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We investigate theoretically the dynamics of magnetization coupled to the surface Dirac fermions of a
three-dimensional topological insulator by deriving the Landau-Lifshitz-Gilbert �LLG� equation in the presence
of charge current. Both the inverse spin-galvanic effect and the Gilbert damping coefficient � are related to the
two-dimensional diagonal conductivity �xx of the Dirac fermion, while the Berry phase of the ferromagnetic
moment to the Hall conductivity �xy. The spin-transfer torque and the so-called � terms are shown to be
negligibly small. Anomalous behaviors in various phenomena including the ferromagnetic resonance are pre-
dicted in terms of this LLG equation.
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Topological insulator �TI� provides a new state of matter
topologically distinct from the conventional band insulator.1

In particular, the edge channels or the surface states are de-
scribed by Dirac fermions and protected by the band gap in
the bulk states, and backward scattering is forbidden by the
time-reversal symmetry. From the viewpoint of the spintron-
ics, it offers a unique opportunity to pursue novel functions
since the relativistic spin-orbit interaction plays an essential
role there. Actually, several proposals have been made such
as the quantized magnetoelectric effect,2 giant spin rotation,3

magnetic properties of the surface state,4 magnetotransport
phenomena,5 and superconducting proximity effect including
Majorana fermions.6–8

Also, a recent study focuses on the inverse spin-galvanic
effect in a TI/ferromagnet interface, predicting the current-
induced magnetization reversal due to the Hall current on the
TI.9 In Ref. 9, the Fermi energy is assumed to be in the gap
of the Dirac dispersion opened by the exchange coupling. In
this case, the quantized Hall liquid is realized, and there oc-
curs no dissipation coming from the surface Dirac fermions.

However, in realistic systems, it is rather difficult to tune
the Fermi energy in the gap since the proximity-induced ex-
change field is expected to be around 5–50 meV. Therefore,
it is important to consider the generic case where the Fermi
energy is at the finite density of states of Dirac fermions,
where the diagonal conductivity is much larger than the
transverse one, and the damping of the magnetization be-
comes appreciable. Related systems are semiconductors and
metals with Rashba spin-orbit interaction, where the spin-
galvanic effect and current-induced magnetization reversal
have been predicted10 and experimentally observed.11,12

Compared with these systems where the Rashba coupling
constant is a key parameter, the spin and momentum in TI
are tightly related to each other corresponding to the strong-
coupling limit of spin-orbit interaction, and hence the gigan-
tic spin-galvanic effect is expected.

In this Rapid Communication, we study the dynamics of
the magnetization coupled to the surface Dirac fermion of TI.
Landau-Lifshitz-Gilbert �LLG� equation in the presence of
charge current is derived microscopically, and �i� inverse

spin-galvanic effect, �ii� Gilbert damping coefficient �, �iii�
the so-called � terms, and �iv� the correction to the Berry
phase, are derived in a unified fashion. It is found that these
are expressed by relatively small number of parameters, i.e.,
the velocity vF, Fermi wave number kF, exchange coupling
M, and the transport lifetime � of the Dirac fermions. It is
also clarified that the terms related to the spatial gradient are
negligibly small when the surface state is a good metal. With
this LLG equation, we propose a ferromagnetic resonance
�FMR� experiment, where modifications of the resonance
frequency and Gilbert damping are predicted. Combined
with the transport measurement of the Hall conductivity,
FMR provide several tests of our theory. Throughout this
Rapid Communication, we take the unit of �=1.

Derivation of LLG equation. By attaching a ferromagnet
on the TI as shown in Fig. 1, we can consider a topological
surface state where conducting electrons interact with local-
ized spins, S, through the exchange field,
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FIG. 1. �Color online� �a� Illustration of the Dirac dispersion on
top of TI. The Fermi level �F is far above the surface gap opened by
magnetization in the ferromagnetic layer. �b� Sketch of FMR ex-
periment in the soft magnetic layer. The substrate in the figure is TI,
which is capped by a layer of soft ferromagnet. The magnetization
precesses around the external magnetic field Heff.
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Hex = − M� drn�r� · �̂�r� . �1�

Here, we set S=Sn with a unit vector n pointing in the di-
rection of spin, �̂�r�=c†�r��c�r� represents �twice� the
electron-spin density, with c†= �c↑

† ,c↓
†� being electron cre-

ation operators, � the Pauli spin-matrix vector, and M being
the exchange-coupling energy. The total Hamiltonian of the
system is given by Htot=HS+Hel+Hex, where HS and Hel are
those for localized spins and conducting electrons, respec-
tively.

The dynamics of magnetization can be described by the
LLG equation,

ṅ = �0Heff 	 n + �0ṅ 	 n + tel� , �2�

where �0Heff and �0 are an effective field and a Gilbert
damping constant, respectively, both coming from HS. Ef-
fects of conducting electrons are contained in the spin
torque,

tel�r� � s0tel� �r� = Mn�r� 	 ��̂�r��ne, �3�

which arises from Hex. Here, s0�S /a2 is the localized spin
per area a2. In the following, we thus calculate spin polar-
ization of conducting electrons perpendicular to n, ��̂��r��ne,
in such nonequilibrium states with current flow and spatially
varying magnetization to derive the � term, or with time-
dependent magnetization for Gilbert damping. Here and
hereafter, �¯ �ne represents statistical average in such non-
equilibrium states.

