this chapter will be given for spin-
saturated systems only. Of course, the complete formalism can be extended
to spin-density functional theory (SDFT) and all numerical results for spin-
polarized systems given in this paper were obtained by SDFT calculations.
In addition, the discussion is restricted to the nonrelativistic formalism – for
its relativistic form see Chap. 3. The concept of implicit functionals has also
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been extended to time-dependent phenomena to which Chap. 4 is devoted.
The present discussion, on the other hand, focuses completely on ground-
state problems, assuming this state to be non-degenerate (and using the
Born-Oppenheimer approximation in the case of polyatomic systems). The
presentation is furthermore restricted to zero temperature. However, the ex-
tension to finite temperature essentially requires the appropriate replacement
of the occupation function Θk.

In order to introduce the notation, the basic relations of DFT are now
summarized, starting with the KS equations2 [5],[

− ∇2
2m

+ vs(r)
]
φk(r) = εkφk(r) . (2.1)

Throughout this chapter φk and εk always denote the KS orbitals and eigen-
values, respectively. As usual, the total KS potential vs is given by the sum
of the external (nuclear) potential vext, the Hartree potential vH and the
xc-potential vxc:

vs(r) = vext(r) + vH(r) + vxc(r) (2.2)

vH(r) = e2
∫
d3r′ n(r′)

|r − r′| (2.3)

vxc(r) =
δExc[n]
δn(r)

. (2.4)

The density is obtained by summing up the energetically lowest KS states,

n(r) =
∑
k

Θk|φk(r)|2 , (2.5)

which is implemented via the occupation function

Θk =
{
1 for εk ≤ εF
0 for εF < εk

, (2.6)

with εF being the Fermi energy (εF is always identified with the eigenvalue
εHOMO of the highest occupied KS state). The total energy functional is given
by

Etot[n] = Ts[n] + Eext[n] + EH[n] + Exc[n]
(
+ Eion

)
. (2.7)

Its components are the KS kinetic energy,

Ts[n] = − 1
2m

∑
k

Θk

∫
d3r φ†

k(r)∇2φk(r) , (2.8)

2 In all formulae � = 1, but e �= 1 �= m is used.
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the external potential energy,

Eext[n] =
∫
d3r vext(r)n(r) , (2.9)

the Hartree energy,

EH[n] =
e2

2

∫
d3r
∫
d3r′ n(r)n(r

′)
|r − r′| , (2.10)

and the xc-energy Exc[n] which is defined by (2.7). In the case of polyatomic
systems one has to add the electrostatic repulsion of the nuclei (or the ions
in a pseudopotential framework),

Eion =
Nion∑

α<β=1

ZαZβe
2

|Rα − Rβ | ⇐⇒ vext(r) = −
Nion∑
α=1

Zαe
2

|r − Rα| , (2.11)

with the Rα and Zα denoting the nuclear (ionic) positions and charges. How-
ever, for the DFT formalism this last energy contribution is irrelevant, so that
it is omitted in the subsequent discussion.

2.1.2 Motivation for Orbital-Dependent Functionals

The first question to be addressed is: Why would one think about using
orbital-dependent functionals, given the tremendous success of the GGA?
The answer to this question necessarily consists of a list of situations in
which the GGA, which is by now the standard workhorse of DFT, fails.

Heavy Elements. The first problem to be mentioned here is the least impor-
tant. When comparing the quality of GGA results from different regions of the
periodic table one finds that there is a tendency of the GGA to loose accuracy
with increasing nuclear charge (note that increasing charge automatically im-
plies the presence of higher angular momentum). GGAs are known to be very
accurate for light molecules, involving constituents from the first and second
row. For these systems the GGA, which consistently stretches bond lengths
(Re) and reduces bond energies (De) compared with the LDA3, corrects the
LDA’s underestimation of Re and the accompanying overestimation of De.
However, in the case of heavy constituents the LDA results are often rather
close to the experimental numbers, so that the GGA overcorrects the LDA
values. One example for this behavior is shown in Table 2.1, where the LDA
and GGA values for the cohesive properties of gold are listed. In particular,
the LDA lattice constant is already very accurate. When the gradient correc-
tions are switched on, the lattice constant is expanded as usual, leading to a
significant error. The same effect is observed for a number of 5d metals [26]
and also for molecules containing fifth row elements [27,28].
3 In this chapter the parameterization of [29] has been utilized for all explicit LDA
calculations.
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Table 2.1. Cohesive properties (equilibrium lattice constant, a0, and cohesive en-
ergy, Ecoh) of gold: PW91-GGA versus LDA results on the basis of fully relativistic
LAPW calculations [26]. The nonrelativistic forms of the functionals [29,30] are
compared with their relativistic counterparts (RLDA, RGGA) [31,32]

Au a0 (bohr) −Ecoh (eV)

LDA 7.68 4.12
RLDA 7.68 4.09
GGA 7.87 2.91
RGGA 7.88 2.89
expt. 7.67 3.78

It seems worthwhile to emphasize that this deficiency of the GGA can not
be explained by relativistic effects: The inclusion of relativistic corrections
in the GGA [32] does not improve the results (see Table 2.1 – the fully
relativistic Ts and thus the fully relativistic KS equations have been applied in
all calculations). This observation suggests that the GGA has some difficulties
with the treatment of higher angular momentum (d and f), similarly to the
LDA [33].

Negative Ions. In contrast to the loss of accuracy for heavy elements, the
second problem of the GGA, its failure for negative ions, is of qualitative
nature. It originates from the (semi-)local density-dependence of the LDA
and GGA exchange potential. The situation is most easily analyzed in the
case of the LDA, for which one has

vLDAx (r) = − (3π2)
1
3 e2

π
n(r)

1
3 . (2.12)

In the asymptotic regime of finite systems, in which the density decays ex-
ponentially, one thus finds an exponential decay of vLDAx ,

n(r) −→
r→∞ e−αr =⇒ vLDAx (r) −→

r→∞ e−αr/3 . (2.13)

The same is true for the LDA correlation potential. Moreover, for neutral
atoms the electrostatic potential of the nucleus cancels with the monopole
term in vH, (2.3). Consequently, the total vs also decays faster than 1/r.
This implies that, within the framework of the LDA, a neutral atom does
not exhibit a Rydberg series of excited states and thus is not able to bind an
additional electron, i.e. to form a negative ion.

This problem is also present for all GGAs, whose potential typically de-
pends on the first two gradients of the density,

vGGAx [n] = vGGAx (n, (∇n)2,∇2n,∇n · ∇(∇n)2) .
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While the inclusion of these gradients can affect the asymptotic form of the
exchange potential (for details see Sect. 2.3), the standard form of the GGA
is incompatible with the 1/r behavior which is required to obtain a Rydberg
series [34]. As a consequence, GGAs do not predict the existence of negative
ions either.

How should vx really look like in the asymptotic regime? The basic be-
havior of vx is most easily illustrated by a two-electron system like the helium
atom. In this case the exchange energy just has to cancel the self-interaction
included in the Hartree term,

EHex [n] = −e2

4

∫
d3r
∫
d3r′ n(r)n(r

′)
|r − r′| . (2.14)

The functional derivative of EHex [n] is then trivially given by

vHex (r) = −e2

2

∫
d3r′ n(r′)

|r − r′| . (2.15)

Although the density decays exponentially, vHex asymptotically goes like −1/r,

vHex (r) −→
r→∞ − e2

|r| . (2.16)

This −1/r behavior of the exact vx is found quite generally for all finite
systems (see Sect. 2.2). The same statement then applies to the total vs, as
long as the system is neutral. Physically the reason for this result is very
simple: If one electron moves sufficiently far away from the other electrons
bound by the nucleus, it must experience the remaining net charge of the
system, which consists of N − 1 electrons and N protons. However, vH, as
defined by (2.3), still contains the Coulomb repulsion of the far out electron,
which has to be eliminated by vx. As a consequence of (2.16), the exact vs
generates a Rydberg series and is thus able to bind an additional electron4.

This argument as well as (2.14) and (2.15) indicate that one needs a
rather nonlocal exchange functional to reproduce the −1/r behavior: The
component of vx which cancels the self-interaction in the Hartree potential
must be as nonlocal as vH itself, which is a quite nonlocal Coulomb integral.

Dispersion Forces. The LDA and GGA also fail to reproduce dispersion
forces (one type of van der Waals forces). In this case the problem is due to
the short-ranged nature of the LDA/GGA correlation functional. In the LDA
the correlation energy density is simply given by the energy density eHEGc of
the homogeneous electron gas (HEG), evaluated with the local density,

ELDAc [n] =
∫
d3r eHEGc (n(r)) . (2.17)

4 Note, however, that (2.16) is only a necessary but not a sufficient criterium for
the stability of a negative ion: Ultimately, the stability depends on the relative
value of the total energies of the N and the N + 1 electron systems.
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One immediately realizes that only regions in space with non-vanishing den-
sity contribute to the correlation energy. Now consider two neutral closed-
subshell atoms which are so far apart that there exists no overlap between the
their densities, as depicted in Fig. 2.1. The density of this system is identical

t t

Fig. 2.1. Electronic density of two atoms at large separation

to the sum of the two atomic densities. This is the situation in which disper-
sion forces become important, as there is neither an electrostatic interaction
between the two atoms nor can any bonding orbitals be formed. Only the
attraction between virtual dipole excitations on the two atoms can lead to
molecular bonding, i.e. the London dispersion force. In the LDA, however,
any molecular bonding provided by Ec requires the atomic densities to over-
lap, as the binding energy must result from the nonlinear density dependence
of ELDAc , Eb = ELDAc [nA + nB ] − ELDAc [nA] − ELDAc [nB ]. This means that
dispersion forces can not be described by the LDA.

As in the case of negative ions this problem is not resolved by using the
GGA,

EGGAc [n] =
∫
d3r eGGAc (n, (∇n)2,∇2n) . (2.18)

Its correlation energy density eGGAc (r) only takes into account the density in
the immediate vicinity of r. eGGAc (r) thus vanishes wherever n(r) vanishes.
Neither the LDA nor the GGA can mediate the long-range force generated by
virtual excitations. Not only the exact exchange functional is very nonlocal,
but also the exact correlation functional.

Strongly Correlated Systems. The third class of systems for which the
LDA and the GGA have fundamental problems are strongly correlated sys-
tems. The most prominent examples of such systems are the 3d transition
metal monoxides MnO, FeO, CoO, and NiO. These systems, which crystallize
in the rock salt structure, are insulating antiferromagnets of type II (Mott
insulators). Both the LDA and the GGA, on the other hand, predict FeO
and CoO to be metallic and by far underestimate the band gap in MnO and
NiO [35,36,37]. This is illustrated in Fig. 2.2 in which the LDA band structure
for FeO is plotted – the band structures obtained with the most frequently
applied GGAs are rather similar to their LDA counterpart [36,37].

The origin of this problem is not yet really understood. There are only
some indications where one might have to look: On the one hand, there exists
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Fig. 2.2. Band structure of antiferromagnetic (type II) FeO within LDA obtained
by plane-wave-pseudopotential calculation (the valence space of Fe includes the 3s,
3p, 3d and 4s states, Ecut =300Ry, 10 special k-points)

one variant of the GGA which predicts FeO and CoO to be antiferromagnetic
insulators [37] (although with the size of the gaps being much too small). This
GGA is the only functional of this type whose kernel has been optimized to
reproduce the exact atomic exchange potentials as accurately as possible [38].
This points at the importance of an accurate exchange potential for describing
Mott insulators. Furthermore, the explicitly self-interaction corrected form
of the LDA also leads to the correct ground-states [39]. While no definitive
conclusions are possible, these two results suggest that the inappropriate
handling of the self-interaction is responsible for the failure of the LDA and
the standard GGAs.

2.1.3 Basic Concept of Orbital-Dependent Functionals

This is the right point to clarify the meaning of the term orbital-dependent
functional. The natural starting point for the discussion is the exact exchange
Ex of DFT, which is the most simple functional of this type. The exact Ex
is defined as the Fock expression written in terms of KS orbitals [40,8],

Ex := −e2

2

∑
kl

ΘkΘl

∫
d3r
∫
d3r

φ†
k(r)φl(r)φ

†
l (r

′)φk(r′)
|r − r′| . (2.19)
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This is the most appropriate definition as it guarantees the exact cancellation
of the self-interaction energy contained in EH, which has been identified as
the origin of the problem of the LDA/GGA with negative ions (and also
seems to be relevant for the description of Mott insulators). It automatically
induces a corresponding definition of the correlation functional of DFT,

Ec := Exc − Ex . (2.20)

It must be emphasized that Ex and Ec are not identical with the exchange
and correlation energies defined in conventional many-body theory. Although
the functional form of Ex agrees with the exchange term of the Hartree-Fock
(HF) approach, a difference originates from the orbitals inserted into the Fock
expression: In (2.19) the KS orbitals are used, which are solutions of the KS
equations (2.1) with their multiplicative potential vs. The φk do not agree
with the HF orbitals which satisfy the nonlocal HF equations. The difference
between the resulting exchange energies as well as the difference between Ts
and the full kinetic energy are absorbed into Ec.

The right-hand side of (2.19) is a density functional in the same sense
as the kinetic energy Ts: The KS orbitals φk are uniquely determined by
the density n, as n uniquely determines vs (which is guaranteed by the
Hohenberg-Kohn theorem [41] for noninteracting systems), which then al-
lows the unambiguous calculation of the φk. Ex thus represents an implicit
density functional, in contrast to the explicit density functionals LDA and
GGA. This argument can be directly extended to the more general class of
functionals Exc[φk, εk] which do not only depend on the occupied φk, but
also on the unoccupied KS states and the KS eigenvalues, as vs uniquely
determines the complete KS spectrum.

The step from explicitly density-dependent to orbital-dependent xc-func-
tionals is in some sense analogous to the transition from the Thomas-Fermi
variational equation to the KS equations: In the latter transition the most
important part of Etot[n], the kinetic energy, is recast in orbital-dependent
form. The same concept is now applied to Exc. In that sense, one can call
orbital-dependent functionals a third generation of density functionals.

At this point, the idea of implicit xc-functionals might appear as a purely
formal concept. In the following sections, however, it will be shown that
implicit functionals can be used in practice.

2.2 Optimized Potential Method (OPM)

The most important question is how to calculate the multiplicative potential
which corresponds to xc-functionals of the type (2.19). There are three dis-
tinct ways for the derivation of the basic equation which yields this potential.
As all three are rather instructive, all of them will be gone through in the
following, assuming the xc-functional to be of the general form Exc[φk, εk].
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2.2.1 Direct Functional Derivative

The simplest way to derive the OPM equation is the transformation of the
functional derivative (2.4) into derivatives with respect to φk and εk, using
the chain rule for functional differentiation [18],

δExc[φk, εk]
δn(r)

=
∫
d3r′ δvs(r

′)
δn(r)

∑
k

{∫
d3r′′

[
δφ†

k(r
′′)

δvs(r′)
δExc

δφ†
k(r′′)

+ c.c.

]

+
δεk

δvs(r′)
∂Exc
∂εk

}
(2.21)

(k is not restricted to the occupied states). Now one has expressed δExc/δn
in terms of quantities which can be evaluated: The functional derivatives of
Exc can be easily calculated for any explicit expression at hand. For instance,
for Ex one finds

δEx

δφ†
k(r′)

= −e2Θk

∑
l

Θlφl(r′)
∫
d3r

φ†
l (r)φk(r)
|r − r′| (2.22)

and ∂Ex/∂εk = 0. The functional derivatives δφ†
k/δvs and δεk/δvs are evalu-

ated by varying vs infinitesimally and looking how φk and εk react (via (2.1)).
Using first order perturbation theory one obtains

δφ†
k(r)

δvs(r′)
= −φ†

k(r
′)Gk(r′, r) (2.23)

δεk
δvs(r)

= φ†
k(r)φk(r) , (2.24)

with the Green’s function

Gk(r, r′) =
∑
l �=k

φl(r)φ
†
l (r

′)
εl − εk

. (2.25)

It remains to deal with the factor δvs/δn. The inverse of this quantity is
the static response function of the KS auxiliary system, i.e. the KS response
function,

δn(r)
δvs(r′)

= χs(r, r′) = −
∑
k

Θkφ
†
k(r)Gk(r, r′)φk(r′) + c.c. (2.26)

So, if one multiplies (2.21) by χs, and integrates over r, one ends up with the
OPM integral equation, a Fredholm equation of first kind,∫

d3r′ χs(r, r′) vxc(r′) = Λxc(r) , (2.27)
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with the inhomogeneity given by

Λxc(r) =
∑
k

{
−
∫
d3r′

[
φ†
k(r)Gk(r, r′)

δExc

δφ†
k(r′)

+ c.c.

]
+ |φk(r)|2 ∂Exc

∂εk

}
.

(2.28)
Equation (2.27) is the central equation of the OPM. It allows the calcula-
tion of the multiplicative xc-potential for a given orbital- and eigenvalue-
dependent functional Exc. Note that (2.27) is linear in Exc, so that each
component of Exc can be treated separately.

Any self-consistent KS calculation consists of the alternate solution of the
KS equations (2.1) and the calculation of vs from the resulting φk. Thus, at
some point of this cycle, one has to evaluate vxc. If this is an LDA or GGA
potential, one just has to take the density and its derivatives and insert these
quantities into some analytical formula. In the OPM, on the other hand, the
solution of (2.27) replaces the insertion of n into the LDA or GGA functional.

2.2.2 Total Energy Minimization

The physics behind the OPM integral equation becomes more transparent
in the second derivation of (2.27). This alternative derivation, which, in fact,
represents the original approach [2,3], relies on energy minimization. Its start-
ing point is a total energy functional given in terms of the KS orbitals and
eigenvalues, Etot[φk, εk]. As already pointed out, the Hohenberg-Kohn the-
orem for noninteracting particles guarantees that there is a unique relation
between n and vs. Thus, the standard minimization of Etot with respect to
n can be substituted by a minimization with respect to vs,

δEtot[φk, εk]
δvs(r)

= 0 (2.29)

(for fixed particle number). The derivative in (2.29) can be handled as
in (2.21),

δEtot[φk, εk]
δvs(r)

=
∑
k

{∫
d3r′

[
δφ†

k(r
′)

δvs(r)
δEtot

δφ†
k(r′)

+c.c.

]
+

δεk
δvs(r)

∂Etot
∂εk

}
. (2.30)

In addition to the ingredients which are already known, (2.30) contains the
functional derivatives of Etot with respect to φk and εk, which can be evalu-
ated from (2.7)–(2.10),

δEtot

δφ†
k(r)

= Θk

[
− ∇2

2m
+ vext(r) + vH(r)

]
φk(r) +

δExc

δφ†
k(r)

(2.31)

∂Etot
∂εk

=
∂Exc
∂εk

. (2.32)
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One can then use the KS equations to rewrite δEtot/δφ
†
k,

δEtot

δφ†
k(r)

= Θk

[
εk − vxc(r)

]
φk(r) +

δExc

δφ†
k(r)

. (2.33)

Insertion of (2.23) and (2.24) as well as (2.32) and (2.33) into (2.30) leads to

∑
k

∫
d3r′

{
φ†
k(r)Gk(r, r′)

[
Θkφk(r′)

(
vxc(r′)− εk

)
+

δExc

δφ†
k(r′)

]
+ c.c.

}

+
∑
k

|φk(r)|2 ∂Exc
∂εk

= 0 . (2.34)

After identification of the ingredients of χs(r, r′) and Λxc(r), which show up
in (2.34), and use of the orthogonality relation∫

d3r φ†
k(r)Gk(r, r′) =

∫
d3r′ Gk(r, r′)φk(r′) = 0 (2.35)

one again ends up with the OPM integral equation (2.27).
At first glance this derivation suggests that the x-only limit of the OPM is

conceptually identical to the HF approach, as in this limit Etot[φk, εk] agrees
with the HF energy functional. It thus seems worthwhile to emphasize the
difference between the two schemes once again: The HF approach corresponds
to a free minimization of the total energy functional with respect to the φk
and εk. Equation (2.29), on the other hand, is not equivalent to a free mini-
mization of Etot: Rather the φk and εk have to satisfy the KS equations with
their multiplicative total potential. This requirement represents a subsidiary
condition to the minimization of Etot. The subsidiary condition is actually
implemented into the OPM equation via (2.33). In Sect. 2.3 this point will
be investigated further from a quantitative point of view.

2.2.3 Invariance of the Density

The starting point of this third derivation of the OPM integral equation
is the identity of the KS density ns with the density n of the interacting
system [42,43],

ns(r)− n(r) = 0 . (2.36)

Note that the relation (2.36) relies on the complete framework of the Hohen-
berg-Kohn and KS formalism. In particular, it implies the application of the
minimum principle for the total energy, which underlies all of ground-state
DFT. This common DFT background provides the link between (2.36) and
the arguments of Sects. 2.2.1 and 2.2.2.

The KS density ns can now be written in terms of the Green’s function
Gs of the KS system, while the interacting n can be expressed in terms of
the 1-particle Green’s function G of the interacting system,

−i tr{Gs(rt, rt+)−G(rt, rt+)
}
= 0 . (2.37)
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Here t+ indicates an infinitesimal positive time-shift of t, i.e. t+ ≡ limε→0(t+
|ε|). The KS and the full many-body Green’s function are defined by the
ground-state expectation values of the time-ordered product of the corre-
sponding field operators, ψ̂0 and ψ̂,

Gs(rt, r′t′) = −i 〈Φ0|T ψ̂0(rt)ψ̂†
0(r

′t′)|Φ0〉 (2.38)

G(rt, r′t′) = −i 〈Ψ0|T ψ̂(rt)ψ̂†(r′t′)|Ψ0〉 , (2.39)

with |Φ0〉 being the KS ground-state (i.e. a Slater determinant of the KS
orbitals φk) and |Ψ0〉 denoting the true ground-state of the interacting system.

The interacting Green’s function obeys the well-known Dyson equation,

G(1, 2) = G0(1, 2) +
∫
d3 d4G0(1, 3)Σ(3, 4)G(4, 2) . (2.40)

Here G0 represents the Green’s function of electrons which just experience
the external potential vext, Σ is the full self-energy of the interacting system,

Σ(3, 4) = Σxc(3, 4) + δ(3, 4)vH(r3) , (2.41)

and the Harvard notation 1 = (r1t1),
∫
d3 =

∫
d3r3

∫
dt3 and δ(3, 4) =

δ(3)(r3 − r4)δ(t3 − t4) has been used. On the other hand, the KS Green’s
function satisfies a Dyson equation in which the self-energy is simply given
by vH + vxc,

Gs(1, 2) = G0(1, 2) +
∫
d3 d4G0(1, 3)δ(3, 4)[vH(r3) + vxc(r3)]Gs(4, 2) (2.42)

(vH + vxc is the only self-energy insertion that shows up in the case of an
effective single-particle system). If one now subtracts (2.40) and (2.42) from
each other one ends up with a relation between G and Gs,

G(1, 2) = Gs(1, 2) +
∫
d3 d4Gs(1, 3)

[
Σxc(3, 4)− δ(3, 4)vxc(r3)

]
G(4, 2) .

(2.43)
Equation (2.43) is a Dyson equation whose irreducible kernel is given by the
difference between the full self-energy and the KS self-energy. Upon insertion
of (2.43) into (2.37) one obtains

−i tr
∫

d3d4Gs(1, 3)
[
Σxc(3, 4)− δ(3, 4)vxc(r3)

]
G(4, 1+) = 0 . (2.44)

Equation (2.44) is a complicated integral equation connecting the KS Green’s
function, the xc-component of the full self-energy, the xc-potential and the
full Green’s function. Does this relation have anything to do with the OPM
equation (2.27)? The first step towards an answer to this question is provided
by a repeated use of the Dyson equation (2.43). After insertion of (2.43) the
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leading term in (2.44) contains the product of Gs(1, 3) with Gs(4, 1). Partial
evaluation of the 4-integration then yields,∫

d3r3
∫
dt3 χs(1, 3)vxc(r3) = −i tr

∫
d3 d4Gs(1, 3)Σxc(3, 4)Gs(4, 1+)

−i tr
∫
d3 d4Gs(1, 3)

[
Σxc(3, 4)− δ(3, 4)vxc(r3)

]
×
∫
d5 d6Gs(4, 5)

[
Σxc(5, 6)− δ(5, 6)vxc(r5)

]
G(6, 1+) ,

(2.45)

where the KS response function

χs(1, 3) = −i
[
〈Φ0|T ψ̂†

0(r1t1)ψ̂0(r1t1)ψ̂
†
0(r3t3)ψ̂0(r3t3)|Φ0〉 − n(r1)n(r3)

]
= −i tr[Gs(1, 3)Gs(3, 1)] (2.46)

has been introduced in order to make the similarity of (2.45) with (2.27)
more apparent. The left-hand side of (2.45) is identical with that of the
OPM equation, if one performs the dt3 integration and identifies the static
response function (zero-frequency limit of the Fourier transform of χs(1, 3)),∫

d t3 χs(1, 3) =
∫
d t3 χs(r1, r3, t1 − t3) = χs(r1, r3, ω = 0) ≡ χs(r1, r3) .

On the other hand, the right-hand side of (2.45) is still quite different from
the inhomogeneity (2.28). In fact, the right-hand side depends on vxc itself,
so that (2.45) represents a nonlinear integral equation for vxc.

Where does this fundamental difference to (2.27) come from? To answer
this question one has to remember that in the first two approaches some
arbitrary orbital-dependent Exc has been assumed, i.e. the form of Exc has
not been specified. On the other hand, in the present approach the use of the
Dyson equation for both the KS and the interacting system automatically
implies the use of the exact Exc. In order to make closer contact between the
first two and this third derivation, one thus has to study the exact Exc in
more detail. This will be the subject of Sect. 2.4. In the present section the
comparison of (2.45) with (2.27) will for simplicity be restricted to the x-only
limit, which corresponds to a lowest order expansion of Exc in the coupling
constant e2. In this limit the right-hand side of (2.45) reduces to

−i tr
∫
d3 d4Gs(1, 3)Σx(3, 4)Gs(4, 1+) ,

as each factor of Σxc or vxc introduces an additional factor of e2. Insertion
of the exchange contribution Σx to the full self-energy, i.e. the standard 1-
loop self-energy diagram, then leads to the exchange component of (2.28),
obtained by use of (2.22). One has thus explicitly verified that in the x-only
limit (2.45) agrees with the standard OPM equation.
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2.2.4 Exact Relations Related to OPM

Before investigating the correlation component of Exc in more detail it seems
worthwhile to list a few exact relations which emerge from an analysis of
the OPM integral equation. One first recognizes that the OPM equation
determines vxc only up to an additive constant. In fact, as norm-conservation
requires that ∫

d3r χs(r, r′) =
∫
d3r′ χs(r, r′) = 0 , (2.47)

one can add any constant to vxc without altering the left-hand side of (2.27).
In the process of solving the OPM equation one thus has to ensure the nor-
malization of vxc in some explicit form. For finite systems one usually requires
vxc to vanish far outside, lim|r|→∞ vxc(r) = 0. One way to implement this
condition is the use of an identity for the highest occupied KS state [44] which
results from this normalization. In the case of the exchange this identity reads∫

d3r vx(r)|φF(r)|2 = 1
2

∫
d3r φ†

F(r)
δEx

δφ†
F(r)

+ c.c.

= −e2
∑
l

Θl

∫
d3r
∫
d3r′ φ

†
F(r)φl(r)φ

†
l (r

′)φF(r′)
|r − r′| , (2.48)

where φF denotes the highest occupied orbital (the Fermi level is assumed to
be non-degenerate). Equation (2.48) allows the unambiguous normalization
of vx in the case of finite systems. An analogous, though more complicated
statement is available for vc [45]. For solids, on the other hand, it is more
convenient to fix the average of vxc in the unit cell.

It has already been mentioned that for physical reasons the exact exchange
potential of finite systems must asymptotically behave as

vx(r) −→
r→∞ −e2

r
. (2.49)

It is thus very pleasing that one finds exactly this behavior for the solu-
tion of (2.27): Equation (2.49) can be verified by an examination of the x-
only OPM integral equation for large r, requiring the standard normalization
limr→∞ vx(r) = 0, i.e. the validity of (2.48) [3]. Equation (2.49) provides an
alternative to (2.48) for the normalization of vx.

It seems worthwhile to point out that the behavior (2.49) can not be
obtained by differentiation of the asymptotic form of the exact exchange
energy density ex. The asymptotic form of ex follows from (2.19) [46],

ex(r) −→
r|→∞

−e2n(r)
2r

. (2.50)

Given the relation between ex and vx in the case of the LDA, one might thus
be tempted to expect

dex(r)
dn(r)

−→
r→∞ − e2

2r
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to be the asymptotic behavior of vx. However, Ex is a nonlocal functional,
so that dex/dn has nothing to do with δEx/δn(r). In fact, (2.49) and (2.50)
directly reflect the Coulomb integral structure of the self-interaction part of
Ex.

One can also establish a necessary condition for the eigenvalue-dependence
of Exc [47]. In fact, direct integration over (2.27) yields∫

d3r
∫
d3r′ χs(r, r′) vxc(r′) =

∑
k

δExc
δεk

= 0 (2.51)

(provided that the integral over r exists and that the integrations over r, r′

and the summation over k can be interchanged).
The OPM leads back to the conventional functional derivative vxc =

δExc/δn for explicitly density-dependent expressions. In this case Exc de-
pends on the φk only via n, so that (2.27) reduces to∫

d3r′ χs(r, r′) vxc(r′) = −
∑
k

∫
d3r′ φ†

k(r)Gk(r, r′)
δExc[n]

δφ†
k(r′)

+ c.c.

= −
∑
k

∫
d3r′ φ†

k(r)Gk(r, r′)φk(r′)
δExc[n]
δn(r′)

+ c.c.

=
∫
d3r′ χs(r, r′)

δExc[n]
δn(r′)

.

If one now multiplies both sides by χ−1
s one recovers the original definition

of vxc.
One further limit of (2.27) appears to be worth a comment: If there is

only one occupied orbital (k =F), the exchange component of (2.27) reads

φ†
F(r)

∫
d3r′ GF(r, r′)φF(r′)

[
vx(r′) + e2

∫
d3r′′ φ

†
F(r

′′)φF(r′′)
|r′′ − r′|

]
+ c.c. = 0

(upon insertion of (2.22)). One thus easily identifies

vx(r) = −e2
∫
d3r′ |φF(r′)|2

|r′ − r| = −e2

2

∫
d3r′ n(r′)

|r′ − r| (2.52)

as solution of the OPM integral equation for spin-saturated two-electron sys-
tems, in perfect agreement with (2.15). For these systems the exchange po-
tential just has to eliminate the self-interaction of the electrons, but does not
include any Pauli repulsion among equal spins.

2.2.5 Krieger–Li–Iafrate Approximation

One has now reached the point at which it is clear that, as a matter of prin-
ciple, one can handle orbital-dependent functionals in a fashion consistent
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with DFT. Moreover, the subsequent sections of this review will show that
the OPM integral equation can also be solved in practice. However, in view
of the complicated structure of (2.27), (2.28) and, in particular, of (2.45),
the question quite naturally arises how efficient the OPM is? The answer
obviously depends on the system under consideration and on the numerical
implementation of the OPM. Nevertheless, as a rule of thumb, one might say
that OPM calculations are essentially one or two orders of magnitude less
efficient than the corresponding GGA calculations. Consequently, an approx-
imate (semi-analytical) solution of the OPM integral equation is of definite
interest.

The main reason for the inefficiency of the OPM is the presence of the
Green’s function (2.25) both in the response function (2.26) and in the inho-
mogeneity (2.28). This Green’s function depends on the complete KS spec-
trum, not just the occupied states. A full solution of (2.27) thus requires
the evaluation and, perhaps, the storage of all occupied and unoccupied KS
states.

Is there a way to avoid this evaluation? Indeed, such a procedure has been
suggested by Krieger, Li and Iafrate (KLI) [4]. The idea is to use a closure
approximation for the Green’s function, i.e. to approximate the eigenvalue
difference in the denominator of (2.25) by some average ∆ε [2,4],

Gk(r, r′) ≈
∑
l �=k

φl(r)φ
†
l (r

′)
∆ε

=
δ(3)(r − r′)− φk(r)φ

†
k(r

′)
∆ε

. (2.53)

Insertion into the OPM integral equation leads to

vxc(r) =
1

2n(r)

∑
k

{[
φ†
k(r)

δExc

δφ†
k(r)

+ c.c.

]
+ |φk(r)|2

[
∆vk −∆ε

∂Exc
∂εk

]}

∆vk =
∫

d3r
{
Θk|φk(r)|2vxc(r)− φ†

k(r)
δExc

δφ†
k(r)

}
+ c.c. . (2.54)

This approximation is completely unambiguous as soon as Exc is indepen-
dent of εk. On the other hand, for eigenvalue-dependent Exc the presence
of ∂Exc/∂εk introduces a new energy scale via ∆ε. Given the initial idea of
the closure approximation, however, it is obvious that this term should be
neglected. The only situation in which one can seriously investigate the conse-
quences of this step is the relativistic exchange [47]. In this case neglect of the
∂Exc/∂εk contribution represents an excellent approximation. The KLI ap-
proximation is thus always understood to imply the neglect of the ∂Exc/∂εk
term,

vKLIxc (r) =
1

2n(r)

∑
k

{[
φ†
k(r)

δExc

δφ†
k(r)

+ c.c.

]
+ |φk(r)|2∆vKLIk

}
. (2.55)

A careful look at (2.54) and (2.55) shows that one has not yet found a
full solution of the problem, as vKLIxc appears both on the left-hand and on
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the right-hand side of (2.55). Fortunately, one can recast (2.54) and (2.55) as
a set of linear equations which allow the determination of ∆vk without prior
knowledge of vKLIxc [4], thus providing an analytical solution of the integral
equation (2.55). Alternatively, one can iterate (2.54) and (2.55) until self-
consistency, starting with some approximation for ∆vKLIk , e.g. obtained from
the LDA.

When applied to the exact exchange, the KLI scheme is as efficient as a
Hartree-Fock calculation, and often only slightly less efficient than a GGA
calculation. At this point one should nevertheless keep in mind that the KLI
approximation only speeds up the calculation of Gk, but not that of the
other ingredients of the OPM equation. The most time-consuming step in a
KLI calculation is usually the evaluation of δExc/δφ

†
k: As soon as the exact

exchange is used the evaluation of Slater integrals is required, which usually
costs more time than the calculation of density gradients.

The KLI approximation preserves both the KLI identity (2.48) and the
asymptotic behavior of vx, (2.49) (for finite systems). It is exact for spin-
saturated two-electron systems, i.e. it also satisfies (2.52). Moreover, all ap-
plications available so far point at the rather high accuracy of this approxi-
mation, at least in the case of the exact exchange (see Sect. 2.3).

2.3 Exchange-Only Results

Before addressing the issue of correlation in more detail, it is instructive to
study the x-only limit from a quantitative point of view. This analysis serves
two purposes: The first is to assert the accuracy of the KLI approximation.
As is clear from the discussion of Sect. 2.2.5, any large-scale application
of orbital-dependent functionals will have to rely on the efficiency of the
KLI approximation. One thus has to make sure that this approach yields
reasonable results at least for the simplest orbital-dependent functional, the
exact Ex. The second aim of this section is to demonstrate that orbital-
dependent functionals are worth the increased computational effort, i.e. that
they in fact yield improvements over the standard functionals.

2.3.1 Accuracy of the KLI Approximation

In Table 2.2 the x-only ground-state energies of closed-subshell atoms result-
ing from different DFT methods are compared with the corresponding HF
values (All calculations were performed fully numerically, relying on finite
differences methods). In the first column the energies obtained by solution
of the full OPM equation (2.27) for the exchange (2.19) are given. In the
DFT context, this exact handling of the exact exchange functional provides
the reference data for the x-only limit. For all other methods the energies
are given relative to this reference standard. Among these methods the KLI
approximation for the exact exchange is of primary interest here. The first
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Table 2.2. Exchange-only ground-state energies of closed-subshell atoms: Self-
consistent OPM results [48] versus KLI, LDA, PW91-GGA [30] and HF [49] energies
(all energies in mhartree)

Atom Etot Etot − EOPMtot

OPM KLI LDA GGA HF

He −2861.7 0.0 138.0 6.5 0.0
Be −14572.4 0.1 349.1 18.2 −0.6
Ne −128545.4 0.6 1054.7 −23.5 −1.7
Mg −199611.6 0.9 1362.8 −0.5 −3.1
Ar −526812.2 1.7 2294.8 41.2 −5.3
Ca −676751.9 2.2 2591.8 25.7 −6.3
Zn −1777834.4 3.7 3924.5 −252.6 −13.8
Kr −2752042.9 3.2 5176.8 −18.4 −12.0
Sr −3131533.4 3.6 5535.4 −8.8 −12.2
Pd −4937906.0 4.5 6896.0 −65.2 −15.0
Cd −5465114.4 6.0 7292.6 −31.9 −18.7
Xe −7232121.1 6.1 8463.8 54.9 −17.3
Ba −7883526.6 6.5 8792.5 15.7 −17.3
Yb −13391416.3 10.0 10505.6 −852.4 −39.9
Hg −18408960.5 9.1 13040.4 −221.5 −31.0
Rn −21866745.7 8.5 14424.3 8.3 −26.5
Ra −23094277.9 8.7 14807.2 0.5 −25.8
No −32789472.7 12.9 17202.9 −373.1 −39.5

observation is that the KLI energies are extremely close to the full OPM en-
ergies. For helium the KLI approximation is exact, as explained in Sect. 2.2.5.
All other KLI energies are higher than the corresponding OPM values, consis-
tent with the fact that the full OPM generates that potential which minimizes
the energy expression at hand. The deviation of the KLI approximation sys-
tematically increases with the atomic size. Nevertheless, even for very heavy
atoms it is still no larger than 15mhartree. An idea of the relevance of this er-
ror is obtained by comparing with the corresponding LDA and GGA energies,
which are also listed in Table 2.2. Even the GGA values, which drastically
improve on the LDA energies, are more than an order of magnitude further
away from the exact OPM data than the KLI numbers.

The next comparison to be made is that of OPM and Hartree-Fock results.
In Sect. 2.2.2 it has been emphasized that the x-only OPM represents a
restricted Hartree-Fock energy minimization: One minimizes the same energy
expression, but under the subsidiary condition of having a multiplicative
exchange potential. How important is this subsidiary condition? As Table 2.2
shows, the differences are rather small. For He the OPM energy is identical
with the HF value, as in this case the HF equation can be trivially recast
as a KS equation with the OPM exchange potential (2.52). Moreover, even
for the heaviest elements the differences between OPM and HF energies are
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Table 2.3. Exchange-only ground-state energies of diatomic molecules: Self-
consistent OPM [50] results versus KLI [51], LDA and HF [52] energies at the
experimental bond lengths, Re (all energies in mhartree)

state Re −Etot Etot − EKLItot

(bohr) KLI OPM LDA HF

H2 1Σ 1.400 1133.6 0.5 89.9 0.0
Li2 1Σ 5.046 14870.4 473.7 -1.2
Be2 1Σ 4.600 29127.4 666.2 -6.3
B2 3Σ 3.003 49085.2 823.6
C2 1Σ 2.348 75394.0 956.3
N2 1Σ 2.075 108985.1 5.6 1229.0 -8.5
O2 3Σ 2.281 149681.3 11.5 1447.0
F2 1Σ 2.678 198760.2 16.3 1703.3
LiH 1Σ 3.014 7986.8 282.6 -0.5
BH 1Σ 2.336 25129.0 499.1 -2.6
NH 3Σ 2.047 54982.9 3.4 711.3
FH 1Σ 1.733 100067.5 11.0 916.3 -3.3
BF 1Σ 2.386 124162.1 1312.1 -6.8
CO 1Σ 2.132 112783.3 6.7 1252.5 -7.7
NO 2Π 2.175 129295.5 1336.5

below 40mhartree. The additional variational freedom of the HF approach
thus appears to be of very limited importance. The x-only OPM is in many
respects physically equivalent to the Hartree-Fock approximation.

This statement is corroborated by Table 2.3, in which the x-only ground-
state energies of a number of diatomic molecules are presented (evaluated at
the experimental bond lengths). In Table 2.3 the KLI energies [51] are used as
reference numbers, for a reason that will become clear in a moment. All other
energies are given relative to the KLI values. If one compares the KLI and
HF energies one finds, as expected, that the latter energies are always lower –
with the exception of H2, as for this spin-saturated two-electron system both
energies must be identical.

On the other hand, the full OPM results [50] are energetically higher
than the KLI data, although the OPM by construction produces the opti-
mum exchange potential. How can that happen? The answer is hidden in
the technical details of the calculations. The HF results were obtained fully
numerically, using large real-space grids [52]. All DFT calculations rely on
basis set expansions. In the case of the KLI (and LDA) calculations extremely
large two-center basis sets have been used [51], so that the KLI numbers are
essentially converged with respect to the basis set size. On the other hand, the
OPM results were obtained with standard Gaussian basis sets of more modest
size, so that the basis set limit is not yet reached. Clearly, converged OPM
energies must lie between the KLI and the HF numbers. One can therefore
conclude that the error of the KLI approximation is smaller than the impact
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Table 2.4. Exchange-only ionization potentials of atoms: Self-consistent OPM re-
sults versus KLI, LDA, PW91-GGA and HF data. Also given is the highest occupied
eigenvalue εHOMO obtained within the OPM (all energies in mhartree)

−εHOMO IP IP-IPOPM

OPM OPM KLI LDA GGA HF

He 918 862 0 −51 4 0
Be 309 295 0 −14 6 1
Mg 253 242 0 −4 12 1
Ca 196 188 0 1 12 0
Sr 179 171 0 3 13 0
Cu 240 231 −2 47 54 5
Ag 222 215 −1 36 41 3
Au 223 216 −2 38 42 2
Li 196 196 0 −11 4 0
Na 182 181 0 −2 10 1
K 148 147 0 2 10 0
Rb 138 137 0 4 12 1
Cs 124 123 0 5 11 0
Zn 293 276 0 34 44 5

of different basis sets. In other words: The appropriate choice of the basis set
is more important than the handling of the OPM integral equation. Com-
pared with the full OPM, the KLI approximation either allows to speed up
molecular calculations (keeping the basis set fixed) or to gain higher accuracy
by enlarging the basis set.

Until now total energies have been considered. However, the physical and
chemical properties usually depend on energy differences. In Table 2.4 the
most simple energy difference, namely the ionization potential (IP), is studied
for atoms. Again the KLI results are extremely close to the OPM data, which
agree very well with the Hartree-Fock IPs. On the other hand, one finds the
(well-known) errors in the case of the LDA and the GGA.

The most critical energy difference one can look at for atoms is the electron
affinity (EA). In Table 2.5 the EAs of F− and Na− as prototype negative ions
are listed together with the highest occupied eigenvalues for the full OPM
and the KLI approximation. One first should note the mere existence of these
systems within the OPM [53], as negative ions can not be handled by the LDA
and the GGA. This deficiency of the conventional density functionals, which
was an important motivation for studying implicit functionals (Sect. 3), is
automatically resolved by use of the exact exchange. The existence of negative
ions is a direct consequence of the −1/r behavior of the exact exchange
potential. As the KLI potential is particularly close to the full OPM potential
in the valence regime, the KLI EAs are almost identical to the corresponding
OPM values.



2 Orbital-Dependent Functionals 77

Table 2.5. Exchange-only electron affinities of atoms: Self-consistent KLI versus
OPM results. Also given is the highest occupied eigenvalue εHOMO (all energies in
mhartree)

Atom Method −εHOMO EA

F− OPM 181.0 48.5
KLI 180.4 48.5

Na− OPM 13.3 58.4
KLI 13.2 58.3

One next observes the huge difference between the EA and the highest
occupied eigenvalue (εHOMO). This discrepancy is somewhat surprising given
the fact that the IPs of neutral atoms are in reasonable agreement with the
corresponding εHOMO (see Table 2.4) and that one can prove that the exact
EA is identical with the exact εHOMO [54] (including correlation). However,
one has to keep in mind that the data in Table 2.5 correspond to the x-
only limit. The difference between the EA and εHOMO simply reflects the
important role which correlation plays for negative ions. For the same reason
the x-only EAs should not be expected to be close to the experimental EAs.

In the quantum chemical context the most interesting quantities are the
spectroscopic constants. Corresponding data for some diatomic molecules are
given in Table 2.6. As full OPM results for these quantities are not yet avail-
able, the KLI numbers can only be compared with Hartree-Fock data. How-
ever, for each individual molecular geometry the exact OPM energy must
be somewhere in between the KLI and the HF energy (for fixed basis set).
Consequently, the OPM energy surface lies in between the KLI and the HF
surface. As long as the latter two surfaces are very close, one can also be
sure that the KLI and OPM results agree very well. This is exactly what one
finds: The KLI and HF spectroscopic constants (as a measure for the energy
surface) show very good agreement, in particular if one takes into account
that not all HF results in Table 2.6 might be fully converged with respect to
the basis set size. In conclusion, one can state that, in the x-only limit, the
KLI results are essentially identical with the OPM values, which, in turn, are
identical to the HF data.

Until now only global quantities like total energies and energy differences
have been considered. However, the OPM also offers the possibility to analyze
local quantities like the exchange potential. In Fig. 2.3 the exchange potential
of neon is shown. The only difference between the full OPM result and the KLI
potential is found in the transition region from the K- to the L-shell, where
the shell oscillation of vKLIx is not as pronounced as that of the exact potential.
However, this oscillation has little impact on total energies. For large r both
potentials go like −1/r, i.e. both potentials are self-interaction free. On the
other hand, the LDA and GGA curves, which are rather close to each other
in the relevant regime, differ substantially from the exact vx: Consistent with



78 Eberhard Engel

Table 2.6. Exchange-only spectroscopic constants of diatomic molecules: Self-
consistent KLI [51] versus HF [55,56] results

method Re De ω
(bohr) (eV) (cm−1)

H2 KLI 1.386 3.638 4603
HF 1.386 3.631 4583

Li2 KLI 5.266 0.168 338
HF 5.224 0.160 316

B2 KLI 3.068 0.608 972
HF 3.096 0.75 939

C2 KLI 2.332 0.281 1933
HF 0.38 1912

N2 KLI 2.011 4.972 2736
HF 2.04 4.952 2738

O2 KLI 2.184 1.441 1981
HF 2.21 1.455 2002

F2 KLI 2.496 −1.607 1283
HF 2.508 −1.627 1257

LiH KLI 3.037 1.483 1427
HF 3.038 1.462 1406

FH KLI 1.694 4.203 4501
HF 1.695 4.197 4472

CO KLI 2.080 7.530 2444
HF 2.105 7.534 2439

Cl2 KLI 3.727 (1.083) 613
HF 3.732 (1.23) 614

the argument in Sect. 3, they decay much more rapidly for large r. Moreover,
they show no shell oscillation at all (see also Sect. 2.3.2). Figure 2.3 explains
the findings in Tables 2.2–2.6 from a microscopic perspective.

At this point a side remark seems appropriate. All potentials shown in
Fig. 2.3 originate from self-consistent calculations within the corresponding
schemes. One might then ask how these curves change if the same density (and
thus the same orbitals) are used for the evaluation of the different functionals?
This issue is addressed in Fig. 2.4 in which the solution of the OPM integral
equation on the basis of three different sets of orbitals is plotted.

In addition to the exact x-only orbitals used for Fig. 2.3 also the exact
KS orbitals [57] and the LDA orbitals are inserted into (2.22)–(2.28). It turns
out that the three solutions are almost indistinguishable. The origin of the
orbitals (and thus of the density) is much less important for the structure of
atomic vxc than the functional form of Exc. In other words: Fig. 2.3 would
look very similar if all functionals were evaluated with the same density.

