APPLIED PHYSICS LETTERS 94, 263107 (2009)

A theoretical study on thermoelectric properties of graphene nanoribbons
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We investigate the thermoelectric properties of graphene nanoribbons (GNRs) by solving atomistic
electron and phonon transport equations in the nonequilibrium Green’s function formalism. The
dependence of thermopower on temperature and chemical potential is compared to that of graphene,
which shows the important role of quasi-one-dimensional geometry in determining the
thermoelectric properties of a GNR. The edge roughness and lattice vacancy are found to increase
the thermopower but decrease the thermoelectric ZT factor because the decrease in the electronic
conductance outweighs the decrease in the thermal conductance and the increase in the
thermopower. © 2009 American Institute of Physics. [DOI: 10.1063/1.3171933]

The discovery of the two-dimensional (2D) graphene
and quasi-one-dimensional (1D) graphene nanoribbon
(GNR) has attracted strong interest in their fundamental
physical properties and potential device applications.l_3 The
thermoelectric transport properties, which reveal electron
and phonon transport properties, have been examined by
studying the electronic and thermal transport characteristics
of the 2D graphene experimentally and theore:tically.“’6 But
the thermoelectric transport properties of GNRs remain un-
clear. In silicon thermoelectricity, the thermoelectric ZT fac-
tor increases by orders of magnitude compared to bulk sili-
con for a silicon nanowire with rough surface.”™ By
comparing to 2D graphene, it is interesting to understand
how quasi-1D structure and edge roughness of a GNR affect
its thermoelectric properties.

In this letter, we investigate the thermoelectric properties
of GNRs by solving the electronic transport and thermal
transport equations in the nonequilibrium Green’s function
(NEGF) formalism. By computing the electronic conduc-
tance G,, thermal conductance «, and thermopower S, we
obtain the figure of merit ZT defined by ZT=TG,S%/ «,
where T is temperature. We found that for semiconducting
GNRs, the ZT factor is maximized when the chemical poten-
tial is near the first subband edge. The maximum magnitude
of thermopower, which is reached with the chemical poten-
tial near the middle of the band gap, is inversely proportional
to temperature and is much larger than that of the 2D
graphene due to the presence of the band gap. When the
chemical potential moves above the band edge, the ther-
mopower decreases to zero because of the stepwise 1D trans-
mission spectrum. The edge roughness and lattice vacancy
defects increase the thermopower but decrease the ZT factor.

For electronic transport, the Hamiltonian is described by
an atomistic p, orbital tight binding basis with nearest cou-
pling. The semi-infinite GNR source and drain leads are
defect-free. The retarded Green’s function of the channel is
calculated as'’

GE)=[(E+i0NI-H-3,-3,]", (1)

where H is the unperturbed channel Hamiltonian matrix and
3, (2,) is the self-energy due to the semi-infinite source
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(drain) lead. The electronic transmission per spin through
channel region is calculated as

T(E) =Ti{I'|(E)G(E)T,(E)G™(E)], )

where I'; ,=-2 Im(3,, ,) is the broadening function of source
(drain) lead and G™ is the advanced Green’s function. NEGF
formalism can rigorously treat the transport through the
channel with translational symmetry breaking (e.g., by de-
fects). Due to the weak electron-phonon coupling in GNRs,
phonon scattering of electrons is neglected.11 The electronic
conductance, thermopower, and the electronic contribution to
the thermal conductance k, can be conveniently derived
from the electronic transmission by defining an intermediate
function L,(w) as

) 19f(E,M,T)], )
JoE

L(wT)=> f JET,(E)(E - m*{

where / is the Plank constant, the factor 2 counts the spin
degeneracy, and f is the Fermi distribution function. G,, S,
and «, are computed as'

Ge(lu') = ezLO(M’ T)’ (4’)
_ LLI(M’ T)
Sles) = qT Lo(u, T)’ )
_ l Ll(/“(" T)2
Ko(p) = T{Lz(u, T) - LoD |’ (6)

where ¢ is the electric charge of carriers, which is positive
for holes and negative for electrons.

The Green’s function and transmission can be calculated
similarly for phonon tlransport.13 In Eq. (1) one only needs to
change E to w’M, H to D, and compute the self-energies
accordingly, where w is the phonon frequency, M is the
atomic mass of carbon, and D is the dynamic matrix. The
dynamic matrix only includes carbon atoms as the hydrogen
atoms at the edges are not important in forming vibration
modes.'* The dynamic matrix is constructed by using a
spring mass model."® The lattice contribution to the thermal
conductance is given by
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FIG. 1. (Color online) Normalized Z7, |S|, x, and G of a perfect n=15
AGNR as functions of the chemical potential u. The energy reference point
(E=0) is defined as the middle of the band gap. S<0 for u>0 (i.e., electron
conduction). The values are normalized by Z7,=0.109, G,=77.1 uS, k,
=2.52X 10 W/K, and S;=981 uV/K, respectively.