Returning to the accuracy of the KLI approximation, Fig. 2.5 provides a
comparison analogous to Fig. 2.3 for the case of a solid.
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Fig. 2.3. Exchange potential of Ne: Self-consistent OPM, KLI, LDA and PW91-
GGA results
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Fig. 2.4. Exchange potential of Ne: Importance of self-consistency. Solution of
OPM equation with exact KS, x-only OPM and LDA orbitals

The exchange potential of bulk aluminum is plotted along the [110] di-
rection. As all potentials originate from pseudopotential calculations, the
attractive part of vx associated with the core electrons is missing in Fig. 2.5
– the comparison completely focuses on the delocalized valence states of the
metal. Again the KLI approximation is rather close to the OPM potential.
The agreement is particularly convincing in view of the GGA result: The
gradient corrections to the LDA even go into the wrong direction.

Finally, Fig. 2.6 shows the most significant deviation of a KLI result from
the full OPM solution observed so far. In Fig. 2.6 the Colle-Salvetti corre-
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Fig. 2.5. Exchange potential of fcc aluminum in the [110] direction: Full OPM
versus KLI approximation, LDA and PW91-GGA (• indicates the position of atom).
All potentials have been evaluated with the KS states/density resulting from a self-
consistent x-only KLI calculation within the plane-wave pseudopotential scheme
(Ecut =100Ry, 44 special k-points for integration over Brillouin zone, 750 states
per k-point in Gk in the case of the OPM). The corresponding valence density is
also given
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lation functional [23] (for details see Sect. 2.5.2) is examined for Hg. One
finds excellent agreement of the KLI approximation with the exact solution
of (2.27) for the outermost shells and in the asymptotic regime. On the other
hand, for the inner shells the deviations are clearly larger than the differ-
ences visible in Figs. 2.3 and 2.5. Nevertheless, even in this regime the shell
oscillations are reproduced correctly. Given the limited importance of vc in
the inner shell region, the enhanced inaccuracy of the KLI approximation for
this particular functional should thus not be overemphasized.

In any case, one can conclude that the KLI scheme provides an excel-
lent approximation to the OPM integral equation in the case of the exact
exchange.

2.3.2 Properties of the Exact Exchange:
Comparison with Explicit Density Functionals

The exact OPM results do not only allow an analysis of the KLI approxima-
tion, but also of conventional density functionals, as is already clear from the
discussion of Sect. 2.3.1. In this section the comparison of LDA and GGA
data with the corresponding OPM reference results will be extended in order
to highlight some properties of the exact exchange. In turn, the limitations of
the standard functionals, which become obvious in this comparison, provide
additional motivation for resorting to implicit functionals.

One important property that has been emphasized a number of times now
is the −1/r decay of the exact exchange potential of finite systems. In view of
the long-range character of the underlying self-interaction integral, one might
ask whether it is possible to reproduce this behavior by some explicit density
functional? In Sect. 2.1.2 it has been demonstrated that the LDA potential
decays exponentially. In the case of the GGA, the second explicit density
functional of interest,

EGGAx [n] =
∫
d3r eGGAx (n, (∇n)2) ,

the situation is somewhat more complicated. For the GGA the asymptotic
behavior depends on the detailed structure of the functional’s kernel eGGAx .
While most GGAs lead to exponentially decaying potentials, Becke made an
attempt [15] to incorporate the −1/r behavior into the GGA form by requir-
ing eGGAx to satisfy (2.50) (B88-GGA). However, as emphasized in Sect. 2.2.4,
the asymptotic form of the energy density is not related to that of the po-
tential. In fact, one can show that GGAs can not satisfy (2.49) and (2.50)
simultaneously [34]. Nevertheless, the potential resulting from the B88-GGA
goes like 1/r2 for large r, so that one might expect an improvement over the
exponential decay of all other GGAs.

However, it is not only the ultimate asymptotic form that matters, but
also the point beyond which it sets in. This is illustrated in Fig. 2.7, which
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Fig. 2.7. Asymptotic form of vx: B86- [14] and B88-GGA [15] versus OPM result
for Zn. The GGA potentials have been evaluated with the exact x-only density

shows the exchange potential of Zn. The B88-GGA is compared with its
predecessor B86 [14] and the exact vx. The two GGAs are chosen as they
have been constructed in the same fashion, i.e. in both cases the ansatz for
eGGAx has been optimized to reproduce exact atomic exchange energies as
well as possible, with similar success. On the other hand, the analytic form
of the kernel and the resulting asymptotic behavior differ. As Fig. 2.7 shows,
this difference has no effect in the physically relevant part of the asymptotic
regime. Therefore, the HOMOs of the two GGAs are almost identical. The two
GGA potentials are also very close in the inner shell regime. As a consequence,
one finds little difference between the performance of the B88- and that of
the B86-GGA, in spite of the formal improvement of vx by the B88 ansatz.
As a matter of principle, the semi-local form of the GGA kernel does not
allow the reproduction of the exact vx in the asymptotic regime.

How close can GGAs come to the exact vx in the inner shell regime?
Figure 2.3 already indicated that the conventional density functionals do not
follow the shell oscillations of the exact vx. This point is investigated further
in Fig. 2.8 which focuses on the nonlocal contribution to vx. As nonlocal
contribution one understands the difference between a given vx and the cor-
responding LDA potential, both evaluated with the same density. In this way
one separates the fine structure in vx from its smooth average behavior, which
is well reproduced by the LDA. In order to ease the comparison of the GGAs
with the exact result, vx − vLDAx is further corrected for the global shift re-
sulting from the asymptotic behavior: Compared with the exponential decay
of vLDAx the −1/r behavior of the OPM potential essentially leads to a global
attractive shift in vx that is irrelevant for the inner shell features. This shift
is well approximated by the difference between the highest occupied eigen-
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Table 2.7. Exchange energy of Zn: PW91- [30] and EV93-GGA [38] versus exact
OPM result.

OPM PW91 EV93

−Ex 69.619 69.686 69.805

values of the two schemes which is therefore subtracted. In order to obtain
the percentage nonlocal contribution, the difference is finally normalized with
respect to the exact vx,

∆vx =
vx(r)− vLDAx (r)− εHOMO + εLDAHOMO

vOPMx (r)
. (2.56)

Figure 2.8 shows that the size of the shell oscillations in the OPM potential
is of the order of 10–20%. Looking at the PW91-GGA it is obvious that
its deviation on the local level is much larger than the corresponding global
error [38]: The 10–15% deviation of vPW91x from vOPMx has to be compared
with the 0.1% error in Ex (see Table 2.7). This picture is not specific to Zn,
but quite characteristic for all atoms.

This imbalance prompts the question whether one can improve the accu-
racy of the GGA potential? An attempt in this direction led to the EV93-
GGA [38] whose kernel was optimized to reproduce the exact atomic exchange
potentials as accurately as possible. Figure 2.8 demonstrates the (limited)
success of this strategy. The EV93-GGA reproduces the amplitudes of the
shell oscillations in vOPMx much better than other GGAs. However, there is a



84 Eberhard Engel

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 1 10

 
 
 

OPM

LDA

PW91

Cr

vx;" � vx;#

[Hartree]

r [Bohr]

Fig. 2.9. Exchange potential of Cr: Spin balance of the exact result versus LDA
and PW91-GGA

price to be paid for this improvement, which becomes obvious from Table 2.7:
Any improvement of vx is accompanied by some loss of accuracy for Ex. In-
sisting on the optimum local accuracy precludes the subtle error cancellation
required to achieve optimum accuracy for integrated quantities like Ex. This
again points at the limitations of the GGA form.

There is one further consequence of the nonlocality of the exact Ex worth
to be noted. As soon as one goes to open-shell systems, the difference be-
tween the highest occupied eigenvalues of the majority spin (spin-up) and
the minority spin (spin-down) channels comes into play: It determines the
relative stability of different spin states, i.e. the magnetization in the case of
solids. As the highest occupied eigenvalues depend strongly on vx, the bal-
ance between the spin-up and the spin-down exchange potential has a major
impact on the local magnetic moments. In Fig. 2.9 the difference between the
spin-up and the spin-down exchange potential of Cr is shown. The deviations
of the LDA and the GGA from the exact result are obvious [48]. For large
r the exact vx,σ is dominated by the −1/r tail for both spins σ (σ =↑, ↓).
In the valence regime the difference vOPMx,↑ − vOPMx,↓ is thus less affected by
the actual positions of the spin-aligned 4s and 3d electrons than the LDA
and GGA potentials, which directly reflect the structures of the valence spin-
densities: vOPMx,↑ − vOPMx,↓ is closer to zero and repulsive, while the LDA and
GGA results necessarily must be attractive. In the L- and K-shell regime
the difference between spin-up and spin-down densities essentially vanishes,
so that in the LDA and GGA the difference vx,↑ − vx,↓ approaches zero.
The exact functional, on the other hand, leads to an almost constant shift
between vx,↑ and vx,↓. The nonlocality of the exact Ex propagates the dif-
ferences between spin-up and spin-down in the valence regime into the inner
shell region.
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Once one has studied atomic exchange potentials, the next step must be
an analysis of the bonding regime of molecules and solids. Corresponding
results are given in Figs. 2.10–2.12. Figure 2.10 shows the exchange potential
of the simplest molecule, H2, for which the exact vx reduces to a pure self-
interaction correction (as H2 is a spin-saturated two-electron system). Both
the LDA and the B88-GGA [15] potential are compared to the exact vx. In
addition to the shift resulting from the −1/r asymptotics of the exact vx, one
observes a minimum of the exact potential in the bonding regime, while the
LDA potential peaks at the nuclear sites. One again notices the difference
between the nonlocal Coulomb integral and the direct n1/3 dependence of
vLDAx . The peak structure is even more pronounced in the case of the GGA
whose potential diverges weakly at the positions of the protons5. Nevertheless
one finds an overall improvement by the GGA which, on average, generates
a more attractive vx in the bonding regime.

Figure 2.11 provides the corresponding comparison for N2. In addition
to the features already observed for H2, one can now see the shell structure
in the molecular vx. Note that in the case of the exact exchange the KLI
approximation is used for the evaluation of vx. In analogy to the situation
for atoms (Fig. 2.3) one expects the shell structure in the exact vx to be even
more pronounced than that obtained with the KLI approximation. The GGA
potential also exhibits an indication of the shell structure, while this feature
is completely absent in the LDA.

As a complement to Fig. 2.5, the exchange potential of bulk Si is plotted
in Fig. 2.12 (along the [111]-direction). Two GGAs are compared to the LDA
and the exact vx. One can see that the GGA overcorrects the error of the
LDA. An improvement is only observed in high density regions, i.e. in the
bonding regime between the nearest neighbor atoms. On the other hand, the
GGA’s dependence on the local density gradients introduces some artificial
structure in the low density region.

As a final example of the role of the self-interaction component in vx
some band gaps obtained with the exact exchange are listed in Table 2.8.
All-electron OPM results [58] based on the Korringa-Kohn-Rostoker (KKR)
method and the atomic sphere approximation (ASA) are compared with full
potential plane-wave pseudopotential (PWPP) data [59] for C, Si and Ge. In
addition to the x-only data, also the values resulting from the combination
of the exact Ex with either LDA or GGA correlation are listed. The single-
particle contribution ∆s, i.e. the direct band gap, is separated from the xc-
contribution ∆xc to the band gap Eg,

Eg = ∆s +∆xc . (2.57)

While the former is given by the standard difference between the highest
eigenvalue of the valence band and the lowest eigenvalue of the conduction
5 This divergence is much weaker than that of the nuclear potential, so that it does
not have any adverse effect in practical calculations.



86 Eberhard Engel

Fig. 2.10. Exchange potential of H2: LDA and B88-GGA versus exact vx
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Fig. 2.11. Exchange potential of N2: LDA and B88-GGA versus KLI approximation
to the exact vx
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Fig. 2.12. Exchange potential of Si along [111] direction of diamond structure:
Exact exchange potential (OPM) versus LDA as well as B88- and PW91-GGA
data (• indicates the position of atom). All results were obtained by plane-wave
pseudopotential calculations with a local pseudopotential (Ecut =25Ry, 19 special
k-points)

Table 2.8. Band gap Eg of semiconductors: KKR-ASA [58] and plane-wave pseu-
dopotential [59] OPM results versus LDA, HF [60] and experimental data (all en-
ergies in eV). The direct gap ∆s and the contribution ∆xc of the derivative discon-
tinuity of Exc are given separately

Ex Ec method C Si Ge

∆s LDA LDA KKR-ASA 4.15 0.54 0.40
LDA LDA PW-PP 4.16 0.49

∆s exact LDA KKR-ASA 4.58 1.12 1.03
exact LDA PW-PP 5.06 1.44
exact GGA PW-PP 0.97 0.72
exact — PW-PP 1.23 0.94

∆xc exact — PW-PP 8.70 5.62

Eg HF — LAPW 7.4 6.4

Eg expt. 5.48 1.17 0.87

band, the latter originates from the derivative discontinuity of the exact Exc
(see e.g. [1]). For comparison, also the corresponding LDA and HF band gaps
are listed (in the case of the LDA the direct gap is identical to the total gap,
as the LDA does not explicitly depend on the particle number).

The LDA results serve two purposes: On the one hand, they document the
well-known underestimation of band gaps by the LDA. On the other hand,
they show how close converged KKR-ASA and PWPP results are for the
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solids under consideration. When replacing the LDA exchange by the exact
Ex, the direct gap is consistently enlarged. In fact, the direct gaps obtained
with the exact Ex are in much better agreement with the experimental data
than the LDA gaps, irrespectively of the correlation functional applied. Sur-
prisingly, one finds that for Si the inclusion of correlation on the LDA level
increases ∆s compared with the x-only result, while the inclusion of a GGA
for Ec leads to a reduced gap. One also notices the enhanced deviations be-
tween the KKR-ASA and the PWPP data for the direct gap, which either
indicates some limitations of the ASA in the case of the exact Ex, or points
at convergence problems.

The picture becomes even less clear as soon as the derivative discontinuity
of Ex is taken into account. The corresponding contribution ∆x is much
larger than ∆s [59], so that the agreement with experiment is completely
lost. In fact, the sum of ∆s and ∆x obtained in the x-only OPM calculation
is almost equal to the very large band gap that one finds in the Hartree-Fock
approximation [60]. In that sense, the x-only OPM and the HF scheme are
again equivalent. Obviously, the correlation contribution to ∆xc must cancel
the large ∆x. As long as no adequate correlation functional with derivative
discontinuity is available, ∆x has to be ignored.

In Sect. 4 the insufficient handling of the self-interaction was suggested
as one possible reason for the failure of the LDA and the GGA for Mott
insulators. Can one solve this problem by using the exact Ex? A preliminary
answer to this question is given in Fig. 2.13, in which the band structure
of FeO is again considered. Within the PWPP approach, the exact Ex is
combined with the LDA for Ec. While the resulting band structure is quite
different from its LDA counterpart (compare with Fig. 2.2), FeO is again
predicted to have a metallic ground-state, as by the LDA and the GGA.
For the interpretation of this negative result it is important to realize the
technical limitations of the calculation. First of all, the KLI approximation
is utilized. Given the results of Sect. 2.3.1, this should not be a serious point.
More important might be the fact that the 3s state of Fe has neither been
included in the valence space of the Fe pseudopotential nor has it been taken
into account via some nonlinear core-correction. This neglect leads to an
incorrect ground-state in the case of diatomic FeO [61]. Furthermore, only
3 special k-points have been used for integrations over the Brillouin zone,
and the plane-wave cut-off of 250Ry is not particularly large in view of the
localized 3p and 3d states. It remains to be investigated to which extent
these technical limitations affect the bands shown in Fig. 2.13, so that it
seems too early to draw definitive conclusions concerning the description of
Mott insulators by using the exact exchange.
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�F

Fig. 2.13. Band structure of antiferromagnetic (type II) FeO obtained by plane-
wave-pseudopotential calculation with exact Ex and LDA correlation on the basis
of the KLI approximation (the valence space of Fe includes the 3p, 3d and 4s states,
Ecut =250Ry, 3 special k-points)

2.4 First-Principles Implicit Correlation Functionals

Some of the examples considered in the previous section already indicated
that the exact exchange, while providing obvious progress compared with
the LDA and the GGA, has to be combined with an appropriate orbital-
dependent correlation functional in order to be useful in practice. Given the
first-principles nature of the exact Ex, it is natural to derive such a correla-
tion functional in a systematic fashion. The first task is to establish a suitable
expression for the exact Exc which can serve as starting point for the subse-
quent discussion of different approximations. This exact formula for Exc at
the same time resolves the discrepancy which was found between the original
OPM equation (2.27) and the Sham-Schlüter equation (2.45).

2.4.1 Many-Body Theory on the Basis of the Kohn–Sham
System: Exact Expression for Exc

Let us assume for a moment that vs, the total Kohn-Sham potential, is
known [16,17,62]. This allows the definition of a noninteracting N -particle
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Hamiltonian Ĥs, which is the sum of the kinetic energy and an external po-
tential term based on vs,

Ĥs = T̂ +
∫
d3r n̂(r)vs(r) . (2.58)

The ground-state |Φ0〉 (assumed to be nondegenerate) corresponding to Ĥs
is obtained by solution of the Schrödinger equation,

Ĥs|Φ0〉 = Es|Φ0〉 . (2.59)

|Φ0〉 is a Slater determinant of the KS orbitals,

|Φ0〉 =
∏

εk≤εF

b̂†k |0〉 , (2.60)

where b̂k (b̂†k) denotes the annihilation (creation) operator for the single-
particle KS state φk and |0〉 is the corresponding KS vacuum, b̂k|0〉 = 0. The
ground-state energy Es and density are given by

Es = Ts +
∫
d3r n(r)vs(r) =

∑
k

Θkεk (2.61)

n(r) = 〈Φ0|n̂(r)|Φ0〉 =
∑
k

Θk|φk(r)|2 . (2.62)

By construction (2.62) is identical with the density of the interacting system.
The KS system, characterized by Ĥs, provides all the ingredients required

for standard many-body theory. In particular, the explicit form of the KS field
operator in Heisenberg representation,

ψ̂0(rt) = eiĤst ψ̂(r) e−iĤst =
∑
k

b̂kφk(r)e−iεkt , (2.63)

allows the evaluation of the KS Green’s function (2.38),

Gs(rt, r′t′) = −iΘ(t− t′)
∑
εF<εk

φk(r)φ
†
k(r

′) e−iεk(t−t′)

+iΘ(t′ − t)
∑
εk≤εF

φk(r)φ
†
k(r

′) e−iεk(t−t′) . (2.64)

In order to derive an exact relation for Exc one now uses Ĥs as the nonin-
teracting reference Hamiltonian. First, the total Ĥ of the interacting system
is decomposed into Ĥs and a remainder Ĥ1, whose main part is the electron-
electron interaction Ŵ . In addition, Ĥ1 has to compensate those parts of Ĥs
which are not present in Ĥ,

Ĥ1 = Ŵ −
∫
d3r n̂(r)vHxc(r) . (2.65)
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Here, vHxc represents the electron-electron interaction components in vs,

vHxc(r) = vs(r)− vext(r) = vH(r) + vxc(r) . (2.66)

In the second step, a coupling constant g is introduced into the total Hamil-
tonian,

Ĥ(g) = Ĥs + gĤ1 , (2.67)

which allows the use of the coupling constant integration trick. The ground-
state |Ψ0(g)〉 corresponding to Ĥ(g) (also assumed to be nondegenerate) is
obtained from the interacting Schrödinger equation,

Ĥ(g)|Ψ0(g)〉 = E(g)|Ψ0(g)〉 . (2.68)

One can now apply the coupling constant integration scheme to the g-depen-
dent ground-state energy,

E(g) = 〈Ψ0(g)|Ĥ(g)|Ψ0(g)〉 . (2.69)

One starts by differentiating E(g) with respect to g,

∂

∂g
E(g) = 〈Ψ0(g)|Ĥ1|Ψ0(g)〉 , (2.70)

using the fact that |Ψ0(g)〉 is normalized for all g,

〈Ψ0(g)|Ψ0(g)〉 = 1 .

One can then integrate (2.70) with respect to g. The integration starts at
g = 0, for which Ĥ(g) agrees with the KS Hamiltonian, and ends at g = 1,
where Ĥ(g) is identical with the true interacting Hamiltonian. On the left-
hand side, the integration thus leads to the difference between the energy
E(1) = Etot of the interacting system (which is the energy one is interested
in) and the KS energy E(0) = Es,

E(1)− E(0) = Etot − Es ≡ E1 =
∫ 1
0
dg 〈Ψ0(g)|Ĥ1|Ψ0(g)〉 . (2.71)

For the evaluation of E1 the concept of adiabatic switching is applied to
Ĥ1, i.e. Ĥ1 is switched off for large positive and negative times, using some
exponential switching factor. The standard machinery of many-body per-
turbation theory then leads to an expression which connects the interacting
ground-state |Ψ0〉 with the KS ground-state,

|Ψ0〉 = A lim
ε→0

ÛI,ε(0,∓∞)|Φ0〉
〈Φ0|ÛI,ε(0,∓∞)|Φ0〉

(2.72)

A = lim
ε1,ε2→0

[
〈Φ0|ÛI,ε1(+∞, 0)|Φ0〉 〈Φ0|ÛI,ε2(0,−∞)|Φ0〉

〈Φ0|ÛI,ε1(+∞, 0) ÛI,ε2(0,−∞)|Φ0〉

]1/2
(2.73)
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(A ensures the correct normalization of |Ψ0〉). The main ingredient of (2.72)
is the interaction picture time-evolution operator,

ÛI,ε(t, t′) =
∞∑
n=0

(−ig)n
n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtn e−ε(|t1|+···+|tn|)

× T
[
Ĥ1,I(t1) · · · Ĥ1,I(tn)

]
, (2.74)

which is given by a power series of Ĥ1 in the interaction picture,

Ĥ1,I(t) = eiĤst Ĥ1 e
−iĤst = ŴI(t)−

∫
d3r ψ̂†

0(rt)ψ̂0(rt)vHxc(r) . (2.75)

Insertion of (2.72) into the coupling constant integral (2.71) leads to the stan-
dard energy correction which results from switching on some perturbation to
a noninteracting reference system,

E1 = lim
ε→0

∫ 1
0
dg

∞∑
n=0

(−ig)n
n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn e−ε(|t1|+···+|tn|)

× 〈Φ0|TĤ1,I(0)Ĥ1,I(t1) · · · Ĥ1,I(tn)|Φ0〉
〈Φ0|ÛI,ε(+∞,−∞)|Φ0〉

. (2.76)

Using (2.71) and (2.7) one can finally extract Exc,

Exc = E1 − EH +
∫
d3r n(r)vHxc(r)

=
1
2

∫
d3r
∫
d3r′ e2

|r − r′|
[
〈Φ0|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|Φ0〉 − n(r)n(r′)

]

+ lim
ε→0

∞∑
n=1

(−i)n
(n+ 1)!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn e−ε(|t1|···+|tn|)

× 〈Φ0|TĤ1,I(0)Ĥ1,I(t1) · · · Ĥ1,I(tn)|Φ0〉l , (2.77)

where the index l indicates that only linked diagrams are to be included in the
evaluation of (2.77) via Wick’s theorem (this restriction corresponds to the
cancellation of the denominator of (2.76)). The first term on the right-hand
side (second line) represents the first order contribution with respect to the
perturbation Ĥ1 and is easily identified as the exchange energy (2.19). The
second term, which absorbs all higher orders in Ĥ1, provides an exact expres-
sion for the correlation energy Ec. The ingredients required for the evaluation
of this expression via Wick’s theorem are the KS Green’s function (2.64), the
Coulomb interaction, and vHxc (as Ĥ1 depends on this potential). The Hartree
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component of vHxc is readily calculated from the KS orbitals, so that (2.77)
depends on three basic ingredients, φk, εk and vxc.

One thus ends up with an exact representation of Exc in terms of the
KS orbitals and eigenvalues as well as the xc-potential [47]. Consequently,
(2.77) is not an algebraic assignment of some well-defined expression to Exc,
but rather represents a highly nonlinear functional equation, as Exc is given
in terms of it’s own functional derivative6. This now explains the nonlinear
character of the Sham-Schlüter equation (2.45). By analyzing the exact Exc
which determines the right-hand side (2.28) of the OPM equation one finds
that exactly the same nonlinearity exists in the conventional OPM.

How can one deal with this nonlinearity? There are two possible strategies:
Either one tries to solve the nonlinear OPM equation, which is a highly non-
trivial task, that has not yet been attempted; or, as an alternative, one can
try to linearize the xc-energy functional and therefore the OPM equation.
This route is pursued in the next section.

2.4.2 Perturbative Approach to the Sham–Schlüter Equation:
Second Order Correlation Functional

Given the origin of (2.77), an expansion of Exc (and thus vxc) in powers of e2

is the natural approach to the linearization of the OPM equation [18]. The
lowest order term in this expansion is the exchange energy. All higher order
terms correspond to Ec,

Exc =
∞∑
l=1

e2l E(l)xc [n] = Ex + E(2)c + . . . (2.78)

vxc =
∞∑
l=1

e2l v(l)xc [n] = vx + v(2)c + . . . . (2.79)

After insertion of (2.78) and (2.79) into the OPM equation both its right-
hand and its left-hand side are given as power series with respect to e2. The
identity of both sides is now required order by order. In the lowest order
(e2) the left-hand side of the OPM equation just contains vx, while the right-
hand side is determined by (2.22). This simply reflects the fact that Ex is a
well-defined functional of the φk only. To lowest order one ends up with the
standard linear OPM equation for the exact exchange,∫

d3r′ χs(r, r′)vx(r′) = Λx(r) (2.80)

Λx(r) = −
∑
k

∫
d3r′ φ†

k(r)Gk(r, r′)
δEx

δφ†
k(r′)

+ c.c. (2.81)

6 Note, however, that this result is consistent with the basic statements of DFT:
As vxc is a density functional itself, the right-hand side of (2.77) is an implicit
density functional.
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The first time that the nonlinearity shows up is in the order e4. This lowest
order correlation functional can be written as

E(2)c = EMP2c + E∆HF
c . (2.82)

The first of these terms is an expression which basically looks like the standard
second order Møller-Plesset (MP2) correction to the HF energy,

EMP2c =
e4

2

∑
ijkl

ΘiΘj(1−Θk)(1−Θl)
(ij||kl)[(kl||ij)− (kl||ji)]

εi + εj − εk − εl
. (2.83)

However, the Slater integrals (ij||kl),

(ij||kl) =
∫
d3r1
∫
d3r2

φ†
i (r1)φk(r1)φ

†
j(r2)φl(r2)

|r1 − r2| , (2.84)

are calculated with the KS orbitals φk, and the denominator of (2.83) relies on
the KS eigenvalues εk, so that EMP2c can give results which are quite different
from standard MP2 data (see below). The second contribution to (2.82) takes
into account that the present perturbation expansion is not based on the HF
Hamiltonian, but on the KS Hamiltonian,

E∆HF
c =

∑
il

Θi(1−Θl)
εi − εl

∣∣∣∣〈i|vx|l〉+ e2
∑
j

Θj(ij||jl)
∣∣∣∣
2

. (2.85)

It involves the difference between the orbital expectation value of the nonlocal
HF-type exchange potential

∑
j Θj j||j and that of vx,

〈i|vx|l〉 =
∫
d3r φ†

i (r)vx(r)φl(r) . (2.86)

At this point, it seems worthwhile to emphasize the difference between an
expansion with respect to the perturbing Hamiltonian Ĥ1 and the present ex-
pansion in powers of e2. The former leads to the same basic expressions (2.83)
and (2.85), but with vx replaced by the full vxc. Consequently, the nonlin-
earity is not resolved in this type of expansion. On the other hand, as soon
as one expands vxc with respect to e2, only the lowest order contribution vx
is relevant in (2.85) due to the quadratic structure of this expression. As net
result one finds a well-defined linear relation for the correlation functional
E
(2)
c .
The contribution E∆HF

c once again illustrates the relation between the
x-only OPM and the standard HF approach. In the x-only limit, the OPM
corresponds to a minimization of the HF energy expression under the sub-
sidiary condition that the orbitals satisfy the KS equations (see Sect. 2.2.2).
The OPM energy is thus slightly higher than the HF value, which results from
a free minimization of the same energy expression. The difference between
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the two energies can be evaluated order by order, using the difference between
the HF and the x-only OPM Hamiltonian as perturbation. To lowest order
this procedure leads to the energy (2.85). This expression is always negative,
consistent with the fact that the HF energy must be below the x-only OPM
value. On the other hand, if one examines (2.85) quantitatively, one usually
finds it to be rather small (see Sects. 2.6).

As already emphasized, E(2)c is well-defined as soon as vx is known. Thus,
the first step of a self-consistent application of (2.82) is the solution of the
x-only OPM equation (2.80). Once vx is available, it remains to evaluate

v(2)c (r) =
δE
(2)
c [φk, εk, vx]
δn(r)

. (2.87)

How can this be done? Clearly, the functional derivative of EMP2c with respect
to n can be handled as in (2.21), as this term does not depend on vx. The
same is true for the φk and εk dependence of E∆HF

c . The subsequent discussion
focuses on the vx dependence of E∆HF

c .
One starts by realizing that the explicit vx dependence of E∆HF

c is not
fundamentally different from the φk and εk dependence. One thus has to
include a functional derivative with respect to this additional variable, when
eliminating the original derivative δ/δn via the chain rule (as in (2.21)). This
leads to an additional contribution to the inhomogeneity (2.28),

∆Λ(2)c (r) =
∫
d3r′ δvx(r

′)
δvs(r)

δE∆HF
c

δvx(r′)
. (2.88)

The first ingredient, the functional derivative of vx with respect to vs, is ac-
cessible via the x-only OPM equation. If one differentiates (2.80) with respect
to vs and isolates the desired derivative one ends up with

δvx(r2)
δvs(r1)

=
∫
d3r3 χ−1

s (r2, r3)
[
δΛx(r3)
δvs(r1)

−
∫
d3r4

δχs(r3, r4)
δvs(r1)

vx(r4)
]
.(2.89)

The functional derivative of Λx with respect to the KS potential can again
be obtained by using the chain rule,

δΛx(r3)
δvs(r1)

= −
∑
k

∫
d3r4

[
φ†
k(r1)Gk(r1, r4)

δΛx(r3)

δφ†
k(r4)

+ c.c.

]

+
∑
k

|φk(r1)|2 ∂Λx(r3)
∂εk

. (2.90)

The second expression in (2.89) involves the derivative of the linear response
function with respect to the KS potential. Using the definition (2.26) of the
linear KS response function, one can rewrite this quantity as the second func-
tional derivative of n with respect to vs, i.e. the quadratic response function
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of the KS system,

δχs(r3, r4)
δvs(r1)

=
δ2n(r3)

δvs(r4)δvs(r1)
. (2.91)

This function can be evaluated in the same fashion as χs (compare with [47]).
As δE∆HF

c /δvx can be evaluated directly, all ingredients of (2.88) are known,
and v(2)c can be calculated.

In principle, one could now turn to the third order terms. The third order
functional depends not only on vx, but also on v

(2)
c . However v(2)c is well-

defined by now, so that also E
(3)
c is well-defined. Moreover, following the

route sketched above the corresponding third order potential can also be
handled. The scheme presented here thus establishes a recursive procedure
for calculating Exc and the corresponding vxc order by order in e2.

On the other hand, it is obvious that this approach sooner or later will
become excessively cumbersome. In addition, there are quite a number of
systems for which perturbation theory fails, most notably metals. In the next
step one thus has to consider extensions of E(2)c which allow the treatment
of metallic systems.

2.4.3 Extensions of the Second Order Functional

Random Phase Approximation. The most straightforward approach to
go beyond the second order functional is a resummation of certain classes of
diagrams. Starting from the exact representation (2.77) of Exc, one could, for
example, resum the ring diagrams [19,20] (random phase approximation –
RPA), which are known to form the most important class for the description
of metals,

ERPAxc =
i
2

∞∑
n=1

1
n

∫
d1 d1′ · · ·

∫
dn dn′ δ(t1)

e2δ(t1 − t′1)
|r1 − r′

1|
χs(1′, 2) · · ·

× e2δ(tn − t′n)
|rn − r′

n| χs(n′, 1) , (2.92)

with χs(1, 2) being given by (2.46). Note that it is not trivial to identify
approximations like the RPA in the present context, because in (2.77) the
standard diagrammatic contributions are intertwined with diagrams depend-
ing on vxc. The lowest order ring diagram studied in Sect. 2.4.2 is the most
obvious example. Contributions similar to E∆HF

c are found to all orders. It
is thus not clear a priori what it means to restrict ERPAxc to the KS ring di-
agrams only. However, the quantitative dominance of the second order ring
diagram over E∆HF

c seems to legitimize this approach. It seems worthwhile to
mention that, for non-metallic systems, the second order exchange diagram
included in (2.82) can be directly added to (2.92).
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Interaction Strength Interpolation (ISI). The evaluation of expres-
sions like (2.92) and, in particular, its derivatives is quite challenging. Con-
sequently, one might ask whether it is possible to account for the higher
order contributions in a more efficient way? This is the basic idea behind
the interaction strength interpolation (ISI) [21], which makes an attempt to
recast the higher order terms in the form of an explicit density functional.
The starting point for the derivation of the ISI is the adiabatic connection,
which makes the transition from the non-interacting KS system to the fully
interacting system in such a way that the density remains the same all along
the way [46,63,64]. The coupling constant integration trick then leads to a
formula analogous to (2.71),

Exc =
∫ 1
0
dgWg[n] , (2.93)

with7

Wg[n] = 〈Ψ0(g)[n]|Ŵ |Ψ0(g)[n]〉 − EH[n] . (2.94)

The basic idea of the ISI is to obtain Wg in the interesting regime g ≈ 1 from
an interpolation between the weak (g � 1) and the strong (g � 1) interaction
limit. The former limit is well-known by now: For a weak interaction one can
expand Exc in powers of the coupling constant g which automatically yields
a corresponding expansion for Wg,

Exc =
∫ 1
0
dg

(
Ex +

∞∑
l=2

lgl−1E(l)c

)
. (2.95)

The lowest two orders of Wg are thus determined by Ex and E
(2)
c .

The strong interaction limit requires a new concept. However, for g → ∞
the electrostatic forces completely dominate over kinetic effects, so that a
simple model system (“point charge plus continuum model”) is sufficient to
extractWg [65]. In this way one finds the two leading orders of the expansion
of Wg in powers of 1/

√
g,

lim
g→∞Wg[n] = W∞[n] +W ′

∞[n]g−1/2 + . . . , (2.96)

with

W∞[n] =
∫
d3r

[
An4/3 +B

(∇n)2
n4/3

]
(2.97)

W ′
∞[n] =

∫
d3r

[
Cn3/2 +D

(∇n)2
n7/6

]
(2.98)

7 |Ψ0(g)〉 is not identical with the ground-state introduced in Sect. 2.4.1, as the
perturbation in the adiabatic connection is different from (2.65).
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(for the values of the coefficients A−D see [21]). Interpolation between Ex,
E
(2)
c on the one hand and W∞, W ′

∞ on the other hand then leads to

EISIxc =W∞ +
2X
Y

[
(1 + Y )1/2 − 1− Z ln

(
(1 + Y )1/2 + Z

1 + Z

)]
, (2.99)

with the abbreviations

X =
xy2

z2
Y =

x2y2

z4
Z =

xy2

z3

x = −4E(2)c y =W ′
∞ z =W∞ − Ex . (2.100)

Equations (2.99) and (2.100) should be understood as an effective resumma-
tion of the KS perturbation series. The correlation part of EISIxc is obtained
by subtraction of the exact Ex from (2.99).

2.5 Semi-empirical Orbital-Dependent
Exchange-Correlation Functionals

Given the complexity of the first-principles implicit correlation functionals of
Sect. 2.4, one is automatically led to look for simpler and thus more efficient
semi-empirical alternatives. Two functionals of this type have been suggested
for use within the OPM.

2.5.1 Self-interaction Corrected LDA

The first of these functionals is the self-interaction corrected LDA (SIC-
LDA) [22]. It has been emphasized that the self-interaction error of the LDA
and the GGA is a major source of problems. It is thus tempting to try to
eliminate this self-interaction in a semi-empirical form. This is the main idea
behind the SIC-LDA. The starting point is the spin-density dependent ver-
sion of the standard LDA, ELDAxc [n↑, n↓]. In contrast to the exact Exc[n↑, n↓],
this functional does not reduce to a pure Coulomb self-interaction integral if
only one single particle with spin up and density n↑ = |φ1,↑(r)|2 is present,

ELDAxc [n↑, 0] �= −e2

2

∫
d3r
∫
d3r′ |φ1,↑(r)|2|φ1,↑(r′)|2

|r − r′| = Eexactxc [|φ1,↑|2, 0] .
(2.101)

In a many-particle system this self-interaction error is present for all particles
in the system. In the SIC-LDA one eliminates the self-interaction component
a posteriori by explicitly subtracting the erroneous terms for the individual
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KS states of both spins,

ESIC−LDA
xc = ELDAxc [n↑, n↓]−

∑
k,σ

Θk,σ

{
EH
[|φk,σ|2]+ ELDAxc

[|φk,σ|2, 0]}

= ELDAxc [n↑, n↓]−
∑
k,σ

Θk,σE
LDA
xc

[|φk,σ|2, 0]

−e2

2

∑
k,σ

Θk,σ

∫
d3r
∫
d3r′ |φk,σ(r)|2|φk,σ(r′)|2

|r − r′| . (2.102)

By construction, ESIC−LDA
xc satisfies (2.101).

The standard scheme for the application of this functional implies the
use of orbital-dependent Kohn-Sham potentials: A separate KS equation
has to be solved for each individual KS state. This procedure leads, in
general, to non-orthogonal KS orbitals, so that an a posteriori orthogonal-
ization is required [66]. However, it has been realized very early [67] that
the SIC-LDA should be applied within the framework of the OPM. For
any orbital-dependent functional, the OPM produces the corresponding KS-
type multiplicative potential, which automatically avoids the problem of non-
orthogonality.

On the other hand, the use of the OPM does not resolve the unitarity
problem which is inherent to this functional [68,69,70]: If one performs a
unitary transformation among the KS orbitals, the individual orbital densities
will change, even if the transformation only couples degenerate KS states.
Consequently, also the value of ESIC−LDA

xc changes. An additional prescription
which defines a suitable representation of the KS orbitals (which usually
implies a localization) is necessary for practical calculations [71]. While the
results for atoms are not very sensitive to this unitarity problem, it becomes
more important in extended systems. For that reason the SIC-LDA has rarely
been applied to molecules [72,73,74].

2.5.2 Colle–Salvetti Functional

A second orbital-dependent expression, originally introduced for use with the
Hartree-Fock scheme, is the Colle-Salvetti (CS) correlation functional [23].
The starting point for the derivation of the CS functional is an approxi-
mation for the correlated wavefunction Ψ(r1σ1, . . . rNσN ). The ansatz for
Ψ(r1σ1, . . . rNσN ) consists of a product of the HF Slater determinant and
Jastrow factors,

Ψ(r1σ1, . . . rNσN ) = ΦHF(r1σ1, . . . rNσN )
∏
i<j

[
1− ϕ(ri, rj)

]
. (2.103)

CS then used a model for the correlation functions ϕ(ri, rj) which satisfies
the electron-electron cusp condition at ri = rj [75]. The free parameter in
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the model is adjusted to the correlation energy of the He atom [23]. The final
functional reads

ECSc = −ab

4

∫
d3r γ ξ

[
4
∑
kσ

Θknσ|∇φkσ|2 − |∇n|2 −
∑
σ

nσ∇2nσ + n∇2n
]

−a
∫
d3r γ

n

η
, (2.104)

with the abbreviations

γ(r) = 4
n↑(r)n↓(r)
n(r)2

(2.105)

η(r) = 1 + dn(r)−1/3 (2.106)

ξ(r) =
n(r)−5/3 exp[−cn(r)−1/3]

η(r)
. (2.107)

This functional depends on the spin-density nσ and the kinetic energy of
spin σ,

∑
k Θk|∇φkσ|2. In the DFT context, this latter dependence makes

ECSc an implicit functional for which the OPM has to be utilized. Therefore,
the CS correlation functional has been suggested as a first candidate for going
beyond the exact exchange [76].

However, like the correlation part of the SIC-LDA, this CS functional is
rather local. Its nonlocality is restricted to the first gradients of the KS or-
bitals. In this respect it is very similar to the Meta-GGA [77]. In the case of
the Meta-GGA higher gradients of the density, i.e. its Laplacian, are effec-
tively included into the GGA via the kinetic energy expression

∑
k Θk|∇φkσ|2.

However, in contrast to the CS-functional, the Meta-GGA has not yet been
applied within the OPM (although, in principle, it should be treated within
the OPM). In any case, neither the SIC-LDA nor the CS and Meta-GGA
functionals are sufficiently nonlocal to deal with dispersion forces: The ar-
gument given in Sect. 4 for the LDA applies equally well to these types of
functionals.

2.6 Analysis of the Orbital-Dependent Correlation

2.6.1 Description of Dispersion Forces
by Second Order Correlation Functional

Given the motivation for implicit correlation functionals the first question
to be addressed is that of dispersion forces. As none of the semi-empirical
functionals of Sect. 2.5 can deal with these long-range forces, the present
discussion focuses on the second order correlation functional (2.82) as the
simplest first-principles functional.

Consider two neutral atoms A and B, separated by a sufficiently large
distance R, so that no molecular orbitals are formed. For this system, the
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overlap between the atomic orbitals φk,A centered on atom A and φl,B cen-
tered on atom B vanishes exponentially with increasing R. The sums over all
KS states in (2.83) and (2.85) then split up into sums over the atomic states,∑

i

−→
∑
iA

+
∑
iB

.

Thus, if one takes the atoms apart, only those Slater integrals in E(2)c survive
which do not link orbitals from different atomic centers at the same point r.
Consequently, neither E∆HF

c nor the exchange component of EMP2c contribute
to the interaction between the two atoms for large R, as for these terms all
sums over states must belong to the same atom. Moreover, in the case of
the ring diagram, which provides the direct matrix elements in EMP2c , each
individual ring must only involve states of one of the atoms, e.g.

❄✫✪
✬✩

�
�

✻

✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁
✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁✄�✂✁

❄✫✪
✬✩

�
�

✻A B .

The complete ring diagram decomposes into four terms, as for both rings
either atom A or atom B can be chosen. The combinations AA and BB
contribute to the atomic correlation energies of A and B, as is the case of
E∆HF
c and the exchange component of EMP2c . Only the combinations AB

and BA, which represent the interaction of virtual particle-hole excitations
on the two centers, lead to some molecular binding energy. Moreover, no
other component of the total energy functional contributes to the interaction
between the two atoms, provided that A and B are closed-subshell atoms
(so that no static multipole moments are present). The interaction energy
between A and B thus reduces to

E
(2)
c,int = e4

∑
iAkA

ΘiA(1−ΘkA
)
∑
jBlB

ΘjB
(1−ΘlB )

(iAjB ||kAlB)(kAlB ||iAjB)
εiA + εjB

− εkA
− εlB

.

(2.108)
If one expands (2.108) in powers of 1/R and re-introduces the frequency
integration inherent in the ring diagram, one ends up with an expression [47]
which is much more familiar,

E
(2)
c,int = −C6

R6
= −3 e

4

R6

∫ ∞

0

du
π
αA(iu)αB(iu) . (2.109)

Here αA(iu) denotes the atomic polarizability (for the case of closed sub-
shells), evaluated at imaginary frequency,

αA(ω) =
∫
d3r1
∫
d3r2 z1 z2 χRs,A(r1, r2, ω) , (2.110)
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whose basic ingredient is the frequency-dependent, retarded KS response
function,

χRs (r1, r2, ω) =
∑
i,k

[Θi −Θk]
φ†
i (r1)φk(r1)φ

†
k(r2)φi(r2)

ω − εk + εi + iη
. (2.111)

Equation (2.109) has the standard form of the dispersion force. Obviously,
E
(2)
c is able to reproduce the correct long-range behavior proportional to

1/R6. However, the exact result for the coefficient C6 involves the full atomic
polarizabilities, while the present DFT-variant of C6 is determined by the KS
polarizabilities (as a consequence of second order perturbation theory). So,
the next question is how close the KS coefficients come to the exact C6? First
calculations [78] show that, for light atoms, (2.109) yields reasonably accurate
coefficients: They underestimate the full C6 by 10–20%. On the other hand,
for heavier atoms higher order correlation becomes important, and (2.109) is
substantially off.

At this point it is has been verified that the functional (2.82) reproduces
the long-range behavior of the dispersion force, but it is not yet clear how it
performs in the intermediate (bonding) regime. However, in order to predict
the equilibrium geometry of a van der Waals bond molecule, it is not just
sufficient to have the correct asymptotic 1/R6 attraction. Rather, the com-
plete energy surface must be accurate. This point is investigated in Fig. 2.14,
in which the energy surface (Eb) of the He dimer is shown [24]. He2 is a par-
ticularly critical system, which manifests itself in the scale used for Fig.2.14:
It is meV, rather than the standard scale of eV. The He2 bond is extremely
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Fig. 2.14. Energy surface Eb of He2: E
(2)
c in combination with exact Ex (FC2)

versus LDA, x-only OPM and HF [79] data as well as the exact result [80]
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weak, which leads to a very delocalized ground-state wavefunction [81]. It
thus provides an ideal testing ground for approximate correlation function-
als. In Fig. 2.14 results from three DFT calculations are compared with HF
data [79] and the exact Eb, obtained by variational calculations with cor-
related wavefunctions [80] (all Eb are strictly nonrelativistic). Focusing first
on the x-only results, one immediately notices that dispersive bonding is a
pure correlation effect. Both the exact x-only OPM calculation and its HF
counterpart predict a repulsive energy surface. Moreover, as in so many other
situations (see Sect. 2.3) the x-only OPM data are very close to the HF num-
bers. Two “correlated” DFT results are also shown in Fig. 2.14. On the one
hand, the energy surface resulting from a standard LDA calculation is plot-
ted. The LDA predicts the minimum of Eb to be too far in by 1 bohr and
the corresponding well depth to be too large by an order of magnitude: As
pointed out in Sect. 4, the LDA requires the densities of the two atoms to
overlap, in order to produce binding. It therefore contracts the dimer far too
much. The LDA is not suitable to describe such systems, in spite of the fact
that it generates an attractive Eb.

The second “correlated” DFT calculation is based on the combination of
the exact Ex with E

(2)
c (FC2) [24] (the latter energy is added perturbatively

to a self-consistent x-only calculation within the KLI approximation). The
agreement of the resulting Eb with the exact surface is not perfect, but the
resulting Eb(R) is at least qualitatively correct. Thus E

(2)
c does not only give

the desired 1/R6 behavior, but also provides a realistic description of the rest
of Eb(R).

Given the fact that E(2)c comes from second order perturbation theory,
one might be tempted to consider this a trivial result: As the arguments given
in the beginning of this section apply to any second order perturbative energy
functional, the 1/R6 behavior is common to all of them. However, as pointed
out earlier the correct long-range behavior does not imply that the complete
Eb(R) is accurate. This is demonstrated explicitly in Fig. 2.15, in which three
second order results for Eb(R) are compared. In addition to the FC2-result
already shown in Fig. 2.14 the surface obtained with the conventional MP2
approach (second order perturbation theory on the basis of HF) is given. The
FC2-result overestimates the exact well depth to roughly the same extent as
the MP2 surface underestimates it (30%). The location of the minimum of
Eb(R) is predicted to be too large by 0.2 bohr by the MP2 approach, while
the corresponding FC2-number is too small by 0.2 bohr.