In(w)

Kph = %f dﬁa)TPh(m)ﬁw[F} , (7)

where T}, is the phonon transmission and n(w) is the Bose—
Einstein distribution function. Phonon-phonon scattering and
a harmonic lattice vibration are ignored.

We first investigate the thermoelectric properties of a
structurally perfect armchair edge GNR (AGNR). The mod-
eled AGNR has an index of n=15, which results in a width
of 1.8 nm and a band gap of E,=667 meV. The chemical
potential of the GNR can be tuned with gating or doping.
Therefore we investigate the dependence of the electronic
conductance, thermal conductance, thermopower, and the ZT
factor as functions of the chemical potential. As shown in
Fig. 1, as the chemical potential moves into conduction sub-
bands, the electronic conductance increases because more
subbands are available for conduction. An increase in the
electronic conductance also increases the electronic contribu-
tion to the thermal conductance. In contrast, the thermal con-
ductance does not change much by varying the position of
the chemical potential because the constant lattice contribu-
tion dominates the thermal conductance. Both the ther-
mopower and the ZT factor show a distinctive peak. To un-
derstand the peak on the thermopower curve, one can inspect
Eq. (5) which indicates that S is determined by the electron-
transmission-weighted average value of the heat energy E-pu.
The thermopower S is zero when the chemical potential is at
the middle of the band gap =0 due to the symmetric con-
duction and valence subbands. For electron conduction
(§<0), the maximum |S| occurs when the chemical potential
is several kzT above the middle of the band gap. This is the
position where the electron-transmission-weighted average
value of (E-u) is maximized. Compared to the |S| peak, the
ZT peak is reached at a totally different chemical potential,
which is close to the subband edge. This is because the elec-
tronic conductance decreases exponentially as the chemical
potential moves several kzT below the conduction band
edge. The thermopower decreases as the chemical potential
moves above the band edge where electronic transmission
becomes energy independent. So the maximum value of ZT
=TG,S?/ k is reached with the chemical potential near the
subband edge.

Next, we compare the thermoelectric properties of the
GNR to 2D ballistic graphene. We plot the thermopower of
the GNR and 2D graphene as a function of the chemical
potential at different temperatures in Figs. 2(a) and 2(b), re-
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FIG. 2. (Color online) Compare 1D GNR to 2D graphene: the thermopower
of (a) a perfect n=15 AGNR and (b) a 2D graphene as a function of u at
different temperatures: 7=75 K (squares), 150 K (triangles), 225 K
(circles), and 300 K (unmarked). In (a) the dashed line indicates the first
conduction subband edge E.. The inset shows the enlarged parts for u
>E,.

spectively. The thermopower of graphene is calculated with-
out scattering, which represents the ballistic transport limit
and warrants a fair comparison to the modeled GNR charac-
teristics. For 2D graphene, as shown in Fig. 2, the simulated
S versus u curve is qualitatively similar to the experiment in
terms of its antisymmetric shape to the Dirac point.4 The
peak value of S simulated at the ballistic limit is also close to
the experimental value,” although scattering can be respon-
sible for a different dependence of the peak values on tem-
perature in the experiment. By comparing the thermopower
curves of the GNR to those of the graphene, some important
similarities and differences can be identified. For both the
graphene and GNR, the curves are similar in terms of being
antisymmetric about the Dirac point (or the middle of the
band gap E,,) due to the symmetrical band structures, and
both curves have the maximum thermopower when the
chemical potential is several kzT away from E,,. One major
difference is that the maximum magnitude of the ther-
mopower of the GNR, which is in the order of mV/K, is
much larger than that of graphene, which is less than
100 wV/K. This is mainly due to the existence of the band
gap in semiconducting GNR, so that the electrons at the con-
duction subband edge, which are responsible for electron
conduction at the maximum thermopower, have a much
larger (E-u) compared to the gapless 2D graphene.