In the third second order approach the FC2 energy functional is evalu-
ated with LDA orbitals, i.e. the difference between the LDA and the FC2
functional is added perturbatively to the LDA surface. By construction, this
functional yields the 1/R6 asymptotics. However, the C6 coefficient obtained
from (2.109) with LDA orbitals [78] is much larger than the C6 resulting
from x-only OPM orbitals (which is already too large). This is reflected by
the large-R behavior of the corresponding energy surface. Even more impor-
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Fig. 2.15. Energy surface Eb(R) of He2: Different perturbation expansions to sec-
ond order. E

(2)
c in combination with exact Ex (FC2) versus conventional MP2 [82]

and second order expansion on the basis of LDA orbitals as well as exact [80] result

tant is the complete failure of this third second order expansion in the vicinity
of the minimum of Eb. The minimum is located roughly 2 bohr too far out
and its depth is too small by an order of magnitude. This demonstrates that
the application of second order perturbation theory does not automatically
guarantee a realistic energy surface for dispersive bonds: A suitable nonin-
teracting reference Hamiltonian, which provides the starting point for the
expansion, is required. The energy surface obtained with the FC2-functional
on the basis of the OPM should thus be understood as an encouraging result.

One final point related to the energy surface of He2 seems worth a remark.
In Fig. 2.16 the FC2 result is split into its individual components. In addition
to the x-only part one has two contributions from E

(2)
c ,

∆MP2(R) = EMP2c [He2](R)− 2EMP2c [He](R) (2.112)
∆∆HF(R) = E∆HF

c [He2](R)− 2E∆HF
c [He](R) , (2.113)

corresponding to the two ingredients of (2.82). One can explicitly see that
∆∆HF vanishes exponentially for large R, while ∆MP2 gives the dominant,
attractive component of Eb. However, in the vicinity of the minimum of Eb
the contribution of ∆∆HF is no longer negligible. The energy surface of He2
is one of the rare cases in which the E∆HF

c contribution is large.
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Table 2.9. Correlation energies (−Ec) of closed-subshell atoms: LDA [29], PW91-
GGA [30], CS [23], E

(2)
c [18] and ISI [21] results (all energies obtained by insertion

of x-only densities) in comparison with MP2 [84,85] and exact [83] energies (in
mhartree). The contribution (2.85) to E

(2)
c is also listed separately

MP2 exact ISI E
(2)
c −E∆HF

c LDA GGA CS

He 37 42 39 48 0.0 113 46 42
Be 76 94 124 0.6 225 94 93
Ne 388 391 410 477 1.7 746 382 375
Mg 428 438 522 3.2 892 450 451
Ar 709 722 866 5.4 1431 771 743
Ca 798 996 6.4 1581 847 824
Zn 1678 2016 14.9 2668 1526 1426
Cd 2618 3104 19.5 4571 2739 2412
Xe 3088 3487 17.7 5199 3149 2732

2.6.2 Comparison of Available Orbital-Dependent
Approximations for Ec

After establishing the basic ability of E(2)c to deal with dispersion forces,
the next step is a quantitative study of more conventional systems. In Ta-
ble 2.9 the correlation energies obtained with this functional for closed-
subshell atoms are compared with various other approximations and the exact
correlation energies [83] (which have been extracted by combining variational
results for two- and three-electron systems with experimental data for the
ionization energies of the remaining electrons). The LDA energies show the
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Table 2.10. Correlation energies (−Ec) of the He isoelectronic series: LDA [29],
PW91-GGA [30], CS [23], E

(2)
c [18] and ISI [21] results (all energies obtained by

insertion of x-only densities) in comparison with MP2 [86] and exact [87] energies
(in mhartree).

Ion LDA GGA CS E
(2)
c ISI exact MP2

He 112.8 45.9 41.6 48.21 39.4 42.04 37.1
Ne8+ 203.0 61.7 40.6 46.81 45.0 45.69 44.4
Ca18+ 243.3 67.7 35.9 46.69 45.8 46.18 45.4
Zn28+ 267.2 71.3 33.2 46.67 46.34 45.7
Zr38+ 284.4 74.0 31.4 46.66 46.3 46.42 45.9
Sn48+ 297.7 76.0 30.0 46.65 46.47 46.0
Nd58+ 308.7 77.8 29.0 46.64 46.3 46.51
Yb68+ 318.0 79.3 28.2 46.63 46.53
Hg78+ 326.1 80.6 27.6 46.62 46.4 46.55
Th88+ 333.2 81.7 27.0 46.62 46.56
Fm98+ 339.6 82.8 26.0 46.62 46.4 46.57

well-known overestimation of the correct atomic Ec by a factor of 2. The
GGA [30] impressively improves on that. The CS-functional [23] also leads
to rather accurate values for light atoms, but substantially underestimates
the correct Ec of the heavier species. E

(2)
c clearly overestimates atomic cor-

relation energies, consistent with the result for the energy surface of He2.
The deviations are much larger than those observed for the GGA. Moreover,
the accuracy of E(2)c is obviously lower than that of the conventional MP2
scheme, in particular for atoms with many electrons. On the other hand, the
ISI extension of E(2)c seems to eliminate most of the error of the second order
functional.

In Table 2.9 the E∆HF
c component of the complete E

(2)
c is also listed

separately. E∆HF
c vanishes for two-electron systems and is more than 2 orders

of magnitude smaller than EMP2c for all other atoms. This result suggests that
E∆HF
c can be neglected in most situations, which definitively simplifies the

application of E(2)c .
Analogous data for the He isoelectronic series are given in Table 2.10 [62].

These numbers verify that E(2)c is the only available density functional which
satisfies the correct scaling law with respect to the nuclear charge Z. It be-
comes exact in the limit of large Z, in which the correlation energy of two-
electron ions approaches a constant. The GGA energies, on the other hand,
show a systematic increase with increasing Z. The opposite behavior is found
for the CS functional, leading to an error of 50% for heavy ions. The ISI func-
tional, whose dominating ingredient is E(2)c , also approaches a constant for
large Z. However, the contributions to EISIc beyond its second order basis
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Table 2.11. Correlation energy and electron affinity of H−: Results obtained by
combination of the exact exchange with different correlation functionals (LDA [29],
PW91-GGA [30], CS [23], C2 (E(2)c ) [18] and ISI [21]) in comparison with MP2 [88]
and exact [89] energies (in mhartree).

Method −Ec EA

F — −12.1
F+LDA 75.7 62.6
F+GGA 35.5 22.8
F+CS 31.2 18.9
F+C2 54.6 42.6
F+ISI 34.3 22.2
exact 39.8 27.8
MP2 27.3 15.2

E
(2)
c do not completely vanish in this limit, so that the ISI correlation energy

is slightly smaller than the exact result.
A more sensitive test for correlation functionals than total atomic cor-

relation energies is provided by atomic EAs. In Table 2.11 the EAs for H−

obtained with various functionals are listed [62]. In all cases the exact ex-
change is used, only the correlation part of Exc varies. As to be expected,
the x-only calculation predicts H− to be unbound, while LDA correlation
produces an EA which is more than a factor of 2 too large. The CS result
substantially underestimates the exact EA. E(2)c clearly overestimates the cor-
relation energy of H− and thus also the EA: As for the correlation energies
of neutral atoms and positive ions, E(2)c and the conventional MP2 energies
bracket the exact EA. The inclusion of higher order terms in E(2)c via the ISI
improves the agreement, although one notices a tendency to overcorrect the
error of the straight second order expansion. Moreover, the GGA correlation
functional yields a similarly accurate number, thus questioning the usefulness
of the implicit correlation functionals.

The next step of the analysis of orbital-dependent correlation functionals
consists of a look at covalently bond molecules. Table 2.12 lists the spec-
troscopic constants of N2 obtained with a variety of approximations – the
data for N2 are quite characteristic for many diatomic molecules. First of
all, one observes that the x-only approach yields a reasonably accurate bond
length (Re), but substantially underestimates the experimental dissociation
energy (De), which emphasizes the importance of correlation. In Table 2.12
five different correlation functionals are added to the exact exchange. Use of
GGA correlation improves De, although the remaining error is quite large.
At the same time GGA correlation leads to a reduction of Re, thus worsen-
ing the agreement with experiment. The correction also goes into the wrong
direction in the case of the vibrational frequency. The same statements apply
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Table 2.12. Spectroscopic constants of N2: Results obtained by combination of the
exact exchange with different correlation functionals (LDA [29], PW91-GGA [30],
CS [23], SIC-LDA [22], C2 (E(2)c ) [18] and ISI [21]) in comparison with HF, MP2,
quadratic configuration interaction with single and double excitations (QCISD) [55],
complete SIC-LDA, conventional LDA and PW91-GGA, as well as experimental [90]
results (all OPM values rely on the KLI approximation, F+CS data from [91])

method Re Eb = De + �ωe/2 ωe
(Bohr) (eV) (cm−1)

expt. 2.075 9.908 2360

HF 2.037 4.952 2738
MP2 2.135 9.333 2180
QCISD 2.105 8.488 2400

F 2.011 4.972 2736
F+GGA 1.997 7.574 2801
F+CS 1.998 7.818
F+SIC-LDA 2.003 7.880 2770
F+C2 unbound
F+ISI 2.235 12.225 1401

SIC-LDA(x+c) 1.876 −49.490 3245

LDA 2.068 11.601 2396
GGA 2.079 10.545 2352

to combinations of the exact exchange with the CS functional and with the
SIC-LDA for correlation.

Turning to the first-principles orbital-dependent correlation functionals,
one realizes that E(2)c does not predict N2 to be bound at all. To understand
this result one has to go back to (2.83) and examine the structure of this
expression. EMP2c represents the interaction of two simultaneous particle-
hole excitations: The probability for these transitions is determined by the
Slater integrals in the numerator of (2.83), while their lifetime depends on
the energy gap in the denominator. If the separation of the two N atoms
is increased, the highest occupied and the lowest unoccupied KS levels in
the molecule approach each other further and further. So, with increasing R
the energy gap in the denominator of (2.83) shrinks more and more, i.e. the
lifetime of the excitations becomes longer and longer. As this divergence is
not fully compensated by the numerator, EMP2c becomes larger and larger
when the atoms are taken apart. This effect does not only show up for large
R, but already in the vicinity of the equilibrium distance. As a consequence,
one does not even find a local minimum in the energy surface.

The problem is intrinsically related to the existence of the Rydberg series
in the OPM spectrum, which originates from the −1/r behavior of the exact
exchange potential. The conventional MP2 calculation gives quite reasonable
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results for N2, as the underlying HF Hamiltonian does not yield a Rydberg
series. The same basic effect shows up in various places: One finds, for exam-
ple, that the correlation energy of Be is particularly overestimated by E(2)c ,
which is due to the presence of the low-lying unoccupied 2p states (compare
Table 2.9). The presence of the Rydberg series is useful for the calculation of
many atomic properties, most notably for the description of negative ions or
of excited states. On the other hand, it is not very helpful if the treatment
of correlation is based on some kind of perturbation theory.

This immediately raises the question whether the effective resummation
of the perturbation series via the ISI can resolve this fundamental problem?
The ISI functional indeed leads to a bound N2. However, it does not perform
particularly well from a quantitative point of view. It overestimates Re much
more than the x-only calculation underestimates it. At the same time, the
dissociation energy is much too large and the vibrational frequency reflects
the very shallow form of the energy surface.

For completeness, Table 2.12 also contains the spectroscopic constants
obtained with the SIC-LDA for both exchange and correlation. In this cal-
culation, the standard molecular orbitals were used for the evaluation of
the xc-energy and potential, without further localization prescription. The
importance of the unitarity problem discussed in Sect. 2.5.2 is obvious. In
particular, the dissociation energy is completely off. This problem can be
traced to the SIC energies of the molecular core states [72]: The Coulomb
contribution to (2.102) resulting from the two-center molecular core states
(1πg, 1πu) differs substantially from that obtained with the one-center atomic
core states (1s), as

φ1πg/u
≈ 1√

2

[
φ1s,a ± φ1s,b

]
.

Realistic SIC-LDA results for molecules or solids can only be obtained on the
basis of some localization prescription for quasi-degenerate states [72]. Such a
scheme essentially consists of using the localized linear combinations of φ1πg/u

for the evaluation of the SIC functional and has to be applied to all core
and semi-core states. It is obvious that such a prescription becomes rather
difficult to handle in more complicated molecules involving several types of
atoms. One thus has to realize that none of the presently available implicit
functionals can compete with the standard LDA or GGA for covalently bond
molecules.

In summary, one can say that, while KS perturbation theory offers a DFT
description of dispersion forces, most of the other results obtained within this
approach are somewhat disappointing. This is particularly obvious when one
takes into account that the computational demands of FC2-calculations are
not different from those of conventional MP2-calculations, as essentially the
same energy expressions have to be evaluated. So, why should one apply the
second order OPM approach, rather than the well-established MP2 scheme?
The initial hope was that the perturbation series on the basis of the KS
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reference system converges faster than the MP perturbation series, so that
the second order term is sufficient for most purposes. However, all results in
this section indicate that to second order the KS series is slightly less accurate
than the MP expansion. In addition, one has the degeneracy problem at the
Fermi surface if E(2)c is combined with the exact exchange potential. On
the other hand, if the KS perturbation expansion is not based on the exact
exchange, it does not converge at all [92]. It thus seems that an appropriate
implicit correlation functional, which could be used with the exact exchange,
remains to be found.

2.6.3 Analysis of the Second Order Correlation Potential

Asymptotic Divergence for Finite Systems. The conclusions of
Sect. 2.6.2 are further corroborated by an analysis of the potential correspond-
ing to E(2)c . In the applications discussed in Sects. 2.6.1 and 2.6.2 this func-
tional has always been applied perturbatively, on the basis of self-consistent
calculations with the exact Ex. However, the ultimate goal of KS perturba-
tion theory is the derivation of a correlation functional which can be used
self-consistently, rather than just be added a posteriori.

The most complicated step of a self-consistent treatment of E(2)c is the
evaluation of the potential corresponding to its E∆HF

c component: Especially
the calculation of the quadratic response function (2.91) is very demanding
in the case of molecular or solid state systems. Fortunately, E∆HF

c turns out
to be much smaller than EMP2c in most situations, which suggests its neglect.
Moreover, E∆HF

c vanishes identically for two-electron systems, as in this case
the relevant matrix elements of the multiplicative OPM exchange potential
coincide with those of the nonlocal HF-type potential. Thus, in order to
avoid the ambiguity associated with the neglect of E∆HF

c , the discussion in
this section completely focuses on two-electron systems.

Before examining the full OPM equation for EMP2c , it is instructive to
take a closer look at the KLI approximation, as it reveals the ingredients
of vMP2c = δEMP2c /δn more clearly [25]. The KLI results for vMP2c obtained
with the exact x-only OPM states for H−, He, Be2+ and Ne8+ are plotted
in Fig. 2.17. One finds that vMP2,KLIc diverges asymptotically for all systems
(in the case of H− the divergence sets in somewhat further out). What is the
reason for this unphysical behavior? Reduced to the most essential ingredients
the KLI approximation has the structure

vKLIc (r) ∼ 1
n(r)

∑
k

φ†
k(r)

δEc

δφ†
k(r)

+ · · · . (2.114)

The expression on the right-hand side now has to be analyzed for large r.
For EMP2c the sum over k runs over all levels of the KS spectrum. In order
to extract the behavior of the numerator of (2.114) for large r, two basic
situations must be distinguished: If k corresponds to an unoccupied level,
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Fig. 2.17. Second order correlation potential of two-electron systems: Perturbative
evaluation of KLI-approximation on the basis of exact x-only orbitals. (for two-
electron systems v

(2)
c = vMP2c )

δEMP2c /δφ†
k(r) decays as fast as the highest occupied KS state φF (The Slater

integrals in (2.83) always link an unoccupied with an occupied state, so that
differentiation with respect to the unoccupied state breaks the integral and
leaves an occupied state). If k denotes an occupied level δEMP2c /δφ†

k(r) decays
slower than φF. On the other hand, the density in the denominator of (2.114)
behaves like |φF(r)|2. Thus qualitatively one finds

vMP2,KLIc (r) ∼ |φF(r) φunocc(r)|
|φF(r)|2 . (2.115)

As all unoccupied states decay more slowly than φF, vMP2,KLIc diverges for
large r.

One might first hope that this divergence is a consequence of the KLI ap-
proximation. Unfortunately, this is not the case. One can explicitly verify that
the divergence is present within the full OPM [25]. For the closed-subshell
atoms considered in this section the OPM equation reduces to a radial inte-
gral equation [3], ∫ ∞

0
dr′ K(r, r′) vxc(r′) = Qxc(r) , (2.116)

with a radial response function K and a corresponding inhomogeneity Qxc,

K(r, r′) =
δ[4πr2n(r)]
δvs(r′)

(2.117)

Qxc(r) =
∑
k

{∫
dr′ δExc

δϕk(r′)
δϕk(r′)
δvs(r)

+
∂Exc
∂εk

δεk
δvs(r)

}
. (2.118)
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Here ϕk denotes the radial part of the KS orbital, φklm(r) = ϕk(r)Ylm(Ω)/r
(ϕk is chosen to be real). BothK(r, r′) and Qxc(r) can be explicitly written in
terms of the ϕk(r) and the corresponding second (non-normalizable) solutions
χk(r) of the radial KS equations for the KS eigenvalues [3].

On this basis now a reductio ad absurdum will be used to show that
vMP2c (r) diverges for large r. Let us assume that vMP2c does not diverge, so
that vMP2c can be chosen to satisfy

vMP2c (r) −→
r→∞ 0 =⇒ vxc(r) = vx(r) + vMP2c (r) −→

r→∞ 0 . (2.119)

With this assumption one finds [47]∫ ∞

0
dr′ K(r, r′)vxc(r′) −→

r→∞ ΘF|ϕF(r)|2
∫ r

0
dr′ ϕF(r′)χF(r′)

×
∫ ∞

0
dr′′ |ϕF(r′′)|2vxc(r′′) . (2.120)

The asymptotic behavior of the left-hand side of the OPM equation (2.116)
is thus controlled by the product of the density of the highest occupied state
and an indefinite integral over ϕF(r)χF(r), which is only weakly r-dependent.
These r-dependent functions are multiplied by a constant, which is the orbital
expectation value of vxc. Equation (2.120) is separately valid for exchange and
correlation. If one divides the OPM equation for EMP2c by that for the exact
exchange one ends up with

lim
r→∞

QMP2c (r)
Qx(r)

= lim
r→∞

∫∞
0 dr

′ K(r, r′)vMP2c (r′)∫∞
0 dr

′′ K(r, r′′)vx(r′′)

=

∫∞
0 dr

′ |ϕF(r′)|2vMP2c (r′)∫∞
0 dr

′′ |ϕF(r′′)|2vx(r′′)
= C . (2.121)

Provided that the assumption (2.119) is correct, the ratio QMP2c (r)/Qx(r)
must approach a constant for large r.

This ratio can be examined numerically, relying on standard finite differ-
ences methods for the evaluation of the radial inhomogeneities. Results for
He are shown in Figs. 2.18 and 2.19.

For simplicity, only the contribution of the unoccupied Rydberg states
to QMP2c is included in these plots, while the contribution of the continuum
states to the corresponding sums in EMP2c and (2.118) is neglected (compare
the result including continuum states in [25]). Fig. 2.18 demonstrates the
convergence of QMP2c with increasing number of Rydberg levels. As in the case
of EMP2c itself, summation up to the shell with n = 10 provides essentially
the complete result. In addition, Fig. 2.18 illustrates the oscillatory nature of
Qxc(r): In fact, as a consequence of (2.47), the radial integral over Qxc must
vanish, as long as only discrete states are involved,∫ ∞

0
dr Qxc(r) = 0 .
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Fig. 2.19. Asymptotic behavior of Qxc for He: Contribution of Rydberg states to
QMP2c versus exact Qx. To allow for a logarithmic scale the absolute values are
plotted (the zeros of QMP2c are suppressed)
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The asymptotic behavior of QMP2c , which is of interest in the present
context, is plotted in Fig. 2.19. For large r one finds that Qx(r) goes go to
zero exponentially (as is immediately clear from (2.22) and (2.28)). On the
other hand, the behavior of QMP2c (r) depends on the highest unoccupied state
included: The more Rydberg levels are taken into account, the further out
the exponential decay sets in. In fact, Fig. 2.19 indicates that a complete
resummation of all Rydberg states leads to a power law decay of QMP2c (r). In
any case, even if only a restricted number of unoccupied states is included,
QMP2c (r) vanishes much more slowly thanQx(r). The ratio betweenQMP2c and
Qx(r) diverges exponentially, in contradiction to (2.121). This result can also
be verified analytically, as long as only a finite number of discrete unoccupied
states is considered. Consequently, the assumption (2.119) must be wrong,
which implies that vMP2c diverges8 for large r.

It is tempting to associate this divergence with the use of second order
perturbation theory: One could basically argue that the asymptotic region
is a low density regime, while the perturbation expansion is typically a high
density expansion. Within this physically motivated picture it is not surpris-
ing that for large r the second order expansion yields a non-physical potential.
However, one should be aware that the basic mechanism which leads to the
divergence of vMP2c is also present for any other functional which links oc-
cupied with unoccupied KS states at the same point r, including resummed
forms of the perturbation series.

Approximate Second Order Correlation Potential. How can one avoid
the asymptotic divergence of vMP2c = δEMP2c /δn and related potentials? It is
obvious from the discussion of the preceding section that a modification of
the OPM procedure is required if one wants to keep the energy functional
itself unchanged. A suitable modification is most easily introduced on the
level of the individual pair correlation energies eMP2ij ,

eMP2ij =
e4

2

∑
k,l

(1−Θk)(1−Θl)
(ij||kl)[(kl||ij)− (kl||ji)]

εi + εj − εk − εl
(2.122)

EMP2c =
∑
i,j

ΘiΘje
MP2
ij .

The basic structure of eMP2ij is somewhat similar to that of the Green’s func-
tion (2.25) which suggests to apply a closure approximation (CA) in anal-
ogy to the KLI approximation (2.53), i.e. to approximate the denominator
in (2.122) by some average eigenvalue difference,

εi + εj − εk − εl ≈ ∆ε .

8 The onset of this divergence is even visible in the basis set results for vMP2c

shown in Fig. 3 of [93], in spite of the fact that a basis set representation of vMP2c

ultimately truncates the divergent asymptotic behavior.
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After this replacement one can use the completeness of the KS spectrum to
eliminate all unoccupied states from (2.122),

eCAij =
e4

2
1
∆ε

{
(ij|||ij)− (ij|||ji)−

∑
k,l

ΘkΘl(ij||kl)[(kl||ij)− (kl||ji)]
}
(2.123)

with the matrix element

(ij|||kl) =
∫
d3r1

∫
d3r2

φ†
i (r1)φk(r1)φ

†
j(r2)φl(r2)

|r1 − r2|2 (2.124)

(these higher order Coulomb integrals can be evaluated with the same meth-
ods as used for the standard Slater integrals). With the closure approximated
pair-correlation energies one can then rewrite EMP2c in the form

EMP2c ≡
∑
i,j

ΘiΘjwij e
CA
ij , (2.125)

with the weights wij given by

wij = eMP2ij /eCAij . (2.126)

Until now EMP2c has only been recast, but not modified, as eCAij and thus ∆ε
drop out of (2.125). The crucial step is the handling of the functional (2.125)
in the OPM procedure. The form (2.125) suggests to restrict the OPM vari-
ation to the orbital-dependence of eCAij , while keeping the weights wij fixed
throughout the complete solution of (2.27) [25]. In this way the unoccupied
KS states do no longer contribute to the r dependence of the inhomogene-
ity (2.28), they are only required for the evaluation of wij .

The potential obtained with this scheme for Ne is shown in Fig. 2.20 (this
result is quite characteristic for all atoms considered so far). The closure ap-
proximated vMP2c is compared with the corresponding PW91-GGA and CS
potentials as well as the exact vc, which was extracted from Monte-Carlo
calculations [57]. It is obvious from Fig. 2.20 that neither the GGA nor the
CS potential have much in common with the exact vc, while the modified
second order potential vMP2,CAc reproduces its main features: vMP2,CAc is pos-
itive in the valence region and follows the shell structure of the exact vc.
Unfortunately, it clearly overestimates the shell oscillations and decays too
slowly for large r. In particular, this latter deficiency prevents the direct use
of vMP2,CAc in applications. Nevertheless, vMP2,CAc is the first DFT correlation
potential which shows at least qualitative agreement with the exact result,
reflecting the first-principles origin of E(2)c . In addition, one can hope that
the quantitative agreement can be improved by a suitable resummation of
the perturbation series (and, perhaps, a refined choice of wij).
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Fig. 2.20. Correlation potential of Neon: Closure approximated vMP2c

(FC2/CA) [25] versus PW91-GGA [30], CS [23] and exact [57] result (all
functionals have been evaluated with the exact KS orbitals)

2.7 Final Remarks

If one combines the results of Sect. 2.3 with those of Sect. 2.6 the emerging
picture is somewhat ambiguous. On the one hand, the exact treatment of ex-
change is well established by now: Quite a number of practical realizations of
the underlying x-only OPM formalism are available [3,50,51,58,59,94,95,96,97,98]
and all applications indicate that DFT with the exact exchange is essentially
equivalent to the HF approach (at least, in the case of ground-state prob-
lems). The use of the exact exchange most notably resolves the difficulties
of the conventional xc-functionals with the description of negative ions. Fur-
thermore, the KLI approximation [4] provides a very efficient and accurate
tool for practical calculations with the exact exchange.

On the other hand, the orbital-dependent treatment of correlation repre-
sents a much more serious challenge than that of exchange: The systematic
derivation of such functionals via standard many-body theory leads to rather
complicated expressions. Their rigorous application within the OPM not only
requires the evaluation of Coulomb matrix elements between the complete set
of KS states, but, in principle, also relies on the knowledge of higher order
response functions. In practical calculations, these first-principles functionals
necessarily turn out to be rather inefficient, even if they are only treated
perturbatively. In addition, the potential resulting from a large class of such
functionals is non-physical for finite systems. Both problems are related to
the presence of unoccupied states in the functionals which seems inevitable as
soon as some variant of standard many-body theory is used for the derivation.

One thus has to find approximations that avoid the presence of Slater in-
tegrals connecting occupied with unoccupied states. Unfortunately, the avail-
able semi-empirical functionals, i.e. the SIC-LDA and the Colle-Salvetti func-
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tional, which both satisfy this requirement, do not give results comparable
to what one obtains with standard GGAs. It seems that the derivation of
suitable approximations must start from some first-principles expression like
E
(2)
c and then simplify this expression or, at least, the corresponding poten-

tial. One possible strategy of this type is the closure approximation illustrated
in Sect. 8.

However, it may not be the construction of implicit correlation functionals
which is the real domain of KS perturbation theory, but rather the density
functional representation of the underlying correlated motion of the electrons.
The crucial point is that the perturbation expansion on the basis of the KS
Hamiltonian can be utilized for all kinds of many-body properties. This is
true in particular for the many-body wavefunction (r1σ1, . . . rNσN |Ψ〉 itself,
but also for the simplest quantity which reflects the correlated motion, the
2-particle density γ(r1, r2),

γ(r1, r2)=
N(N−1)

2

∫
d3r3 ...d3rN

∑
σ1...σN

|(r1σ1,r2σ2,r3σ3, . . . rNσN |Ψ〉|2.

(2.127)
Using the perturbative approach of Sect. 2.4 to first order, one ends up with

γ(1)(r1, r2)

= −1
2

∑
i

Θi

∑
k

(1−Θk)

∑
j Θj(kj||ji) + 〈k|vx|i〉

εi − εk

×
{

φ†
i (r1)φk(r1)n(r2) + n(r1)φ

†
i (r2)φk(r2)

−
∑
l

Θl

[
φ†
l (r1)φk(r1)φ

†
i (r2)φl(r2) + φ†

i (r1)φl(r1)φ
†
l (r2)φk(r2)

]}

+
1
2

∑
i,j

ΘiΘj

∑
k,l

(1−Θk)(1−Θl)
(ij||kl)− (ij||lk)
εi + εj − εk − εl

× φ†
i (r1)φk(r1)φ

†
j(r2)φl(r2) + c.c. (2.128)

This expression represents an implicit density functional for γ(r1, r2) in the
same sense as (2.19) is an implicit density functional for the exchange energy.

How realisticly does γ(1) describe the Coulomb correlation between the
electrons? This question is answered in Fig. 2.21 which shows the 2-particle
density of the He ground-state. For He one has only three relevant coordinates
which fix the positions of the two electrons relative to the nucleus in the
plane spanned by the three particles (the other three coordinates correspond
to rotations of the triangle defined by the nucleus and the two electrons
around the position of the nucleus). With the nucleus defining the origin of
the coordinate system, the most suitable coordinates are the radial distances
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Fig. 2.21. 2-particle-density of helium: Radial structure for r1=0.543 bohr, Θ =
π, 0. First order perturbative implicit functional versus x-only and exact result [99]

between the two electrons and the nucleus, r1, r2, and the angle Θ between
their positions, r1 ·r2 = r1r2 cosΘ. As in the case of the radial single-particle
density, the probability to find an electron in a certain radial range [r1, r1+δ]
is obtained by multiplication of γ by r21. The appropriate quantity to plot is
thus (4π)2r21r

2
2γ(r1, r2, Θ), so that the radial density 4πr21n(r1) is obtained

by integration over r2 and Θ without further manipulation,

4πr21n(r1) = (4π)2r21

∫ ∞

0
r22 dr2

∫ π

0
dΘ γ(r1, r2, Θ) .

In Fig. 2.21 r1 has been set to 0.543 bohr, which is the radius at which r21n(r1)
has its maximum. Together with the nucleus at the origin the position of the
first electron defines a straight line along which the second electron is moved,
i.e. Fig. 2.21 shows the r2-dependence for Θ = 0 (positive r2-values) and
Θ = π (negative r2-values). For r2 =+0.543 bohr the two electrons sit on top
of each other.

The solid line represents the exact result, obtained from the most accurate
variational wavefunction of Kinoshita [99]. One can see that the two electrons
preferably move on opposite sides of the nucleus: The likelihood to come close
to each other is only half as large as that of remaining on opposite sides.
Moreover, the 2-particle density clearly shows the electron-electron cusp at
r1 = r2. Figure 2.21 also provides the x-only result, which corresponds to
the ground-state KS Slater determinant. As this determinant only contains
Pauli, but not Coulomb correlation, the electrons move independently in the
x-only approximation,

γs(r1, r2, Θ) = |φ1s(r1)|2|φ1s(r2)|2 .
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The probability for the electrons to sit on top of each other is as high as
that for sitting at the same radial distance on opposite sides of the nucleus.
Finally, the implicit functional (2.128) is plotted. It incorporates most of the
Coulomb correlation in γ. It slightly overestimates the suppression of the on-
top position, but, overall, is rather realistic (the somewhat less pronounced
cusp is a basis set, i.e. numerical, effect). This result demonstrates explicitly
that the concept of implicit functionals can not only be used for xc-energies,
but also for the description of local correlation, which might be of interest in
the context of scattering and multiple excitation processes.
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42. L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
43. M.E. Casida, Phys. Rev. A 51, 2505 (1995).
44. J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Lett. A 148, 470 (1990).
45. T. Grabo, T. Kreibich, S. Kurth, and E.K.U. Gross, in Strong Coulomb Corre-

lations in Electronic Structure Calculations: Beyond the Local Density Approx-
imation, edited by V. I. Anisimov (Gordon and Breach, Amsterdam, 1999), p.
203.

46. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
47. E. Engel et al., Phys. Rev. A 58, 964 (1998).
48. E. Engel and S.H. Vosko, Phys. Rev. A 47, 2800 (1993).
49. C. F. Fischer, The Hartree-Fock Method for Atoms (Wiley, New York, 1977).
50. S. Ivanov, S. Hirata, and R. J. Bartlett, Phys. Rev. Lett. 83, 5455 (1999).
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3.1 Summary

In these lectures on relativistic density functional theory I had the choice to
provide a kind of survey, or to concentrate on a few specific aspects in greater
detail. I chose the first option. In order to give you the opportunity to fill in
the (often gory) details, I will distribute a list of references, augmented by
suitable comments on the contents of the papers cited.

In my lectures I will cover the topics:
1. Introduction, giving a brief summary of why one should work with quan-

tum electrodynamics (QED) if one is interested in the density functional
theory of relativistic Coulomb systems.

2. Foundation, containing some comments on the relativistic Hohenberg-
Kohn theorem and indicating how the exact (but not easily solvable)
relativistic Kohn-Sham equations (containing radiative corrections and
all that) can be reduced to the standard approximate variant.

3. Functionals, with a mini-survey of the relativistic functionals that have
been considered. The headings are well known from the non-relativistic
case: LDA, GGA, OPM, etc.

4. Results, giving an indication of the performance of these functionals for
a number of systems (mainly atoms) and a brief statement on some par-
ticular systems (molecules, solids).
A few words are also necessary concerning notation. Relativistic units

with
� = c = 1 ; m0 = m ; e .

will be used. This choice is debatable (e.g., if one considers expansions in
1/c), but in general use. I shall use the standard conventions of relativistic
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theory, as found in most textbooks on relativistic quantum mechanics, e.g.,

3∑
µ=0

aµb
µ −→ aµb

µ ,

with the metric

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




for time (0) and space (1–3) coordinates, or the Feynman dagger notation

/a = γµa
µ .

Relativistic corrections to the ground state energies of many particle sys-
tems are expected in two places. First there is the kinematic correction. The
non-relativistic kinetic energy has to be replaced by its relativistic equivalent

− ∇2

2m
−→ −i∇ · γ . (3.1)

The second correction is a modification of the interaction energies. On the
level of relativistic density functional theory for Coulomb systems this means,
for instance, the replacement of the standard Hartree energy by its covariant
form involving electron four-currents, jµ and the photon propagator, D(0)

µν ,

e2

2

∫
d3x
∫

d3y
n(x)n(y)
|x − y| −→ 1

2

∫
d3x
∫

d4y jµ(x)D(0)
µν (x− y)jν(y) . (3.2)

A corresponding change applies to the other interaction terms.
The appropriate starting point for the discussion of relativistic Coulomb

systems is QED [1,2,3]. The reason for using the full quantum field theory
rather than just the Dirac equation is twofold: (i) With a quantum field theory
the anti-particle sector is sorted correctly. This statement is illustrated by the
small table comparing the free particle versions of the two options:

charge energy

Dirac negative definite negative / positive
QED negative / positive positive definite

The experimental situation with positive energies and oppositely charged
particles and anti-particles is obviously described correctly by field theory.
(ii) Possible questions of renormalization are quite apparent. I illustrate this
remark by one example. The four-current of an electron in an external field
is given by

jµ(x) = −i limS
y→x

Tr [SF(x, y)γµ] . (3.3)
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This is the analogue of the non-relativistic case where, e.g., the density is
the equal time, equal space limit of the Green function. The slightly more
complicated symmetric limit

limS
y→x

=
1
2

[
lim

y→x, y0>x0
+ lim

x→y ,y0<x0

]
(x−y)2≥0

(3.4)

is due to the requirement of charge conjugation invariance of the relativistic
theory. In diagrammar the Green function is given by

�=�+� +� +� + . . . (3.5)

The fermion (say electron) interacts in the sense of the Born approxi-
mation with an external source. Taking the symmetric limit corresponds to
closing the lines on themselves

− ijµ = � +� +� + . . . (3.6)

One immediately recognizes that the second diagram contains the lowest
order vacuum polarization

−iΠ(0)
µν (q) =

�q

p+q

, (3.7)

which is one of the three basic divergence contributions of QED. It has to,
and can, be renormalized. It remains to say that attempts to set up extended
Thomas-Fermi-type models for relativistic systems have been thwarted for
quite some years by not recognizing this feature.

I will not dwell on the field theoretical details in the following, but we
have to take note of the starting point, the QED Hamiltonian

Ĥ =
∫

d3x ¯̂
ψ(x) (−iγ · ∇ + m) ψ̂(x)

+ e

∫
d3x ̂µ(x)Âµ(x) +

∫
d3x ̂µ(x)vext µ(x)

− 1
8π

∫
d3x

{[
∂0Âµ(x)

] [
∂0Âµ(x)

]
+ ∇Âµ(x) · ∇Âµ(x)

}
. (3.8)
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We have fermions interacting via an electromagnetic field and with external
sources and the Hamiltonian of the electromagnetic field. The renormalized
Hamiltonian is

Ĥren = Ĥ − VEV + CT . (3.9)

It involves the trivial renormalization, the subtraction of vacuum expectation
values (VEV), and the serious renormalization (see above) which can be
handled by the counter-term (CT) technique [4].

3.2 Foundations

The relativistic Hohenberg-Kohn theorem was first formulated by Rajagopal
and Callaway [5,6] and by McDonald and Vosko [7]. As expected for a Lorentz
covariant situation it states that the ground-state energy is a unique func-
tional of the ground-state four-current

E0[jµ] = F [jµ] +
∫

d3x jµ(x)vext µ(x) , (3.10)

where F is an universal functional of jµ, and the simplest contribution, the
coupling to the external sources, is (as usual) made explicit. The proof has
been re-examined by Engel et al. [8], who demonstrated that field theoretical
aspects (that were not considered by the previous authors) do not invalidate
the conclusion. The final statement is: All ground-state observables can be
expressed as unique functionals of the ground-state four-current as:

O[jµ] = 〈Φ0[jµ]|Ô|Φ0[jµ]〉 + ∆OCT − VEV . (3.11)

Again counter-terms and subtraction of vacuum expectation values have to
be taken care of.

In practical applications the question arises: What is the situation if
the external potential is electrostatic {vµ

ext(x)} =
{
v0ext(x),0

}
? The an-

swer is: All ground-state variables, including the spatial components of the
four-current, are then functionals of the charge density alone, e.g.,

j([n], x) = 〈Φ0[n]|̂(x)|Φ0[n]〉 . (3.12)

The question whether these functionals are known is a different story.
The relativistic Kohn-Sham scheme starts, in complete analogy to the

non-relativistic case, with a representation of the four-current and of the
non-interacting kinetic energy in terms of auxiliary spinor orbitals [8]. If one
calculates the four-current of a system of fermions in an external potential
(as indicated above), one obtains

jµ(x) = jµ
vac(x) + jµ

D(x) . (3.13)
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The vacuum polarization current (which arises from the symmetric limit) is
given by the solution of a Dirac equation by

jµ
vac(x) =

1
2


 ∑

εk≤−m

ϕ̄k(x)γµϕk(x) −
∑

−m<εk

ϕ̄k(x)γµϕk(x)


 . (3.14)

It contains negative energy solutions as well as bound states and positive
energy solutions. The current due to the occupied orbitals is

jµ
D(x) =

∑
−m<εk≤εF

ϕ̄k(x)γµϕk(x) . (3.15)

The non-interacting kinetic energy, including the trivial rest mass term, has
a corresponding structure

Ts[jµ] = Ts,vac[jµ] + Ts,D[jµ] . (3.16)

The contributions are obtained from the formulae given for jµ by the replace-
ment

γµ −→ −iγ · ∇ + m . (3.17)

The full Kohn-Sham scheme is obtained by writing the ground-state energy
as

E0[jµ] = Ts[jµ] + Eext[jµ] + EHartree[jµ] + Exc[jµ] , (3.18)

where the xc energy is defined as the difference

Exc = F − Ts − EHartree . (3.19)

The Hartree energy is the covariant version

EHartree[jµ] =
1
2

∫
d3x
∫

d4y jµ(x)D(0)
µν (x− y)jν(y) , (3.20)

which reduces to

EHartree[jµ] =
e2

2

∫
d3x
∫

d3y
jµ(x)jµ(y)

|x − y| (3.21)

for stationary currents.
The philosophy behind this addition and subtraction both in the non-

relativistic as well as in the relativistic case is to isolate the (in principle)
tractable, dominant contributions. The xc-energy becomes then the key quan-
tity concerning serious many-body effects.

Minimization of the ground-state energy with respect to the auxiliary
spinor orbitals leads to the general Kohn-Sham equations:

γ0
{−iγ · ∇ + m + /vext(x) + /vHartree(x) + /vxc(x)

}
ϕk(x) = εkϕk(x) .

(3.22)
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This is a Dirac equation with the effective potentials

/vHartree(x) = γµv
µ
Hartree(x) = e2γµ

∫
d3y

jµ(y)
|x − y| (3.23)

/vxc(x) = γµ
δExc[jµ]
δjµ(x)

, (3.24)

which has to be solved self-consistently.
So far nobody has solved the indicated problem. The evaluation of the

vacuum contributions (in jµ and Ts) includes the full set of solutions of
the Dirac equation and renormalization at each step of the self-consistency
procedure.

In the discussion of “practical” problems some approximations are com-
monly applied: (i) The “no-sea” approximation, where one neglects all radia-
tive corrections

jµ
vac = Ts,vac = Exc,vac = 0 . (3.25)

If these corrections are of interest, they can be calculated perturbatively with
the final self-consistent solutions. (ii) The situation encountered most often
in electronic structure calculations is the one where the external potential is
purely electrostatic. In this case, the charge density is the only variable (see
above) and one has

ẼHartree[n] ≡ EHartree[n, j[n]] (3.26)
Ẽxc[n] ≡ Exc[n, j[n]] . (3.27)

As a consequence, the effective potentials are also electrostatic, e.g.,

{vµ
Hartree(x)} = {vHartree(x),0} , (3.28)

with

vHartree(x) =
δEHartree[jµ]

δn(x)
+

3∑
k=1

∫
d3x′ δEHartree[jµ]

δjk(x′)
δjk(x′)
δn(x)

. (3.29)

The additional term arises as there is an explicit functional dependence of jk

on n.
The resulting electrostatic no-sea approximation is the standard version

applied in practice. It is usually written as

{−iα · ∇ + mβ + vext(x) + vHartree(x) + vxc(x)}ϕk(x) = εkϕk(x) , (3.30)

where the density is given by

n(x) =
∑

−m<εk≤εF

ϕ†
k(x)ϕk(x) . (3.31)
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Usually the exact current j[n] (wherever it occurs) is replaced by the
Kohn-Sham current

j(x) =
∑

−m<εk≤εF

ϕ†
k(x) α ϕk(x) . (3.32)

The differences that might occur due to this replacement have not been ex-
plored.

Further possible approximations rely on the fact that the free photon
propagator, which mediates the interaction between the fermions, can be
split into a longitudinal (Coulomb) and a transverse part

D(0)
µν (x− y) = gµ0 gν0

e2

|x − y|δ(x
0 − y0) + DT

µν(x− y) . (3.33)

If one neglects the transverse contribution, one arrives at what is termed the
Dirac-Coulomb approximation (a standard in quantum chemistry). Inclusion
of the transverse term, which describes retardation and magnetic effects, in
perturbation theory (weakly relativistic limit) leads to the Dirac-Coulomb-
Breit Hamiltonian.

As a conclusion of this section, I just state that the full, weakly relativistic
limit of the electrostatic, no-sea approximation (obtained with techniques
such as the Fouldy-Wouthuysen transformation) makes contact with non-
relativistic current-density functional theory (as formulated by Rasolt and
Vignale [9]).

3.3 Functionals

The standard relativistic density functional expression for the ground-state
energy is

E0[jµ] = Ts[jµ] + Eext[jµ] + EHartree[jµ] + Exc[jµ] . (3.34)

The functional dependence of Ts and Exc on jµ needs to be established. In
Kohn-Sham applications, Ts is expressed directly in terms of spinor orbitals,
so only Exc has to be considered. If one is aiming at setting up relativis-
tic extensions of extended Thomas-Fermi models, one also has to consider
dependence of Ts on the four-current. I shall present a few remarks on the
density functional form of Ts, but first we look at the exchange and correla-
tion energy.

The simplest approximation is the local density approximation (LDA),
which is obtained from the energy density of the relativistic homogeneous
electron gas (RHEG)

ELDA
xc [n] =

∫
d3x eRHEGxc (n0)

∣∣
n0=n(x) . (3.35)
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Two remarks apply: (i) For this homogeneous system the spatial current van-
ishes jRHEG = 0, so there is only a dependence on the density. (ii) Knowledge
of the ground-state energy of the RHEG is much less developed than for its
non-relativistic counterpart. There are, for instance, no Monte Carlo results
for eRHEGxc . The functionals that are available in this approximation are thus
obtained by painstaking evaluation of the simplest diagrammatic contribu-
tions to the ground-state energy. The details are more involved than in the
non-relativistic case, partly due to questions of renormalization, partly due to
the Minkowski space structure. I shall only indicate the genesis of the results
in terms of the corresponding diagrams.

The x contribution has been worked out as early as 1960. One can show
that after proper renormalization only the contribution

eRHEGx =
i
2

�D

D

, (3.36)

which is the diagram with the finite contribution of the free electron propa-
gator, remains. The arguments leading to this result can be summarized as
follows. In the RLDA the x-energy density is given by

eRHEGx =
1
2

∫
d4y D(0)

µν (x− y) Tr
[
S
(0)
F (x− y)γνS

(0)
F (y − x)γµ

]
+

+CT + VEV . (3.37)

In diagrammar the loop integral looks like this

eRHEG(1)x =
i
2 �

. (3.38)

The double line stands for the free photon propagator D(0)
µν , and the wiggly

line for the lowest order fermion propagator of the RHEG, S(0)F . The photon
propagator can be split into a vacuum contribution and a direct contribution
due to the occupied electron states

�=�vac
+�D

≡�+�D
. (3.39)
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The loop integral then consists of four contributions

�
=

�
+

�D

+

�

D

+

�D

D

. (3.40)

The first contribution is divergent but is removed the subtraction of the
vaccum, while the next two diagrams contain the lowest order self-energy

�

= Σ(1)
vac , (3.41)

which has still to be renormalized to yield Σ
(1)
vac,ren. However, the terms vanish

as the self-energy satisfies the on-shell condition[
(/p + m)Σ(1)

vac,ren

]
p2=m2

= 0 . (3.42)

The factor (/p+m) is supplied by the remaining propagator. So, finally, only
the contribution due to the occupied electron states remains.

The relativistic corrections are more readily discussed if one writes [10,11,12]

eRHEGx = eNRHEGx Φx

(
kF
m

)
, (3.43)

where the relativistic correction factor can be split (due to the structure of
the free photon propagator, see above) into [13]

eRHEGx = eNRHEGx

[
ΦLx

(
kF
m

)
+ ΦTx

(
kF
m

)]
. (3.44)

One finds that the longitudinal part (L) does not differ very much from the
non-relativistic limit. The transverse correction (T) is negative and it is small
for low densities, but grows sufficiently in magnitude, so that the x energy
density changes sign at β = kF/m ≈ 2.5 (one should keep in mind that the
maximal density in the Hg atom – in the inner shells – amounts to β ≈ 3).

The transverse correction factor can be decomposed into a magnetic and a
retardation contribution with opposite signs. The magnetic contribution dom-
inates at higher densities. The expansion of eRHEGx in the weakly relativistic
limit gives the Breit contribution to ex, that reproduces the full transverse
correction factor quite closely over the relevant range of 0 ≤ β ≤ 3.
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Concerning correlations, the only contribution that has been worked out
is the random phase (RPA) limit [10,12,14,15]. After renormalization, one
can write the RPA correlation energy contribution as

eRPAc = i


	D D +

+�D
D

D + . . .




. (3.45)

The loops of the (fermion) polarization insertion involve only the direct
contribution



D =

�

D

+

ÆD

+


D

D

. (3.46)

The interaction lines correspond to the full vacuum photon propagator
that is obtained by re-summation of the series

�
=
�

+�ren

+�ren

ren

(3.47)

in terms of the renormalized vacuum polarization insertion.
The final evaluation (involving one numerical integration) has only been

achieved within two further approximations: (i) In the no-sea approximation,
the full photon propagator is replaced by the free propagator

�
≈
�

. (3.48)

(ii) In the no-pair approximation (a kind of standard in quantum chemistry)
one also uses the free propagator

�
≈
�

, (3.49)
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and in addition evaluates the polarization insertion with the electron propa-
gator



D ≈

�
+


+

. (3.50)

There is a conceptual difference in the sense that the no-pair approxi-
mation is gauge dependent, but in the final reckoning there is only a slight
difference in the results. The result can (as for exchange) be written in the
form

eRHEGc,RPA = eNRHEGc,RPA ΦRPAc

(
kF
m

)
(3.51)

The correction factor can be represented quite accurately by

ΦRPAc (β) =
1 + a1β

3 lnβ + a2β
4 + a3(1 + β2)2β4

1 + b1β3 lnβ + b2β4 + b3(A lnβ + B)β7
, (3.52)

which incorporates the exact large density limit as well as the non-relativistic
limit. A plot shows that the relativistic corrections can become quite substan-
tial for higher densities.

There is no systematic treatment of other contributions to the ground-
state energy of the RHEG. This remark also pertains to the construction of
gradient expansion approximations (GEA), which in the x-only limit involves,
to lowest order, the four-point contributions

� + �+�. (3.53)

(You should, however, note that the proper evaluation in the non-relativistic
limit took the better part of 10 years).

As the hopes placed in the GEA did not materialize (in the non-relativistic
case), one turned to the construction of generalized gradient approximations
(GGA). These are based on the following “philosophy”: (i) Use available
“exact” results for atoms (x-only or on the basis of CI calculations) and fit
them to a functional of the form

EGGA
xc =

∫
d3x eLDAxc Fxc(n, ζ) (3.54)

with the dimensionless gradient

ζ =
(∇n)2

4n2 (3π2n)2/3
; (3.55)
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(ii) Incorporate (depending on the philosophy) some exact properties as, e.g.,
the correct weakly inhomogeneous limit, etc.; (iii) Use this functional for the
discussion of more complex Coulomb systems as molecules and solids (relying
on the supposed universality).

If one wishes to proceed in this fashion in the relativistic case, one has
to provide “accurate” atomic data. For this purpose, OPM, the optimized
potential method [16] (in the present context the relativistic extension, the
ROPM) is a valuable tool. The (R)OPM relies on the fact that the functional
derivative with respect to the density (or the four-current) can be evaluated
with the chain rule for functional derivatives if the dependence on the density
is implicit via Kohn-Sham orbitals, (E[n] = E[ϕk] = E[ϕk[n]])

v(x) =
δE

δn(x)
=
∑

k

∫
d3x′

∫
d3x′′ δE

δϕk(x′)
δϕk(x′)
δvKS(x′′)

δvKS(x′′)
δn(x)

. (3.56)

The first factor is evaluated directly from the explicit functional form, the
second follows from the linear response limit of the Kohn-Sham equations as
does the last one (the inverse Kohn-Sham response function).

On the basis of (3.56), an integral equation for the multiplicative potential
v(x) can be derived. It has the form∫

d3x′ K (x,x′) v(x′) = Q(x) , (3.57)

where both the kernel, K (x,x′), and the inhomogeneous term, Q(x), can be
expressed in terms of Kohn-Sham orbitals.

For the x-only limit the application of the OPM is rather straightforward.
One starts with the definition of the covariant x-energy

Ex =
1
2

∫
d3x
∫

d4y D(0)
µν (x− y) Tr [SF(x, y)γνSF(y, x)γµ] (3.58)

(see diagrams above) and evaluates the fermion propagators in the Kohn-
Sham (that is, effective single particle) limit. If, in addition, one applies the
electrostatic no-sea approximation, one obtains

EKS
x [n] = −e2

2

∫
d3x
∫

d3y

∑
−m<εk,εl≤εF

cos (|εk − εl||x − y|)
|x − y| ϕ̄k(x)γµϕl(x)ϕ̄l(y)γµϕk(y) . (3.59)

For a corresponding correlation contribution, e.g.,

EKS
c [n] = Exc[n] − EKS

x [n] (3.60)

only some variants of perturbation theory on the basis of the Kohn-Sham
Hamiltonian are available like,e.g., a straightforward second order pertur-
bation theory (in the spirit of Møller-Plesset perturbation theory) or some
partially re-summed versions. I shall not present the relevant equations.
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The numerical implementation of the OPM scheme is rather involved. For
this reason, one often applies the Krieger-Li-Iaffrate (KLI) approximation,
which turns out to be (as in the non-relativistic case) rather accurate.

From the solution of the relativistic OPM problem (or some other “exact”
equivalent) for atoms, one may construct relativistic GGA-type functionals
following the procedure used in non-relativistic theory. One sets, for instance
in the x-only limit

Fx(n, ζ) = Φx,0(β) + g(ζ)Φx,2(β) . (3.61)

One then uses non-relativistic forms of the gradient correction factor g (The
different forms found in the literature do give results that vary only
marginally). For the relativistic correction factor Φx,2 a flexible [2,2] Padé
approximant

Φx,2(β) =
a0 + a1β

2 + a2β
4

1 + b1β2 + b2β4
(3.62)

proved to be sufficient to reproduce ROPM results to high accuracy. Both
the longitudinal as well as the transverse contribution can be accommodated
with this ansatz. The correct weakly relativistic limit is obtained with

aL0 = 1 , aT0 = 0 , and β ≈ 0 . (3.63)

As a conclusion of this section I offer a few remarks on the functional
Ts[jµ]. This functional is used in relativistic, extended Thomas-Fermi models,
which are based on the direct variational principle

δ

δjµ(x)

{
E0[jν ] + µchem

∫
d3y j0(y)

}
= 0 . (3.64)

In contrast to the Kohn-Sham scheme, no auxiliary orbitals are involved.
Unfortunately, the presently available approximations to Ts[jµ] are only ad-
equate for general estimates (rather than for results of chemical accuracy).
The functional in question is derived from the exact kinetic energy

T [jµ] = −i
∫

d3x limS
y→x

Tr [−iγ · ∇ + m]SF(x, y) − VEV + CT , (3.65)

where the exact fermion propagator is replaced by the Kohn-Sham propagator

[
i/∂x −m− /vKS(x)

]
SKSF (x, y) = δ(4)(x− y) . (3.66)

As indicated, renormalization is necessary. Results are available to fourth
order in the gradient of the density in the electrostatic limit

T el.st.
s [n] = T [0]

s [n] + T [2]
s [n] + T [4]

s [n] + . . . (3.67)

and to second order in the gradients of the four-current for the more general
case

Ts[n, j] = T [0]
s [n] + T [2]

s [n, j] + . . . (3.68)
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Table 3.1. Longitudinal ground state energies (−EL
tot) and highest occupied eigen-

values (−εLmk) for closed sub-shell atoms from non-relativistic OPM (NROPM [17]),
relativistic OPM (ROPM [18]) and relativistic HF (RHF [19]) calculations (all en-
ergies are in hartree)

Atom −EL
tot −εLmk

NROPM ROPM RHF NROPM ROPM RHF

He (1S1/2) 2.862 2.862 2.862 0.918 0.918 0.918
Be (2S1/2) 14.572 14.575 14.576 0.309 0.309 0.309
Ne (2P3/2) 128.545 128.690 128.692 0.851 0.848 0.848
Mg (3S1/2) 199.611 199.932 199.935 0.253 0.253 0.253
Ar (3P3/2) 526.812 528.678 528.684 0.591 0.587 0.588
Ca (4S1/2) 676.751 679.704 679.710 0.196 0.196 0.196
Zn (4S1/2) 1777.828 1794.598 1794.613 0.293 0.299 0.299
Kr (4P3/2) 2752.028 2788.848 2788.861 0.523 0.515 0.514
Sr (5S1/2) 3131.514 3178.067 3178.080 0.179 0.181 0.181
Pd (4D5/2) 4937.858 5044.384 5044.400 0.335 0.319 0.320
Cd (5S1/2) 5465.056 5593.299 5593.319 0.266 0.282 0.281
Xe (5P3/2) 7232.018 7446.876 7446.895 0.456 0.439 0.440
Ba (6S1/2) 7883.404 8135.625 8135.644 0.158 0.163 0.163
Yb (6S1/2) 13391.070 14067.621 14067.669 0.182 0.196 0.197
Hg (6S1/2) 18408.313 19648.826 19648.865 0.262 0.329 0.328
Rn (6P3/2) 21865.826 23601.969 23602.005 0.427 0.382 0.384
Ra (7S1/2) 23093.258 25028.027 25028.061 0.149 0.167 0.166
No (7S1/2) 32787.471 36740.625 36740.682 0.171 0.209 0.209

3.4 Results

I shall first show some results for atoms in order to illustrate the magnitude of
relativistic effects and to compare the performance of the various relativistic
functionals.

The first set of tables deals with the x-only limit, where in addition a
direct comparison with relativistic Hartree-Fock (RHF) results is possible.
Total ground-state energies for closed sub-shell atoms (Table 3.1) calculated
with the longitudinal x-contribution (the straightforward Coulomb interac-
tion), show the following features: Comparing NROPM to ROPM results
one notices the growing importance of relativistic corrections as the central
charge is increased (The difference between relativistic and non-relativistic
energies is nearly 4000 hartree). One also notices that there is hardly any
difference between ROPM and RHF energies, although in the first case the
effective potential is multiplicative while in the latter it is non-local. The
second column gives the energies of the highest occupied orbitals. Even the
outermost orbitals experience some effect of relativity (due to the change of
the effective potential generated by the inner orbitals).
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Table 3.2. Single particle energies (−εnlj) for Hg from NROPM, ROPM and RHF
calculations in comparison with DFS, RLDA and RWDA results (all energies are
in hartree)

Level NROPM ROPM RHF DFS RLDA RWDA

1S1/2 2756.925 3047.430 3074.228 3047.517 3044.410 3051.995
2S1/2 461.647 540.056 550.251 539.713 539.250 540.530
2P1/2 444.015 518.061 526.855 518.164 517.746 519.244
2P3/2 444.015 446.682 455.157 446.671 446.399 447.469
3S1/2 108.762 128.272 133.113 128.001 127.905 128.292
3P1/2 100.430 118.350 122.639 118.228 118.148 118.592
3P3/2 100.430 102.537 106.545 102.397 102.346 102.691
3D3/2 84.914 86.201 89.437 86.085 86.060 86.364
3D5/2 84.914 82.807 86.020 82.690 82.668 82.959
4S1/2 23.522 28.427 30.648 28.067 28.046 28.200
4P1/2 19.895 24.161 26.124 23.871 23.854 24.023
4P3/2 19.895 20.363 22.189 20.039 20.030 20.167
4D3/2 13.222 13.411 14.797 13.148 13.146 13.271
4D5/2 13.222 12.700 14.053 12.434 12.432 12.553
4F5/2 4.250 3.756 4.473 3.556 3.559 3.665
4F7/2 4.250 3.602 4.312 3.402 3.404 3.509
5S1/2 3.501 4.403 5.103 4.290 4.286 4.349
5P1/2 2.344 3.012 3.538 2.898 2.896 2.955
5P3/2 2.344 2.363 2.842 2.219 2.218 2.265
5D3/2 0.538 0.505 0.650 0.363 0.363 0.397
5D5/2 0.538 0.439 0.575 0.296 0.296 0.328
6S1/2 0.262 0.329 0.328 0.222 0.222 0.254

The full situation for the orbital energies is illustrated in Table 3.2 for
the Hg atom (also in the longitudinal x-only limit). Comparing the orbital
energies obtained from NROPM and ROPM calculations one sees once more
the effect of relativistic corrections. One also notices that the orbital ener-
gies obtained from ROPM and RHF are quite different, with the exception
of the last occupied orbitals, even if the total energies agree very closely.
This stresses the fact that the orbitals (and their energies) are only auxiliary
quantities that should be interpreted with some care (one should, e.g., not
calculate excited state energies by just promoting particles from occupied to
unoccupied orbitals). The exception is the highest occupied orbital whose
energy corresponds (in principle) to the first ionization potential. Included
in the table are Dirac-Fock-Slater (DFS) results (using the non-relativistic
Slater potential in the Dirac equation) and RLDA results (using the rela-
tivistic longitudinal x-potential). These are basically two similar versions of
LDA-type Kohn-Sham calculations. One sees that the differences in the or-
bital energies are small for the inner orbitals and become even smaller for the
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Table 3.3. Longitudinal (Coulomb) x-only energies (−EL
x ) for closed sub-shell

atoms from NROPM, ROPM, RHF, DFS, RLDA, and RWDA-calculations [18] (all
energies are in hartree)

Atom NROPM ROPM RHF DFS RLDA RWDA

He 1.026 1.026 1.026 0.853 0.853 1.026
Be 2.666 2.667 2.668 2.278 2.278 2.706
Ne 12.105 12.120 12.123 10.952 10.944 12.843
Mg 15.988 16.017 16.023 14.564 14.550 17.093
Ar 30.175 30.293 30.303 27.897 27.844 32.419
Ca 35.199 35.371 35.383 32.702 32.627 37.967
Zn 69.619 70.245 70.269 66.107 65.834 75.604
Kr 93.833 95.048 95.072 89.784 89.293 102.095
Sr 101.926 103.404 103.429 97.836 97.251 111.133
Pd 139.113 141.898 141.930 134.971 133.887 152.275
Cd 148.879 152.143 152.181 144.931 143.687 163.321
Xe 179.062 184.083 184.120 175.926 174.102 197.564
Ba 189.065 194.804 194.841 186.417 184.363 209.171
Yb 276.143 288.186 288.265 278.642 274.386 310.268
Hg 345.240 365.203 365.277 354.299 347.612 392.339
Rn 387.445 414.082 414.151 402.713 394.102 444.584
Ra 401.356 430.597 430.664 419.218 409.871 462.365
No 511.906 564.309 564.415 554.242 538.040 606.216

outer ones. This indicates that one is dealing with a density range for which
the relativistic corrections to the longitudinal x-energy are not too large. On
the other hand there are definite differences between these LDA results and
the results that treat the x-effects exactly.

Corresponding results for the Coulomb energies of the closed sub-shell
atoms (Table 3.2) are also of interest. Again, ROPM and RHF results agree
quite closely, but one also notices that the differences between NROPM and
ROPM results are not too large (of the order of 50 hartree for No, compared
to the 4000 hartree for the total ground-state energy). The major part of the
relativistic correction is kinetic rather than due to the structure of the inter-
action functionals. The RLDA versions do not perform optimally, although
they reproduce the trend of the relativistic corrections.

In Table 3.3 (still in the longitudinal x-only limit) some RGGA results are
included. The corresponding functional is obtained by fitting ROPM results
to the parameterization that I have discussed. i.e., g(ζ) is written in a non-
local PW91 form [20], and Φx,2 in the [2,2] Padé form.

The results show that the ROPM results (which are not that easily gen-
erated) can be reproduced with very reasonable accuracy by the RGGA pa-
rameterization.
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Table 3.4. Longitudinal x-only ground-state energies: Self-consistent ROPM, RHF,
RLDA and RGGA results for neutral atoms with closed sub-shells (in hartree)

Atom −EL
tot EL

tot − EL,ROPM
tot

ROPM RHF RLDA RPW91

He 2.862 0.000 0.138 0.006
Be 14.575 −0.001 0.350 0.018
Ne 128.690 −0.002 1.062 −0.024
Mg 199.932 −0.003 1.376 −0.001
Ar 528.678 −0.005 2.341 0.041
Ca 679.704 −0.006 2.656 0.026
Zn 1794.598 −0.014 4.140 −0.262
Kr 2788.848 −0.013 5.565 −0.021
Sr 3178.067 −0.013 5.996 −0.008
Pd 5044.384 −0.016 7.707 −0.067
Cd 5593.299 −0.020 8.213 −0.033
Xe 7446.876 −0.019 9.800 0.085
Ba 8135.625 −0.019 10.289 0.059
Yb 14067.621 −0.048 13.272 −0.893
Hg 19648.826 −0.039 17.204 −0.250
Rn 23601.969 −0.035 19.677 0.004
Ra 25028.027 −0.034 20.460 −0.006

Table 3.5 includes the transverse x-contribution. For the column labeled
RHF, the additional term is evaluated with the RHF density and added to the
RHF ground-state energy. Otherwise one finds a similar story: RGGA results
agree well with the ROPM standard while RLDA results do not. Looking
at the transverse x-energy contribution (Table 3.6) one finds that any of the
corrected non-relativistic GGA functionals (here ECMV92 [21] and B88 [22])
perform equally well.

I will not show any results that indicate that ROPM x-only results can
be reproduced in a satisfactory fashion with the KLI approximation.

The discussion of correlation effects is more demanding. The first state-
ment is: The RLDA does not give very satisfactory results. The functional
that was used had the form (no-sea, electrostatic)

ERLDA
c [n] = ERPA

c,rel [n] − ERPA
c,nonrel[n] + ELDA

c,nonrel[n] . (3.69)

Only the relativistic correction to the RPA is used and added to a more accu-
rate non-relativistic functional (e.g., from parameterization of Monte Carlo
results). For low densities the first two terms cancel, so that the correlation
energy is given by the more adequate non-relativistic contribution. For high
densities the non-relativistic RPA contributions cancel, so that this functional
contains the relativistic RPA contribution plus the non-relativistic non-RPA
terms. The failure is illustrated in Table 3.7, where RLDA results are com-
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Table 3.5. Total relativistic x-only ground state energies: Self-consistent ROPM,
RLDA and (R)GGA results for neutral atoms with closed sub-shells in comparison
with perturbative RHF data (in hartree)

Atom −EL+T
tot EL+T

tot − EL+T,ROPM
tot

ROPM RHF(p) RLDA RPW91 PW91

He 2.862 0.000 0.138 0.006 0.006
Be 14.575 −0.001 0.351 0.018 0.017
Ne 128.674 −0.002 1.080 −0.024 −0.043
Mg 199.900 −0.003 1.408 −0.001 −0.037
Ar 528.546 −0.005 2.458 0.041 −0.111
Ca 679.513 −0.006 2.818 0.026 −0.195
Zn 1793.840 −0.014 4.702 −0.263 −1.146
Kr 2787.429 −0.012 6.543 −0.022 −1.683
Sr 3176.358 −0.012 7.149 −0.010 −2.014
Pd 5041.098 −0.013 9.765 −0.069 −3.953
Cd 5589.495 −0.016 10.556 −0.035 −4.538
Xe 7441.172 −0.012 13.161 0.083 −6.706
Ba 8129.160 −0.010 14.050 0.057 −7.653
Yb 14053.748 −0.023 20.886 −0.896 −17.662
Hg 19626.702 0.005 29.159 −0.260 −27.256
Rn 23573.351 0.026 35.203 −0.012 −35.149
Ra 24996.942 0.034 37.391 −0.026 −38.271

pared to results of second order perturbation theory (relativistic). Even if
one estimates a conservative error of 50% in the perturbative results, obvi-
ously the RLDA does not perform too well. Improvements can, however, be
expected via Kohn-Sham perturbation theory on the basis of x-only ROPM
results. Further work remains to be done.

3.5 Further Results

In this section I will just list some additional available results in relativistic
density functional theory:
1. Relativistic spin-density functional theory has been explored. In this case,

charge as well as magnetic densities are calculated, but one has to deal
with rather tricky numerical problems. Among the quantities calculated
are Kohn-Sham orbital energies, ground-state energies, and the (approx-
imate) exchange-correlation magnetic potential.

2. Relativistic DFT calculations have been performed for the noble metal
dimers Cu2 and Au2 as well as for the transition metal compounds Fe2
and FeO. Separation energies, equilibrium separations, and the oscillator
frequency are compared: non-relativistic versus relativistic, all electron
versus pseudo-potential and LDA versus GGA results.
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Table 3.6. Transverse x-only energies (ET
x ) for closed sub-shell atoms: ROPM

results in comparison with the values obtained by insertion of ROPM densities into
the relativistic LDA (RLDA) and two relativistic GGAs (RECMV92 and RB88)
(all energies are in hartree [23])

Atom ROPM RLDA RECMV92 RB88

He 0.000064 0.000159 0.000060 0.000061
Be 0.00070 0.00176 0.00071 0.00072
Ne 0.0167 0.0355 0.0166 0.0167
Mg 0.0319 0.0654 0.0319 0.0319
Ar 0.132 0.251 0.132 0.132
Ca 0.191 0.356 0.191 0.191
Zn 0.759 1.328 0.760 0.759
Kr 1.420 2.410 1.421 1.419
Sr 1.711 2.878 1.712 1.710
Pd 3.291 5.374 3.291 3.291
Cd 3.809 6.180 3.809 3.809
Xe 5.712 9.114 5.712 5.713
Ba 6.475 10.282 6.475 6.477
Yb 13.900 21.597 13.895 13.900
Hg 22.169 34.257 22.169 22.169
Rn 28.679 44.382 28.681 28.680
Ra 31.151 48.275 31.149 31.151

Table 3.7. Comparison of LDA [18], CI (estimated from non-relativistic CI-
calculations for the three innermost electrons and the experimental ionization po-
tentials of all other electrons [25]) and MBPT2 [26] correlation energies for neutral
atoms: ENREL

c – non-relativistic correlation energy, ∆EL
c – relativistic contribution

in the longitudinal correlation energy, ET
c – transverse correlation energy (in the

case of the MBPT2 only the dominating Breit contribution to ET
c is given (all

energies are in mhartree)

Atom −ENREL
c −∆EL

c −ET
c

MBPT2 CI LDA MBPT2 LDA MBPT2 LDA

He 37.14 42.04 111.47 0.00 0.00 0.04 0.00
Be 94.34 224.44 0.02 0.02
Ne 383.19 390.47 743.38 0.20 0.38 1.87 0.32
Mg 438.28 891.42 0.75 0.57
Ar 697.28 722.16 1429.64 0.84 2.60 7.92 1.89
Zn 1650.61 2665.20 10.51 10.97 26.43 7.92
Kr 1835.43 3282.95 11.39 19.61 41.07 13.10
Cd 2618.11 4570.56 35.86 44.79 82.32 28.58
Xe 2921.13 5200.19 37.57 64.73 108.75 39.27
Hg 5086.24 8355.68 203.23 200.87 282.74 113.08
Rn 5392.07 9026.90 195.36 257.00 352.60 138.43
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3. A number of solids with heavy constituents have been treated in relativis-
tic DFT. For Au and Pt the linearized augmented plane-wave (LAPW)
method has been implemented in order to study relativistic effects in
solids (relativistic versus non-relativistic, LDA versus GGA results). Sim-
ilarly, effects of spin-orbit-coupling have been investigated in bulk W, Ir
and Au on the basis of relativistic LDA-LAPW approaches.

4. On the basis of quantum hadron-dynamics, a field theoretical meson ex-
change model, Kohn-Sham and extended Thomas-Fermi investigations of
nuclei, in particular trans-uranic systems, have been carried out.
Detailed results of relativistic DFT and a full list of references can be

found in [27,28].
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4.1 Introduction

Time-dependent density-functional theory (TDDFT) extends the basic ideas
of ground-state density-functional theory (DFT) to the treatment of excita-
tions and of more general time-dependent phenomena. TDDFT can be viewed
as an alternative formulation of time-dependent quantum mechanics but, in
contrast to the normal approach that relies on wave-functions and on the
many-body Schrödinger equation, its basic variable is the one-body electron
density, n(r, t). The advantages are clear: The many-body wave-function, a
function in a 3N -dimensional space (where N is the number of electrons
in the system), is a very complex mathematical object, while the density is
a simple function that depends solely on the 3-dimensional vector r. The
standard way to obtain n(r, t) is with the help of a fictitious system of non-
interacting electrons, the Kohn-Sham system. The final equations are simple
to tackle numerically, and are routinely solved for systems with a large num-
ber of atoms. These electrons feel an effective potential, the time-dependent
Kohn-Sham potential. The exact form of this potential is unknown, and has
therefore to be approximated.
The scheme is perfectly general, and can be applied to essentially any

time-dependent situation. Two regimes can however be observed: If the time-
dependent potential is weak, it is sufficient to resort to linear-response theory
to study the system. In this way it is possible to calculate e.g. optical absorp-
tion spectra. It turns out that, even with the simplest approximation to the
Kohn-Sham potential, spectra calculated within this framework are in very
good agreement with experimental results. However, if the time-dependent
potential is strong, a full solution of the Kohn-Sham equations is required.
A canonical example of this regime is the treatment of atoms or molecules
in strong laser fields. In this case, TDDFT is able to describe non-linear
phenomena like high-harmonic generation, or multi-photon ionization.

C. Fiolhais, F. Nogueira, M. Marques (Eds.): LNP 620, pp. 144–184, 2003.
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Our purpose in this chapter is to provide a pedagogical introduction to
TDDFT1. With that in mind, we present, in Sect. 4.2, a quite detailed proof
of the Runge-Gross theorem [5], i.e. the time-dependent generalization of the
Hohenberg-Kohn theorem [6], and the corresponding Kohn-Sham construc-
tion [7]. These constitute the mathematical foundations of TDDFT. Sev-
eral approximate exchange-correlation (xc) functionals are then reviewed. In
Sect. 4.3 we are concerned with linear-response theory, and with its main
ingredient, the xc kernel. The calculation of excitation energies is treated in
the following section. After giving a brief overlook of the competing density-
functional methods to calculate excitations, we present some results obtained
from the full solution of the Kohn-Sham scheme, and from linear-response
theory. Section 4.5 is devoted to the problem of atoms and molecules in strong
laser fields. Both high-harmonic generation and ionization are discussed. Fi-
nally, the last section is reserved for some concluding remarks.
For simplicity, we will write all formulae for spin-saturated systems. Ob-

viously, spin can be easily included in all expressions when necessary. Hartree
atomic units (e = � = m = 1) will be used throughout this chapter.

4.2 Time-Dependent DFT

4.2.1 Preliminaries

A system of N electrons with coordinates r = (r1 · · · rN ) is known to obey
the time-dependent Schrödinger equation

i
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t) , (4.1)

This equation expresses one of the most fundamental postulates of quantum
mechanics, and is one of the most remarkable discoveries of physics during the
20th century. The absolute square of the electronic wave-function, |Ψ(r, t)|2,
is interpreted as the probability of finding the electrons at positions r.
The Hamiltonian can be written in the form

T̂ (r) + Ŵ (r) + V̂ext(r, t) . (4.2)

The first term is the kinetic energy of the electrons

T̂ (r) = −1
2

N∑
i=1

∇2
i , (4.3)

1 The reader interested in a more technical discussion is therefore invited to
read [1,2,3,4], where also very complete and updated lists of references can be
found.
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while Ŵ accounts for the Coulomb repulsion between the electrons

Ŵ (r) =
1
2

N∑
i,j=1
i�=j

1
|ri − rj | . (4.4)

Furthermore, the electrons are under the influence of a generic, time-
dependent potential, V̂ext(r, t). The Hamiltonian (4.2) is completely general
and describes a wealth of physical and chemical situations, including atoms,
molecules, and solids in arbitrary time-dependent electric or magnetic fields,
scattering experiments, etc. In most of the situations dealt with in this chap-
ter we will be concerned with the interaction between a laser and matter.
In that case, we can write the time-dependent potential as the sum of the
nuclear potential and a laser field, V̂TD = Ûen+ V̂laser. The term Ûen accounts
for the Coulomb attraction between the electrons and the nuclei,

Ûen(r, t) = −
Nn∑
ν=1

N∑
i=1

Zν

|ri − Rν(t)| , (4.5)

where Zν and Rν denote the charge and position of the nucleus ν, and Nn
stands for the total number of nuclei in the system. Note that by allowing the
Rν to depend on time we can treat situations where the nuclei move along a
classical path. This may be useful when studying, e.g., scattering experiments,
chemical reactions, etc. The laser field, V̂laser, reads, in the length gauge,

V̂laser(r, t) = E f(t) sin(ωt)
N∑

i=1

ri · α , (4.6)

where α, ω and E are the polarization, the frequency and the amplitude of
the laser, respectively. The function f(t) is an envelope that shapes the laser
pulse during time. Note that, in writing (4.6), we use two approximations:
i) We treat the laser field classically, i.e., we do not quantize the photon field.
This is a well justified procedure when the density of photons is large and the
individual (quantum) nature of the photons can be disregarded. In all cases
presented in this chapter this will be the case. ii) Expression (4.6) is written
within the dipole approximation. The dipole approximation holds whenever
(a) The wavelength of the light (λ = 2πc/ω, where c is the velocity of light
in vacuum) is much larger than the size of the system. This is certainly
true for all atoms and most molecules we are interested in. However, one
has to be careful when dealing with very large molecules (e.g. proteins) or
solids. (b) The path that the particle travels in one period of the laser field
is small compared to the wavelength. This implies that the average velocity
of the electrons, v, fulfills vT � λ ⇒ v � λ/T = c, where T stands for
the period of the laser. In these circumstances we can treat the laser field
as a purely electric field and completely neglect its magnetic component.
This approximation holds if the intensity of the laser is not strong enough
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to accelerate the electrons to relativistic velocities. (c) The total duration of
the laser pulse should be short enough so that the molecule does not leave
the focus of the laser during the time the interaction lasts.
Although the many-body Schrödinger equation, (see 4.1), achieves a re-

markably good description of nature, it poses a tantalizing problem to scien-
tists. Its exact (in fact, numerical) solution has been achieved so far only for
a disappointingly small number of particles. In fact, even the calculation of a
“simple” two electron system (the helium atom) in a laser field takes several
months in a modern computer [8] (see also the work on the H+2 [9] molecule
and the H++3 molecule [10]). The effort to solve (4.1) grows exponentially
with the number of particles. Therefore, rapid developments regarding the
exact solution of the Schrödinger equation are not expected.
In these circumstances, the natural approach of the theorist is to trans-

form and approximate the basic equations to a manageable level that still
retains the qualitative and (hopefully) quantitative information about the
system. Several techniques have been developed throughout the years in the
quantum chemistry and physics world. One such technique is TDDFT. Its
goal, like always in density-functional theories, is to replace the solution of
the complicated many-body Schrödinger equation by the solution of the much
simpler one-body Kohn-Sham equations, thereby relieving the computational
burden.
The first step of any DFT is the proof of a Hohenberg-Kohn type theo-

rem [6]. In its traditional form, this theorem demonstrates that there exists a
one-to-one correspondence between the external potential and the (one-body)
density. The first implication is clear: With the external potential it is always
possible (in principle) to solve the many-body Schrödinger equation to ob-
tain the many-body wave-function. From the wave-function we can trivially
obtain the density. The second implication, i.e. that the knowledge of the
density is sufficient to obtain the external potential, is much harder to prove.
In their seminal paper, Hohenberg and Kohn used the variational principle to
obtain a proof by reductio ad absurdum. Unfortunately, their method cannot
be easily generalized to arbitrary DFTs. The Hohenberg-Kohn theorem is a
very strong statement: From the density, a simple property of the quantum
mechanical system, it is possible to obtain the external potential and there-
fore the many-body wave-function. The wave-function, in turn, determines
every observable of the system. This implies that every observable can be
written as a functional of the density.
Unfortunately, it is very hard to obtain the density of an interacting sys-

tem. To circumvent this problem, Kohn and Sham introduced an auxiliary
system of non-interacting particles [7]. The dynamics of these particles are
governed by a potential chosen such that the density of the Kohn-Sham
system equals the density of the interacting system. This potential is local
(multiplicative) in real space, but it has a highly non-local functional de-
pendence on the density. In non-mathematical terms this means that the
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potential at the point r can depend on the density of all other points (e.g.
through gradients, or through integral operators like the Hartree potential).
As we are now dealing with non-interacting particles, the Kohn-Sham equa-
tions are quite simple to solve numerically. However, the complexities of the
many-body system are still present in the so-called exchange-correlation (xc)
functional that needs to be approximated in any application of the theory.

4.2.2 The Runge–Gross Theorem

In this section, we will present a detailed proof of the Runge-Gross theo-
rem [5], the time-dependent extension of the ordinary Hohenberg-Kohn the-
orem [6]. There are several “technical” differences between a time-dependent
and a static quantum-mechanical problem that one should keep in mind while
trying to prove the Runge-Gross theorem. In static quantum mechanics, the
ground-state of the system can be determined through the minimization of
the total energy functional

E[Φ] = 〈Φ| Ĥ |Φ〉 . (4.7)

In time-dependent systems, there is no variational principle on the basis of
the total energy for it is not a conserved quantity. There exists, however, a
quantity analogous to the energy, the quantum mechanical action

A[Φ] =
∫ t1

t0

dt 〈Φ(t)| i ∂
∂t

− Ĥ(t) |Φ(t)〉 , (4.8)

where Φ(t) is a N -body function defined in some convenient space. From
expression (4.8) it is easy to obtain two important properties of the action:
i) Equating the functional derivative of (4.8) in terms of Φ∗(t) to zero, we
arrive at the time-dependent Schrödinger equation. We can therefore solve the
time-dependent problem by calculating the stationary point of the functional
A[Φ]. The function Ψ(t) that makes the functional stationary will be the
solution of the time-dependent many-body Schrödinger equation. Note that
there is no “minimum principle”, as in the time-independent case, but only
a “stationary principle”. ii) The action is always zero at the solution point,
i.e. A[Ψ ] = 0. These two properties make the quantum-mechanical action a
much less useful quantity than its static counterpart, the total energy.
Another important point, often overlooked in the literature, is that a

time-dependent problem in quantum mechanics is mathematically defined as
an initial value problem. This stems from the fact that the time-dependent
Schrödinger equation is a first-order differential equation in the time coordi-
nate. The wave-function (or the density) thus depends on the initial state,
which implies that the Runge-Gross theorem can only hold for a fixed ini-
tial state (and that the xc potential depends on that state). In contrast, the
static Schrödinger equation is a second order differential equation in the space
coordinates, and is the typical example of a boundary value problem.
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From the above considerations the reader could conjecture that the proof
of the Runge-Gross theorem is more involved than the proof of the ordinary
Hohenberg-Kohn theorem. This is indeed the case. What we have to demon-
strate is that if two potentials, v(r, t) and v′(r, t), differ by more than a purely
time dependent function2 c(t), they cannot produce the same time-dependent
density, n(r, t), i.e.

v(r, t) 
= v′(r, t) + c(t) ⇒ ρ(r, t) 
= ρ′(r, t) . (4.9)

This statement immediately implies the one-to-one correspondence between
the potential and the density. In the following we will utilize primes to dis-
tinguish the quantities of the systems with external potentials v and v′. Due
to technical reasons that will become evident during the course of the proof,
we will have to restrict ourselves to external potentials that are Taylor ex-
pandable with respect to the time coordinate around the initial time t0

v(r, t) =
∞∑

k=0

ck(r)(t − t0)k , (4.10)

with the expansion coefficients

ck(r) =
1
k!

∂k

∂tk
v(r, t)

∣∣∣∣
t=t0

. (4.11)

We furthermore define the function

uk(r) =
∂k

∂tk
[v(r, t)− v′(r, t)]

∣∣∣∣
t=t0

. (4.12)

Clearly, if the two potentials are different by more than a purely time-
dependent function, at least one of the expansion coefficients in their Taylor
expansion around t0 will differ by more than a constant

∃k≥0 : uk(r) 
= constant (4.13)

In the first step of our proof we will demonstrate that if v 
= v′ + c(t), then
the current densities, j and j′, generated by v and v′, are also different.
The current density j can be written as the expectation value of the current
density operator:

j(r, t) = 〈Ψ(t)| ĵ(r) |Ψ(t)〉 , (4.14)

where the operator ĵ is

ĵ(r) = − 1
2i

{[
∇ψ̂†(r)

]
ψ̂(r)− ψ̂†(r)

[
∇ψ̂(r)

]}
. (4.15)

2 If the two potentials differ solely by a time-dependent function, they will produce
wave-functions which are equal up to a purely time-dependent phase. This phase
will, of course, cancel while calculating the density (or any other observable, in
fact).
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We now use the quantum-mechanical equation of motion, which is valid for
any operator, Ô(t),

i
d
dt

〈Ψ(t)| Ô(t) |Ψ(t)〉 = 〈Ψ(t)| i ∂
∂t

Ô(t) +
[
Ô(t), Ĥ(t)

]
|Ψ(t)〉 , (4.16)

to write the equation of motion for the current density in the primed and
unprimed systems

i
d
dt

j(r, t) = 〈Ψ(t)|
[
ĵ(r), Ĥ(t)

]
|Ψ(t)〉 (4.17)

i
d
dt

j′(r, t) = 〈Ψ ′(t)|
[
ĵ(r), Ĥ ′(t)

]
|Ψ ′(t)〉 . (4.18)

As we start from a fixed initial many-body state, at t0 the wave-functions,
the densities, and the current densities have to be equal in the primed and
unprimed systems

|Ψ(t0)〉 = |Ψ ′(t0)〉 ≡ |Ψ0〉 (4.19)
n(r, t0) = n′(r, t0) ≡ n0(r) (4.20)
j(r, t0) = j′(r, t0) ≡ j0(r) . (4.21)

If we now take the difference between the equations of motion (4.17) and
(4.18) we obtain, at t = t0,

i
d
dt
[
j(r, t)− j′(r, t)

]
t=t0

= 〈Ψ0|
[
ĵ(r), Ĥ(t0)− Ĥ ′(t0)

]
|Ψ0〉

= 〈Ψ0|
[
ĵ(r), v(r, t0)− v′(r, t0)

]
|Ψ0〉

= in0(r)∇ [v(r, t0)− v′(r, t0)] . (4.22)

Let us assume that (4.13) is fulfilled already for k = 0, i.e. that the two
potentials, v and v′, differ at t0. This immediately implies that the derivative
on the left-hand side of (4.22) differs from zero. The two current densities
j and j′ will consequently deviate for t > t0. If k is greater than zero, the
equation of motion is applied k + 1 times, yielding

dk+1

dtk+1
[
j(r, t)− j′(r, t)

]
t=t0

= n0(r)∇uk(r) . (4.23)

The right-hand side of (4.23) differs from zero, which again implies that
j(r, t) 
= j′(r, t) for t > t0. This concludes the first step of the proof of the
Runge-Gross theorem.
In a second step we prove that j 
= j′ implies n 
= n′. To achieve that

purpose we will make use of the continuity equation

∂

∂t
n(r, t) = −∇ · j(r, t) . (4.24)
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If we write (4.24) for the primed and unprimed system and take the difference,
we arrive at

∂

∂t
[n(r, t)− n′(r, t)] = −∇ · [j(r, t)− j′(r, t)

]
. (4.25)

As before, we would like an expression involving the kth time derivative of
the external potential. We therefore take the (k+1)th time-derivative of the
previous equation to obtain (at t = t0)

∂k+2

∂tk+2
[n(r, t)− n′(r, t)]t=t0

= −∇ · ∂k+1

∂tk+1
[
j(r, t)− j′(r, t)

]
t=t0

= −∇ · [n0(r)∇uk(r)] . (4.26)

In the last step we made use of (4.23). By the hypothesis (4.13) we have
uk(r) 
= const. Hence it is clear that if

∇ · [n0(r)∇uk(r)] 
= 0 , (4.27)

then n 
= n′, from which follows the Runge-Gross theorem. To show that (4.27)
is indeed fulfilled, we will use the versatile technique of demonstration by re-
ductio ad absurdum. Let us assume that ∇ · [n0(r)∇uk(r)] = 0 with uk(r) 
=
constant, and look at the integral∫

d3r n0(r) [∇uk(r)]
2 = −

∫
d3r uk(r)∇ · [n0(r)∇uk(r)] (4.28)

+
∫
S
n0(r)uk(r)∇uk(r) · dS .

This equality was obtained with the help of Green’s theorem. The first term
on the right-hand side is zero by assumption, while the second term vanishes
if the density and the function uk(r) decay in a “reasonable” manner when
r → ∞. This situation is always true for finite systems. We further notice that
the integrand n0(r) [∇uk(r)]

2 is always positive. These diverse conditions
can only be satisfied if either the density n0 or ∇uk(r) vanish identically.
The first possibility is obviously ruled out, while the second contradicts our
initial assumption that uk(r) is not a constant. This concludes the proof of
the Runge-Gross theorem.

4.2.3 Time-Dependent Kohn–Sham Equations

As mentioned in Sect. 4.2.1, the Runge-Gross theorem asserts that all observ-
ables can be calculated with the knowledge of the one-body density. Nothing
is however stated on how to calculate that valuable quantity. To circumvent
the cumbersome task of solving the interacting Schrödinger equation, Kohn
and Sham had the idea of utilizing an auxiliary system of non-interacting
(Kohn-Sham) electrons, subject to an external local potential, vKS [7]. This
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potential is unique, by virtue of the Runge-Gross theorem applied to the non-
interacting system, and is chosen such that the density of the Kohn-Sham
electrons is the same as the density of the original interacting system. In the
time-dependent case, these Kohn-Sham electrons obey the time-dependent
Schrödinger equation

i
∂

∂t
ϕi(r, t) =

[
−∇2

2
+ vKS(r, t)

]
ϕi(r, t) . (4.29)

The density of the interacting system can be obtained from the time-
dependent Kohn-Sham orbitals

n(r, t) =
occ∑
i

|ϕi(r, t)|2 . (4.30)

Equation (4.29), having the form of a one-particle equation, is fairly easy to
solve numerically. We stress, however, that the Kohn-Sham equation is not a
mean-field approximation: If we knew the exact Kohn-Sham potential, vKS,
we would obtain from (4.29) the exact Kohn-Sham orbitals, and from these
the correct density of the system.
The Kohn-Sham potential is conventionally separated in the following

way
vKS(r, t) = vext(r, t) + vHartree(r, t) + vxc(r, t) . (4.31)

The first term is again the external potential. The Hartree potential accounts
for the classical electrostatic interaction between the electrons

vHartree(r, t) =
∫
d3r′ n(r, t)

|r − r′| . (4.32)

The last term, the xc potential, comprises all the non-trivial many-body
effects. In ordinary DFT, vxc is normally written as a functional derivative
of the xc energy. This follows from a variational derivation of the Kohn-
Sham equations starting from the total energy. It is not straightforward to
extend this formulation to the time-dependent case due to a problem related
to causality [11,2]. The problem was solved by van Leeuwen in 1998, by using
the Keldish formalism to define a new action functional, Ã [12]. The time-
dependent xc potential can then be written as the functional derivative of
the xc part of Ã,

vxc(r, t) =
δÃxc

δn(r, τ)

∣∣∣∣∣
n(r,t)

, (4.33)

where τ stands for the Keldish pseudo-time.
Inevitably, the exact expression of vxc as a functional of the density is

unknown. At this point we are obliged to perform an approximation. It is im-
portant to stress that this is the only fundamental approximation in TDDFT.
In contrast to stationary-state DFT, where very good xc functionals exist,
approximations to vxc(r, t) are still in their infancy. The first and simplest of



4 Time-Dependent Density Functional Theory 153

these is the adiabatic local density approximation (ALDA), reminiscent of the
ubiquitous LDA. More recently, several other functionals were proposed, from
which we mention the time-dependent exact-exchange (EXX) functional [13],
and the attempt by Dobson, Bünner, and Gross [14] to construct an xc func-
tional with memory. In the following section we will introduce the above
mentioned functionals.

4.2.4 XC Functionals

Adiabatic Approximations. There is a very simple procedure that allows
the use of the plethora of existing xc functionals for ground-state DFT in the
time-dependent theory. Let us assume that ṽxc[n] is an approximation to the
ground-state xc density functional. We can write an adiabatic time-dependent
xc potential as

vadiabaticxc (r, t) = ṽxc[n](r)|n=n(t) , (4.34)

i.e. we employ the same functional form but evaluated at each time with the
density n(r, t). The functional thus constructed is obviously local in time.
This is, of course, a quite dramatic approximation. The functional ṽxc[n] is
a ground-state property, so we expect the adiabatic approximation to work
only in cases where the temporal dependence is small, i.e., when our time-
dependent system is locally close to equilibrium. Certainly this is not the case
if we are studying the interaction of strong laser pulses with matter.
By inserting the LDA functional in (4.34) we obtain the so-called adiabatic

local density approximation (ALDA)

vALDAxc (r, t) = vHEGxc (n)
∣∣
n=n(r,t) . (4.35)

The ALDA assumes that the xc potential at the point r, and time t is equal
to the xc potential of a (static) homogeneous electron gas (HEG) of density
n(r, t). Naturally, the ALDA retains all problems already present in the LDA.
Of these, we would like to mention the erroneous asymptotic behavior of the
LDA xc potential: For neutral finite systems, the exact xc potential decays
as −1/r, whereas the LDA xc potential falls off exponentially. Note that
most of the generalized-gradient approximations (GGAs), or even the newest
meta-GGAs have asymptotic behaviors similar to the LDA. This problem
gains particular relevance when calculating ionization yields (the ionization
potential calculated with the ALDA is always too small), or in situations
where the electrons are pushed to regions far away from the nuclei (e.g., by
a strong laser) and feel the incorrect tail of the potential.
Despite this problem, the ALDA yields remarkably good excitation en-

ergies (see Sects. 4.4.2 and 4.4.3) and is probably the most widely used xc
functional in TDDFT.

Time-Dependent Optimized Effective Potential. Unfortunately, when
trying to write vxc as an explicit functional of the density, one encounters some
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difficulties. As an alternative, the so-called orbital-dependent xc functionals
were introduced several years ago. These functionals are written explicitly in
terms of the Kohn-Sham orbitals, albeit remaining implicit density function-
als by virtue of the Runge-Gross theorem. A typical member of this family
is the exact-exchange (EXX) functional. The EXX action is obtained by ex-
panding Axc in powers of e2 (where e is the electronic charge), and retaining
the lowest order term, the exchange term. It is given by the Fock integral

AEXXx = −1
2

occ∑
j,k

∫ t1

t0

dt
∫
d3r
∫
d3r′ ϕ

∗
j (r

′, t)ϕk(r′, t)ϕj(r, t)ϕ∗
k(r, t)

|r − r′| . (4.36)

From such an action functional, one seeks to determine the local Kohn-Sham
potential through a series of chain rules for functional derivatives. The pro-
cedure is called the optimized effective potential (OEP) or the optimized
potential method (OPM) for historical reasons [15,16]. The derivation of the
time-dependent version of the OEP equations is very similar to the ground-
state case. Due to space limitations we will not present the derivation in this
chapter. The interested reader is advised to consult the original paper [13],
one of the more recent publications [17,18], or the chapter by E. Engel con-
tained in this volume. The final form of the OEP equation that determines
the EXX potential is

occ∑
j

∫ t1

−∞
dt′
∫
d3r′ [vx(r′, t′)− ux j(r′, t′)] (4.37)

×ϕj(r, t)ϕ∗
j (r

′, t′)GR(rt, r′t′) + c.c. = 0

The kernel, GR, is defined by

iGR(rt, r′t′) =
∞∑

k=1

ϕ∗
k(r, t)ϕk(r′, t′)θ(t − t′) , (4.38)

and can be identified with the retarded Green’s function of the system. More-
over, the expression for ux is essentially the functional derivative of the xc
action with respect to the Kohn-Sham wave-functions

ux j(r, t) =
1

ϕ∗
j (r, t)

δAxc[ϕj ]
δϕj(r, t)

. (4.39)

Note that the xc potential is still a local potential, albeit being obtained
through the solution of an extremely non-local and non-linear integral equa-
tion. In fact, the solution of (4.37) poses a very difficult numerical problem.
Fortunately, by performing an approximation first proposed by Krieger, Li,
and Iafrate (KLI) it is possible to simplify the whole procedure, and obtain
an semi-analytic solution of (4.37) [19]. The KLI approximation turns out
to be a very good approximation to the EXX potential. Note that both the
EXX and the KLI potential have the correct −1/r asymptotic behavior for
neutral finite systems.
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A Functional with Memory. There is a very common procedure for the
construction of approximate xc functionals in ordinary DFT. It starts with
the derivation of exact properties of vxc, deemed important by physical ar-
guments. Then an analytical expression for the functional is proposed, such
that it satisfies those rigorous constraints. We will use this recipe to generate
a time-dependent xc potential which is non-local in time, i.e. that includes
the “memory” from previous times [14].
A very important condition comes from Galilean invariance. Let us look

at a system from the point of view of a moving reference frame whose origin is
given by x(t). The density seen from this moving frame is simply the density
of the reference frame, but shifted by x(t)

n′(r, t) = n(r − x(t), t) . (4.40)

Galilean invariance then implies [20]

vxc[n′](r, t) = vxc[n](r − x(t), t) . (4.41)

It is obvious that potentials that are both local in space and in time, like the
ALDA, trivially fulfill this requirement. However, when one tries to deduce
an xc potential which is non-local in time, one finds condition (4.41) quite
difficult to satisfy.
Another rigorous constraint follows from Ehrenfest’s theorem which re-

lates the acceleration to the gradient of the external potential

d2

dt2
〈r〉 = − 〈∇vext(r)〉 . (4.42)

For an interacting system, Ehrenfest’s theorem states

d2

dt2

∫
d3r r n(r, t) = −

∫
d3r n(r, t)∇vext(r) . (4.43)

In the same way we can write Ehrenfest’s theorem for the Kohn-Sham system

d2

dt2

∫
d3r r n(r, t) = −

∫
d3r n(r, t)∇vKS(r) . (4.44)

By the very construction of the Kohn-Sham system, the interacting density
is equal to the Kohn-Sham density. We can therefore equate the right-hand
sides of (4.43) and (4.44), and arrive at∫

d3r n(r, t)∇vext(r) =
∫
d3r n(r, t)∇vKS(r, t) . (4.45)

If we now insert the definition of the Kohn-Sham potential, (see 4.31), and
note that

∫
d3r n(r, t)∇vHartree(r) = 0, we obtain the condition∫
d3r n(r, t)∇vxc(r, t) =

∫
d3r n(r, t)F xc(r, t) = 0 , (4.46)
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i.e. the total xc force of the system, F xc, is zero. This condition reflects New-
ton’s third law: The xc effects are only due to internal forces, the Coulomb
interaction among the electrons, and should not give rise to any net force on
the system.
A functional that takes into account these exact constraints can be con-

structed [14]. The condition (4.46) is simply ensured by the expression

F xc(r, t) =
1

n(r, t)
∇
∫
dt′ Πxc(n(r, t′), t − t′) . (4.47)

The function Πxc is a pressure-like scalar memory function of two variables.
In practice, Πxc is fully determined by requiring it to reproduce the scalar
linear response of the homogeneous electron gas. Expression (4.47) is clearly
non-local in the time-domain but still local in the spatial coordinates. From
the previous considerations it is clear that it must violate Galilean invariance.
To correct this problem we use a concept borrowed from hydrodynamics. It
is assumed that, in the electron liquid, memory resides not with each fixed
point r, but rather within each separate “fluid element”. Thus the element
which arrives at location r at time t “remembers” what happened to it at
earlier times t′ when it was at locations R(t′|r, t), different from its present
location r. The trajectory, R, can be determined by demanding that its time
derivative equals the fluid velocity

∂

∂t′
R(t′|r, t) = j(R, t′)

n(R, t′)
, (4.48)

with the boundary condition
R(t|r, t) = r . (4.49)

We then correct the (4.47) by evaluating n at point R

F xc(r, t) =
1

n(r, t)
∇
∫
dt′ Πxc(n(R, t′), t − t′) . (4.50)

Finally, an expression for vxc can be obtained by direct integration of F xc
(see [14] for details).