For electron conduction, when the chemical potential is
between the middle of the band gap and the conduction band
edge (0<u<E-—3kgT), it can be shown that the average
heat energy L,(w)/Lo(p)=Ec-p by using nondegenerate
Maxwell-Boltzmann carrier distribution, and the magnitude
of the thermopower is |S|=~ (E--u)/Te. As a result, the aver-
age heat energy can be up to one half of the band gap. For
n=15 AGNR, E,/ 2=334 meV, and thus the thermopower
can be in the order of mV/K. As shown in Fig. 2(a), the
thermopower is approximately inversely proportional to the
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FIG. 3. (Color online) (a) The atomistic structure of an n=15 AGNR. Two
types of defects are simulated: edge roughness as shown by arrow 1 and
lattice vacancy as shown by arrow 2. The source (S) and drain (D) leads are
perfect semi-infinite GNRs. (b) The electronic transmissions of the perfect
AGNR (solid line) and the AGNR with one edge roughness defect (dashed
line) as shown in arrow 1 of (a). (c) The phonon transmissions of a perfect
GNR (solid line) and the same defective structure as in (b) (dashed line).

temperature when nondegenerate carrier statistics applies.
For graphene, since the band gap is zero, only the carriers
within several kT about the chemical potential are important
for transport. Thus the average heat energy is in the order of
kgT, which results in a much smaller thermopower. It can be
shown that when the chemical potential is several kzT above
the Dirac point, the thermopower approximately scales as
T/(u-E,,), which is proportional to the temperature. This dif-
ference in temperature dependence between the graphene
and GNR is purely due to the existence of the band gap in
the GNR.

When the chemical potential in the GNR moves into
conduction bands, |S | of the GNR decreases to zero, which is
distinctively different from that of the graphene. This is be-
cause the quasi-1D GNR has a stepwise transmission spec-
trum. When the chemical potential moves into the conduc-
tion (valence) bands, the transmission is energy independent
before the chemical potential reaching the next subband,
which results in a zero thermopower. In contrast, the 2D
graphene has a transmission linearly dependent on the en-
ergy. The energy-dependent transmission leads to a nonzero
S. The very different dependence of the thermopower on the
chemical potential is caused by the difference between trans-
mission spectra of the quasi-1D GNR and 2D graphene.

Finally, we examine the effect of edge roughness and
lattice vacancy. The defects are treated by removing the car-
bon atoms out of the channel, which results in vacancy in
bulk region and roughness at edges, as shown in Fig. 3(a).
Any dangling bonds arising from missing carbon atoms are
assumed to be passivated by a hydrogen atom to keep the
tight-binding prescription valid. The sample-averaged value
is obtained by averaging a physical quantity over 100 GNRs
with randomly generated defects.

To lustrate the effect of the lattice defects, one edge
roughness defect is introduced to the channel. The stepwise
transmission of the perfect structure is degraded and
smoothed for both electron transport [Fig. 3(b)] and phonon
transport [Fig. 3(c)] due to the translational symmetry break-
ing. As the number of defects increases, the transmissions
decrease which lead the electronic conductance and thermal
conductance to decrease, as shown in Fig. 4. However the
magnitude of the thermopower increases as the number of
defects increases. This can be explained by analyzing Eq. (5)
together with Eq. (3). At a given temperature, the ther-
mopower, Eq. (5), is proportional to the transmission-

Appl. Phys. Lett. 94, 263107 (2009)

w

‘—<ZT> <G> <> —e-<S>‘

e
]

N
[6)]

N

N

normalized variables
o
[6)]

©
o

0 2 4 6 8
Number of defects

FIG. 4. (Color online) Effect of edge and lattice vacancy defects: the nor-
malized sample-averaged (ZT), thermopower (S), thermal conductance (),
and electronic conductance (G,) as functions of the number of defects in the
n=15 AGNR. The values are normalized by ZT,=0.10, Gy=38.6 uS, «,
=1.66X 10" W/K, and Sy=120 uV/K, respectively. The chemical poten-
tial is fixed at the first conduction subband edge.

weighted average heat energy (E-u). Carriers of a higher
energy E carry a larger magnitude of heat energy. To increase
the thermopower, the low energy carrier transport should be
suppressed. By smoothing the sharp corner at conduction
band edge in the perfect transmission spectrum, the elec-
tronic transport near the band edge, where carrier energy is
low, is effectively reduced and the weight of high energy
carriers in total carriers is increased. Therefore the magni-
tude of the thermopower increases as the GNR becomes
more defective. Although both the increase in the ther-
mopower and the decrease in the thermal conductance can
increase the ZT factor, the degradation of the electronic con-
ductance outweighs them and the ZT factor decreases as the
number of defects increases.

In summary we have presented an atomistic simulation
for the electronic and thermal transport of the GNR in NEGF
formalism. The dependence of the thermoelectric properties
on temperature, chemical potential, and defects is investi-
gated. The thermopower characteristics are compared to that
of the 2D graphene which reveals the important role of the
quasi-1D geometry in determining the thermoelectric prop-
erties of the GNR.
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