4.2.5 Numerical Considerations

As mentioned before, the solution of the time-dependent Kohn-Sham equa-
tions is an initial value problem. At t = t0 the system is in some initial state
described by the Kohn-Sham orbitals ϕi(r, t0). In most cases the initial state
will be the ground state of the system (i.e., ϕi(r, t0) will be the solution of
the ground-state Kohn-Sham equations). The main task of the computational
physicist is then to propagate this initial state until some final time, tf .
The time-dependent Kohn-Sham equations can be rewritten in the inte-

gral form
ϕi(r, tf ) = Û(tf , t0)ϕi(r, t0) , (4.51)
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where the time-evolution operator, Û , is defined by

Û(t′, t) = T̂ exp

[
−i
∫ t′

t

dτ ĤKS(τ)

]
. (4.52)

Note that ĤKS is explicitly time-dependent due to the Hartree and xc po-
tentials. It is therefore important to retain the time-ordering propagator, T̂ ,
in the definition of the operator Û . The exponential in expression (4.52) is
clearly too complex to be applied directly, and needs to be approximated
in some suitable manner. To reduce the error in the propagation from t0
to tf , this large interval is usually split into smaller sub-intervals of length
∆ t. The wave-functions are then propagated from t0 → t0 +∆ t, then from
t0 +∆ t → t0 + 2∆ t and so on.
The simplest approximation to (4.52) is a direct expansion of the expo-

nential in a power series of ∆ t

Û(t+∆ t, t) ≈
k∑

l=0

[
−iĤ(t+∆ t/2)∆ t

]l
l!

+O(∆ tk+1) . (4.53)

Unfortunately, the expression (4.53) does not retain one of the most im-
portant properties of the Kohn-Sham time-evolution operator: unitarity. In
other words, if we apply (4.53) to a normalized wave-function the result will
no longer be normalized. This leads to an inherently unstable propagation.
Several different propagation methods exist in the market. We will briefly

mention two of these: a modified Crank-Nicholson scheme, and the split-
operator method.

A Modified Crank–Nicholson Scheme. This method is derived by im-
posing time-reversal symmetry to an approximate time-evolution operator.
It is clear that we can obtain the state at time t +∆ t/2 either by forward
propagating the state at t by ∆t/2, or by backward propagating the state at
t+∆ t

ϕ(t+∆ t/2) = Û(t+∆ t/2, t)ϕ(t)
= Û(t − ∆ t/2, t+∆ t)ϕ(t+∆ t) . (4.54)

This equality leads to

ϕ(t+∆ t) = Û(t+∆ t/2, t+∆ t)Û(t+∆ t/2, t)ϕ(t) , (4.55)

where we used the fact that the inverse of the time-evolution operator Û−1(t+
∆ t, t) = Û(t − ∆ t, t). To propagate a state from t to t +∆ t we follow the
steps: i) Obtain an estimate of the Kohn-Sham wave-functions at time t+∆t
by propagating from time t using a “low quality” formula for Û(t +∆ t, t).
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The expression (4.53) expanded to third or forth order is well suited for
this purpose. ii) With these wave-functions construct an approximation to
Ĥ(t+∆t) and to Û(t+∆t/2, t+∆t). iii) Apply (4.55). This procedure leads
to a very stable propagation.

The Split-Operator Method. In a first step we neglect the time-ordering
in (4.52), and approximate the integral in the exponent by a trapezoidal rule

Û(t+∆ t, t) ≈ exp
[
−iĤKS(t)∆ t

]
= exp

[
−i(T̂ + V̂KS)∆ t

]
. (4.56)

We note that the operators exp
(
−iV̂KS∆ t

)
and exp

(
−iT̂∆ t

)
are diagonal

in real and Fourier space respectively, and therefore trivial to apply in those
spaces. It is possible to decompose the exponential (4.56) into a form involving
only these two operators. The two lowest order decompositions are

exp
[
−i(T̂+V̂KS)∆ t

]
=exp

(
−iT̂∆ t

)
exp

(
−iV̂KS∆ t

)
+O(∆ t2) , (4.57)

and

exp
[
−i(T̂+V̂KS)∆ t

]
= exp

(
−iT̂ ∆ t

2

)
exp

(
−iV̂KS∆ t

)
exp

(
−iT̂ ∆ t

2

)
+O(∆ t3) . (4.58)

For example, to apply the splitting (4.58) to ϕ(r, t) we start by Fourier trans-
forming the wave-function to Fourier space. We then apply exp

(
−iT̂ ∆ t

2

)
to

ϕ(k, t) and Fourier transform back the result to real space. We proceed by
applying exp

(
−iV̂ ∆ t

)
, Fourier transforming, etc. This method can be made

very efficient by the use of fast Fourier transforms.
As a better approximation to the propagator (4.52) we can use a mid-

point rule to estimate the integral in the exponential

Û(t+∆ t, t) ≈ exp
[
−iĤKS(t+∆ t/2)∆ t

]
. (4.59)

It can be shown that the same procedure described above can be applied
with only a slight modification: The Kohn-Sham potential has to be updated
after applying the first kinetic operator [21].

4.3 Linear Response Theory

4.3.1 Basic Theory

In circumstances where the external time-dependent potential is small, it
may not be necessary to solve the full time-dependent Kohn-Sham equations.
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Instead perturbation theory may prove sufficient to determine the behavior
of the system. We will focus on the linear change of the density, that allows
us to calculate, e.g., the optical absorption spectrum.
Let us assume that for t < t0 the time-dependent potential vTD is zero –

i.e. the system is subject only to the nuclear potential, v(0) – and furthermore
that the system is in its ground-state with ground-state density n(0). At t0
we turn on the perturbation, v(1), so that the total external potential now
consists of vext = v(0)+ v(1). Clearly v(1) will induce a change in the density.
If the perturbing potential is sufficiently well-behaved (like almost always in
physics), we can expand the density in a perturbative series

n(r, t) = n(0)(r) + n(1)(r, t) + n(2)(r, t) + · · · , (4.60)

where n(1) is the component of n(r, t) that depends linearly on v(1), n(2)

depends quadratically, etc. As the perturbation is weak, we will only be con-
cerned with the linear term, n(1). In frequency space it reads

n(1)(r, ω) =
∫
d3r′ χ(r, r′, ω) v(1)(r′, ω) . (4.61)

The quantity χ is the linear density-density response function of the sys-
tem. In other branches of physics it has other names, e.g., in the context of
many-body perturbation theory it is called the reducible polarization func-
tion. Unfortunately, the evaluation of χ through perturbation theory is a
very demanding task. We can, however, make use of TDDFT to simplify this
process.
We recall that in the time-dependent Kohn-Sham framework, the density

of the interacting system of electrons is obtained from a fictitious system of
non-interacting electrons. Clearly, we can also calculate the linear change of
density using the Kohn-Sham system

n(1)(r, ω) =
∫
d3r′ χKS(r, r′, ω) v(1)KS(r

′, ω) . (4.62)

The response function that enters (4.62), χKS, is the density-density response
function of a system of non-interacting electrons and is, consequently, much
easier to calculate than the full interacting χ. In terms of the unperturbed
stationary Kohn-Sham orbitals it reads

χKS(r, r′, ω) = lim
η→0+

∞∑
jk

(fk − fj)
ϕj(r)ϕ∗

j (r
′)ϕk(r′)ϕ∗

k(r)
ω − (εj − εk) + iη

, (4.63)

where fm is the occupation number of the mth orbital in the Kohn-Sham
ground-state. Note that the Kohn-Sham potential, vKS, includes all powers
of the external perturbation due to its non-linear dependence on the density.
The potential that enters (4.62) is however just the linear change of vKS,
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v
(1)
KS. This latter quantity can be calculated explicitly from the definition of
the Kohn-Sham potential

v
(1)
KS(r, t) = v(1)(r, t) + v

(1)
Hartree(r, t) + v(1)xc (r, t) . (4.64)

The variation of the external potential is simply v(1), while the change in the
Hartree potential is

v
(1)
Hartree(r, t) =

∫
d3r′ n

(1)(r′, t)
|r − r′| . (4.65)

Finally v
(1)
xc (r, t) is the linear part in n(1) of the functional vxc[n],

v(1)xc (r, t) =
∫
dt′
∫
d3r′ δvxc(r, t)

δn(r′, t′)
n(1)(r′, t′) . (4.66)

It is useful to introduce the exchange-correlation kernel, fxc, defined by

fxc(rt, r′t′) =
δvxc(r, t)
δn(r′, t′)

. (4.67)

The kernel is a well known quantity that appears in several branches of
theoretical physics. For example, evaluated for the electron gas, fxc is, up
to a factor, the “local field correction”. To emphasize the correspondence to
the effective interaction of Landau’s Fermi-liquid theory, to which it reduces
in the appropriate limit, fxc plus the bare Coulomb interaction is sometimes
called the “effective interaction”, while in the theory of classical liquids the
same quantity is referred to as the Ornstein-Zernicke function.
Combining the previous results, and transforming to frequency space we

arrive at:

n(1)(r, ω) =
∫
d3r′ χKS(r, r′, ω)v(1)(r′, ω) (4.68)

+
∫
d3x
∫
d3r′ χKS(r,x, ω)

[
1

|x − r′| + fxc(x, r′, ω)
]
n(1)(r′, ω) .

From (4.61) and (4.68) trivially follows the relation

χ(r, r′, ω) = χKS(r, r′, ω) (4.69)

+
∫
d3x
∫
d3x′ χ(r,x, ω)

[
1

|x − x′| + fxc(x,x′, ω)
]
χKS(x′, r′, ω) .

This equation is a formally exact representation of the linear density response
in the sense that, if we possessed the exact Kohn-Sham potential (so that we
could extract fxc), a self-consistent solution of (4.69) would yield the response
function, χ, of the interacting system.
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4.3.2 The XC Kernel

As we have seen in the previous section, the main ingredient in linear response
theory is the xc kernel. fxc is, as expected, a very complex quantity that
includes – or, in other words, hides – all non-trivial many-body effects. Many
approximate xc kernels have been proposed in the literature over the past
years. The most ancient, and certainly the simplest is the ALDA kernel

fALDAxc (rt, r′t′) = δ(r − r′)δ(t − t′) fHEGxc (n)
∣∣
n=n(r,t) , (4.70)

where
fHEGxc (n) =

d
dn

vHEGxc (n) (4.71)

is just the derivative of the xc potential of the homogeneous electron gas.
The ALDA kernel is local both in the space and time coordinates.
Another commonly used xc kernel was derived by Petersilka et al. in 1996,

and is nowadays referred to as the PGG kernel [22]. Its derivation starts from
a simple analytic approximation to the EXX potential. This approximation,
called the Slater approximation in the context of Hartree-Fock theory, only
retains the leading term in the expression for EXX, which reads

vPGGx (r, t) =
occ∑
k

|ϕk(r, t)|2
n(r, t)

[ux k(r, t) + c.c.] . (4.72)

Using the definition (4.67) and after some algebra, we arrive at the final form
of the PGG kernel

fPGGx (rt, r′t′) = −δ(t − t′)
1
2

1
|r − r′|

|∑occ
k ϕk(r)ϕ∗

k(r
′)|2

n(r)n(r′)
. (4.73)

As in the case of the ALDA, the PGG kernel is local in time.
Noticing the crudeness of the ALDA, especially the complete neglect of

any frequency dependence, one could expect it to yield very inaccurate re-
sults in most situations. Surprisingly, this is not the case as we will show in
Sect. 4.4. To understand this numerical evidence, we have to take a step back
and study more thoroughly the properties of the xc kernel for the homoge-
neous electron gas [1].
In this simple system, fHEGxc only depends on r − r′ and on t − t′, so

it is convenient to work in Fourier space. Our knowledge of the function
fHEGxc (q, ω) is quite limited. Several of its exact features can nevertheless be
obtained through analytical manipulations. The long-wavelength limit at zero
frequency is given by

lim
q→0

fHEGxc (q, ω = 0) =
d2

dn2
[
nεHEGxc (n)

] ≡ f0(n) , (4.74)
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where εHEGxc , the xc energy per particle of the homogeneous electron gas, is
known exactly from Monte-Carlo calculations [23]. Also the infinite frequency
limit can be written as a simple expression

lim
q→0

fHEGxc (q, ω = ∞) = −4
5
n

2
3
d
dn

[
εHEGxc (n)
n2/3

]
+ 6 n

1
3
d
dn

[
εHEGxc (n)
n1/3

]
(4.75)

≡ f∞(n) .

From these two expression, one can prove that the zero frequency limit is
always smaller than the infinite frequency limit, and that both these quanti-
ties are smaller than zero (according to the best approximations known for
EHEGxc ), i.e.

f0(n) < f∞(n) < 0 . (4.76)

From the fact that fxc is a real function when written in real space and in
real time, one can deduce the following symmetry relations

�fHEGxc (q, ω) = �fHEGxc (q,−ω) (4.77)
�fHEGxc (q, ω) = −�fHEGxc (q,−ω) .

From causality follow the Kramers-Kronig relations:

�fHEGxc (q, ω)− fHEGxc (q,∞) = P
∫ ∞

−∞

dω′

π

�fHEGxc (q, ω)
ω − ω′ (4.78)

�fHEGxc (q, ω) = −P
∫ ∞

−∞

dω′

π

�fHEGxc (q, ω)− fHEGxc (q,∞)
ω − ω′ ,

where P denotes the principal value of the integral. Note that, as the infinite
frequency limit of the xc kernel is different from zero, one has to subtract
fHEGxc (q,∞) in order to apply the Kramers-Kronig relations.
Furthermore, by performing a perturbative expansion of the irreducible

polarization to second order in e2, one finds

lim
ω→∞ �fHEGxc (q = 0, ω) = − 23π

15ω3/2
. (4.79)

The real part can be obtained with the help of the Kramers-Kronig relations

lim
ω→∞ �fHEGxc (q = 0, ω) = f∞(n) +

23π
15ω3/2

. (4.80)

It is possible to write an analytical form for the long-wavelength limit of the
imaginary part of fxc that incorporates all these exact limits [24]

�fHEGxc (q = 0, ω) ≈ α(n)ω
(1 + β(n)ω2)

5
4
. (4.81)
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Fig. 4.1. Real and imaginary part of the parametrization for fHEG
xc . Figure repro-

duced from [25]

The coefficients α and β are functions of the density, and can be determined
uniquely by the zero and high frequency limits. A simple calculation yields

α(n) = −A [f∞(n)− f0(n)]
5
3 (4.82)

β(n) = B [f∞(n)− f0(n)]
4
3 , (4.83)

where A,B > 0 and independent of n. By applying the Kramers-Kronig
relations we can obtain the corresponding real part of fHEGxc

�fHEGxc (q = 0, ω) = f∞ +
2
√
2α

π
√
βr2

[
2E
(
1√
2

)
(4.84)

− 1 + r

2
Π

(
1− r

2
,
1√
2

)
− 1− r

2
Π

(
1 + r

2
,
1√
2

)]
,

where r =
√
1 + βω2 and E and Π are the elliptic integrals of second and

third kind. In Fig. 4.1 we plot the real and imaginary part of fHEGxc for two
different densities (rs = 2 and rs = 4, where rs is the Wigner-Seitz radius,
1/n = 4πr3s /3). The ALDA corresponds to approximating these curves by
their zero frequency value. For very low frequencies, the ALDA is naturally a
good approximation, but at higher frequencies it completely fails to reproduce
the behavior of fHEGxc .
To understand how the ALDA can yield such good excitation energies,

albeit exhibiting such a mediocre frequency dependence, we will look at a spe-
cific example, the process of photo-absorption by an atom. At low excitation
frequencies, we expect the ALDA to work. As we increase the laser frequency,
we start exciting deeper levels, promoting electrons from the inner shells of
the atom to unoccupied states. The atomic density increases monotonically as
we approach the nucleus. The fxc corresponding to that larger density (lower
rs) has a much weaker frequency dependence, and is much better approxi-
mated by the ALDA than the low density curve. In short, by noticing that
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high frequencies are normally related to high densities, we realize that for
practical applications the ALDA is often a reasonably good approximation.
One should however keep in mind that these are simple heuristic arguments
that may not hold in a real physical system.

4.4 Excitation Energies

4.4.1 DFT Techniques to Calculate Excitations

In this section we will present a short overview of the several techniques to
calculate excitation energies that have appeared in the context of DFT over
the past years. Indeed, quite a lot of different approaches have been tried.
Some are more or less ad hoc, others rely on a solid theoretical basis. More-
over, the degree of success varies considerably among the different techniques.
The most successful of all is certainly TDDFT that has become the de facto
standard for the calculation of excitations for finite systems. We will leave
the discussion of excitation energies in TDDFT to the following sections, and
concentrate for now on the “competitors”. The first group of methods is based
on a single determinant calculation, i.e. only one ground-state like calcula-
tion is performed, subject to the restriction that the Kohn-Sham occupation
numbers are either 0 or 1.
As a first approximation to the excitation energies, one can simply take

the differences between the ground-state Kohn-Sham eigenvalues. This pro-
cedure, although not entirely justifiable, is often used to get a rough idea of
the excitation spectrum. We stress that the Kohn-Sham eigenvalues (as well
as the Kohn-Sham wave-functions) do not have any physical interpretation.
The exception is the eigenvalue of the highest occupied state that is equal to
minus the ionization potential of the system [26].
The second scheme is based on the observation that the Hohenberg-Kohn

theorem and the Kohn-Sham scheme can be formulated for the lowest state
of each symmetry class [27]. In fact, the single modification to the stan-
dard proofs is to restrict the variational principle to wave-functions of a spe-
cific symmetry. The unrestricted variation will clearly yield the ground-state.
The states belonging to different symmetry classes will correspond to excited
states. The excitations can then be calculated by simple total-energy differ-
ences. This approach suffers from two serious drawbacks: i) Only the lowest
lying excitation for each symmetry class is obtainable. ii) The xc functional
that now enters the Kohn-Sham equations depends on the particular sym-
metry we have chosen. As specific approximations for a symmetry dependent
xc functional are not available, one is relegated to use ground-state function-
als. Unfortunately, the excitation energies calculated in this way are only of
moderate quality.
Another promising method was recently proposed by A. Görling [28]. The

so-called generalized adiabatic connection Kohn-Sham formalism is no longer
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based on the Hohenberg-Kohn theorem but on generalized adiabatic connec-
tions associating a Kohn-Sham state with each state of the real system. This
formalism was later extended to allow for a proper treatment of the symme-
try of the Kohn-Sham states [29]. The quality of the results obtained so far
with this procedure varies: For alkali atoms the agreement with experimental
excitation energies is quite good [28], but for the carbon atom and the CO
molecule the situation is considerably worse [29]. We note however that this
method is still in its infancy, so further developments can be expected in the
near future.
It is also possible to calculate excitation energies from the ground-state

energy functional. In fact, it was proved by Perdew and Levy [30] that “every
extremum density ni(r) of the ground-state energy functional Ev[n] yields the
energy Ei of a stationary state of the system.” The problem is that not every
excited-state density, ni(r), corresponds to an extremum of Ev[n], which
implies that not all excitation energies can be obtained from this procedure.
The last member of the first group of methods was proposed by Ziegler,

Rauk and Baerends in 1977 [31] and is based on an idea borrowed from multi-
configuration Hartree-Fock. The procedure starts with the construction of
many-particle states with good symmetry, Ψi, by taking a finite superposition
of states

Ψi =
∑
α

ciαΦα , (4.85)

where Φα are Slater determinants of Kohn-Sham orbitals, and the coefficients
ciα are determined from group theory. Through a simple matrix inversion we
can express the determinants as linear combinations of the many-body wave-
functions

Φβ =
∑

j

aβjΨj . (4.86)

By taking the expectation value of the Hamiltonian in the state Φβ we arrive
at

〈Φβ | Ĥ |Φβ〉 =
∑

j

|aβj |2Ej , (4.87)

where Ej is the energy of the many-body state Ψj . The “recipe” to calculate
excitation energies is then: a) Build Φβ from n Kohn-Sham orbitals (not
necessarily the lowest); b) Make an ordinary Kohn-Sham calculation for each
Φβ , and associate the corresponding total energy EDFTβ with 〈Φβ | Ĥ |Φβ〉;
c) Determine Ej by solving the system of linear equations (4.87).
This method works quite well in practice, and was frequently used in

quantum chemistry till the advent of TDDFT. We should nevertheless indi-
cate two of its limitations: i) The decomposition (4.85) is not unique and the
system of linear equations can be under- or overdetermined. ii) The whole
procedure of the “recipe” is not rigorously founded.
The next technique, known as ensemble DFT, makes use of fractional oc-

cupation numbers. Ensemble DFT, first proposed by Theophilou in 1979 [32],
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evolves around the concept of an ensemble. In the simplest case it consists of
a “mixture” of the ground state, Ψ1, and the first excited state, Ψ2, described
by the density matrix [33,34,35]

D̂ = (1− ω) |Ψ1〉 〈Ψ1|+ ω |Ψ2〉 〈Ψ2| , (4.88)

where the weight, ω, is between 0 and 1/2 (in this last case the ensemble
is called “equiensemble”). We can further define the ensemble energy and
density

E(ω) = (1− ω)E1 + ω E2 (4.89)
nω(r) = (1− ω)n1(r) + ω n2(r) . (4.90)

At ω = 0 the ensemble energy clearly reduces to the ground-state energy.
Using the ensemble density, it is possible to construct a DFT, i.e. to prove a
Hohenberg-Kohn theorem and construct a Kohn-Sham scheme. The main fea-
tures of the Kohn-Sham scheme are: i) The one-body orbitals have fractional
occupations determined by the weight ω. ii) The xc functional depends on
the weight, Exc(ω). To calculate the excitation energies from ensemble DFT
we can follow two paths. The first involves obtaining the ground-state energy
and the ensemble energy for some fixed ω, from which the excitation energy
E2 − E1 trivially follows

E2 − E1 =
E(ω)− E(0)

ω
. (4.91)

The second path is obtained by taking the derivative of (4.89)

E2 − E1 =
dE(ω)
dω

. (4.92)

It is then possible to prove

E2 − E1 = εN+1ω − εNω +
∂Exc(ω)

∂ω

∣∣∣∣
n=nω

. (4.93)

Naturally, we need approximations to the xc energy functional, Exc(ω). An
ensemble LDA was developed for the equiensemble by W. Kohn in 1986 [36],
by treating the ensemble as a reminiscent of a thermal ensemble. He then re-
lated Exc(ω) to the finite temperature xc energy of the homogeneous electron
gas by equating the entropies of both systems. Unfortunately, the results ob-
tained with this functional were not very encouraging. A promising approach,
recently proposed, is the use of orbital functionals within an ensemble OEP
method [37,38].

4.4.2 Full Solution of the Kohn–Sham Equations

One of the most important uses of TDDFT is the calculation of photo-
absorption spectra. This problem can be solved in TDDFT either by prop-
agating the time-dependent Kohn-Sham equations [39] or by using linear-
response theory. In this section we will be concerned by the former, relegating
the latter to the next section.
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Let ϕ̃j(r) be the ground-state Kohn-Sham wave-functions for the system
under study. We prepare the initial state for the time propagation by exciting
the electrons with the electric field v(r, t) = −k0xνδ(t), where xν = x, y, z.
The amplitude k0 must be small in order to keep the response of the system
linear and dipolar. Through this prescription all frequencies of the system are
excited with equal weight. At t = 0+ the initial state for the time evolution
reads

ϕj(r, t = 0+) = T̂ exp

{
−i
∫ 0+

0
dt
[
ĤKS − k0xνδ(t)

]}
ϕ̃j(r)

= exp (ik0xν) ϕ̃j(r) . (4.94)

The Kohn-Sham orbitals are then further propagated during a finite time.
The dynamical polarizability can be obtained from

αν(ω) = −1
k

∫
d3r xν δn(r, ω) . (4.95)

In the last expression δn(r, ω) stands for the Fourier transform of n(r, t) −
ñ(r), where ñ(r) is the ground-state density of the system. The quantity that
is usually measured in experiments, the photo-absorption cross-section, is
essentially proportional to the imaginary part of the dynamical polarizability
averaged over the three spatial directions

σ(ω) =
4πω
c

1
3
�
∑

ν

αν(ω) , (4.96)

where c stands for the velocity of light. Although computationally more de-
manding than linear-response theory, this method is very flexible, and is
easily extended to incorporate temperature effects, non-linear phenomena,
etc. Note also that this approach only requires an approximation to the xc
potential and not to fxc.
To illustrate the method, we present, in Fig. 4.2, the excitation spectrum

of benzene calculated within the LDA/ALDA3. The agreement with experi-
ment is quite remarkable, especially when looking at the π → π∗ resonance at
around 7 eV. The spurious peaks that appear in the calculation at higher en-
ergies are artifacts caused by an insufficient treatment of the unbound states.
We furthermore observe that such good results are routinely obtained when
applying the LDA/ALDA to several finite systems, from small molecules to
metallic clusters and biological systems.
3 We will use the notation “A/B” consistently throughout the rest of this article to
indicate that the ground-state xc potential used to calculate the initial state was
“A”, and that this state was propagated with the time-dependent xc potential
“B”. In the case of linear-response theory, “B” will denote the xc kernel.
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Fig. 4.2. Optical absorption of the benzene molecule. Experimental results
from [40]. Figure reproduced from [41]

4.4.3 Excitations from Linear-Response Theory

The first self-consistent solution of the linear response (see 4.69) was per-
formed by Zangwill and Soven in 1980 using the LDA/ALDA [42]. Their
results for the photo-absorption spectrum of xenon for energies just above
the ionization threshold are shown in Fig. 4.3. Once more the theoretical
curve compares very well to experiments.
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Fig. 4.3. Total photo-absorption cross-section of xenon versus photon energy in
the vicinity of the 4d threshold. The solid line represents TDDFT calculations and
the crosses are the experimental results of [43]. Figure adapted from [42]
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Unfortunately, a full solution of (4.69) is still quite difficult numerically.
Besides the large effort required to solve the integral equation, we need the
non-interacting response function as an input. To obtain this quantity it is
usually necessary to perform a summation over all states, both occupied and
unoccupied [cf. (4.63)]. Such summations are sometimes slowly convergent
and require the inclusion of many unoccupied states. There are however ap-
proximate frameworks that circumvent the solution of (4.69). The one we will
present in the following was proposed by Petersilka et al. [22].
The density response function can be written in the Lehmann represen-

tation

χ(r,r′,ω)= lim
η→0+

∑
m

[ 〈0| n̂(r) |m〉 〈m| n̂(r′) |0〉
ω−(Em−E0)+iη

−〈0| n̂(r′) |m〉 〈m| n̂(r) |0〉
ω+(Em − E0)+iη

]
,

(4.97)
where |m〉 is a complete set of many-body states with energies Em. From this
expansion it is clear that the full response function has poles at frequencies
that correspond to the excitation energies of the interacting system

Ω = Em − E0 . (4.98)

As the external potential does not have any special pole structure as a func-
tion of ω, (4.61) implies that also n(1)(r, ω) has poles at the excitation en-
ergies, Ω. On the other hand, χKS has poles at the excitation energies of
the non-interacting system, i.e. at the Kohn-Sham orbital energy differences
εj − εk [cf. (4.63)].
By rearranging the terms in (4.68) we obtain the fairly suggestive equation∫
d3r′ [δ(r − r′)− Ξ(r, r′, ω)]n(1)(r′, ω) =

∫
d3r′ χKS(r, r′, ω) v(1)(r′, ω) ,

(4.99)
where the function Ξ is defined by

Ξ(r, r′, ω) =
∫
d3r′′ χKS(r, r′′, ω)

[
1

|r′′ − r′| + fxc(r′′, r′, ω)
]
. (4.100)

As noted previously, in the limit ω → Ω the linear density n(1) has a pole,
while the right-hand side of (4.99) remains finite. For the equality (4.99) to
hold, it is therefore required that the operator multiplying n(1) on the left-
hand of (4.99) side has zero eigenvalues at the excitation energies Ω. This
implies λ(ω) → 1 when ω → Ω, where λ(ω) is the solution of the eigenvalue
equation ∫

d3r′ Ξ(r, r′, ω)ξ(r′, ω) = λ(ω)ξ(r, ω) . (4.101)

This is a rigorous statement, that allows the determination of the excitation
energies of the systems from the knowledge of χKS and fxc. It is possible
to transform this equation into another eigenvalue equation having the true
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excitation energies of the system, Ω, as eigenvalues [44]. We start by defining
the quantity

ζjk(ω) =
∫
d3r′

∫
d3r′′ ϕ∗

j (r
′′)ϕk(r′′)

[
1

|r′′ − r′| + fxc(r′′, r′, ω)
]
ξ(r′, ω) .

(4.102)
With the help of ζjk, (4.101) can be rewritten in the form

∑
jk

(fk − fj)ϕj(r)ϕ∗
k(r)

ω − (εj − εk) + iη
ζjk(ω) = λ(ω)ξ(r, ω) . (4.103)

By solving this equation for ξ(r, ω) and inserting the result into (4.102), we
arrive at ∑

j′k′

Mjk,j′k′

ω − (εj′ − εk′) + iη
ζj′k′(ω) = λ(ω)ζjk(ω) , (4.104)

where we have defined the matrix element

Mjk,j′k′(ω) = (fk′ − fj′)
∫
d3r
∫
d3r′ ϕ∗

j (r)ϕk(r)ϕj(r′)ϕ∗
k(r

′)×[
1

|r − r′| + fxc(r, r′, ω)
]
. (4.105)

Introducing the new eigenvector

βjk =
ζjk(Ω)

Ω − (εj′ − εk′)
, (4.106)

taking the η → 0 limit, and by using the condition λ(Ω) = 1, it is straight-
forward to recast (4.104) into the eigenvalue equation∑

j′k′
[δjj′δkk′(εj′ − εk′) +Mjk,j′k′(Ω)]βj′k′ = Ωβjk . (4.107)

It is also possible to derive an operator whose eigenvalues are the square of
the true excitation energies, thereby reducing the dimension of the matrix
equation (4.107) [45]. The oscillator strengths can then be obtained from the
eigenfunctions of the operator.
The eigenvalue equation (4.107) can be solved in several different ways.

For example, it is possible to expand all quantities in a suitable basis and
solve numerically the resulting matrix-eigenvalue equation. As an alternative,
we can perform a Laurent expansion of the response function around the
excitation energy

χKS(r, r′, ω) = lim
η→0+

ϕj0(r)ϕ
∗
j0
(r′)ϕk0(r

′)ϕ∗
k0
(r)

ω − (εj0 − εk0) + iη
+ higher orders . (4.108)
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By neglecting the higher-order terms, a simple manipulation of (4.101) yields
the so-called single-pole approximation (SPA) to the excitation energies

Ω = ∆ε+K(∆ε) , (4.109)

where ∆ε is the difference between the Kohn-Sham eigenvalue of the unoc-
cupied orbital j0 and the occupied orbital k0,

∆ε = εj0 − εk0 , (4.110)

and K is a correction given by

K(∆ε) = 2�
∫
d3r
∫
d3r′ ϕj0(r)ϕ

∗
j0(r

′)ϕk0(r
′)ϕ∗

k0
(r)× (4.111)[

1
|r − r′| + fxc(r, r′, ∆ε)

]
.

Although not as precise as the direct solution of the eigenvalue equation, (see
4.107), this formula provides us with a simple and fast way to calculate the
excitation energies.
To assert how well this approach works in practice we list, in Table 4.1, the

1S →1 P excitation energies for several atoms [22]. Surprisingly perhaps, the
eigenvalue differences, ∆ε, are already of the proper order of magnitude. For
other systems they can be even much closer (cf. Table 4.3). Adding the correc-
tion K then brings the numbers indeed very close to experiments for both xc
functionals tried. We furthermore notice that the EXX/PGG functional gives
clearly superior results than the LDA/ALDA. This is related to the differ-
ent quality of the unoccupied states generated with the two ground-state xc
functionals. The unoccupied states typically probe the farthest regions from
the system, where the LDA potential exhibits severe deficiencies (as previ-
ously mentioned in Sect. 4.2.4). As the EXX potential does not suffer from
this problem, it yields better unoccupied orbitals and consequently better
excitation energies.

Table 4.1. 1S → 1P excitation energies for selected atoms. Ωexp denotes the ex-
perimental results from [46]. All energies are in hartrees. Table adapted from [22]

Atom ∆εLDA ΩLDA/ALDA ∆εEXX ΩEXX/PGG Ωexp

Be 0.129 0.200 0.130 0.196 0.194
Mg 0.125 0.176 0.117 0.164 0.160
Ca 0.088 0.132 0.079 0.117 0.108
Zn 0.176 0.239 0.157 0.211 0.213
Sr 0.082 0.121 0.071 0.105 0.099
Cd 0.152 0.214 0.135 0.188 0.199
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In Table 4.2 we show the excitation energies of the CO molecule. This case
is slightly more complicated than the previous example due to the existence
of degeneracies in the eigenspectrum of the CO molecule. Although the Kohn-
Sham eigenvalue differences are equal for all transitions involving degenerate
states, the true excitation energies depend on the symmetry of the initial and
final many-body states. As is clearly seen from the table, this splitting of the
excitations is correctly described by the correction factor K.

Table 4.2. Excitation energies for the CO molecule. ΩSPA
LDA/ALDA are the

LDA/ALDA excitation energies obtained from (4.109), and Ωfull
LDA/ALDA are ob-

tained from the solution of (4.107) neglecting continuum states. Ωexp are the ex-
perimental results from [47]. All energies are in hartrees. Table reproduced from [48]

State ∆εLDA ΩSPA
LDA/ALDA Ωfull

LDA/ALDA Ωexp

A 1Π 5σ → 2π 0.2523 0.3268 0.3102 0.3127
a 3Π 0.2238 0.2214 0.2323

B 1Σ+ 5σ → 6σ 0.3332 0.3389 0.3380 0.3962
b 3Σ+ 0.3315 0.3316 0.3822

I 1Σ− 0.3626 0.3626 0.3631
e 3Σ− 0.3626 0.3626 0.3631
a’ 3Σ+ 1π → 2π 0.3626 0.3181 0.3149 0.3127
D 1∆ 0.3812 0.3807 0.3759
d 3∆ 0.3404 0.3396 0.3440

c 3Π 4σ → 2π 0.4388 0.4204 0.4202 0.4245

E 1Π 1π → 6σ 0.4436 0.4435 0.4435 0.4237

We remember that several approximations have been made to produce the
previous results. First, a static Kohn-Sham calculation was performed with
an approximate vxc. Then the resulting eigenfunctions and eigenvalues were
used in (4.109) to obtain the excitation energies. In the last step, we used an
approximate form for the xc kernel, fxc, and we neglected the higher order
terms in the Laurent expansion of the response functions. To assert which of
these approximations is more important, we can look at the lowest excitation
energies of the He atom. For this simple system the exact stationary Kohn-
Sham potential is known [49], so we can eliminate the first source of error. We
can then test different approximations for fxc, both by performing the single-
pole approximation or not. The results are summarized in Table 4.3. We first
note that the quality of the results is almost insensitive to the xc kernel used.
Both using the ALDA or the PGG yield the same mean error. This statement
seems to hold not only for atoms but also for molecular systems [50]. From
the table it is also clear that the SPA is an excellent approximation and that
the calculated excitation energies are in very close agreement to the exact
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Table 4.3. Comparison of the excitation energies of neutral helium, calculated
from the exact xc potential [49] by using approximate xc kernels. SPA stands for
“single pole approximations”, while “full” means the solution of (4.107) neglecting
continuum states. The exact values are from a non-relativistic variational calcula-
tion [53]. The mean absolute deviation and mean percentage errors also include the
transitions from the 1s until the 9s and 9p states. All energies are in hartrees. Table
adapted from [17]

exact/ALDA (xc) exact/PGG
Statek0 → j0 ∆εKS SPA full SPA full exact

23S 1s → 2s 0.7460 0.7357 0.7351 0.7232 0.7207 0.7285
21S 0.7718 0.7678 0.7687 0.7659 0.7578
33S 1s → 3s 0.8392 0.8366 0.8368 0.8337 0.8343 0.8350
31S 0.8458 0.8461 0.8448 0.8450 0.8425
43S 1s → 4s 0.8688 0.8678 0.8679 0.8667 0.8671 0.8672
41S 0.8714 0.8719 0.8710 0.8713 0.8701
23P 1s → 2p 0.7772 0.7702 0.7698 0.7693 0.7688 0.7706
21P 0.7764 0.7764 0.7850 0.7844 0.7799
33P 1s → 3s 0.8476 0.8456 0.8457 0.8453 0.8453 0.8456
31P 0.8483 0.8483 0.8500 0.8501 0.8486
43P 1s → 4s 0.8722 0.8714 0.8715 0.8712 0.8713 0.8714
41P 0.8726 0.8726 0.8732 0.8733 0.8727

Mean abs. dev. 0.0011 0.0010 0.0010 0.0010
Mean % error 0.15% 0.13% 0.13% 0.13%

values. Why, and under which circumstances this is the case is discussed in
detail in [51,52]. This leads us to conclude that the crucial approximation to
obtain excitation energies in TDDFT is the choice of the static xc potential
used to calculate the Kohn-Sham eigenfunctions and eigenvalues.

4.4.4 When Does It Not Work?

In the previous sections we showed the results of several TDDFT calcula-
tions, most of them agreeing quite well with experiment. Clearly no physical
theory works for all systems and situations, and TDDFT is not an exception.
It is the purpose of this section to show some examples where the theory does
not work. However, before proceeding with our task, we should specify what
we mean by “failures of TDDFT”. TDDFT is an exact reformulation of the
time-dependent many-body Schrödinger equation – it can only fail in situa-
tions where quantum-mechanics also fails. The key approximation made in
practical applications is the approximation for the xc potential. Errors in the
calculations should therefore be imputed to the functional used. As a large
majority of TDDFT calculations use the ALDA or the adiabatic GGA, we
will be mainly interested in the errors caused by these approximate function-
als. Furthermore, and as we already mentioned in the previous section, there
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are usually two sources of errors in the calculation: i) the functional used
to obtain the Kohn-Sham ground-state; ii) the approximate time-dependent
xc potential/kernel. In any discussion on the errors of TDDFT the effects
of these two sources have to be clearly separated. With these arguments in
mind let us then proceed.
Our first example is the calculation of optical properties of long conju-

gated molecular chains [54]. For these systems, the local or gradient-corrected
approximations can give overestimations of several orders of magnitude. The
problem is related to a non-local dependence of the xc potential: In a system
with an applied electric field, the exact xc potential develops a linear part
that counteracts the applied field [54,55]. This term is completely absent in
both the LDA and the GGA, but is present in more non-local functionals like
the EXX.
A related problem occurs in solids [56]. In fact, the ALDA does not

work properly for the calculation of excitations of non-metallic solids, es-
pecially in systems like wide-band gap semiconductors. For infinite systems,
the Coulomb potential is (in momentum space) 4π/q2. It is then clear from
the response (see 4.69) that if fxc is to correct the non-interacting response
for q → 0 it will have to contain a term that behaves asymptotically as
1/q2 when q → 0. This is not the case for the local or gradient-corrected
approximations. Several attempts have been made to correct this problem
from which we mention [57,58,59,60].
Another problematic system for the ALDA is the streched H2 molecule

[61,62]. From a comparison with exact results it was found that the ALDA
fails to reproduce even qualitatively the shape of the potential curves for
the 3Σ+u and 1Σ+u states. A detailed analysis of the problem shows that the
failure is related to the breakdown of the simple local approximation to the
kernel.
Furthermore, the ALDA yields a large error in the calculation of singlet-

triplet separation energies [63], underestimates the onset of absorption for
some clusters [50], etc.
However, and despite these limitations, we would like to emphasize that

the ALDA does work very well for the calculation of excitations in a large
class of systems.

4.5 Atoms and Molecules in Strong Laser Fields

4.5.1 What Is a “Strong” Laser?

Before discussing the behavior of atoms and molecules in strong laser fields,
we have to specify what the adjective “strong” means in this context. The
electric field that an electron feels in a hydrogen atom, at the distance of one
Bohr from the nucleus, is

E =
1
4πε0

e

a20
= 5.1× 109V/m . (4.112)
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The laser intensity that corresponds to this field is given by

I =
1
2
ε0cE

2 = 3.51× 1016W/cm2 . (4.113)

We can clearly consider a laser to be “strong” when its intensity becomes
comparable to (4.113). In this regime, perturbation theory is no longer ap-
plicable, and the theorist has to resort to non-perturbative methods. When
approaching these high intensities, a wealth of non-linear phenomena appear,
like multi-photon ionization, above threshold ionization (ATI), high harmonic
generation, etc.
The fact that allowed systematic investigation of these high-intensity phe-

nomena was the remarkable evolution in laser technology during the past four
decades. Through a series of technological breakthroughs, scientists were able
to boost the peak intensity of pulsed lasers from 109W/cm2 in the 1960s, to
more than 1021W/cm2 of the current systems – 12 orders of magnitude! Be-
sides this increase in laser intensity, very short pulses – sometimes of the order
of hundreds of attoseconds (1 as = 10−18 s) – became available at ultravio-
let or soft X-ray frequencies [64,65]. In the present context we are concerned
mainly with intensities in the range 1013−1016W/cm2. For higher intensities
many-body effects associated with the electron-electron interaction – which
are the main interest of DFT – become less and less important due to the
strongly dominant external field.
TDDFT is a tool particularly suited for the study of systems under the

influence of strong lasers. We recall that the time-dependent Kohn-Sham
equations yield the exact density of the system, including all non-linear ef-
fects. To simulate laser induced phenomena it is customary to start from the
ground-state of the system, which is then propagated under the influence of
the potential

vTD(r, t) = Ef(t)z sin(ωt) . (4.114)

vTD describes a laser of frequency ω and amplitude4 E. The function f(t),
typically a Gaussian or the square of a sinus, defines the temporal shape
of the laser pulse. From the time-dependent density it is then possible to
calculate the photon spectrum using the relation

σ(ω) ∝ |d(ω)|2 , (4.115)

where d(ω) is the Fourier transform of the time-dependent dipole of the sys-
tem

d(t) =
∫
d3r z n(r, t) . (4.116)

Other observables, such as the total ionization yield or the ATI spectrum,
are much harder to calculate within TDDFT. Even though these observables
(as all others) are functionals of the density by virtue of the Runge-Gross
theorem, the explicit functional dependence is unknown and has to be ap-
proximated.
4 The amplitude is related to the laser intensity by the relation I = 1

2 ε0cE
2.
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Fig. 4.4. Harmonic spectrum for He at λ = 616 nm and I = 3.5 × 1014 W/cm2.
The squares represent experimental data taken from [66] normalized to the value
of the 33rd harmonic of the calculated spectrum. Figure reproduced from [67]

4.5.2 High-Harmonic Generation

If we shine a high-intensity laser onto an atom (or a molecule, or even a sur-
face), an electron may absorb several photons and then return to its ground-
state by emitting a single photon. The photon will have a frequency which
is an integer multiple of the external laser frequency. This process, known as
high-harmonic generation, has received a great deal of attention from both
theorists and experimentalists. As the outgoing high-energy photons maintain
a fairly high coherence, they can be used as a source for X-ray lasers.
A typical high-harmonic spectrum is shown in Fig. 4.4 for the helium

atom. The squares represent experimental data taken from [66], and the solid
line was obtained from a calculation using the EXX/EXX functional [67]. The
spectrum consists of a series of peaks, first decreasing in amplitude and then
reaching a plateau that extends to very high frequency. The peaks are placed
at the odd multiples of the external laser frequency (the even multiples are
dipole forbidden by symmetry). We note that any approach based on pertur-
bation theory would yield a harmonic spectrum that decays exponentially, i.e.
such a theory could never reproduce the measured peak intensities. TDDFT,
on the other hand, gives a quite satisfactory agreement with experiment.
As mentioned above, high-harmonics can be used as a source of soft X-

ray lasers. For such purpose, one tries to optimize the laser parameters, the
frequency, intensity, etc., in order to increase the intensity of the emitted
harmonics, and to extend the plateau the farthest possible. By performing
“virtual experiments”, TDDFT can be once more used to tackle such an
important problem. As an illustration, we show in Fig. 4.5 the result of irra-
diating a hydrogen atom with lasers of the same frequency but with different
intensities. For clarity, we only show the position of the peaks, and the points
were connected by straight lines. As we increase the intensity of the laser,
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Fig. 4.5. Harmonic spectra of hydrogen at a laser wavelength of λ = 1064 nm for
various laser intensities. Figure reproduced from [68]

the amplitude of the harmonics also increases, until reaching a maximum
at I = 1.5 × 1014W/cm2. A further increase of the intensity will, however,
decrease the produced harmonics. This reflects the two competing processes
that happen upon multiple absorption of photons: The electron can either
ionize, or fall back into the ground-state emitting a highly energetic photon.
Beyond a certain threshold intensity the ionization channel begins to predom-
inate, thereby reducing the production of harmonics. Other laser parameters,
like the intensity or the spectral composition of the laser, are also found to
influence the generation of high-harmonics in atoms [67,68].

4.5.3 Multi-photon Ionization

To better understand the process of ionization of an atom in strong laser
fields, it is convenient to resort to a simple quasi-static picture. In Fig. 4.6

−Ip−Ip

x
−Ip

(a) ( )b ( )c

xx

v(x) v(x) v(x)

Fig. 4.6. Ionization in strong laser fields: (a) Multi-photon ionization; (b) Tunnel-
ing; (c) Over the barrier
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we have depicted a one-electron atom at a time t after the beginning of the
laser pulse. The dashed line represents the laser potential felt by the electron
and the solid line the total (i.e. the nuclear plus the laser) potential. Three
different regimes of ionizations are governed by the Keldish parameter,

γ =
ω

E
. (4.117)

At low intensities (I < 1014W/cm2, γ � 1) the electron has to absorb several
photons before leaving the atom. This is the so-called multi-photon ionization
regime. At higher intensities (I ≤ 1015W/cm2, γ ≈ 1) we enter the tunneling
regime. If we further increase the strength of the laser field (I > 1016W/cm2,
γ � 1), then the electron can simply pass over the barrier.
The measured energy spectrum of the outgoing photo-electrons is called

the above threshold ionization (ATI) spectrum [69]. As the electron can ab-
sorb more photons than necessary for escaping the atom, an ATI spectrum
will consist of a sequence of equally spaced peaks at energies

E = (n+ s)ω − Ip , (4.118)

where n is a natural integer, s is the minimum integer such that sω− Ip > 0,
and Ip denotes the ionization potential of the system.
Another interesting observable is the number of outgoing charged atoms

as a function of the laser intensity. The two sets of points in Fig. 4.7 repre-
sent the yield of singly ionized and doubly ionized helium. The solid curve
on the right is the result of a calculation assuming a sequential mechanism
for the double ionization of helium, i.e., the He2+ is generated by first re-
moving one electron from He, and then a second from He+. Strikingly, this

Fig. 4.7. Measured He+ and He2+ yields as a function of the laser intensity. The
solid curve on the right is the He2+ yield, calculated under the assumption of a
sequential mechanism. Figure reproduced from [70]
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näıve sequential mechanism is wrong by six orders of magnitude for some
intensities.
Similar experimental results were found for a variety of molecules. Fur-

thermore, in these more complex systems, the coupling of the nuclear and
the electronic degrees of freedom gives rise to new physical phenomena. As
illustrative examples of such phenomena, we refer to the so-called ionization
induced Coulomb explosion [71], and the production of even harmonics as a
consequence of beyond-Born-Oppenheimer dynamics [72].

4.5.4 Ionization Yields from TDDFT

It is apparent from Fig. 4.7 that a simple sequential mechanism is insufficient
to describe the double ionization of helium. In this section we will show how
one can try to go beyond this simple picture with the use of TDDFT [73].
To calculate the helium yields we invoke a geometrical picture of ion-

ization. We divide the three-dimensional space, IR3, into a (large) box, A,
containing the helium atom, and its complement, B = IR3\A. Normalization
of the (two-body) wave function of the helium atom, Ψ(r1, r2, t), then implies

1 =
∫

A

∫
A

d3r1d3r2 |Ψ(r1, r2, t)|2 + 2
∫

A

∫
B

d3r1d3r2 |Ψ(r1, r2, t)|2(4.119)

+
∫

B

∫
B

d3r1d3r2 |Ψ(r1, r2, t)|2 ,

where the subscript “X” has the meaning that the space integral is only over
region X. A long time after the end of the laser excitation, we expect that
all ionized electrons are in region B. This implies that the first term in the
right-hand side of (4.119) measures the probability that an electron remains
close to the nucleus; Similarly, the second term is equal to the probability of
finding an electron in region A and simultaneously another electron far from
the nucleus, in region B. This is interpreted as single ionization; Likewise, the
final term is interpreted as the probability for double ionization. Accordingly,
we will refer to these terms as p(0)(t), p(+1)(t), and p(+2)(t).
To this point of the derivation we have utilized the many-body wave-

function to define the ionization probabilities. Our goal is however to con-
struct a density functional. For that purpose, we introduce the pair-
correlation function

g[n](r1, r2, t) =
2 |Ψ(r1, r2, t)|2
n(r1, t)n(r2, t)

, (4.120)

and rewrite

p(0)(t) =
1
2

∫
A

∫
A

d3r1d3r2 n(r1, t)n(r2, t)g[n](r1, r2, t)

p(+1)(t) =
∫

A

d3r n(r, t)− 2p(0)(t) (4.121)

p(+2)(t) = 1− p(0)(t)− p(+1)(t) .
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We recall that by virtue of the Runge-Gross theorem g is a functional of the
time-dependent density. Separating g into an exchange part (which is simply
1/2 for a two electron system) and a correlation part,

g[n](r1, r2, t) =
1
2
+ gc[n](r1, r2, t) (4.122)

we can cast (4.121) into the form

p(0)(t) = [N1s(t)]
2 +K(t)

p(+1)(t) = 2N1s(t) [1− N1s(t)]− 2K(t) (4.123)

p(+2)(t) = [1− N1s(t)]
2 +K(t) ,

with the definitions

N1s(t) =
1
2

∫
A

d3r n(r, t) =
∫

A

d3r |ϕ1s(r, t)|2 (4.124)

K(t) =
1
2

∫
A

∫
A

d3r1d3r2 n(r1, t)n(r2, t)gc[n](r1, r2, t) . (4.125)

In Fig. 4.8 we depict the probability for double ionization of helium cal-
culated from (4.123) by neglecting the correlation part of g. It is clear that
all functionals tested yield a significant improvement over the simple sequen-
tial model. Due to the incorrect asymptotic behavior of the ALDA potential,
the ALDA overestimates ionization: The outermost electron of helium is not
sufficiently bound and ionizes too easily.
To compare the TDDFT results with experiment it is preferable to look

at the ratio of double- to single-ionization yields. This simple procedure elim-
inates the experimental error in determining the absolute yields. Clearly all
TDDFT results presented in Fig. 4.9 are of very low quality, sometimes wrong
by two orders of magnitude. We note that two approximations are involved
in the calculation: The time-dependent xc potential used to propagate the
Kohn-Sham equations, and the neglect of the correlation part of the pair-
correlation function. By using a one-dimensional helium model, Lappas and
van Leeuwen were able to prove that even the simplest approximation for
g was able to reproduce the knee structure [74]. As neither of the TDDFT
calculations depicted in Fig. 4.9 show the knee structure, the approximation
used for the time-dependent xc potential appears to be more important in
obtaining proper ionization yields.
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Fig. 4.8. Calculated double-ionization probabilities from the ground-state of helium
irradiated by a 16 fs, 780 nm laser pulse for different choices of the time-dependent
xc potentials. Figure reproduced from [73]
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Fig. 4.9. Comparison of the ratios of double- to single-ionization probability cal-
culated for different choices of the time-dependent xc potential. Figure reproduced
from [73]

4.6 Conclusion

In this chapter we tried to give a brief, yet pedagogical, overview of TDDFT,
from its mathematical foundations – the Runge-Gross theorem and the time-
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dependent Kohn-Sham scheme – to some of its applications, both in the linear
and in the non-linear regimes. In the linear regime, TDDFT has become
the standard tool to calculate excitation energies within DFT, and is by
now incorporated in all of the major quantum-chemistry codes. In the non-
linear regime, TDDFT is able to describe extremely non-linear effects, like
high-harmonic generation, or multi-photon ionization. Unfortunately, some
problems, like the knee structure in the yield of doubly ionized helium, are
still beyond the reach of modern time-dependent xc potentials. In our opinion,
we should not dismiss these problems as failures of TDDFT, but as a challenge
to the next generation of “density-functionalists”, in their quest for better
approximations to the elusive xc potential.
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∗ Department of Physics, University of York,
Heslington, York YO10 5DD,
United Kingdom
rwg3@york.ac.uk

† Departamento de F́ısica Fundamental,
Universidad Nacional de Educación
a Distancia, Apto. 60141, 28080 Madrid, Spain
pgarcia@fisfun.uned.es

5.1 Introduction

One of the fundamental problems in condensed-matter physics and quantum
chemistry is the theoretical study of electronic properties. This is essential
to understand the behaviour of systems ranging from atoms, molecules, and
nanostructures to complex materials. Since electrons are governed by the
laws of quantum mechanics, the many-electron problem is, in principle, fully
described by a Schrödinger equation (supposing the nuclei to be fixed). How-
ever, the electrostatic repulsion between the electrons makes its numerical
resolution an impossible task in practice, even for a relatively small number
of particles.

Fortunately, we seldom need the full solution of the Schrödinger equation.
When one is interested in structural properties, the ground-state total energy
of the system is sufficient. In other cases, we want to study how the system
responds to some external probe, and then knowledge of a few excited-state
properties must be added. For instance, in a direct photoemission experiment
a photon impinges on the system and an electron is removed. In an inverse
photoemission process, an electron is absorbed and a photon is ejected. In
both cases we have to deal with the gain or loss of energy of the N electron
system when a single electron is added or removed, i.e. with the one-particle
spectra. If the electron is not removed after the absorption of the photon,
the system had evolved from its ground-state to an excited state, and the
process is described by a set of electron-hole excitation energies. These few
examples reflect the fact that practical applications of quantum theory are
actually based on more elaborated and specialised techniques than simply
trying to solve directly the Schrödinger equation. As we may see in other
chapters of this book, the ground-state energy can be obtained – in princi-
ple exactly – using density functional theory (DFT) [1,2]. Regarding excited
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states, the information about single particle spectra is contained in the so
called one-electron Green’s function, whereas the electron-hole properties are
described by the two-electron Green’s function. Many-body perturbation the-
ory (MBPT) [3,4,5,6,7], which focuses on these Green’s functions directly, is
a natural tool for the study of these phenomena.

Interestingly, the one-electron Green’s function can also be used to cal-
culate the ground-state energy as well as the expectation value of any one-
particle observable (like the density or the kinetic energy) which is that DFT
most naturally addresses1. This opens an appealing possibility: the use of
MBPT instead of DFT in those cases in which the latter – because of the
lack of knowledge of the exact exchange-correlation (xc) energy functional
Exc [n] – does not provide accurate results. For example, systems in which
van der Waals bonds are important are completely outside the scope of the
familiar local-density (LDA) or generalised gradient (GGA) approximations.
However, we shall see that these van der Waals forces can be studied through
MBPT within Hedin’s GW approximation [8,4] which is the most widely
used many-body method in solid-state physics.

In this chapter, after a brief introduction to MBPT and Hedin’s GW ap-
proximation, we will summarise some peculiar aspects of the Kohn-Sham
xc energy functional, showing that some of them can be illuminated us-
ing MBPT. Then, we will discuss how to obtain ground-state total ener-
gies from GW. Finally, we will present a way to combine techniques from
many-body and density functional theories within a generalised version of
Kohn-Sham (KS) DFT.

5.2 Many-Body Perturbation Theory

Our discussion focuses on the concepts from MBPT that will be useful in this
chapter. We will also present a short overview of some current problems in ab-
initio calculations of quasiparticle properties. We refer the reader to [3,4,5,6,7]
and the review articles [9,10,11,12,13] for further information on theoretical
foundations and applications to solid-state physics, respectively.

5.2.1 Green’s Function and Self-energy Operator

Green’s functions are the key ingredients in many-body theory from which
relevant physical information can be extracted. Given a non-relativistic N
electron system under an external potential vion (x), the one-particle Green’s
function (for simplicity we henceforth omit the prefix “one-particle”) is de-
fined as

G (x,x′; t− t′) = −i
〈
Ψ
(0)
N

∣∣∣T [ψ̂ (x, t) ψ̂† (x′, t′)]∣∣∣Ψ (0)
N

〉
; (5.1)

1 Similarly, two-particle ground-state quantities, like the pair correlation function,
can be obtained from the two-electron Green’s function.
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where x ≡ (r, ξ) symbols the space and spin coordinates,
∣∣∣Ψ (0)
N

〉
is the

ground-state of the system, ψ̂ (x, t) is the annihilation operator in the Heisen-
berg picture, and T is Wick’s time-ordering operator2. We may see that for
t > t′, the Green’s function is the probability amplitude to find an electron
with spin ξ at point r and time t if the electron was added to the system with
spin ξ′ at point r′ and time t′. When t′ > t, the Green’s function describes
the propagation of a hole created at t.

As commented, the Green’s function contains the information about one-
particle excitations (we will see in Sect. 5.4 how to obtain ground-state prop-
erties). We start from the Lehmann representation of the Green’s function:

G (x,x′;ω) =
∑
n

fn (x) f∗n (x
′)

ω − En − iη sgn (µ− En) . (5.2)

Here, G (ω) is the Fourier transform with respect to τ = t− t′, η is a positive
infinitesimal, µ is the Fermi energy of the system, and

fn (x) =
〈
ΨN

∣∣∣ψ̂ (x)∣∣∣Ψ (n)
N+1

〉
, En = E(n)

N+1 − E(0)
N if En > µ

fn (x) =
〈
Ψ
(n)
N−1

∣∣∣ψ̂ (x)∣∣∣ΨN〉 , En = E(0)
N − E(n)

N−1 if En < µ
, (5.3)

with E(0)
N the ground-state energy and

∣∣∣Ψ (n)
N±1

〉
the n-th eigenstate with en-

ergy E(n)
N±1 of the N±1 electron system. By taking the imaginary part of (5.2)

we have the so-called spectral function:

A (x,x′;ω) =
1
π
|�G (x,x′;ω)| =

∑
n

fn (x) f∗n (x
′) δ (ω − En) . (5.4)

We may see that A (x,x′;ω) is just the superposition of delta functions with
weights given by the amplitudes fn (x) centred at each of the one-particle
excitation energies En. That is, as anticipated above, the Green’s function
reflects the one-particle excitation spectra. Moreover, such weights – see (5.3),
depend on the density of available eigenstates after the addition/removal of
one electron. Further details about the role of A (ω) in the interpretation of
photoemission experiments can be found in [14].

The spectral function – actually selected diagonal matrix elementsAnn (ω)
in a suitable one-electron basis representation – may exhibit well-defined
structures reflecting the existence of highly probable one-electron excitations.
Due to the Coulomb interaction, we cannot assign each excitation to an in-
dependent particle (electron or hole) added to the system with the excitation
energy. Nonetheless, some of these structures can be explained approximately
in terms of a particle-like behaviour, so having a quasiparticle (QP) peak.
Where a second peak is required we may have what is called a satellite.
2 Note that G depends on t− t′ due to translational time invariance.
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Fig. 5.1. Comparison between the non-interacting spectral function for a hole and
the interacting one. Note how the interaction shifts down and broadens the QP
peak and the appearance of a satellite at ω = εsat

Of course this distinction is somewhat arbitrary, but a way of doing it is
the following. Let us suppose that we switch off the interaction, so having
a system of independent particles whose eigenstates can be described using
one-electron orbitals φj (r) with eigenenergies εj . In this case, the matrix
elements of the spectral function in the orbital basis set are

Aij (ω) = 〈φi |A (x,x′;ω)|φj〉 = δijδ (ω − εi)

That is, for the non-interacting system Aii (ω) is just a delta function centred
at ω = εi and the orbital energies are the one-electron excitation energies. If
now we turn on the interaction,we may see that the delta function changes
its position, broadens, and loses spectral weight which is transferred into the
spectral background of the interacting Aii (ω) – see Fig. 5.1. At the end of
the process, the delta function has become a QP peak – in the sense that it
originates from an independent single-particle state – and further structures
that might have appeared would be the satellites. Note that the width of the
QP peak reflects the finite lifetime of the added-particle state since it is not
longer a real eigenstate of the system, whereas the satellites often reflect its
resonant coupling with other elementary excitations like plasmons.

This one-electron picture can be formally introduced with the aid of the
so-called self-energy operator Σ, which is defined through the Dyson equation

G−1 (x,x′;ω) = G−1H (x,x′;ω)−Σ (x,x′;ω) . (5.5)

Here, we have used the Hartree Green’s function

G−1H (x,x′;ω) = δ (x− x′) [ω − h0 (x)] , (5.6)
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that corresponds to the non-interacting system in which h0 (x) is the one-
electron Hamiltonian under the external potential vion (x) plus the classical
Hartree potential vH (r). Then, it is evident that the self-energy contains
the many-body effects due to Pauli exchange and Coulomb correlation, and
that sharp structures in G (ω) are related to small expectation values of the
frequency-dependent operator ω − ĥ0 − Σ̂ (ω). Moreover, if we extend the
ω-dependence of the self-energy to complex frequencies, such structures can
be attributed to zeros of the operator ω− ĥ0 − Σ̂ (ω), that is, to solutions of
the non-Hermitian eigenvalue problem

h0 (x)φqpn (x) +
∫
dx′Σ (x,x′, Eqp

n )φqpn (x′) = Eqp
n φ

qp
n (x) , (5.7)

with complex energies Eqp
n . This is the quasiparticle equation, where Σ plays

the role of an effective frequency-dependent and non-local potential. We may
see that the self-energy has a certain resemblance with the DFT xc potential
vxc (x) but, of course, the two objects are not equivalent. We have to bear in
mind that the local and static vxc (x) is part of the potential of the fictitious
KS non-interacting system, whereas the self-energy may be thought of as the
potential felt by an added/removed electron to/from the interacting system.

Now, it is easy to see the correspondence between the QP peaks in the
spectral function and the quasiparticle states φqpn . If we expand Σn (ω) =
〈φqpn |Σ (ω)|φqpn 〉 around ω = Eqp

n we have that

Gn (ω) = 〈φqpn |G (ω)|φqpn 〉 

Zn

ω − (εqpn + iΓn)
, (5.8)

with εqpn = �Eqp
n , Γn = �Eqp

n , and Zn the complex QP renormalisation
factor given by

Z−1n = 1− ∂Σn (ω)
∂ω

∣∣∣∣
ω=Eqp

n

. (5.9)

As a consequence, if Γn is small, the spectral function �Gn (ω) is expected
to have a well defined peak centred at εqpn of width Γn and weight |�Zn|.
Therefore, the real part εqpn is the QP energy itself, and it provides the band-
structure of the system. The inverse of the imaginary part Γ−1n gives the
corresponding QP lifetime.

5.2.2 Many-Body Perturbation Theory
and the GW Approximation

In practical applications, we have to obtain (under certain unavoidable ap-
proximations) the self-energy operator. From this we calculate the QP spec-
trum using (5.7) and, if required, the full Green’s function given by (5.5).
MBPT provides a tool for such a task but, as in any other perturbation theory,
we have to define the unperturbed system and the perturbation itself. In the
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above discussion, the unperturbed system seemed to be the non-interacting
system of electrons under the potential vion (x)+vH (r). However, due to the
obvious problems that arise when trying to converge a perturbation series,
it is much better to start from a different non-interacting scenario, like the
LDA or GGA KS system, which already includes an attempt to describe ex-
change and correlation in the actual system. Considering the perturbation,
the bare Coulomb potential w is very strong and, besides, we know that in a
many-electron system the Coulomb interaction between two electrons is read-
ily screened by a dynamic rearrangement of the other electrons [15], reducing
its strength. Therefore, it is much more natural to describe the Coulomb in-
teraction in terms of a screened Coulomb potential W and then write down
the self-energy as a perturbation series in terms of W . If we just keep the
first term of such an expansion, we will have the GW approximation.

The self-energy can be obtained from a self-consistent set of Dyson-like
equations known as Hedin’s equations:

P (1 2) = −i
∫
d (3 4) G (1 3)G

(
4 1+

)
Γ (3 4, 2) (5.10a)

W (1 2) = w (1 2) +
∫
d (3 4) W (1 3)P (3 4)w (4 2) (5.10b)

Σ (1 2) = i
∫
d (3 4) G

(
1 4+

)
W (1 3)Γ (4 2, 3) (5.10c)

G (1 2) = GKS (1 2) (5.10d)

+
∫
d (3 4) GKS (1 3) [Σ (3 4)− δ (3 4) vxc (4)]G (4 2)

Γ (1 2, 3) = δ (1 2) δ (1 3) (5.10e)

+
∫
d (4 5 6 7)

δΣ (1 2)
δG (4 5)

G (4 6)G (7 5)Γ (6 7, 3) ,

where we have used the simplified notation 1 ≡ (x1, t1) etc. Above, P is the
irreducible polarisation, Γ is the so-called vertex function, and

GKS (x,x′;ω) =
∑
n

φn (x)φ∗n (x
′)

ω − εKS
n − iη sgn (µ− εKS

n )
, (5.11)

with GKS the Green’s function of the KS system and φn the corresponding KS
wavefunctions with eigenenergies εKS

n . We arrive at the GW approximation
by eliminating the second term in the vertex function (5.10e) (i.e. neglecting
“vertex corrections”) in such a way that (5.10a) and (5.10b) reduces to

P (1 2) = −iG (1 2)G
(
2 1+

)
(5.12a)

Σ (1 2) = iG
(
1 2+

)
W (1 2) . (5.12b)

That is, in GW the screened Coulomb potential is calculated at the RPA level
and Σ is just the direct product of G and W (hence the name). Also note
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Fig. 5.2. Flow diagram sketching the practical implementation of the GW method.
The partially self-consistent GW0 updates the self-energy operator Σ, whereas the
fully self-consistent GW also updates the screened Coulomb potential W

that in the Hartree-Fock approximation the Fock operator Σx is obtained as
in (5.12b) but withW replaced by the static bare Coulomb potential w. Based
on this, GW may be understood as a physically motivated generalisation of
the Hartree-Fock method in which the Coulomb interaction is dynamically
screened. A flow diagram sketching the practical implementation of the GW
method is shown in Fig. 5.2.

In most GW applications, self-consistency is set aside, and P and Σ
are obtained by setting G = GKS in (5.12a) and (5.12b). The interacting
Green’s function is then obtained by solving (5.10e) once. Furthermore, in
many cases there is an almost complete overlap between the QP and the
KS wavefunctions, and the full resolution of the QP equation (5.7) may be
circumvented. Thus, Eqp

n is given as a first-order perturbation of the KS
energy εKS

n :

Eqp
n 
 εKS

n +
〈
φn
∣∣Σ (εKS

n

)− vxc −∆µ∣∣φn〉 , (5.13)

where a constant ∆µ has been added to align the chemical potential before
(KS level) and after the inclusion of the GW correction. As long as we are
just interested on band-structures, further approximations, generally through
a plasmon-pole ansatz [16], may be used to evaluate W in real materials.
However, these models prevent us from calculating the whole Green’s function
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so losing important spectral features like QP lifetimes and they can hardly
be justified in systems others than sp metals. An efficient procedure to find
out the entire spectral representation of the self-energy is the so-called space-
time method [17], in which dynamical dependencies are represented in terms
of imaginary times and frequencies, and each of Hedin’s GW equations is
solved in the most favourable spatial representation. As a final step, the
self-energy for real frequencies can be obtained using analytical continuation
from its values at imaginary frequencies after a fitting to a suitable analytical
function. This method shows a favourable scaling with system size and avoids
fine ω-grids that were needed to represent sharp spectral features in GKS (ω)
and W (ω) [17,18].

Since the first ab-initio calculations performed by Hybertsen and Louie in
1985 [19], non-self-consistent GW has been applied to calculate QP properties
(band-structures and lifetimes) of a wide variety of systems. The most strik-
ing success of this “G0W0” approximation is the fairly good reproduction (to
within 0.1 eV of experiments) of experimental band gaps for many semicon-
ductors and insulators, so circumventing the well-known failure of LDA when
calculating excitation gaps. It is also worth emphasising that G0W0 gives
much better ionisation energies than LDA in localised systems [20,21,22],
and its success when studying lifetimes of hot electrons in metals and image
states at surfaces (see [11,12] and references therein).

In spite of its overall success, G0W0 has some limitations. For instance,
agreement with experiment for energy gaps and transitions may mask an
overall additive error in the value of the self-energy; satellite structures are
not well described in detail; and agreement with experiment worsens away
from the Fermi energy (notably the bandwidth of alkali metals). Further ap-
proximations not related to MBPT, like the use of pseudopotentials in prac-
tical ab-initiocalculations and those simplifications made when interpreting
experimental results have been also considered. The main conclusions can be
summarised as follows:

• Inclusion of vertex corrections improves the description of the absolute
position of QP energies in semiconductors [23] and the homogeneous elec-
tron gas (HEG) [24], although the amount of such corrections depends
very sensitively on the model used for the vertex [25]. Vertex corrections
constructed using the so-called cumulant expansion [26], reproduce the
multiple-plasmon satellite structure in alkali metals [27] (the GW spectral
function only shows an isolated satellite).
• On the other hand, the absence of vertex corrections does not seem to be
the full explanation of the differences (0.3–0.4 eV) between the measured
valence bandwidth for alkali metals [28,29] and the G0W0 values [30,31].
The inclusion of vertex effects slightly changes the occupied bandwidth
of the HEG, but this correction is not enough to fit the experimental re-
sults [24,32,33]. Of course these results are not conclusive because any effect
due to the crystal structure is neglected. Nonetheless, the fact that G0W0
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plus vertex barely changes the valence bandwidth of Si [23], gives fur-
ther indirect support to the existence of other mechanisms explaining this
discrepancy. It seems plausible that specific details of the photoemission
process could be the ultimate reason of the discrepancies between theory
and experiment [9,33,34,35].
• The “bandwidth problem” mentioned above was the primary motivation of
the first complete study of the role of self-consistency in GW performed by
von Barth and Holm for the HEG [36,37]. Partially self-consistent “GW0”
calculations – in which W is calculated only once using the RPA, so
that (5.12a) is not included in the iterative process – slightly increase the
G0W0 occupied bandwidth. Results are even worse at full self-consistency
in which, besides, there is not any well-defined plasmon structure inW and,
as a consequence, the plasmon satellite in the spectral function practically
vanishes. These results were confirmed by Schöne and Eguiluz [31] for bulk
K where they obtained that the GW bandwidth is 0.6 eV broader than that
of G0W0. These authors found another important result: self-consistency
overestimates by 0.7 eV the experimental fundamental gap of Si, which is
an error (but of the opposite sign) comparable with the one given by LDA.
As a consequence, it does not seem a good idea to perform self-consistent
GW calculations to obtain QP properties. The effects resulting from an un-
physical screened Coulomb potential must be necessarily balanced by the
proper inclusion of vertex corrections along the self-consistent procedure.
However, as we will see in Sect. 5.4, such a self-consistency is essential to
evaluate absolute ground-state energies.
• Very recently, a fully self-consistent calculation including vertex corrections
has been reported for the HEG by Takada [35]. Compared with a G0W0 cal-
culation (see Fig. 5.3), both methods give practically the same bandwidth,
although the QP peak is much broader than in G0W0. The latter reflects
a more effective damping of the QP due to the multiple electron-hole ex-
citations that are included in diagrams beyond GW . A similar broadening
can be observed in the first plasmon satellite peak, which it is fairly well
located at the expected position (ωp below the QP peak, ωp being the
bulk plasmon frequency). Interestingly, there is no significant change in
the width of the valence band, but excellent agreement is obtained by in-
cluding the self-energy corrections for the final state of the photoemitted
electron. However, application of this self-consistent procedure to inhomo-
geneous systems appears to be very challenging.
• Finally, core electrons, that are absent from routine pseudopotential (PP)
calculations, could be important in the final determination of spectral
properties. Nonetheless, the inclusion of core-electrons in ab-initio MBPT
schemes should be done with caution. For instance, an all-electron G0W0
calculation reduces the corresponding PP value of the fundamental gap of
bulk Si at least 0.3 eV [38,39,40]. This effect has been interpreted as a re-
sult of exchange coupling between core and valence electrons [40] which, of
course, is described in a PP calculation only at the level of the underlying
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Fig. 5.3. Spectral function at the bottom of the valence band of the HEG (rs = 4)
given by a non-interacting picture, G0W0, GW0, and a full self-consistent procedure
with the inclusion of vertex corrections. After Takada [35]

atomic LDA calculation. However, the occupied bandwidth only suffers a
marginal change of 0.1 eV after an all-electron calculation (note that the
experimental value is 12.5 eV). This might suggest that vertex corrections,
that are almost irrelevant when determining the band gap of sp semicon-
ductors under the PP approximation [23,41], could be more important in
those situations in which valence states coexist with more localised core
states. Furthermore, the performance of G0W0 in transition metals, with
the corresponding appearance of more localised d states, has not been fully
assessed yet [9]. For these reasons, the striking coincidence between the
experimental Si band gap and the all-electron self-consistent GW result
reported by Ku and Eguiluz [40] might be fortuitous.

In summary, G0W0 is an excellent approximation for the evaluation of QP
properties of simple systems and, very likely, able to provide the main trends
in more complex systems. Theories beyond G0W0 are required to study other
spectral features.

5.3 Pathologies of the Kohn–Sham xc Functional

The Kohn-Sham formalism [2] relies on the link between an actual N electron
system and a fictitious non-interacting counterpart through the xc poten-
tial vxc (r) = δExc [n] /δn (r)3. Hence, vxc (r) contains essential information
about many-body correlations which, as we have seen in the previous sec-
tion, MBPT describes in terms of non-local dynamical functions. Then, we
3 For simplicity, in vxc we omit the explicit functional dependence on the density.
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can easily realise that the mapping between ground-state densities and KS
potentials,

n (r)→ vKS [n] (r) = vion (r) +
∫
dr′

n (r′)
|r − r′| + vxc (r) , (5.14)

must depend on n (r) in a very peculiar and sensitive way. In fact, the actual
functional relation between n (r) and vxc (r) (or Exc [n]) is:

• highly non-analytical: small or even infinitesimal changes in the density
may induce substantial variations of the xc potential;
• highly non-local4: changes in the density at a given point r may induce
substantial variations of the xc potential at a very distant point r′.

These conditions are the origin of some special features that we will re-
view in this section, and show how difficult is to construct a fully reliable
approximation to the exact xc energy or potential that is an explicit func-
tional of the density. Note that the LDA does not fulfil either requirement,
and GGAs are just analytical semi-local approaches. The novel meta-GGAs
(see the chapter by John P. Perdew in this book) are interesting in the sense
that they include further non-analytical and non-local behaviour through the
explicit appearance of the KS wavefunctions. Their performance remains to
be explored, but it is likely that some non-analyticities and non-locality of
the exact functional remains beyond their grasp. In fact, the virtue of these
models is their ability to provide accurate results in many situations being,
at the same time, very easy to apply. Other alternatives, like averaged and
weighted density approximations [42,43,44], are truly non-local prescriptions
but, despite its complexity, are once more limited by their explicit depen-
dence on the density. Finally, we would like to mention the existence – as
discussed by E. Engel in this book – of a very promising third generation of
xc energy density functionals. In these models, the exchange energy – which
is already non-local and non-analytical – is treated exactly [45,46], and then
only Coulomb correlations remains to be approximated. The only drawback is
that they do not benefit any more from the well-known cancellation between
exchange and correlation effects in extended systems which, somehow, is ex-
ploited by other approximations. Therefore, the correlation part should be,
in principle, more sophisticated than an LDA or GGA. To what extent these
new functionals incorporate the following peculiarities of the xc functional
remains to be investigated.

4 The non-local density-dependence of the xc potential should not be confused
with whether the vxc (r) is a local or non-local potential in its dependence on
its spatial argument r; in Kohn-Sham theory the xc potential is always a local
potential in the latter sense.
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5.3.1 The Band Gap Problem

We have already mentioned the inaccuracy of LDA-KS when determining
the band gap of semiconductors and insulators. This failure is intimately
related to a pathological non-analytical behaviour of the xc energy func-
tional, as shown by J. P. Perdew and M. Levy and by L. J. Sham and M.
Schlüter [47,48]. Namely, the xc potential may be increased by a finite con-
stant of the order of 1 eV as a result of the addition of an extra electron to an
extended system, that is, after an infinitesimal change of the electron density.

As is well known [49,50], the band gap Egap of an N electron system is
defined as the difference between the electron affinity A = E(0)

N − E(0)
N+1 ≡

−ELUMO and the ionisation potential I = E(0)
N−1 − E(0)

N ≡ −EHOMO:

Egap = I −A = ELUMO − EHOMO , (5.15)

where HOMO and LUMO stand for highest occupied and lowest unoccu-
pied molecular orbital respectively. We may see that the band gap (or the
HOMO-LUMO gap in a finite system) is just the difference between two
single-electron removal/addition energies, so it is immediately addressed by
MBPT. We can also calculate Egap using KS-DFT through the expression

Egap = εKS
N+1 (N + 1)− εKS

N , (5.16)

where εKS
N+1 (N + 1) is the energy of the highest occupied KS orbital of the

N + 1 electron system, and εKS
N is the HOMO level of the KS N -particle

system – note that we keep the notation introduced in the previous section,
in which εKS

i is the i-th KS orbital energy of the N electron system. It is easy
to arrive at (5.16) just bearing in mind that the affinity of an N electron
system is the opposite of the ionisation potential of the N +1 electrons, and
that the Kohn-Sham HOMO level equals the actual one5 [51].

For a non-interacting system, the gap can be readily written in terms of
its orbital energies. Therefore, for the fictitious N electron KS system we
have

EKS
gap = εKS

N+1 − εKS
N . (5.17)

From (5.16) and (5.17), we immediately get that the actual and KS gaps are
related through

Egap =
(
εKS
N+1 − εKS

N

)
+
(
εKS
N+1 (N + 1)− εKS

N+1
) ≡ EKS

gap +∆xc , (5.18)

an expression which is illustrated in Fig. 5.4. We may see that ∆xc is just the
difference between the energies of the (N + 1)-th orbitals of the KS systems
that correspond to the neutral and ionised electron systems. In a solid, in
which N � 0, the addition of an extra electron only induces an infinitesimal
5 That is, for an N electron system εKS

N = −I. Remember that this is the only KS
orbital energy with an explicit physical meaning.
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Fig. 5.4. Sketch of the Kohn-Sham band structure of a semiconductor (left panel).
After the addition of an electron which occupies the empty conduction band, (right
panel) the xc potential and the whole band-structure shift up a quantity ∆xc

change of the density. Therefore, the two corresponding KS potentials must
be practically the same inside the solid up to a constant shift and, conse-
quently, the KS wavefunctions do not change. The energy difference ∆xc is
then the aforementioned rigid shift which, in addition, is entirely contained
in vxc because the Hartree potential depends explicitly on the density. As a
conclusion, ∆xc is the measure of a well-defined non-analytical behaviour of
the xc energy functional. Namely, it is a finite variation of vxc (r) extended
everywhere in the solid due to an infinitesimal variation of n (r)

∆xc =

(
δExc [n]
δn (r)

∣∣∣∣
N+1
− δExc [n]
δn (r)

∣∣∣∣
N

)
+O

(
1
N

)
. (5.19)

Now it is easy to see the relation between a non-analytical vxc and the
band gap problem. If vxc were actually discontinuous, the actual band gap
would not be given in terms of the KS energies of the N electron system6. On
the contrary, if ∆xc were zero (or very close to zero), the difference between
the actual gap and the LDA-KS one ELDA

gap would be just an inherent limita-
tion of the local-density approximation. In the latter case, the formulation of
more sophisticated approaches to the xc energy would allows us to calculate
the gap of a real material directly from its corresponding KS band-structure.
Nonetheless, the LDA is already a good approximation when calculating total
energies and densities of bulk semiconductors and, moreover, improvements
upon the LDA, such as the GGA or the WDA, change the KS gap very little.
6 In a similar context this is what happens in a metal. Although the KS Fermi
energy is equal to the actual one, the corresponding Fermi surfaces may differ.
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Table 5.1. The xc discontinuity∆xc, and calculated and experimental fundamental
band gaps, for four semiconductor and insulators. All energies are in eV. From
Godby et al. [53]

Si GaAs AlAs Diamond

∆xc 0.58 0.67 0.65 1.12

Band gaps:
KS-LDA 0.52 0.67 1.37 3.90
G0W0 1.24 1.58 2.18 5.33
Experiment 1.17 1.63 2.32 5.48

The existence of a discontinuity in vxc is, then, more plausible than an error
in the LDA band-structure.

The first evidence of a non-zero ∆xc in real matter was given by Godby
et al. [52,53] who used the so-called Sham-Schlüter equation [48,54],∫

dr′ vxc (r′)
∫
dωGKS (r, r′;ω) G (r′, r;ω)

=
∫
dr′ dr′′

∫
dωGKS (r, r′′;ω)Σ (r′, r′′;ω)G (r′′, r;ω) , (5.20)

to calculate the xc potential from the many-body self-energy operator, which
was obtained under the GW approximation. This MBPT-based potential
was found to be very similar to the LDA one and the corresponding band
structures turned out to be practically the same. As a consequence, the xc
discontinuity ∆xc is the main cause of the difference between the experimen-
tal gaps and those given by the LDA. In fact, ∆xc accounts for about 80% of
the LDA band gap error for typical semiconductors and insulators (see Ta-
ble 5.1). This result was confirmed by Knorr and Godby for a family of model
semiconductors [55]. In this case, the exact potential vKS (r) (and hence, the
exact EKS

gap) was calculated by imposing the reproduction of quantum Monte-
Carlo densities. Again ∆xc = EKS

gap − Egap �= 0, accounting for 80% of the
LDA error Egap − ELDA

gap . Interestingly, an opposite trend (i.e. ∆xc 
 0) was
found by Gunnarsson and Schönhammer in a very different scenario: a simple
Hubbard-like one-dimensional semiconductor in which vxc and the gap can
be obtained exactly [56].

Recently, Städele and co-workers [57] calculated the fundamental band
gaps for a number of standard semiconductors and insulators using the exact
exchange functional together with the local approximation to the correlation
energy (which we denote EXX(c)). In several of the materials studied the KS
gaps within this approximation were found to be notably closer to experiment
than the LDA gaps. However, the same paper also evaluated the exchange
contribution to ∆xc (defined as the difference between the Hartree-Fock and
exact-exchange KS gaps [59]), which was several electron volts, much larger
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Fig. 5.5. The Kohn-Sham effective potential vKS (r) for two widely separated open
shell atoms. Whereas the classical contributions to vKS do not show any pathological
behaviour, the exchange-correlation potential takes a positive value IB− IA around
the atom B

than any estimate of the total ∆xc. This serves to emphasise the large degree
of cancellation between exchange and correlation effects, familiar from other
aspects of the electronic structure of solids, which suggests that caution must
be exercised in interpreting a calculation in which exchange and correlation
are treated on quite different footings. In a further paper [58], G0W0 band
gaps calculated from EXX(c) wavefunctions were found to be little differ-
ent from those calculated from LDA wavefunctions, supporting the notion
that a variety of reasonable descriptions of exchange and correlation provide
adequate zeroth-order starting points for a MBPT calculation.

5.3.2 Widely Separated Open Shell Atoms

It is known that the xc potential is, in many cases, long ranged. For instance,
in a neutral atom vxc (r) decays asymptotically as −1/r, whereas for a metal
surface it exhibits an image-like behaviour −1/4z [51]. What it is not so
known is that, as shown by Almbladh and von Barth [60], under some special
circumstances, vxc (r) can be macroscopically long-ranged, thus reflecting a
pathological ultra-high non-locality.

Let us consider two atoms A and B, each of them with an unpaired elec-
tron, whose ionisation potentials are IA and IB with IA < IB. If the atoms
are separated by a very large arbitrary distance d, the ionisation potential
of the whole system I is then given by the smallest (IA) of the two ionisa-
tion potentials. Taken into account that in a finite system the ground-state
density decays as n (r) ∝ exp

(
−2r√2I

)
[51,61], the asymptotic behaviour

of the ground-state density of this “molecule” is governed by I = IA except
in a region surrounding atom B, where the exponential fall-off of the density
is given in terms of IB.
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If the ground-state of the N -particle system is a spin singlet7, the highest
occupied state φN of the KS fictitious system with energy εKS

N = −I = −IA
is doubly occupied – remember that all the lower KS-states must be com-
pletely full. All the asymptotic behaviour of the density is determined by the
HOMO, thus there is a region around the atom B in which vKS − εKS

N 
 IB
whereas vKS − εKS

N tends to IA in the rest of the system – see Fig. 5.5. Both
electrostatic and ionic contributions to vKS decay to zero everywhere. There-
fore, although the xc potential decays to zero around the atom A and, in
general, at sufficiently large distances, vxc tends to IB − IA > 0 in the neigh-
bourhood of the atom B. That is, vxc shifts up a finite amount around B due
to the presence of another electron at an arbitrary large distance. Moreover,
vxc must have a spatial variation in a region between A and B where the
electron density is practically zero. Both features clearly illustrate that the
xc potential exhibits an unphysical infinite range in this model system. Note
that this behaviour cannot emerge by any means from typical non-local pre-
scriptions which assume a finite range around a point r that depends on the
density n (r).

5.3.3 The Exchange-Correlation Electric Field

An insulating solid is, of course, composed of individual unit cells, each of
which contains polarisable electrons which may become slightly displaced in
response to an applied uniform electric field, so that each unit cell acquires
an electric dipole moment. According to the well-known theory of dielectric
polarisation, this macroscopic polarisation produces a “depolarising” electro-
static field which reduces the net electric field by a factor of ε, the macroscopic
dielectric constant. In Kohn-Sham DFT, however, there is a further possible
contribution to the potential felt by the Kohn-Sham electrons: the exchange-
correlation potential vxc (r) may also acquire a long-range variation, which
was termed the exchange-correlation “electric field” by Godby and Sham,
and Gonze, Ghosez and Godby in a series of papers [62,63,64,65,66,67]. (Of
course, it is not truly an electric field in the sense that it is produced by real
electric charge, but its effect on the Kohn-Sham potential is the same as that
of an electric field.)

Figure 5.6 shows the basic concept. The two polarised insulators shown in
the central and lower parts of the Figure have identical electron densities, but
different Kohn-Sham potentials: the two systems differ in their macroscopic
polarisation. In order to reproduce the correct macroscopic polarisation, the
exact Kohn-Sham xc potential must acquire a part which varies linearly in
space: the xc field.

For our purpose, the point is that the exchange-correlation electric field
is another pathological aspect of the exact Kohn-Sham xc functional: the
7 If the ground-state were a triplet we should use the extension of KS-DFT to
spin polarised systems, but in this case the pathology we are describing will not
appear.
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Fig. 5.6. A schematic illustration of the origin of the exchange-correlation “elec-
tric field”. Top: an unpolarised insulator; the blobs represent the regions of high
electron density within each unit cell. Centre: The same insulator, polarised by the
addition of an external electric field, which (together with the depolarising inter-
nal electric field and any exchange-correlation “electric field”) results in the total
Kohn-Sham potential shown. Bottom: The same polarised electron density in the
bulk crystal may be generated by a Kohn-Sham potential with zero net long-range
field (as shown here), or indeed by a family of potentials, each with a different net
field. Each member of the family corresponds to a different macroscopic polarisa-
tion, i.e. a different surface charge. A particular non-zero value of the Kohn-Sham
exchange-correlation “electric field” is required to reproduce the correct macro-
scopic polarisation

electron density in the polarised insulator is the same from one unit cell to
the next, while vxc (r) rises by a constant amount over the same distance.
Therefore, the xc potential cannot be regarded as a functional of the electron
density within its own unit cell, or indeed the electron density in any finite
region. The xc-field part of the potential depends on the polarisation; that
is, on the electron density at the surface of the crystal. For this reason, the
xc field represents an ultra-non-local dependence of the xc potential on the
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electron density. In contrast, in a MBPT description, the self-energy operator,
which is written as a perturbation series in terms of fairly local8 quantities,
is believed to have no such long-range variation from one cell to the next,
and hence no “electric field”. Thus, in a MBPT description, the long-range
part of the effective potential is simply the external potential plus the actual
electrostatic depolarising field.

A simple argument [63] indicates why the xc-field must be non-zero, and
allows an estimate of its magnitude. Consider an unpolarised insulator, in
which the band gap discontinuity is ∆xc. Let us, for a moment, make the
quasiparticle approximation in which the spectral weight in MBPT is as-
sumed to be dominated by the quasiparticle peaks, i.e. the properties of the
system emerge from the quasiparticle wavefunctions and energies in a similar
way to KSDFT, with the important difference that the quasiparticles feel the
non-local self-energy operator rather than the exchange-correlation potential,
and the quasiparticle band gap is the correct gap rather than the Kohn-Sham
gap. In the presence of an electric field, the polarisation of the electron density
is described by the density response function. The same change of electron
density is described by the Kohn-Sham electrons, responding to the change
in their Kohn-Sham potential, as by the quasiparticles, responding to the
change in the actual electrostatic potential (external plus Hartree, since the
self-energy operator has no long-range part in conventional MBPT). However,
in one-electron perturbation theory, the degree of polarisation is inversely pro-
portional to the energy gap, which is smaller in DFT than in quasiparticle
theory. To compensate, the strength of the long-range part of the Kohn-Sham
potential must be weaker; this is achieved by the xc field. Godby and Sham,
making the further approximation that the quasiparticle wavefunctions were
similar to the Kohn-Sham wavefunctions, deduced that

∆Vxc
∆V

≈ − ∆xc

Egap
, (5.21)

where ∆Vxc is the strength of the xc field, ∆V is the strength of the actual
electrostatic field, and Egap is the quasiparticle band gap. This fraction is
significant: about −0.5 in silicon, for instance.

In reciprocal space, Ghosez et al. [67] showed that the xc field corresponds
to a 1/q2 divergence in the exchange-correlation kernel for small wavevectors
q. This ultra-non-local density dependence is certainly missing from all den-
sity based approximations to the exact xc functional, potential or kernel. One
possibility for approximating it within Kohn-Sham DFT has been explored
recently by de Boeij et al. [68] by using a functional of the current rather
than the density, in the low-frequency limit of time-dependent DFT.

8 That is, mathematically non-local but with the range of the non-locality restricted
to a few ångstroms.
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5.4 Total Energies from Many-Body Theory

To apply the KS method to real problems with confidence in its predictive
accuracy, we need reasonable approximations to the exchange-correlation en-
ergy functional. However, we have seen in the previous section that Exc [n] is
a very peculiar object which is described far from properly by the common
local-density or generalised gradient approximations. Thus, although the ba-
sic reason for the success of the LDA was understood many years ago [42,69],
there are a number of well identified cases in which LDAs and GGAs fail
dramatically. For instance, they give qualitatively wrong structural results
when studying not only some strongly correlated materials [70], but also in
some systems dominated by sp bonds [71,72]; or they systematically overesti-
mate cohesive energies and underestimate the activation barrier of chemical
reactions [73]. This is not a surprise because, in essence, LDA/GGAs are lim-
ited by their intrinsic semi-local nature and by the absence of self-interaction
corrections.

To some extent, all the acknowledged improvements upon LDA/GGAs
start from model systems (usually the homogeneous electron gas). It would
be desirable for a total energy method not to rely on the similarity of a
system to a particular reference, thus having a truly ab-initio technique.
Configuration interaction (CI) and quantum Monte Carlo (QMC) [74] are
examples of such methods. Both procedures are in principle exact, but the
scaling of CI with system size implies an almost prohibitive computational
effort even in medium-size problems. QMC calculations are less demanding,
but they are still much more expensive than standard DFT.

MBPT-based schemes can be meant as an alternative for those situations
in which known DFT models are inaccurate, but whose complexity makes
the implementation of QMC difficult. In this section, after a brief summary
of the theoretical foundations, we will review some of the recent applications
which, so far, have been restricted to model systems but in which LDA/GGAs
clearly show their limitations. Finally, we will present a simplified many-body
theory amenable for its implementation in a DFT-fashion.

5.4.1 Theoretical Background

Although many-body theory gives per se enough information to obtain the
ground-state energy E(0) of an electron system, it is useful to keep a link be-
tween MBPT- and DFT-based expressions. First, it is computationally more
convenient to evaluate the difference between MBPT and KS results than the
full energy given by MBPT. Second, a fully self-consistent calculation can be
achieved in the framework of MBPT, but a first estimation of the results
beyond LDA can be obtained just by evaluating the many-body corrections
over the LDA-KS system, using the KS system as a zeroth-order approxi-
mation – as it is done, for instance, in the G0W0 method. It is convenient,
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on occasion, to write down many-body-based expressions for the xc energy,
defined precisely as in exact KS-DFT.

MBPT provides several ways to obtain each of the different contributions
to the ground-state energy E(0). Perhaps the best known, owing to its role
in the construction of xc energy functionals, is the expression based on the
adiabatic-connection-fluctuation-dissipation (ACFD) theorem [75,76]

Exc [n0] =
1
2

∫ 1

0
dλ
∫
dr dr′

1
|r − r′| (5.22)

×
[
n0 (r) δ (r − r′)−

∫ +∞

0

dω
π
χλ (r, r′; iω)

]
.

Here, χλ (iω) is the causal density response function at imaginary frequen-
cies of a system in which the electrons interact through a modified Coulomb
potential wλ (r) = λ/r, and whose ground state density is equal to the ac-
tual one. χλ (iω) is related to the polarisation function Pλ (iω) through the
equality9

χ̂λ (iω) = P̂λ (iω)
[
1− ŵλP̂λ (iω)

]−1
, (5.23)

where usual matrix multiplications are implied. For practical purposes, we
subtract from (5.22) the exact exchange energy functional

Ex [n0] = −
∑
σ

∫
dr dr′

∣∣∣∑occ
j φ∗j (r, σ)φ

∗
j (r
′, σ)

∣∣∣2
2 |r − r′| = (5.24)

=
∫
dr dr′

1
2 |r − r′|

[
n0 (r) δ (r − r′)−

∫ +∞

0

dω
π
χ0 (r, r′; iω)

]
,

where χ0 (iω) ≡ PKS (iω) is the density response of the fictitious KS system

χ̂0 (r, r′; iω) =
∑
σ

∑
i,j

(fi − fj)φ∗i (r, σ)φi (r′, σ)φj (r, σ)φ∗j (r′, σ)
εKS
i − εKS

j + iω
,

(5.25)
fj being the Fermi occupation (0 or 1) of the j-th KS orbital. As a conse-
quence, the correlation energy can be evaluated as

Ec [n0] =
∫ 1

0
dλ tr

{
ŵ

∫ +∞

0

dω
2π

[χ̂0 (iω)− χ̂λ (iω)]
}
, (5.26)

where “tr” stands for the spatial trace. Note that if we set Pλ 
 PKS in (5.23)
we have the random phase approximation (RPA) – strictly speaking, an LDA-
based RPA since the local density is used to obtain the one-electron orbitals
and energies.
9 We can establish this relation because at imaginary frequencies the causal and
the time-ordered response functions coincide.
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The same information can be also extracted from the self-energy operator
and the Green’s function. Namely, using the adiabatic-connection that led
to (5.22)10

Exc [n0] = − i
2

∫ 1

0

dλ
λ

∫ +∞

−∞

dω
2π

∫
dx dx′Σλ (x,x′;ω)Gλ (x′,x;ω) , (5.27)

where, again, Σλ and Gλ refer to a fictitious system with the scaled Coulomb
potential wλ, and a convergence factor exp (iη ω) is to be understood in the
ω integral. Nonetheless, the one-electron density matrix γ (x,x′) can be ob-
tained directly from G:

γ (x,x′) = −i
∫
dω
2π
G (x,x′;ω) , (5.28)

and the Green’s function provides the expectation value of any one-particle
operator11. Thus, it is more convenient to calculate explicitly the kinetic
energy contribution to Exc rather than making the adiabatic connection:

Exc [n0] = − i
2

∫ +∞

−∞

dω
2π

∫
dx dx′Σ (x,x′;ω)G (x′,x;ω)

−i
∫ +∞

−∞

dω
2π

∫
dx lim

x′→x

[
−∇

2

2
δG (x,x′;ω)

]
, (5.29)

where δG = G−GKS is the difference between the Green’s function of the real
system and the KS one. Finally, if we separate the exchange and correlation
contributions to (5.29) using

Ex [n0] = − i
2

∫ +∞

−∞

∫
dx dx′

dω

2π
Σx (x,x′)GKS (x′,x;ω) , (5.30)

10 As shown in [75,76], the xc energy of an electron system can be written as:

Exc [n0] =
∫ 1

0

dλ
λ

(〈
Ŵ

〉
λ
− E [λ, n0]

)
=

∫ 1

0

dλ
λ
Wxc [λ, n0]

Here,
〈
Ŵ

〉
λ
is the expectation value of the electron-electron interaction energy

of the fictitious system whose ground-state density is n0 but interacting through
the potential λ/r, and E [λ, n0] = λE [n0] is the corresponding Hartree classical
contribution. If we evaluate Wxc in terms of the density response function of the
fictitious system we arrive at (5.22). By using the self-energy and the Green’s
function instead, we get the expression (5.27).

11 For instance, the electron density is simply given by

n (r) = −i
∑
σ

∫
dω
2π

G (x,x;ω)

As a consequence, we might also calculate the MBPT corrections to the
LDA/GGA density for those systems in which they are expected to be inaccurate
and, hence, to the classical Hartree electrostatic energy.
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with Σx the Fock operator of the KS system

Σx (x,x) = −
occ∑
i

φi (x)φ∗i (x
′)

|r − r′| , (5.31)

we arrive at the definite expression

Ec [n0] = −i
∫ +∞

−∞

dω
2π

Tr
[
1
2
Σ̂c (ω) Ĝ (ω) +

(
1
2
Σ̂x + t̂

)
δĜ (ω)

]
(5.32)

=
∫ +∞

0

dω
π

Tr
[
1
2
Σ̂c (µ+ iω) Ĝ (µ+ iω) +

(
1
2
Σ̂x + t̂

)
δĜ (µ+ iω)

]
,

where we have deformed the contour to the imaginary axis. In (5.32), “Tr”
is the total trace – including the spin, in contrast to “tr” in (5.26), Σc =
Σ − Σx is the correlation part of the self-energy, and t̂ is the one-particle
kinetic energy operator. It is also worth noting that the whole ground-state
energy can be written just in terms of the Green’s function using the so-called
Galitskii-Migdal formula [77]

E(0) =
1
2

∫ µ

−∞
dωTr

[(
ω + ĥ0

)
Â (ω)

]
, (5.33)

with Â (ω) the spectral function and ĥ0 = t̂+ v̂ion, which, after the inclusion
of the remaining contributions to the energy, is equivalent to (5.32). Finally,
although we do not discuss them in detail, we have to mention that the
ground-state energy can be also obtained from the many-body Luttinger-
Ward variational functional [78] and extensions thereof like the Almbladh-
von Barth-van Leeuwen theory [79], which are closely related to the Green’s
function-based formulation we have described here.

It is evident that if the exact theory were used, all the quoted methods
would give the same result. Nonetheless, in practical implementations we have
to resort to further approximations. The ACFD expression (5.26) requires the
knowledge of the interacting response function χλ, which is a quantity that
can be obtained in the framework of time-dependent DFT [80,81]. Galitskii-
Migdal and Luttinger-Ward-like methods need the interacting many-body
Green’s function12. We shall focus mainly on Green’s-function-based evalua-
tions – e.g. equations (5.32) and (5.33) – of the ground-state properties, but
we note that several ACFD approaches have been used to study the HEG [82],
the van der Waals interaction between two thin metal slabs [83], the jellium
surface energy [84], and molecular properties like atomisation energies, bond
lengths, and dissociation curves [85,86]. Many-body variational functionals
have not been so widely tested, and applications to electron systems have
been restricted to the HEG [87], closed-shell atoms [88], and the hydrogen
molecule [89].
12 Because of the close relation between P and χ, the response function may be also

obtained from many-body approaches.
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Table 5.2. Correlation energy per particle (in Ha) for the spin-unpolarised phase
of the 3D electron gas obtained using several GW schemes, QMC, and RPA. For
reference, the exchange energy per particle is included in the last row

rs 1 2 4 5 10

QMC(a) −0.060 −0.045 −0.032 −0.028 −0.019
QMC(b) −0.055 −0.042 −0.028
GW (c) −0.058 −0.044 −0.031 −0.027 −0.017
GW (d) −0.045 −0.032
GW

(c)
0 −0.061 −0.043 −0.028 −0.024 −0.015

G0W
(c)
0 −0.070 −0.053 −0.038 −0.033 −0.021

RPA −0.079 −0.062 −0.047 −0.042 −0.031
εx −0.458 −0.229 −0.115 −0.092 −0.046

a Reference [94]
b Reference [95]
c Reference [92]
d Reference [91]

5.4.2 Applications

The first application of Green’s function theory to the calculation of ground-
state properties of the three-dimensional (3D) homogeneous electron gas
(HEG) at metallic densities appeared in a seminal work by Lundqvist and
Samathiyakanit in the late 1960s [90]. However, systematic studies on the
performance of Hedin’s GW method for the same model were published only
a few years ago by von Barth and Holm [37,91], and extended by Garćıa-
González and Godby [92] to the spin-polarised 3D HEG, and the 2D HEG (a
system where GW might be expected to perform less well because correlation
is stronger).

As we may see in Table 5.2, the non-self-consistent G0W0 underestimates
the total energy of the spin-unpolarised 3D HEG at metallic densities around
10 mHa per electron, which is half the error in the ACFD-RPA [93]. The same
trend – that is, a 50% reduction of the RPA error – also appears in the spin-
polarised 3D electron gas. A better performance is achieved by using the
partially self-consistent GW0 and, strikingly, at full self-consistency there is
an almost perfect agreement with the exact QMC data [94,95]. Moreover, at
lower densities and at the 2D HEG – where, as commented, the diagrams
not included in GW are more relevant – the GW greatly improves the RPA
energies. Thus, we may conclude that the greater the self-consistency the
more accurate the total-energy results, in marked contrast with the tendency
described in Sect. 5.2 for the QP energy dispersion relation.

The accuracy of GW may be traced back to the fulfilment of all con-
servation rules in the framework of the theory developed by Baym and
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Fig. 5.7. Diagrammatic representation of the self-energy and the screened Coulomb
potential in (a) the fully self-consistent GW approximation, (b) the partially self-
consistent GW0 approximation, and (c) the G0W0 approximation. The generating
functional Φ is also represented in (a)

Kadanoff [96]. As showed by Baym [97], the self-energy operator of a conserv-
ing approach can be represented as the derivative of a generating functional
Φ:

Σ̂ =
δ

δĜ
Φ
[
Ĝ
]
, (5.34)

which has to be evaluated self-consistently at the Green’s function that is the
solution of the Dyson equation (5.10e). The self-consistent GW approxima-
tion does derive from a functional ΦGW (see Fig. 5.7). Therefore, its imple-
mentation guarantees among other things, the conservation of the number
of particles of the system13; the coincidence of the Fermi levels obtained by
13 Since we can include the interaction between the electrons in a perturbative

fashion, conservation means that GW gives the correct number of particles after
integration of the corresponding Green’s function.
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solving the QP equation and by subtracting the ground-state energies of the
N - and (N − 1)- particle systems; and the equivalence of (5.22) and (5.27)
when calculating xc energies.

Nonetheless, the success of GW when obtaining the ground-state energy
of homogeneous systems has to be taken with caution. First, GW is not so
accurate in highly correlated systems described by simple Hubbard Hamil-
tonians [98,99,100,89], and the GW correlation function of the HEG does
not improve significantly on the RPA [101]. The GW polarisation function
– and, hence, the density response – shows certain unphysical features. It it
also worth noting that, even using the space-time procedure [17]14, a fully
self-consistent resolution of Hedin’s GW equations is very demanding for any
inhomogeneous system. As a consequence, efforts to evaluate structural prop-
erties from MBPT should be directed towards non- or partially self-consistent
schemes with further inclusion of short-ranged correlations that are absent
in the GW diagrams. However, there is no guarantee that approximations
other than self-consistent Φ-derivable schemes are conserving theories, and
the fulfillment of exact sum rules by these models should be assessed care-
fully if they are intended to be used as practical tools to evaluate ground-state
properties.

The most fundamental sum rule is the conservation of the number of
particles which is satisfied by the partially self-consistent GW0 method [102],
even though it is not Φ-derivable. However, as demonstrated by Schindlmayr
in a Hubbard model system [103], G0W0 does not yield the correct number of
particles. This failure was confirmed by Rieger and Godby for bulk Si [104],
where G0W0 slightly underestimates the total number of valence electrons.
A study of particle-number violation in diagrammatic self-energy models has
been recently presented by Schindlmayr et al. [105]. These authors provided
a general criterion that allows, by simple inspection, to verify whether an
approximation satisfies the particle-number sum rule. They also showed that
the G0W0 particle-number violation is not, in practice, significant within the
range of densities of physical interest (see Fig. 5.8). The same conclusion
applies to models built by insertion of local vertex corrections into a G0W0
scheme [25].

The first evidence of the usefulness of these non-self-consistent diagram-
matic schemes to evaluate structural properties has been the application of
G0W0 to calculate the ground-state energy of confined quasi-2D systems and
the interaction energy between two thin metal slabs [106]. For the quasi-2D
gas, the high inhomogeneity of the density profile along the confining direc-
tion is clearly beyond the scope of local and semi-local KS-DFT approaches
which, in fact, diverge when approaching the 2D limit [107,108,109]. RPA-
ACFD does not show such a divergence but clearly underestimates the energy
of quasi-2D systems. G0W0, whose superiority to the RPA in the 2D and 3D
14 Note that we just need the self-energy and the Green’s function at imaginary

frequencies to obtain ground-state properties from MBPT.
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Fig. 5.8. Violation of the particle-number sum rule for the homogeneous electron
gas in the G0W0 approximation. The relative error in the density is always negative
and of the order of 0.1% in the range of metallic densities. After Schindlmayr et
al. [105]

HEG has been already noted, retains this superiority for these quasi-2D sys-
tems. Of more direct significance is the study of the interaction between two
unconfined jellium slabs. At small distance separation d the density profiles of
each subsystem overlap, so having a covalent bond. If d� 0, there is no such
overlap and the only source of bonding is the appearance of correlation van
der Waals forces which cannot be described at all by KS-LDA/GGA [110].
The xc energy per particle εxc as a function of d is depicted in the upper
panel of Fig. 5.9 using the LDA, the RPA, and the G0W0, for two slabs of
width L = 12a0 and a background density corresponding to rs = 3.93 –
the mean density of sodium. In the lower panel, we present the correlation
binding energy per particle, defined as ec (d) = εc (d)− εc (∞), for the same
system. We may see that the local density is unable to reproduce the charac-
teristic asymptotic d−2 van der Waals behaviour15 which, on the contrary, is
present in the RPA and G0W0 calculations. The results from the two latter
approaches are very similar at large separations, which is not a surprise be-
cause van der Waals forces are already contained at the RPA level [83]. For
intermediate and small separations there are slight differences between RPA
and G0W0, but much less important than those appearing when comparing
the total correlation energies.

It is worth pointing out that the remaining error in the absolute G0W0
correlation energy is amenable to an LDA-like correction

∆Ec [n] =
∫
dr n (r) ∆εGWc (n (r)) , (5.35)

15 Non-local xc functionals such as the ADA or WDA also fail to describe van der
Waals forces.
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Fig. 5.9. Upper panel: xc energy per particle for two jellium slabs as a function
of the distance d (see inset). Lines: LDA and RPA; empty circles: G0W0; squares:
G0W0+∆. Lower panel: Correlation binding energy per particle. The exchange-only
binding energy (dashed line) has been also included in this panel

with16

∆εGWc (rs) =
0.04054

1 + 2.086
√
rs + 0.1209r2s

hartree . (5.36)

Thus, we have a hybrid approximation in the spirit of that proposed by Kurth
and Perdew [111] for the RPA-ACFD with the further advantage that G0W0
and RPA require similar computational effort but ∆εGWc (rs) < ∆εRPAc (rs).
As we can see in Fig. 5.9, the absolute xc energy obtained in this way (which
we label as G0W0+∆) is in broad correspondence with the LDA energy,
but the binding energy is slightly altered, and, of course, the van der Waals
bonding is present. Although, as commented above, these corrections should
be described through the implementation of vertex diagrams, this is a first
step towards the inclusion of short-ranged correlations.

16 This parameterisation has been obtained by comparing the G0W0 and QMC
correlation energies in the range rs ∈ [1, 20].
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5.4.3 Generalised KS Schemes and Self-energy Models

We have seen that many-body-based methods provide an ab-initio way to
treat the Coulomb correlation in an N electron system without the expensive
cost of QMC calculations. However, they are computationally more demand-
ing than routine LDA-KS calculations and, hence, the feasibility of their
application to complex systems is unclear, especially in the context of ab-
initio molecular dynamics calculations, where many total-energy evaluations
are required. As described in Sect. 5.3, the main problem when constructing
approximations to Exc [n] is related to its inherent non-analytical character
which is due to the specific way in which the KS mapping between the real
and the fictitious systems is done. However, this is not the only possible reali-
sation of DFT and recently, new DFT methods have been proposed [112,113].
In these generalised Kohn-Sham schemes (GKS) the actual electron system is
mapped onto a fictitious one in which particles move in an effective non-local
potential. As a result of this, it is possible to describe structural properties at
the same (or better) level than LDA/GGA but improving on its description
of quasiparticle properties.

Specifically, as shown in [63,64,65], pathologies of the exact KS functional
such as the band-gap discontinuity and the xc field may be understood as
arising when one transforms a MBPT description, with a non-pathological
but non-local self-energy operator, into the KS system with its local potential.
In this sense, a non-local xc potential should be more amenable to accurate
approximation as an explicit functional of the density.

The GKS approximation proposed by Sánchez-Friera and Godby [114]
relies on the use of a jellium-like self-energy to describe the xc effects of
inhomogeneous systems:

Σ0 (r, r′;ω) =
vLDAxc (r) + vLDAxc (r′)

2
g (|r − r′| ;n0) , (5.37)

where g (r, n) is a parameterised spreading function and n0 is the mean den-
sity of the system. This approximation is suggested by the fact that the
frequency-dependence of the self-energy is weak for occupied states, and that
for several semiconductors Σ has been shown to be almost spherical and to
have the same range than the self-energy of a jellium system with the same
mean density [115]. Since (5.37) is real and static, it defines a fictitious sys-
tem that in this GKS scheme replaces the standard KS non-interacting one,
and whose mass operator (Hartree potential plus self-energy) is

MS (r, r′) =
∫
dr′′

n (r′′)
|r − r′′|δ (r − r

′) +Σ0 (r, r′;ω) . (5.38)
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Fig. 5.10. Local field factor G (q) for the linear response of jellium at rs = 2 in
the Σ-GKS scheme compared to the QMC results and the LDA/GGA(PBE). After
Sánchez-Friera and Godby [114]

The total energy of the actual system is then approximated by

E(0) = TS +
1
2

occ∑
n

∫
dr dr′ φ∗n (r)MS (r, r′)φn (r) (5.39)

+Ess [n] +
∫
dr n (r) vion (r) ,

where Ess [n] is a local functional that is added so that the model is exact
in the homogeneous limit. By minimising (5.39) with respect to variations
of the one-particle wavefunctions φn (r) a set of self-consistent KS-like equa-
tions are obtained. The simple form of the non-locality ensures computational
efficiency.

This approximation, labelled as Σ-GKS, shows performance similar to the
LDA in the calculation of structural properties of silicon. The most striking
feature of this new scheme is the significant improvement when calculating
the local field factor of the HEG G (q) with respect to local and semi-local
approaches. As it is depicted in Fig. 5.10, Σ-GKS fits very well the QMC
data by Moroni et al. [116] also at large values of the wavevector, where
the LDA and the GGA by Perdew, Burke, and Ernzerhof (PBE) [117] fail
badly. These results, as well as the efficiency of this new GKS scheme, opens
the prospect of a new class of methods that yield accurate total energies
and realistic QP spectra through avoiding the pathological aspects of the
Kohn-Sham xc energy functional, while retaining computational efficiency
comparable to Kohn-Sham DFT.
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5.5 Concluding Remarks

In this chapter we have contrasted two approaches to the many-body problem.
In Kohn-Sham DFT, fictitious non-interacting electrons move in an effective
potential, part of which – the exchange-correlation potential – arises from
a functional that in its exact form exhibits complex and sometimes patho-
logical dependence on the electron density, but that in practice is generally
approximated by an explicit functional of the density which fails to describe
these pathologies. In many-body perturbation theory, electrons move in a
spatially non-local, energy-dependent potential which arises from a pertur-
bation expansion which may be evaluated to a chosen order. The calculations
are more expensive because of the non-locality and energy-dependence of the
self-energy operator, and the need to evaluate a complex expression to obtain
it, but the pathologies of the Kohn-Sham functional have no counterparts in
MBPT.

We have shown how each theory may be used to illuminate and develop
the other. MBPT may be used to exhibit and explore the pathologies of
Kohn-Sham DFT with the aim of appreciating the physical effects that are
incorrectly described by a given approximate density based functional, and
identifying prospects for addressing them in other ways (such as with the ex-
plicit wavefunction-dependence of exact-exchange KS-DFT, or current-based
functionals). On the other hand, the technology of ab-initio DFT calculations
has been adapted for MBPT, both for the calculation of quasiparticle and
other spectral properties, and, more recently, for ground-state total energy
calculations. Also, we have described the possibility of methods intermedi-
ate between KS-DFT and MBPT, generalised Kohn-Sham density functional
theories, in which the computational efficiency of a density based functional
is combined with the physically important non-locality of the self-energy op-
erator.
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12. P. Garćıa-González and R.W. Godby, Comp. Phys. Comm. 137, 108 (2001).
13. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
14. C.-O. Almbladh and L. Hedin, in Handbook on Synchrotron Radiation, edited

by E. E. Koch (North-Holland, 1983), Vol 1.
15. D. Pines, Elementary excitations in solids(Benjamin, New York, 1964).
16. B. I. Lundqvist, Phys. Kondens. Mater. 6, 193 (1967). W. von der Linden and

P. Horsch, Phys. Rev. B 37, 8351 (1988). G. E. Engel and B. Farid, Phys. Rev.
B 47, 15931 (1993).

17. H.N. Rojas, R.W. Godby, and R. Needs, Phys. Rev. Lett. 74, 1827 (1995).
18. M.M. Rieger, L. Steinbeck, I. D. White, N.H. Rojas, and R.W. Godby, Comp.

Phys. Comm. 117, 211 (1999); L. Steinbeck, A. Rubio, L. Reining, M. Torrent,
I. D. White, and R.W. Godby, ibid 125, 105 (2000).

19. M. S. Hybertsen and S.G. Louie, Phys. Rev. Lett. 55, 1418 (1985).
20. S. Saito, S. B. Zhang, S.G. Louie, and M.L. Cohen, Phys. Rev. B 40, 3643

(1989).
21. G. Onida, L. Reining, R.W. Godby, R. Del Sole, and W. Andreoni, Phys.

Rev. Lett. 75, 818 (1995).
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106. P. Garćıa-González and R.W. Godby, Phys. Rev. Lett. 88, 056406 (2002).
107. Y.-H. Kim, I.-H. Lee, S. Nagaraja, J.-P. Leburton, R.Q. Hood, and R.M.

Martin, Phys. Rev. B 61, 5202 (2000)
108. L. Pollack and J. P. Perdew, J. Phys.: Condens. Matter 12, 1239 (2000)
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6.1 Introduction

The success of density functional theory (DFT) is clearly demonstrated by the
overwhelming amount of research articles describing results obtained within
DFT that were published in the last decades. There is also a fair number of
books reviewing the basics of the theory and its extensions (e.g., the present
volume, [1] and [2]). These works fall mainly into three classes: those dealing
with the theory (proposing extensions, new functionals, etc.), those concerned
with the technical aspects of the numerical implementations, and others – the
vast majority – presenting results. In our opinion, any scientist working in
the field should have a sound knowledge of the three classes. For example,
a theorist developing a new functional should be aware of the difficulties in
implementing it. Or the applied scientist, performing calculations on specific
systems, should know the limitations of the theory and of the numerical
implementation she/he is using. The goal of this chapter is to supply the
beginner with a brief pedagogical overview of DFT, combining the above-
mentioned aspects. However, we will not review its foundations – we redirect
the reader to the chapter of J. Perdew and S. Kurth that opens this book.
Obviously, we will not be able to provide many details, but we hope that the
beginner obtains a general impression of the capabilities and limitations of
DFT.

This chapter is written in the form of a tutorial, combining basic theoret-
ical and numerical aspects with specific examples, running from the simplest
hydrogen atom to more complex molecules and solids. For the examples we
used only freely available codes [3], so that the reader may easily reproduce
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the calculations. All input and output files can be found in the web site
http://www.tddft.org/DFT2001/. The chapter follows closely the outline
of the practical sessions held at Caramulo, during the DFT2001 summer
school. Some theoretical or numerical aspects that were required in the prac-
tical sessions were, however, not covered by any of the lectures in Caramulo
(e.g., pseudo-potentials). To fill this gap we provide in this chapter a brief
account of some of them. We do not intend to discuss every possible numeric
implementation of DFT. In particular, we do not include any explicit exam-
ple of a localized basis set DFT calculation. Neither do we intend to present
an extensive survey of the numerical aspects of each technique. We expect,
however, that the technical details given are sufficient to enable the reader
to perform himself the simulations presented herein.

The outline of the chapter is the following: We start, in Sect. 6.2, by
giving a technical overview on how to solve the Kohn-Sham equations. The
next section is devoted to pseudo-potentials, an essential ingredient of many
DFT calculations. In Sect. 6.4 we present our first test case, namely atoms,
before we proceed to some plane-wave calculations in Sect. 6.5. The final
example, methane calculated using a real-space implementation, is presented
in Sect. 6.6. We will use atomic units throughout this chapter, except when
explicitly stated otherwise.

6.2 Solving the Kohn–Sham Equations

6.2.1 Generalities

It is usually stated that the Kohn-Sham equations are “simple” to solve. By
“simple” it is meant that for a given system, e.g., an atom, a molecule, or a
solid, the computational effort to solve the Kohn-Sham equations is smaller
than the one required by the traditional quantum chemistry methods, like
Hartree-Fock (HF) or configuration interaction (CI)1. But it does not mean
that it is easy or quick to write, or even to use, a DFT based computer
program. Typically, such codes have several thousand lines (for example, the
ABINIT [4] package – a plane-wave DFT code – recently reached 200,000
lines) and hundreds of input options. Even writing a suitable input file is
often a matter of patience and experience.

In spite of their differences, all codes try to solve the Kohn-Sham equations[
−∇

2

2
+ vKS[n](r)

]
ϕi(r) = εiϕi(r) . (6.1)

1 This statement has to be taken with care, for it certainly depends on the ap-
proximation for the exchange-correlation potential. For example, it holds when
using the local-density approximation or any of the generalized gradient approx-
imations. However, if we use the exact exchange functional, the calculations are
at least as computationally demanding as in Hartree-Fock.
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n0(r)

vKS(r)

ĤKSϕi(r) = εiϕi(r)

n(r) =
∑
i |ϕi(r)|2

converged?

yes

no

end

Fig. 6.1. Flow-chart depicting a generic Kohn-Sham calculation

The notation vKS[n] means that the Kohn-Sham potential, vKS, has a func-
tional dependence on n, the electronic density, which is defined in terms of
the Kohn-Sham wave-functions by

n(r) =
occ∑
i

|ϕi(r)|2 . (6.2)

The potential vxc is defined as the sum of the external potential (normally
the potential generated by the nuclei), the Hartree term and the exchange
and correlation (xc) potential

vKS[n](r) = vext(r) + vHartree[n](r) + vxc[n](r) . (6.3)

Due to the functional dependence on the density, these equations form a set of
nonlinear coupled equations. The standard procedure to solve it is iterating
until self-consistency is achieved. A schematic flow chart of the scheme is
depicted in Fig. 6.1. Usually one supplies some model density, n0(r), to start
the iterative procedure. In principle, any positive function normalized to the
total number of electrons would work, but using an educated guess for n0(r)
can speed-up convergence dramatically. For example, in a molecular or a
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solid-state system one could construct n0(r) from a sum of atomic densities

n0(r) =
∑
α

nα(r −Rα) , (6.4)

where Rα and nα represent the position and atomic density of the nucleus
α. For an atom, a convenient choice is the Thomas-Fermi density.

We then evaluate the Kohn-Sham potential (see 6.3) with this density.
Each of the components of vKS is calculated separately and each of them
poses a different numerical problem. The external potential is typically a
sum of nuclear potentials centered at the atomic positions,

vext(r) =
∑
α

vα(r −Rα) . (6.5)

In some applications, vα is simply the Coulomb attraction between the bare
nucleus and the electrons, vα(r) = −Zα/r, where Zα is the nuclear charge.
In other cases the use of the Coulomb potential renders the calculation un-
feasible, and one has to resort to pseudo-potentials (see Sect. 6.3.1).

The next term in vKS is the Hartree potential,

vHartree(r) =
∫
d3r′

n(r′)
|r − r′| . (6.6)

There are several different techniques to evaluate this integral, either by direct
integration (as it is done when solving the atomic Kohn-Sham equations), or
by solving the equivalent differential (Poisson’s) equation,

∇2vHartree(r) = −4πn(r) . (6.7)

As the choice of the best technique depends on the specific problem, we defer
further discussion on the Hartree term to Sects. 6.2.2–6.2.4.

Finally, we have the xc potential, which is formally defined through the
functional derivative of the xc energy,

vxc(r) =
δExc

δn(r)
. (6.8)

Perhaps more than a hundred approximate xc functionals have appeared in
the literature over the past 30 years. The first to be proposed and, in fact,
the simplest of all, is the local-density approximation (LDA). It is written as

ELDA
xc =

∫
d3r εHEG(n)

∣∣
n=n(r) ; vLDA

xc (r) =
d
dn

εHEG(n)
∣∣
n=n(r) , (6.9)

where εHEG(n) stands for the xc energy per unit volume of the homogeneous
electron gas (HEG) of (constant) density n. Note that εHEG(n) is a simple
function of n, which was tabulated for several densities using Monte Carlo
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methods by Ceperley and Alder [5]. A number of different parameterizations
exist for this function, like the PZ81 [6] and PW92 [7]. It is clear from these
considerations that evaluating the LDA xc potential is as simple (and fast) as
evaluating any rational or transcendental function. In the case of the gener-
alized gradient approximations (GGA) the functional has a similar form, but
now ε does not depend solely on the density n, but also on its gradient ∇n.
The evaluation of the GGA xc potential is also fairly straightforward. Finally,
we mention the third generation of density functionals, the orbital-dependent
functionals (see the chapter by E. Engel in this book) like the exact exchange
(EXX). In order to obtain the xc potential in this case, one is required to solve
an integral equation2. This equation is quite complex, and its solution can
easily become the most time-consuming part of the Kohn-Sham calculation.
We should also notice that functionals like the EXX involve the evaluation of
the so-called Coulomb integrals. These two-center integrals, that also appear
in Hartree-Fock theory, pose another difficult problem to the computational
physicist or chemist.

Now that we have the Kohn-Sham potential, we can solve the Kohn-Sham
equation (6.1). The goal is to obtain the p lowest eigenstates of the Hamilto-
nian HKS, where p is half the number of electrons (for a spin-unpolarized cal-
culation). For an atom, or for any other case where the Kohn-Sham equations
can be reduced to a one-dimensional differential equation, a very efficient in-
tegration method is commonly employed (see below). In other cases, when
using basis sets, plane-waves, or real-space methods, one has to diagonalize
the Hamiltonian matrix, ĤKS. We have to keep in mind that fully diago-
nalizing a matrix is a q3 problem, where q is the dimension of the matrix
(which is roughly proportional to the number of atoms in the calculation).
Moreover, the dimension of the Hamiltonian is sometimes of the order of
106 × 106 = 1012 elements3. It is clearly impossible to store such a matrix
in any modern computer. To circumvent these problems, one usually resorts
to iterative methods. In these methods it is never necessary to write the full
Hamiltonian – the knowledge of how ĤKS applies to a test wave-function is
sufficient. These methods also scale much better with the dimension of the
matrix. Nonetheless, diagonalizing the Kohn-Sham Hamiltonian is usually
the most time-consuming part of an ordinary Kohn-Sham calculation.

We have now all the ingredients to obtain the electronic density from (6.2).
The self-consistency cycle is stopped when some convergence criterion is
reached. The two most common criteria are based on the difference of to-
tal energies or densities from iteration i and i − 1, i.e., the cycle is stopped
when

∣∣E(i) − E(i−1)
∣∣ < ηE or

∫
d3r

∣∣n(i) − n(i−1)
∣∣ < ηn, where E(i) and n(i)

are the total energy and density at iteration i, and ηE and ηn are user defined
tolerances. If, on the contrary, the criteria have not been fulfilled, one restarts
2 Or choose to apply the Krieger, Lee and Iafrate approximation [8].
3 However, ĤKS is usually a very sparse matrix. For example, in a typical real-space
calculation only less than.1% of the elements of Ĥ are different from 0.
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the self-consistency cycle with a new density. It could simply be the output
density of the previous cycle – unfortunately this would almost certainly lead
to instabilities. To avoid them, one usually mixes this output density with
densities from previous iterations. In the simplest scheme, linear mixing, the
density supplied to start the new iteration, n(i+1) is a linear combination of
the density obtained from (6.2), n′, and the density of the previous iteration,
n(i),

n(i+1) = βn′ + (1− β)n(i) , (6.10)

where the parameter β is typically chosen to be around 0.3. More sophisti-
cated mixing schemes have been proposed (e.g., Anderson or Broyden mix-
ing [9,10,11,12,13]), in which n(i+1) is an educated extrapolation of the den-
sities of several previous iterations.

At the end of the calculation, we can evaluate several observables, the
most important of which is undoubtedly the total energy. From this quantity,
one can obtain, e.g., equilibrium geometries, phonon dispersion curves, or
ionization potentials. In Kohn-Sham theory, the total energy is written as

E = −
occ∑
i

∫
d3r ϕ∗i (r)

∇2

2
ϕi(r) +

∫
d3r vext(r)n(r) +

+
1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′| + Exc , (6.11)

where the terms are respectively the non-interacting (Kohn-Sham) kinetic
energy, the external potential, the Hartree and the xc energies. This formula
can be further simplified by using the Kohn-Sham equation, (see 6.1), to yield

E =
occ∑
i

εi −
∫
d3r

[
1
2
vHartree(r) + vxc(r)

]
n(r) + Exc . (6.12)

This is the formula implemented in most DFT codes. Note that, when per-
forming geometry optimization or nuclear dynamics, one needs to add to
the total energy a repulsive Coulomb term that accounts for the interactions
between the ions

Enn =
∑
α,β

ZαZβ
|Rα −Rβ | . (6.13)

Calculating the sum over all atoms is fairly straightforward for finite systems,
but non-trivial for extended systems: As the Coulomb interaction is very
long ranged, the (infinite) sum in (6.13) is very slowly convergent. There is,
however, a technique due to Ewald that allows us to circumvent this problem
and evaluate (6.13) (see Sect. 6.2.3).
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6.2.2 Atoms

In order to solve the Kohn-Sham equations (6.1) for atoms, one normally
performs a spherical averaging of the density4. This averaging leads to a
spherically symmetric Kohn-Sham potential. The Hartree potential is then
trivially evaluated as

vHartree(r) =
4π
r

∫ r

0
dr′ r′2n(r′) + 4π

∫ ∞
r

dr′ r′n(r′) . (6.14)

and the Kohn-Sham wave-functions can be written as the product of a radial
wave-function, Rnl(r), and a spherical harmonic, Ylm(θ, φ):

ϕi(r) = Rnl(r)Ylm(θ, φ) . (6.15)

The wave-functions are labeled using the traditional atomic quantum num-
bers: n for the principal quantum number and l, m for the angular momen-
tum. The Kohn-Sham equation then becomes a “simple” one-dimensional
second-order differential equation[

−1
2
d2

dr2 −
1
r

d
dr

+
l(l + 1)
2r2 + vKS(r)

]
Rnl(r) = εnlRnl(r) , (6.16)

that can be transformed into two coupled first-order differential equations

dfnl(r)
dr

= gnl(r)

dgnl(r)
dr

+
2
r
gnl(r)− l(l + 1)

r2 fnl(r) + 2 {εnl − vKS(r)} fnl(r) = 0 ,
(6.17)

where fnl(r) ≡ Rnl(r).
When r →∞, the coupled equations become

dfnl(r)
dr

= gnl(r)

dgnl(r)
dr

+ 2εnlfnl(r) 
 0 ,
(6.18)

provided that the Kohn-Sham potential goes to zero at large distances from
the atom (which it does, see Fig. 6.6). This indicates that the solutions of
(6.17) should behave asymptotically as

fnl(r)
r→∞−→ e−

√−2εnlr (6.19)

gnl(r)
r→∞−→ −√−2εnlfnl(r) .

4 Although the assumption of a spherically symmetric potential (density) is only
strictly valid in a closed shell system, the true many-body potential is indeed
spherically symmetric. For open shell systems this assumption implies an identical
filling of all degenerate atomic orbitals.
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At the origin (r → 0) the solutions are of the form

fnl(r)
r→0−→ Arα (6.20)

gnl(r)
r→0−→ Brβ .

Substituting (6.20) into (6.17) gives B = lA, α = l, and β = l − 1.
For a fixed εnl and A it is a simple task to integrate (6.17) from r = 0 to∞

using (6.20) to provide the initial values. However, if εnl is not an eigenvalue
of (6.16), the solution will diverge (i.e., it will not obey boundary conditions
at infinity (6.19)). Fortunately, there is a simple procedure to obtain the
εnl that yield solutions with the correct asymptotic behavior. The technique
involves integrating (6.20) from r = 0 to a conveniently chosen point rm (e.g.,
the classical turning point), and at the same time integrating (6.20) starting
from a point very far away (“practical infinity”, r∞) to rm. From the two
values of fnl(rm) and gnl(rm) obtained in this way, it is then possible to
improve our estimate of εnl.

The technique for simultaneously finding the eigenvalues εnl and the wave-
functions proceeds as follows:

i) Choose an arbitrary value for εnl and fnl(r∞);
ii) Calculate gnl(r∞) using the boundary conditions (6.19);
iii) Integrate (6.17) from r∞ to rm (to get f in

nl(r) and g
in
nl(r));

iv) Choose an arbitrary value for A, calculate B = lA, and use the boundary
conditions (6.20) to get fnl(0) and gnl(0);

v) Integrate (6.17) from 0 to rm (to get fout
nl (r) and gout

nl (r));
vi) Calculate γ = gin

nl(rm)/g
out
nl (rm) and scale fout

nl (r) and gout
nl (r) by this factor

– now gnl(r) is continuous at the matching point (g̃out
nl (rm) ≡ γgout

nl (rm) =
gin
nl(rm)) but fnl(r) is not;

vii) Compute δ(εnl) = fout
nl (rm) − f in

nl(rm): The zeros of this function are the
eigenvalues, so one can find them using, e.g., the bisection method (one
has to provide an educated guess for the minimum and maximum value of
the eigenvalues).

6.2.3 Plane-Waves

To calculate the total energy of solids, a plane-wave expansion of the Kohn-
Sham wave-functions is very useful, as it takes advantage of the periodicity of
the crystal [14,15,16]. For finite systems, such as atoms, molecules and clus-
ters, plane-waves can also be used in a super-cell approach5. In this method,
5 The super-cell technique is restricted in its usual form to neutral systems due
to the long-range interaction between a charged cluster and its periodic images:
the Coulomb energy for charged periodic systems diverges and must be removed.
Some common methods used to circumvent this difficulty are: i) To introduce a
compensating jellium background that neutralizes the super-cell [17]; ii) To use
a cutoff in the Coulomb interaction [18]; iii) To shield each charged cluster with
a spherical shell having a symmetric charge which neutralizes the super-cell and
cancels the electric dipole of the charged cluster [19].
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the finite system is placed in a unit cell of a fictitious crystal, and this cell
is made large enough to avoid interactions between neighboring cells. The
Kohn-Sham equations can then be solved, for any system, in momentum
space. However, for finite systems a very large number of plane-waves is
needed as the electronic density is concentrated on a small fraction of the
total volume of the super-cell.

The valence wave-functions of the large Z atoms oscillate strongly in the
vicinity of the atomic core due to the orthogonalization to the inner electronic
wave-functions. To describe these oscillations a large number of plane-waves
is required, difficulting the calculation of the total energy. However, the inner
electrons are almost inert and are not significantly involved in bonding. This
suggests the description of an atom based solely on its valence electrons,
which feel an effective potential including both the nuclear attraction and
the repulsion of the inner electrons. This approximation, the pseudo-potential
approximation, will be presented in more detail in Sect. 6.3.1.

When using the pseudo-potential approximation, the external potential,
vext, is simply the sum of the pseudo-potentials of all the atoms in the system.
If atom α is located in the unit cell at τα and its pseudo-potential is wα(r, r′),
the external potential is

w(r, r′) =
∑
j,α

wα(r −Rj − τα, r′ −Rj − τα) , (6.21)

where Rj are the lattice vectors. The pseudo-potential is considered in its
more general non-local form, which implies that the second term of the right-
hand side of (6.11) is rewritten as∫

d3r vext(r)n(r) −→
N∑
i=1

∫
d3r

∫
d3r′ ϕi(r)w(r, r′)ϕ∗i (r

′) . (6.22)

According to Bloch’s theorem, the Kohn-Sham wave-functions, ϕk,n(r),
can be written as

ϕk,n(r) = eik·r∑
G

ck,n(G)eiG·r , (6.23)

where k is the wave vector, n the band index, andG are the reciprocal lattice
vectors. The Kohn-Sham energies are εk,n, and the electronic density is

n(r) =
∑
k,n

∑
G,G′

f(εk,n)c∗k,n(G
′)ck,n(G)ei(G−G′)·r , (6.24)

where the f(εk,n) denote the occupation numbers. The Fourier transform of
the density is

n(G) =
∑
k,n

∑
G′
f(εk,n)c∗k,n(G

′ −G)ck,n(G′) . (6.25)
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The sums over k are performed over all Brillouin zone vectors, but can be
reduced to sums on the irreducible Brillouin zone by taking advantage of the
space group of the lattice6.

There are thus two convergence parameters that need to be fine-tuned for
every calculation: the Brillouin zone sampling and a cutoff radius in reciprocal
space to truncate the sums over reciprocal lattice vectors (we cannot perform
infinite summations!)

The kinetic energy is rewritten as

T =
1
2

∑
k,n

∑
G

f(εk,n) |ck,n(G)|2 |k +G|2 , (6.26)

and the Hartree energy is given by

EHartree =
Ω

2

∑
G

vHartree(G)n(G) , (6.27)

where Ω is the unit cell volume and the Hartree potential, vHartree(G), is
obtained using Poisson’s equation

vHartree(G) = 4π
n(G)
G2 . (6.28)

The electron-ion interaction energy, (6.22), is given by

Eei =
∑
k,n

∑
G,G′

f(εk,n)c∗k,n(G)ck,n(G′)w(k +G,k +G′) , (6.29)

and the Fourier transform of the total pseudo-potential is

w(k +G,k +G′) =
∑
α

wα(k +G,k +G′)ei(G−G′)·τα . (6.30)

The Fourier transform of the individual pseudo-potentials, vα(k,k′), can be
written in a simple form if the separable Kleinmnan and Bylander form is
used (see Sect. 6.3.8).

Both Eei (due to the local part of the pseudo-potential) and the Hartree
potential diverge atG = 0. The ion-ion interaction energy, Enn, also diverges.
However, the sum of these three divergent terms is a constant, if the system
is electrically neutral. This constant is [14,15,16]

lim
G,G′→0

[∑
k,n

f(εk,n)c∗k,n(G)ck,n(G′)w(k +G,k +G′)+

+
Ω

2
vHartree(G)n(G)

]
+ Enn = Erep + EEwald , (6.31)

6 To further simplify these sums, it is possible to do a smart sampling of the
irreducible Brillouin zone, including in the sums only some special k vec-
tors [20,21,22,23].
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where
Erep = Ztotal

1
Ω

∑
α

Λα (6.32)

and

Λα =
1
Ω

∫
d3r

[
vα,local(r) +

Zα
r

]
. (6.33)

In these expressions Zα is the electric charge of ion α, and vα,local(r) is the
local part of the pseudo-potential of atom α (equations (6.74) and (6.75)).
The non-divergent part of the ion-ion interaction energy, EEwald, is calculated
using a trick due to Ewald [24]. One separates it in two parts, one short-ranged
that is summed in real space, and a long-range part that is treated in Fourier
space. By performing this splitting, one transforms a slowly convergent sum
into two rapidly convergent sums

EEwald =
1
2

∑
α,α′

ZαΓα,α′Zα′ , (6.34)

with the definition

Γα,α′ =
4π
Ω

∑
G 
=0

cos [G · (τα − τα′)]
G2 e−

G2

4η2 +

+
∑
j

erfc (η |Rj + τα − τα′ |)
|Rj + τα − τα′ | − π

η2Ω
− 2η√

π
δαα′ . (6.35)

(erfc(x) is the complimentary error function.) Note that this term has only
to be evaluated once at the beginning of the self-consistency cycle, for it does
not depend on the density. The parameter η is arbitrary, and is chosen such
that the two sums converge quickly.

In momentum space, the total energy is then

Etot = T + E′Hartree + E
′
ei + Exc + EEwald + Erep , (6.36)

with the terms G,G′ = 0 excluded from the Hartree and pseudo-potential
contributions. Finally, the Kohn-Sham equations become∑

G′
ĤG,G′(k)ck,n(G′) = εk,nck,n(G) , (6.37)

where

ĤG,G′(k) =
1
2
|k +G|2 δG,G′+

+ w(k +G,k +G′) + vHartree(G−G′) + vxc(G−G′) , (6.38)

and are solved by diagonalizing the Hamiltonian.
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6.2.4 Real-Space

In this scheme, functions are not expanded in a basis set, but sampled in
a real-space mesh [25]. This mesh is commonly chosen to be uniform (the
points are equally spaced in a cubic lattice), although other options are pos-
sible. Convergence of the results has obviously to be checked against the grid
spacing. One big advantage of this approach is that the potential operator
is diagonal. The Laplacian operator entering the kinetic energy is discretized
at the grid points ri using a finite order rule,

∇2ϕ(ri) =
∑
j

cjϕ(rj) . (6.39)

For example, the lowest order rule in one dimension, the three point rule
reads

d2

dr2ϕ(r)
∣∣∣∣
ri

=
1
4
[ϕ(ri−1)− 2ϕ(ri) + ϕ(ri+1)] . (6.40)

Normally, one uses a 7 or 9-point rule.
Another important detail is the evaluation of the Hartree potential. It

cannot be efficiently obtained by direct integration of (6.6). There are however
several other options: (i) solving Poisson’s equation, (6.7), in Fourier space –
as in the plane-wave method; (ii) recasting (6.7) into a minimization problem
and applying, e.g., a conjugate gradients technique; (iii) using multi-grid
methods [25,26,27]. The last of the three is considered to be the most efficient
technique.

In our opinion, the main advantage of real-space methods is the simplic-
ity and intuitiveness of the whole procedure. First of all, quantities like the
density or the wave-functions are very simple to visualize in real space. Fur-
thermore, the method is fairly simple to implement numerically for 1-, 2-,
or 3-dimensional systems, and for a variety of different boundary conditions.
For example, one can study a finite system, a molecule, or a cluster without
the need of a super-cell, simply by imposing that the wave-functions are zero
at a surface far enough from the system. In the same way, an infinite system,
a polymer, a surface, or bulk material can be studied by imposing the appro-
priate cyclic boundary conditions. Note also that in the real-space method
there is only one convergence parameter, namely the grid-spacing.

Unfortunately, real-space methods suffer from a few drawbacks. For ex-
ample, most of the real-space implementations are not variational, i.e., we
may find a total energy lower than the true energy, and if we reduce the grid-
spacing the energy can actually increase. Moreover, the grid breaks transla-
tional symmetry, and can also break other symmetries that the system may
possess. This can lead to the artificial lifting of some degeneracies, to the
appearance of spurious peaks in spectra, etc. Of course all these problems
can be minimized by reducing the grid-spacing.
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6.3 Pseudo-potentials

6.3.1 The Pseudo-potential Concept

The many-electron Schrödinger equation can be very much simplified if elec-
trons are divided in two groups: valence electrons and inner core electrons.
The electrons in the inner shells are strongly bound and do not play a sig-
nificant role in the chemical binding of atoms, thus forming with the nucleus
an (almost) inert core. Binding properties are almost completely due to the
valence electrons, especially in metals and semiconductors.

This separation suggests that inner electrons can be ignored in a large
number of cases, thereby reducing the atom to a ionic core that interacts
with the valence electrons. The use of an effective interaction, a pseudo-
potential, that approximates the potential felt by the valence electrons, was
first proposed by Fermi in 1934 [28]. Hellmann in 1935 [29] suggested that
the form

w(r) = −1
r
+

2.74
r

e−1.16r (6.41)

could represent the potential felt by the valence electron of potassium. In
spite of the simplification pseudo-potentials introduce in calculations, they
remained forgotten until the late 50’s. It was only in 1959, with Phillips and
Kleinman [30,31,32], that pseudo-potentials began to be extensively used.

Let the exact solutions of the Schrödinger equation for the inner electrons
be denoted by |ψc〉, and |ψv〉 those for the valence electrons. Then

Ĥ|ψn〉 = En|ψn〉 , (6.42)

with n = c, v. The valence orbitals can be written as the sum of a smooth
function (called the pseudo wave-function), |ϕv〉, with an oscillating function
that results from the orthogonalization of the valence to the inner core orbitals

|ψv〉 = |ϕv〉+
∑
c

αcv|ψc〉 , (6.43)

where
αcv = −〈ψc|ϕv〉 . (6.44)

The Schrödinger equation for the smooth orbital |ϕv〉 leads to

Ĥ|ϕv〉 = Ev|ϕv〉+
∑
c

(Ec − Ev)|ψc〉〈ψc|ϕv〉 . (6.45)

This equation indicates that states |ϕv〉 satisfy a Schrödinger-like equation
with an energy-dependent pseudo-Hamiltonian

ĤPK(E) = Ĥ −
∑
c

(Ec − E)|ψc〉〈ψc| . (6.46)
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It is then possible to identify

ŵPK(E) = v̂ −
∑
c

(Ec − E)|ψc〉〈ψc| , (6.47)

where v̂ is the true potential, as the effective potential in which valence
electrons move. However, this pseudo-potential is non-local and depends on
the eigen-energy of the electronic state one wishes to find.

At a certain distance from the ionic core ŵPK becomes v̂ due to the decay
of the core orbitals. In the region near the core, the orthogonalization of the
valence orbitals to the strongly oscillating core orbitals forces valence elec-
trons to have a high kinetic energy (The kinetic energy density is essentially a
measure of the curvature of the wave-function.) The valence electrons feel an
effective potential which is the result of the screening of the nuclear potential
by the core electrons, the Pauli repulsion and xc effects between the valence
and core electrons. The second term of (6.47) represents then a repulsive po-
tential, making the pseudo-potential much weaker than the true potential in
the vicinity of the core. All this implies that the pseudo wave-functions will
be smooth and will not oscillate in the core region, as desired.

A consequence of the cancellation between the two terms of (6.47) is
the surprisingly good description of the electronic structure of solids given
by the nearly-free electron approximation. The fact that many metal and
semiconductor band structures are a small distortion of the free electron gas
band structure suggests that the valence electrons do indeed feel a weak
potential. The Phillips and Kleinman potential explains the reason for this
cancellation.

The original pseudo-potential from Hellmann (6.41) can be seen as an
approximation to the Phillips and Kleinman form, as in the limit r →∞ the
last term can be approximated as Ae−r/R, where R is a parameter measuring
the core orbitals decay length.

The Phillips and Kleinman potential was later generalized [33,34] to

ŵ = v̂ +
∑
c

|ψc〉〈ξc| , (6.48)

where ξc is some set of functions.
The pseudo-potential can be cast into the form

w(r, r′) =
∑
l

l∑
m=−l

Y ∗lm(r̂)wl(r, r
′)Ylm(r̂′) , (6.49)

where Ylm are the spherical harmonics. This expression emphasizes the fact
that w as a function of r and r′ depends on the angular momentum. The most
usual forms for wl(r, r′) are the separable Kleinman and Bylander form [35]

wl(r, r′) = vl(r)vl(r′) , (6.50)
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and the semi-local form

wl(r, r′) = wl(r)δ(r − r′) . (6.51)

6.3.2 Empirical Pseudo-potentials

Until the late 70’s the method employed to construct a pseudo-potential
was based on the Phillips and Kleinman cancellation idea. A model analytic
potential was constructed and its parameters were fitted to experimental
data. However, these models did not obey condition (6.43).

One of the most popular model potentials was introduced by Heine and
Abarenkov in 1964 [36,37,38]. The Heine-Abarenkov potential is

wHA(r) =

{
−z/r , if r > R
−AlP̂l , if r ≤ R , (6.52)

with P̂l an angular momentum projection operator. The parameters Al were
adjusted to the excitation energies of valence electrons and the parameter
R is chosen, for example, to make A0 and A1 similar (leading to a local
pseudo-potential for the simple metals).

A simplification of the Heine-Abarenkov potential was proposed in 1966
by Ashcroft [39,40]

wA(r) =

{
−z/r , if r > R
0 , if r ≤ R . (6.53)

In this model potential it is assumed that the cancellation inside the core is
perfect, i.e., that the kinetic term cancels exactly the Coulomb potential for
r < R. To adjust R, Ashcroft used data on the Fermi surface and on liquid
phase transport properties.

The above mentioned and many other model potentials are discontinuous
at the core radius. This discontinuity leads to long-range oscillations of their
Fourier transforms, hindering their use in plane-wave calculations. A recently
proposed model pseudo-potential overcomes this difficulty: the evanescent
core potential of Fiolhais et al. [41]

wEC(r) = − z
R

{
1
x

[
1− (1 + βx) exp−αx

]−A exp−x
}
, (6.54)

with x = r/R, where R is a decay length and α > 0. Smoothness of the
potential and the rapid decay of its Fourier transform are guaranteed by
imposing that the first and third derivatives are zero at r = 0, leaving only two
parameters to be fitted (α andR). These are chosen by imposing one of several
conditions [41,42,43,44,45,46]: total energy of the solid is minimized at the
observed electron density; the average interstitial electron density matches
the all-electron result; the bulk moduli match the experimental results; etc.
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Although not always bringing great advances, several other model poten-
tials were proposed [47,48,49]. Also, many different methods for adjusting
the parameters were suggested [50]. The main application of these model
potentials was to the theory of metallic cohesion [51,52,53,54,55].

6.3.3 Ab-initio Pseudo-potentials

A crucial step toward more realistic pseudo-potentials was given by Topp
and Hopfield [49,56], who suggested that the pseudo-potential should be ad-
justed such that they describe the valence charge density accurately. Based
on that idea, modern pseudo-potentials are obtained inverting the free atom
Schrödinger equation for a given reference electronic configuration [57], and
forcing the pseudo wave-functions to coincide with the true valence wave-
functions beyond a certain distance rl. The pseudo wave-functions are also
forced to have the same norm as the true valence wave-functions.

These conditions can be written as

RPP
l (r) = RAE

nl (r) , if r > rl∫ rl

0
dr
∣∣RPP

l (r)
∣∣2 r2 =

∫ rl

0
dr
∣∣RAE

nl (r)
∣∣2 r2 , if r < rl ,

(6.55)

where Rl(r) is the radial part of the wave-function with angular momentum l,
and PP and AE denote, respectively, the pseudo wave-function and the true
(all-electron) wave-function. The index n in the true wave-functions denotes
the valence level. The distance beyond which the true and the pseudo wave-
functions are equal, rl, is also l-dependent.

Besides (6.55), there are still two other conditions imposed on the pseudo-
potential: the pseudo wave-functions should not have nodal surfaces and the
pseudo energy-eigenvalues should match the true valence eigenvalues, i.e.,

εPP
l = εAE

nl . (6.56)

The potentials thus constructed are called norm-conserving pseudo-poten-
tials, and are semi-local potentials that depend on the energies of the reference
electronic levels, εAE

l .
In summary, to obtain the pseudo-potential the procedure is: i) The free

atom Kohn-Sham radial equations are solved taking into account all the
electrons, in some given reference configuration[

−1
2
d2

dr2 +
l(l + 1)
2r2 + vAE

KS
[
nAE] (r)] rRAE

nl (r) = εAE
nl rR

AE
nl (r) , (6.57)

where a spherical approximation to Hartree and exchange and correlation
potentials is assumed and relativistic effects are not considered. The Kohn-
Sham potential, vAE

KS , is given by

vAE
KS
[
nAE] (r) = −Z

r
+ vHartree

[
nAE] (r) + vxc

[
nAE] (r) . (6.58)
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ii) Using norm-conservation (6.55), the pseudo wave-functions are deter-
mined. Their shape in the region r < rl needs to be previously defined, and
it is here that many modern potentials differ from one another. iii) Knowing
the pseudo wave-function, the pseudo-potential results from the inversion of
the radial Kohn-Sham equation for the pseudo wave-function and the valence
electronic density

wl,scr(r) = εPP
l −

l(l + 1)
2r2 +

1
2rRPP

l (r)
d2

dr2

[
rRPP

l (r)
]
. (6.59)

The resulting pseudo-potential, wl,scr, still includes screening effects due to
the valence electrons that have to be subtracted to yield

wl(r) = wl,scr(r)− vHartree
[
nPP] (r)− vxc

[
nPP] (r) . (6.60)

The cutoff radii, rl, are not adjustable pseudo-potential parameters. The
choice of a given set of cutoff radii establishes only the region where the
pseudo and true wave-functions coincide. Therefore, the cutoff radii can be
considered as a measure of the quality of the pseudo-potential. Their smallest
possible value is determined by the location of the outermost nodal surface of
the true wave-functions. For cutoff radii close to this minimum, the pseudo-
potential is very realistic, but also very strong. If very large cutoff radii are
chosen, the pseudo-potentials will be smooth and almost angular momentum
independent, but also very unrealistic. A smooth potential leads to a fast
convergence of plane-wave basis calculations [58]. The choice of the ideal
cutoff radii is then the result of a balance between basis-set size and pseudo-
potential accuracy.

6.3.4 Hamann Potential

One of the most used parameterizations for the pseudo wave-functions is
the one proposed in 1979 by Hamann, Schlüter, and Chiang [59] and later
improved by Bachelet, Hamann and Schlüter [60] and Hamann [61].

The method proposed consists of using an intermediate pseudo-potential,
w̄l(r), given by

w̄l(r) + vHartree
[
nPP] (r) + vxc

[
nPP] (r) =

= vAE
KS
[
nAE] (r) [1− f ( r

rl

)]
+ clf

(
r

rl

)
, (6.61)

where f(x) = e−x
λ

, and λ = 4.0 [59] or λ = 3.5 [60,61]. The Kohn-Sham
equations are solved using this pseudo-potential, and the constants cl are
adjusted in order to obey (6.56). Notice that the form of the wave-functions
implies that (6.55) is verified for some r̃l > rl. As the two effective potentials
are identical for r > r̃l, and given the fast decay of f(x), the intermediate
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Fig. 6.2. Hamann pseudo-potential for Al, with r0 = 1.24, r1 = 1.54, and
r2 = 1.40 bohr: pseudo wave-functions vs. true wave-functions (left) and pseudo-
potentials (right)

pseudo wave-functions, R̄l(r), coincide, up to a constant, with the true wave-
functions in that region.

In the method proposed by Hamann [61], the parameters cl are adjusted
so that

d
dr

ln
[
rRAE

nl (r)
]∣∣∣∣
r=r̃l

=
d
dr

ln
[
rR̄l(r)

]∣∣∣∣
r=r̃l

. (6.62)

This way, the method is not restricted to bound states.
To impose norm-conservation, the final pseudo wave-functions, RPP

l (r),
are defined as a correction to the intermediate wave-functions

RPP
l (r) = γl

[
R̄l(r) + δlgl(r)

]
, (6.63)

where γl is the ratio RAE
nl (r)/R̄l(r) in the region where r > r̃l and gl(r) =

rl+1f(r/rl). The constants δl are adjusted to conserve the norm.
Figure 6.2 shows the Hamann pseudo-potential for Al, with r0 = 1.24,

r1 = 1.54 and r2 = 1.40 bohr. Note that the true and the pseudo wave-
functions do not coincide at rl – this only happens at r > r̃l.

6.3.5 Troullier–Martins Potential

A different method to construct the pseudo wave-functions was proposed by
Troullier and Martins [58,62], based on earlier work by Kerker [63]. This
method is much simpler than Hamann’s and emphasizes the desired smooth-
ness of the pseudo-potential (although it introduces additional constraints to
obtain it). It achieves softer pseudo-potentials for the 2p valence states of the
first row elements and for the d valence states of the transition metals. For
other elements both methods produce equivalent potentials.

The pseudo wave-functions are defined as

RPP
l (r) =

{
RAE
nl (r) , if r > rl

rlep(r) , if r < rl ,
(6.64)
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Fig. 6.3. Troullier-Martins pseudo-potential for Al, with r0 = r1 = r2 = 2.60 bohr:
pseudo wave-functions vs. true wave-functions (left) and pseudo-potentials (right)

with

p(r) = c0 + c2r2 + c4r4 + c6r6 + c8r8 + c10r
10 + c12r

12 . (6.65)

The coefficients of p(r) are adjusted by imposing norm-conservation, the con-
tinuity of the pseudo wave-functions and their first four derivatives at r = rl,
and that the screened pseudo-potential has zero curvature at the origin. This
last condition implies that

c22 + c4(2l + 5) = 0 , (6.66)

and is the origin of the enhanced smoothness of the Troullier and Martins
pseudo-potentials.

Figure 6.3 shows the Troullier and Martins pseudo-potential for Al, with
r0 = r1 = r2 = 2.60 bohr. The 3d wave-functions are not shown since the
state is unbound for this potential.

There are many other not so widely used norm-conserving pseudo-po-
tentials [64,65,66,67,68]. Note that, in some cases, norm-conservation was
abandoned in favor of increased pseudo-potential smoothness [69].

6.3.6 Non-local Core Corrections

It is tempting to assume that the Kohn-Sham potential depends linearly on
the density, so that the unscreening of the pseudo-potential can be performed
as in (6.60). Unfortunately, even though the Hartree contribution is indeed
linearly dependent on the density, the xc term is not

vxc
[
nAE] (r) ≡ vxc

[
ncore + nPP] (r) (6.67)

�= vxc [ncore] (r) + vxc
[
nPP] (r) .

In some cases, like the alkali metals, the use of a nonlinear core-valence xc
scheme may be necessary to obtain a transferable pseudo-potential. In these
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cases, the unscreened potential is redefined as

wl(r) = wl,scr(r)− vHartree
[
nPP] (r)− vxc

[
ñcore + nPP] (r) , (6.68)

and the core density is supplied together with the pseudo-potential. In a code
that uses pseudo-potentials, one has simply to add the valence density to the
given atomic core density to obtain the xc potential. To avoid spoiling the
smoothness of the potential with a rugged core density, usually a partial core
density [70,71], ñcore, is built and supplied instead of the true core density

ñcore(r) =
{
ncore(r) for r ≥ rnlc
P (r) for r < rnlc

. (6.69)

The polynomial P (r) decays monotonically and has vanishing first and second
derivatives at the origin. At rnlc it joins smoothly the true core density (it is
continuous up to the third derivative). The core cutoff radius, rnlc, is typically
chosen to be the point where the true atomic core density becomes smaller
that the atomic valence density. It can be chosen to be larger than this value
but if it is too large the description of the non-linearities may suffer. Note
that, as the word partial suggests,∫ rnlc

0
dr ñcore(r) r2 <

∫ rnlc

0
dr ncore(r) r2 . (6.70)

These corrections are more important for the alkali metals and other
elements with few valence electrons and core orbitals extending into the tail
of the valence density (e.g., Zn and Cd).

In some cases, the use of the generalized gradient approximation (GGA)
for exchange and correlation leads to the appearance of very short-ranged
oscillations in the pseudo-potentials (see Fig. 6.4). These oscillations are ar-
tifacts of the GGA that usually disappear when non-local core corrections
are considered. Nevertheless, they do not pose a real threat for plane-wave
calculations, since they are mostly filtered out by the energy cutoff.

6.3.7 Pseudo-potential Transferability

A useful pseudo-potential needs to be transferable, i.e., it needs to describe
accurately the behavior of the valence electrons in several different chemical
environments. The logarithmic derivative of the pseudo wave-function deter-
mines the scattering properties of the pseudo-potential. Norm-conservation
forces these logarithmic derivatives to coincide with those of the true wave-
functions for r > rl. In order for the pseudo-potential to be transferable, this
equality should hold at all relevant energies, and not only at the energy, εl,
for which the pseudo-potential was adjusted. Norm-conservation assures that
this is fulfilled for the nearby energies, as [49,72]

d
dεl

d
dr

lnRl(r)
∣∣∣∣
r=R

= − 2
r2R2

l (r)

∫ R

0
dr |Rl(r)|2 r2 . (6.71)
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It is however necessary to take into account that the environment sur-
rounding the electrons can be different from the one in the reference situation.
Thus, although the pseudo-potential remains the same, the effective potential
changes (the Hartree and xc potentials depend on the density). Therefore,
the logarithmic derivative is not an absolute test of the transferability of a
pseudo-potential [73]. The ideal method to assess the transferability of a po-
tential consists in testing it in diverse chemical environments. The most usual
way of doing this is to test its transferability to other atomic configurations
and even to the ionized configurations. The variation of the total energy of
the free atom with the occupancy of the valence orbitals is another test of
transferability [74]. As the potential is generated for a given reference elec-
tronic configuration, it can be useful to choose the configuration that best
resembles the system of interest [61]. However, the potential does not (should
not) depend too much on the reference configuration.

6.3.8 Kleinman and Bylander Form of the Pseudo-potential

The semi-local form of the pseudo-potentials described above leads to a com-
plicated evaluation of their action on a wave-function

〈r |ŵ|Ψ〉 =
∫
d3r′ w(r, r′)Ψ(r′) =

=
∑
l

l∑
m=−l

Ylm(r̂)wl(r)
∫
d3r′ δ(r − r′)Y ∗lm(r̂′)Ψ(r′) . (6.72)

Unfortunately, the last integral must be calculated for each r. In a plane-wave
expansion, this involves the product of an NPW×NPW matrix with the vector
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representing the wave-function. This operation is of order NPW ×NPW, and
NPW, the number of plane-waves in the basis set, can be very large.

The semi-local potential can be rewritten in a form that separates long and
short range components. The long range component is local, and corresponds
to the Coulomb tail. Choosing an arbitrary angular momentum component
(usually the most repulsive one) and defining

∆wl(r) = wl(r)− wlocal(r) . (6.73)

the pseudo-potential can be written as

w(r, r′) = wlocal(r) +
∑
l

∆wl(r)
l∑

m=−l
Y ∗lm(r̂

′)Ylm(r̂)δ(r − r′) . (6.74)

Kleinman and Bylander [35] suggested that the non-local part of (6.74) are
written as a separable potential, thus transforming the semi-local potential
into a truly non-local pseudo-potential. If ϕlm(r) = RPP

l (r)Ylm(r̂) denotes
the pseudo wave-functions obtained with the semi-local pseudo-potential, the
Kleinman and Bylander (KB) form is given by

wKB(r, r′) = wlocal(r) +
∑
l

∆wKB
l (r, r′) =

= wlocal(r) +
∑
l

l∑
m=−l

ϕlm(r)∆wl(r)∆wl(r′)ϕlm(r′)∫
d3r ∆wl(r) |ϕlm(r)|2

, (6.75)

which is, in fact, easier to apply than the semi-local expression.
The KB separable form has, however, some disadvantages, leading some-

times to solutions with nodal surfaces that are lower in energy than solutions
with no nodes [75,76]. These (ghost) states are an artifact of the KB proce-
dure. To eliminate them one can use a different component of the pseudo-
potential as the local part of the KB form or choose a different set of core radii
for the pseudo-potential generation. As a rule of thumb, the local component
of the KB form should be the most repulsive pseudo-potential component.
For example, for the Cu potential of Fig. 6.4, the choice of l = 2 as the local
component leads to a ghost state, but choosing instead l = 0 remedies the
problem.

6.4 Atomic Calculations

As our first example we will present several atomic calculations. These sim-
ple systems will allow us to gain a fist impression of the capabilities and
limitations of DFT. To solve the Kohn-Sham equations we used the code of
J. L. Martins [77]. The results are then compared to Hartree-Fock calculations
performed with GAMESS [78]. As an approximation to the xc potential, we
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Table 6.1. Ionization potentials calculated either by taking the difference of to-
tal energies between the neutral and the singly ionized atom (diff.), or from the
eigenvalue of the highest occupied orbital (HOMO). We note that in the case of
Hartree-Fock, −εHOMO is only an approximation to the ionization potential

LDA GGA Hartree-Fock
atom diff. −εHOMO diff. −εHOMO diff. −εHOMO expt.

H 0.479 0.269 0.500 0.279 0.500 0.500 0.500
Ar 0.586 0.382 0.581 0.378 0.543 0.590 0.579
Hg 0.325 0.205 0.311 0.194 0.306 0.320 0.384

Hg (rel) 0.405 0.261 0.391 0.249 0.320 0.384

took the LDA, in the parameterization of Perdew and Zunger [6], and one
GGA, flavor Perdew, Becke and Ernzerhof [79]. Furthermore, all calculations
were done within the spin-polarized version of DFT.

The simplest atom one can study is hydrogen. As hydrogen has only one
electron, its ground-state can be obtained analytically. One could expect that
DFT yields precise results for such a trivial case. Surprisingly this is not true
for several of the functionals currently in use, such as the LDA or most of the
GGAs. In Table 6.1 we present calculations of the ionization potential (IP)
for hydrogen. We note that in Kohn-Sham theory there are at least two
ways to determine this quantity: (i) The eigenvalue of the highest occupied
Kohn-Sham state is equal to minus the ionization potential, IP = −εHOMO;
(ii) By using the definition of the IP as the difference of total energies, IP =
E(X+)−E(X), where X is the atomic species. Even though the IPs calculated
from (ii) come out fairly well for both LDA and GGA (the GGA are, in fact,
slightly better), the −εHOMO are far too small, almost by a factor of two.
On the other hand, Hartree-Fock is exact for this one-electron problem. To
explain this discrepancy we have to take a closer look at the xc potential. As
hydrogen has only one electron, the Kohn-Sham potential has to reduce to
the external potential, −1/r. This implies that the xc for hydrogen is simply
vxc(r) = −vHartree(r). More precisely, it is the exchange potential that cancels
the Hartree potential, while the correlation is zero. In the LDA and the GGA,
neither of these conditions is satisfied. It is, however, possible to solve the
hydrogen problem exactly within DFT by using some more sophisticated
xc potentials, like the exact exchange [80], or the self-interaction corrected
LDA [6] functionals.

Our first many-electron example is argon. Argon is a noble gas with the
closed shell configuration 1s22s22p63s23p6, so its ground-state is spherical.
In Fig. 6.5 we plot the electron density for this atom as a function of the dis-
tance to the nucleus. The function n(r) decays monotonically, with very little
structure, and is therefore not a very elucidative quantity to behold. However,
if we choose to represent r2n(r), we can clearly identify the shell structure
of the atom: Three maxima, corresponding to the center of the three shells,
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corresponds to minus the Hartree potential evaluated with the GGA density. The
LDA Hartree potential is however indistinguishable from this curve. Furthermore,
the dashed line represents the argon nuclear potential, −18/r, and the solid line
the total Kohn-Sham potential

and two minima separating these regions. The xc correlation potential used
in the calculation was the GGA, but the LDA density looks almost indis-
tinguishable from the GGA density. This is a fairly general statement – the
LDA and most of the GGAs (as well as other more complicated functionals)
yield very similar densities in most cases. The potentials and the energies can
nevertheless be quite different.
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Fig. 6.7. LDA and GGA xc potentials for the argon atom in a logarithmic scale.
For the sake of comparison we also plot the function 1/r

Having the density it is a simple task to compute the Hartree and xc
potentials. These, together with the nuclear potential vext(r) = −Z/r, are
depicted in Fig. 6.6. The Hartree potential is always positive and of the same
order as the external potential. On the other hand, the xc potential is always
negative and around 5 times smaller. Let us now suppose that an electron is
far away from the nucleus. This electron feels a potential which is the sum
of the nuclear potential and the potential generated by the remaining N − 1
electrons. The further away from the nucleus, the smaller will be the dipole
and higher-moment contributions to the electric field. It is evident from these
considerations that the Kohn-Sham potential has to decay asymptotically as
−(Z −N + 1)/r. As the external potential decays as −Z/r, and the Hartree
potential as N/r, one readily concludes that the xc potential has to behave
asymptotically as −1/r. In fact it is the exchange part of the potential that
has to account for this behavior, whilst the correlation potential decays with
a higher power of 1/r. To better investigate this feature, we have plotted,
in logarithmic scale, −vxc, in the LDA and GGA approximations, together
with the function 1/r (see Fig. 6.7). Clearly both the LDA and the GGA
curve have a wrong (exponential) asymptotic behavior. From the definition
of the LDA, (see 6.9), it is quite simple to derive this fact. The electronic
density for a finite system decays exponentially for large distances from the
nucleus. The quantity εHEG entering the definition is, as mentioned before,
a simple function, not much more complicated than a polynomial. By simple
inspection, it is then clear that inserting an exponentially decaying density
in (6.9) yields an exponentially decaying xc potential.

The problem of the exponential decay can yet be seen from a different
perspective. For a many-electron atom the Hartree energy can be written, in
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terms of the Kohn-Sham orbitals, as

EHartree =
1
2

∫
d3r

∫
d3r′

occ∑
ij

|ϕi(r)|2|ϕj(r′)|2
|r − r′| . (6.76)

Note that in the sum the term with i = j is not excluded. This diagonal
represents the interaction of one electron with itself, and is therefore called
the self-interaction term. It is clearly a spurious term, and is exactly canceled
by the diagonal part of the exchange energy. It is easy to see that neither
the LDA nor the GGA exchange energy cancel exactly the self-interaction.
This is, however, not the case in more sophisticated functionals like the exact
exchange or the self-interaction-corrected LDA.

The self-interaction problem is responsible for some of the failures of the
LDA and the GGA, namely (i) the too small ionization potentials when calcu-
lated from εHOMO; (ii) the non-existence of Rydberg series; (iii) the incapacity
to bind extra electrons, thus rendering almost impossible the calculation of
electron-affinities (EA).

In Table 6.1 we show the IPs calculated for the argon atom. It is again
evident that −εHOMO is too small [failure (i)], while the IPs obtained through
total energy differences are indeed quite close to the experimental values, and
in fact better than the Hartree-Fock results. Note that the LDA result is too
large, but is corrected by the gradient corrections. This is again a fairly
universal feature of the LDA and the GGA: The LDA tends to overestimate
energy barriers, which are then corrected by the GGA to values closer to the
experimental results.

Up to now we have disregarded relativistic corrections in our calculations.
These, however, become important as the atomic number increases. To illus-
trate this fact, we show in Fig. 6.5 the radial electronic density of mercury
(Z = 80) and in Table 6.1 its IP obtained from both a relativistic and a
non-relativistic calculation. From the plot it is clear that the density changes
considerably when introducing relativistic corrections, especially close to the
nucleus, where these corrections are stronger. Furthermore, the relativistic IP
is much closer to the experimental value. But, what do we mean by “relativis-
tic corrections”? Even though a relativistic version of DFT (and relativistic
functionals) have been proposed (see the chapter by R. Dreizler in this vol-
ume), very few calculations were performed within this formalism. In the
context of standard DFT, “relativistic” calculation normally means the so-
lution of a: (a) Dirac-like equation but adding a non-relativistic xc potential;
(b) Pauli equation, i.e., including the mass polarization, Darwin and spin-
orbit coupling terms; (c) Scalar-relativistic Pauli equation, i.e., including the
mass polarization, Darwin and either ignoring the spin-orbit term, or aver-
aging it; (d) ZORA equation (see [81,82]). Our calculations were performed
with the recipe (a).

To complete this section on atomic calculations, we would like to take a
step back and look at the difficulty in calculating electronic affinities (EA)
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Fig. 6.8. E(X)− E(X−α) versus α for the halogen and alkali atoms

within the LDA and the GGA. For that purpose we performed GGA cal-
culations for several atomic species, namely the halogen and alkali series,
that we charged with a fraction, α, of an extra electron. The results are
summarized in Fig. 6.8, where we depicted the difference of total energies be-
tween the charged and the neutral species, E(X)−E(X−α). Only Iodine was
able to accept a full extra electron, while all other atoms bounded between
0.5 and 0.7 electrons. Even though a “proper” calculation of the EA is not
possible in these cases, practical recipes do exist. We can, e.g., extrapolate
E(X) − E(X−α) to α = 1, and use this value as an estimation of the EA.
In Table 6.2 we show the EAs obtained through a very simple polynomial
extrapolation. The results compare fairly well for the halogens, while for the
alkali atoms they exhibit errors of around 30%. However, we would like to
stress that the situation is far from satisfactory from the theoretical point of
view, and can only be solved by using better xc functionals.

Table 6.2. Electronic affinities for the halogen and alkali atoms. All values were
obtained from extrapolation of E(X) − E(X−α) to α = 1, except in the case of
iodine (the only of this set of atoms able to bind an extra electron)

F Cl Br I Li Na K Rb Cs

DFT 0.131 0.139 0.131 0.123 0.0250 0.0262 0.0240 0.0234 0.0222
expt. 0.125 0.133 0.124 0.112 0.0227 0.0201 0.0184 0.0179 0.0173

6.5 Plane-Wave Calculations

In this section we will present some simple calculations using a plane-wave
expansion of the Kohn-Sham orbitals [4]. The plane-wave basis set is or-
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thonormal and the convergence of the calculations increases systematically
with the number of plane-waves. Gaussian basis sets, on the contrary, do not
provide a clear and systematic way to improve the convergence of the calcula-
tions and do not form an orthonormal set. As a result, the calculations often
depend on the choice of basis set. Another advantage of plane-waves is that
the evaluation of forces for molecular dynamics is straightforward (the Pulay
forces [83,11] are identically zero). These advantages lead the combination of
pseudo-potentials, plane-waves, and Kohn-Sham equations to be known as
the “standard model of solid-state theory”.

As the first example of the use of a plane-wave expansion of the Kohn-
Sham equations we shall calculate some properties of bulk silicon and examine
its band-structure. All the results for bulk Si (diamond lattice) were obtained
with a Troullier-Martins pseudo-potential with r0 = r1 = r2 = 1.89 bohr.
The local component used in the Kleinman and Bylander form of the pseudo-
potential was the d-component. The variation of the total energy with respect
to energy cutoff was assessed and a cutoff of 20 hartree was shown to lead to
energies converged up to 0.001 hartree (see Fig. 6.9). The irreducible wedge of
the Brillouin zone was sampled with different Monkhorst-Pack schemes [23]
and the scheme using 10 k-points was deemed sufficient to converge the total
energy again up to 0.001 hartree.

The calculations for bulk silicon were done using both the LDA (Perdew-
Wang 92 parameterization [7]) and the GGA (Perdew-Burke-Ernzerhof func-
tional [79]). We note that we always used a pseudo-potential compatible with
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Table 6.3. Comparison of some bulk properties of silicon obtained with the LDA
and the GGA: equilibrium lattice constant (a), bulk modulus (B) and cohesive
energy (Ec). Bulk moduli were obtained by fitting the Murnaghan equation of
state [84] to the calculated total energy vs. volume curve. The experimental results
(expt.) are those cited in [85]

LDA GGA expt.

a (Å) 5.378 5.463 5.429
B (Mbar) 0.965 0.882 0.978
Ec (eV/atom) 6.00 5.42 4.63

the approximation for the xc potential,i.e., for the LDA calculations we used
a pseudo-potential generated with the LDA, and the same for the GGA.
Although sometimes there is no discernible difference between the results
obtained with pseudo-potentials generated with different xc functionals (but
using the same cutoffs), one should always use the same functional for the
calculation as the one used in the generation of the pseudo-potential [71].

In Table 6.3 we summarize the results obtained for some bulk proper-
ties of silicon. It is immediately apparent that the LDA under-estimates the
equilibrium lattice parameter, while the GGA over-estimates it. This is a typ-
ical result: the LDA, in general, over-binds by 1–2% and the GGA produces
larger bond lengths, correcting the LDA, but sometimes over-corrects it. In
the present case the GGA leads to a lattice parameter 0.5% larger than the
experimental value. A similar statement can be made for the cohesive energy
(Ec = Ebulk/Natom−Eatom): the LDA predicts a cohesive energy larger than
the experimental value, and the GGA corrects it.

The band-structure of silicon obtained in this calculation is shown in
Fig. 6.10. It was calculated at the LDA equilibrium lattice constant, even
in the GGA case. These band-structures exhibit the well-known “band-gap
problem” of DFT: the predicted band-gap is too small roughly by a factor
of two. This is true for the LDA and the GGA. In fact, the GGA does not
show a great improvement, even when the band-structure is calculated at its
predicted equilibrium lattice constant (Table 6.4). The failure of these two
DFT schemes in predicting the band-gap of silicon is not a surprise. Even if
the true xc potential was known, the difference between the conduction and
valence bands in a KS calculation would differ from the true band-gap (Eg).
The true band-gap may be defined as the ground-state energy difference
between the N and N ± 1 systems

Eg = E(N + 1) + E(N − 1)− 2E(N) . (6.77)
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Fig. 6.10. Band structure of Si, obtained at the LDA equilibrium lattice constant

The difference between the highest occupied level and the lowest unoccupied
level of the N-electron system is, on the other hand,

εKSN+1(N)− εKSN (N) = Eg −
[
εKSN+1(N + 1)− εKSN+1(N)

]
≡ Eg −∆xc . (6.78)

∆xc is then a measure of the shift in the Kohn-Sham potential due to an
infinitesimal variation of the density (in an extended system, the densities of
the N and N + 1 systems are almost identical). This shift is rigid (see the
discussions in Chaps. 1 and 5), and is entirely due to a discontinuity in the
derivative of the xc energy functional. It cannot therefore be accounted for
by simple analytical, continuous approximations to exchange and correlation,
like the LDA or the GGA. One could however argue that the error in the
LDA band-gaps should come from two different sources: ∆xc and the use of
an approximate functional for exchange and correlation. If the latter were
the most important, one could hope that better approximations would yield
band-gaps in closer agreement with experiment. However, it appears that the
“exact” Kohn-Sham band-gap does not differ much from the LDA band-gap,
∆xc being the major culprit of the band-gap problem.

Usually, the LDA conduction bands are shifted from the correct bands by
a quantity that is only weakly dependent on k. A common solution to the
band-gap problem is then to rigidly shift upward the Kohn-Sham conduction
bands. This is called the “scissors operator”.

A system which is much more difficult to handle within a first-principles
pseudo-potential, plane-wave, density functional method is copper (as all the
other noble and transition metals). Metals require a very good sampling of
the irreducible wedge of the Brillouin zone in order to properly describe
the Fermi surface. This makes them computationally more demanding. But
copper presents yet another difficulty: It is mandatory that the 3d-electrons
are taken into account, as they contribute significantly to bonding and to the
valence band structure. Therefore, these electrons cannot be frozen into the
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Table 6.4. Comparison of the band-gap (Eg) and of gaps at some special points
in the Brillouin zone (Γ , X and L). The column labeled GGA* refers to values
obtained with the GGA at the LDA equilibrium lattice constant, and GGA labels
the results obtained with the GGA at the GGA equilibrium lattice constant. The
experimental results (expt.) are those cited in [86]. All values are in eV

LDA GGA* GGA expt.

Eg 0.45 0.53 0.61 1.17
Γ 2.57 2.59 2.57 3.34
X 3.51 3.59 3.56 1.25
L 2.73 2.84 2.64 2.4

Table 6.5. Lattice parameter (a), bulk modulus (B), and cohesive energy (Ec) of
Cu, calculated with the LDA (Perdew-Wang 92 functional [7]) and GGA (Perdew-
Burke-Ernzerhof functional [79]). Bulk moduli were obtained by fitting the Mur-
naghan equation of state [84] to the calculated total energy versus volume curve.
The experimental results are those cited in [87]

LDA GGA expt.

a (Å) 3.571 3.682 3.61
B (Mbar) 0.902 0.672 1.420
Ec (eV/atom) 4.54 3.58 3.50

core. However, their inclusion in the set of valence electrons means that there
will be at least 11 valence electrons (one could also include the 3s and 3p
electrons) and that the pseudo-potential will be very hard. The combination
of these two factors makes the calculations almost prohibitive.

The use of soft pseudo-potentials like the Troullier-Martins pseudo-po-
tential alleviates the problem. Table 6.5 and Fig. 6.11 show some results for
bulk Cu obtained with a Troullier-Martins pseudo-potential with r0 = r2 =
2.05 bohr and r1 = 2.30 bohr. The local component used in the Kleinman
and Bylander form of the pseudo-potential was the s-component and a par-
tial core correction was included with rnlc = 0.8 bohr. The pseudo-potential
thus obtained is soft enough to allow for well converged plane-wave calcu-
lations with an energy cutoff of 60 hartree. The Brillouin zone was sampled
with a Monkhorst-Pack scheme using 60 k-points and a Gaussian broadening
of the levels with a 0.01 hartree width. The convergence of the calculations
against energy cutoff, k-point sampling and width of the smearing gaussian
was better than 0.001 hartree. The calculations were done using both the
LDA and the GGA for exchange and correlation. The LDA used was the
Perdew-Wang 92 [7] parameterization of the Ceperley-Alder results [5] and
the GGA was the Perdew-Burke-Ernzerhof [79] functional. As in the case of
silicon, and for the sake of consistency, the pseudo-potentials employed in
both calculations were consistent with the xc functional.
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Fig. 6.11. Calculated band structure of Cu, obtained at the LDA equilibrium lat-
tice constant

Table 6.6. Theoretical band-widths and energies at some high symmetry points
in the Brillouin zone. The column labeled GGA* refers to values obtained with the
GGA at the LDA equilibrium lattice constant, and GGA labels the results obtained
with the GGA at the GGA equilibrium lattice constant. Results are compared to
a GW calculation [88] and to averages over several experiments [89] (expt.). All
values are in eV

LDA GGA* GGA GW expt.

Positions Γ12 −2.31 −2.31 −2.12 −2.81 −2.78
of d bands X5 −1.53 −1.53 −1.44 −2.04 −2.01

L3 −1.68 −1.69 −1.58 −2.24 −2.25

Γ12 − Γ25′ 0.91 0.90 0.78 0.60 0.81
Widths X5 −X3 3.17 3.15 2.73 2.49 2.79
of d bands X5 −X1 3.62 3.62 3.14 2.90 3.17

L3 − L3 1.57 1.56 1.34 1.26 1.37
L3 − L1 3.69 3.66 3.23 2.83 2.91

Positions Γ1 −9.77 −9.77 −9.02 −9.24 −8.60
of s, p bands L2′ −1.16 −1.19 −0.88 −0.57 −0.85

L gap L1 − L2′ 4.21 4.16 3.92 4.76 4.95

From Table 6.5 it is apparent that the LDA predicted, as usual, a lattice
parameter smaller than the experimental one, while the GGA over-corrected
this error. The over-binding of the LDA is also present in the cohesive energy,
which is 30% larger than the experimental value. The GGA fared much better,
producing an error of only 2%.

From Table 6.6 one can see that the LDA predicts d bands that are
more delocalized than the experimental ones and are also 0.5 eV closer to
the Fermi level. As the LDA is supposed to work well only for smoothly
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Fig. 6.12. Methane total energy vs. CH bond length: results obtained with the LDA
(circles, Perdew-Wang 92 functional [7]) and the PBE [79] GGA (triangles). The
Troullier-Martins pseudo-potential used for carbon had all the cutoff radii equal to
1.3 bohr. For hydrogen a pseudo-potential was also generated, with the same cutoff
radii. Calculations were converged to better than 1mhartree at an energy cutoff of
60 hartree and when using a 20 bohr cubic super-cell

varying densities, it comes at no surprise that highly localized states are
not correctly described by it. The GGA does not improve on this result if
the band-structure is calculated at the LDA lattice constant. If, however,
one uses the predicted GGA lattice constant, then the width of the d-bands
comes closer to the experimental values albeit getting even closer to the Fermi
level. The GW results presented were calculated at the experimental lattice
constant and show a very good agreement with experiment for the positions
of the d-bands. Nevertheless, the widths of the bands are more precisely
described by a much simpler GGA calculation.

As a last example of the use of plane-wave basis sets, we will look at
methane. To deal with finite systems one has to resort to the super-cell tech-
nique. As we are using periodic boundary conditions, we will only be able to
simulate a finite system if we place it inside a very large cell. If this cell is big
enough, the system (molecule, cluster, etc.) will not interact with its periodic
images. This means that, besides the usual convergence checks, one has also
to check that the calculation converges with increasing cell size. Fortunately,
in this case it is sufficient to use the Γ -point for sampling the irreducible
wedge of the Brillouin zone.

The calculation of the equilibrium geometry is usually performed by min-
imizing the total energy using some conjugate-gradients (or more sophisti-
cated) methods. However, for this simple example, we can just vary the CH
bond length and plot the total energy. This is shown in Fig. 6.12.

From the energy curve it is also simple to extract the vibrational frequency
of the CH bond. Close to the minimum, the energy depends quadratically on
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Table 6.7. CH bond length and vibrational frequency (w) of the CH bond of
CH4, calculated with the LDA (Perdew-Wang 92 functional [7]) and GGA (Perdew-
Burke-Ernzerhof functional [79])

LDA GGA expt.

CH bond length (bohr) 2.06 2.06 2.04
w (cm−1) 3422 3435 2917

the bond length,

E ≈ Eeq +
1
2
mω2(r − req)2 , (6.79)

where Eeq is the total energy at the equilibrium CH bond length (req), ω the
vibrational frequency, and m is an “effective” mass of the system, which for
this specific case reads

1
m

=
1
mC

+
1

4mH
, (6.80)

where mC and mH are the masses of the carbon and hydrogen atom, respec-
tively. In Table 6.7 we summarize the results obtained for methane.

The results show that both the LDA and the GGA are over-estimating
the CH bond length and the vibrational frequency. These calculations were
repeated using a real-space method (see next section).

6.6 Real-Space Calculations

To illustrate the use of real-space methods, we again chose to study methane
(CH4). For all calculations, we used the program octopus [90] (see also
http://www.tddft.org/programs/octopus), which was written by some of
the authors, and is freely available under an open source license. Furthermore,
we employed the Troullier-Martins pseudo-potentials which are distributed
with the code, and the GGA in the parameterization of Perdew, Burke and
Ernzerhof.

The first step of any calculation is the determination of the grid-spacing
that is necessary to converge the energy to the required precision. This study
is presented in Fig. 6.13. It is clear that the real-space technique is not varia-
tional, because the total energy does not decrease monotonically, but instead
oscillates as we reduce the grid-spacing. To have the total energy and the
Kohn-Sham eigenvalues converged to better than 0.005 hartree (≈ 0.1 eV) a
grid-spacing of at least 0.35 bohr is necessary. This was therefore the grid-
spacing we used to obtain the following results. Note that the optimum grid-
spacing depends on the strength of the pseudo-potential used: The deeper
the pseudo-potential, the tighter the mesh has to be.

The variation of the total energy with the C-H bond length is shown
in Fig. 6.14. Remarkably, the calculated equilibrium C-H bond length, req,
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Fig. 6.14. Total energy of CH4 versus C-H bond length

comes out on-top of the experimental value. The calculated value for the
vibrational frequency of the CH bond (ω = 2945 cm−1) is slightly above the
experimental result (2917 cm−1), but the agreement is still very good.

For illustrative purposes we depict, in Fig. 6.15, the density and the Kohn-
Sham orbitals of CH4 in its equilibrium configuration. It is clear that very
little information can be extracted by looking directly at the density, since it
appears to be a very smooth function without any particular point of interest.
It is therefore surprising that the density, by itself, is able to determine all



6 A Tutorial on Density Functional Theory 253

observables of the system. The Kohn-Sham eigenfunctions do not have any
physical interpretation – they are simply mathematical objects used to obtain
the electronic density. However, they do resemble very much to the traditional
“molecular orbitals” used in chemistry, and are widely used as such. Note that
the last three orbitals, (c), (d) and (e) are degenerate, and that the sum of
their partial densities retains the tetrahedral symmetry of CH4.

To conclude our section on real-space methods we present, in Fig. 6.16, a
plot of the so-called “egg-box” effect. As mentioned before, the numerical grid
breaks translational symmetry. This implies that the result of the calculation
is dependent on where we position the molecule relatively to the grid. As
most of the times the grids are uniform, the error will be periodic, with a
period equal to the grid spacing. Plotting the error in the total energy as a
function of the position of the molecule leads to a curve that resembles an
egg-box. This error is inherent to all real-space implementations, but can be
systematically reduced by decreasing the grid-spacing. In this particular case,
the maximum “egg-box” error is of the order of 2mhartree, for a grid spacing
of 0.35 bohr. Clearly, the magnitude of the error increases for larger grid-
spacings and stronger pseudo-potentials. Note that this “egg-box” effect leads
to a spurious force term when performing molecular dynamics or geometry
minimizations, so special care has to be taken in these cases.

(a) (b)

(c) (d) (e)

Fig. 6.15. Density (a), HOMO-1 (b) and the 3 degenerate HOMO (c, d and e)
Kohn-Sham orbitals of CH4
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central grid-point
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32. E. Antonč́ık, J. Phys. Chem. Solids 10, 314 (1959).
33. M.H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
34. B. J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276 (1962).
35. L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
36. I. V. Abarenkov and V. Heine, Phil. Mag. XII, 529 (1965).
37. V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
38. A.O.E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
39. N.W. Ashcroft, Phys. Lett. 23, 48 (1966).
40. N.W. Ashcroft and D.C. Langreth, Phys. Rev. 155, 682 (1967).
41. C. Fiolhais, J. P. Perdew, S.Q. Armster, J.M. MacLaren, and M. Brajczewska,

Phys. Rev. B 51, 14001 (1995), (E) ibid. 53 (1996) 13193.
42. F. Nogueira, C. Fiolhais, J. He, J. P. Perdew, and A. Rubio, J. Phys.: Condens.

Matter 8, 287 (1996).
43. C. Fiolhais, F. Nogueira, and C. Henriques, Prog. Surf. Sci. 53, 315 (1996).
44. L. Pollack, J. P. Perdew, J. He, M. Marques, F. Nogueira, and C. Fiolhais, Phys.

Rev. B 55, 15544 (1997).
45. F. Nogueira, C. Fiolhais, and J. P. Perdew, Phys. Rev. B 59, 2570 (1999).
46. J. P. Perdew, F. Nogueira, and C. Fiolhais, Theochem 9, 229 (2000).
47. R.W. Shaw, Jr., Phys. Rev 174, 769 (1968).
48. J. Callaway and P. S. Laghos, Phys. Rev. 187, 192 (1969).
49. W.C. Topp and J. J. Hopfield, Phys. Rev. B 7, 1295 (1973).
50. M. L. Cohen and V. Heine, Solid State Phys. 24, 37 (1970).
51. W.A. Harrison, Pseudopotentials in the Theory of Metals (W. A. Benjamin,

New York, 1966).
52. V. Heine and D. Weaire, Solid State Phys. 24, 249 (1970).
53. J. Hafner and V. Heine, J. Phys. F.: Met. Phys. 13, 2479 (1983).
54. J. Hafner and V. Heine, J. Phys. F: Met. Phys. 16, 1429 (1986).
55. J. Hafner, From Hamiltonians to Phase Diagrams (Springer Verlag, Berlin,

1987).
56. T. Starkloff and J.D. Joannopoulos, Phys. Rev. B 16, 5212 (1977).
57. A. Zunger and M.L. Cohen, Phys. Rev. B 18, 5449 (1978).
58. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).



256 Fernando Nogueira, Alberto Castro, and Miguel A.L. Marques
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