Following Refs. 13–15 we consider a small transverse
fluctuation, u= �ux ,uy ,0�, �u�
1, around a uniformly magne-
tized state, n= ẑ, such that n= ẑ+u. In the “unperturbed”
state, n= ẑ, the electrons are described by the Hamiltonian,

H0 = �
k,�

ck
†	vF�ky�

x − kx�
y� − M�z − �F
ck + Vimp, �4�

where Vimp is the impurity potential given by
Vimp=u�ic

†�Ri�c�Ri�. We take a quenched average for the
impurity positions Ri. The electron damping rate is then
given by �=1 / �2��=�niu

2�F in the first Born approxima-
tion. Here, ni is the concentration of impurities and
�F=�F / �2�vF

2� is the density of states at �F. We assume that

�
vFkF=��F
2 −M2, M, and calculate spin-transfer torque in

the lowest nontrivial order.
In the presence of u�r , t�=u�q ,�ei�q·r−t�, the conducting

electrons feel a perturbation �note that Hel+Hex=H0+H1�

H1 = − M�
k�

ck+q
† �ck · u�q,�e−it �5�

and acquires a transverse component

��̂��
��q,��ne = M��

���q, + i0�u��q,� �6�

in the first order in u in the momentum and frequency rep-
resentation. Here, ��

�� is the transverse spin susceptibility in
a uniformly magnetized state with � ,�=x ,y, and summing
over � is implied.

Now, we study the -linear terms in the uniform �q=0�
part of the transverse spin susceptibility, ��

���q=0 ,+ i0�.

We make the following transformation of the operator:

c = Uc̃ =
1

�2��� + M�
�vF�ky + ikx�

� + M
c̃ �7�

with �=��vFk�2+M2. Note U†U=1, U†�xU=vFky /�, and
U†�yU=−vFkx /�. This transformation maps two component
operator c into one component operator on the upper Dirac
cone c̃. With this new operator, we calculate the transverse
spin susceptibility in Matsubara form,

��
���0,i�� = �

0

�

d�ei���T��
��0,�����0,0��

= − T�
k,n

U†��UG̃�k,i�n + i��U†��UG̃�k,i�n�

�8�

with G̃�k , i�n�= 	i�n−�+�F+ i� sgn��n�
−1. By symmetry
consideration of the integrand in k integral, we find
��

���0, i������. After some calculations, we obtain the
torque stemming from the time evolution,

tel
� = M2 i

2�

1

2vF
2 �vFkF

�F
2

�F�n 	 u �9�

=
1

2
�MvFkF

�F
2

�F�ṅ 	 n . �10�

This result fits the conventional Gilbert damping with

� =
1

2
�MvFkF

�F
2

�F�
a2

�S
. �11�

We next examine the case of finite current by applying
a dc electric field E and calculate a linear response of
��

� to E, i.e., ���
� �q��ne=��i�q�Ei. First, it is clear that

��i�q=0�=−�i��xx / �evF�, where �i� and �xx are the antisym-
metric tensor and diagonal conductivity, respectively, be-
cause electron’s spin is “attached” to its momentum. This
represents the inverse spin-galvanic effect, i.e., charge cur-
rent induces magnetic moment. Since we assume that Fermi
level is far away from the surface gap, �xx��xy, where �xy is
the Hall conductivity. The dominant term in � is thus
�xy ��xx. This is quite different from the case studied in
Ref. 9, where Fermi level lies inside the surface gap and
therefore �xx is vanishing. Hence, the only contribution to
the inverse spin-galvanic effect is �xx��xy, which is much
smaller than the effect proposed in this Rapid Communica-
tion. Compared with the inverse spin-galvanic effect in
Rashba system,10–12 this effect is much stronger since the
small Rashba coupling constant, i.e., the small factor
�RkF /EF in Eq. �16� of Ref. 10, does not appear in the
present case. Taking into account the realistic numbers with
�=10−11 eV m and vF=3	105 m /s, one finds that the in-
verse spin-galvanic effect in the present system is
�50 times larger than that in Rashba systems.

The next leading-order terms of the expansion in u� and
qj can be obtained by considering the four-point vertices13 as
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��̂�
� �q��ne = − eM

�

4

5i

8��F
2 �ik� jl	����kl + ��k��l + ��l��k
qju

�Ei �12�

=− eM
5i

32�F
2 	q · Eu� − q · �u 	 ẑ��E 	 ẑ�� + u · �E 	 ẑ��q 	 ẑ��
 . �13�

Therefore, the spin-torque stemming from the spatial gradient has the form,

tel
� = − �

1

2e
�n 	 �j · ��n − 	j − �j · n�ẑ
 � · �n 	 ẑ� + 	�− �n · ��ẑ
n · �j 	 ẑ�� , �14�

where j=�CE with charge current j and conductivity
�C= e2

4� � vFkF

�F
�2�F�, and

� =
5�

4�F�
� M

vFkF
2

. �15�

From Eq. �14�, one can find the following: �i� the spin-
transfer torque of the form �j ·��n is absent since we con-
sider the upper Dirac cone only. �ii� The � term has a form
essentially different from that in the conventional one.13,16,17

Considering vFkF��F, we get � /����F��2 from Eqs. �11�
and �15�. Therefore, the � terms are negligible for a good
surface metal, i.e., �F��1.

Up to now, we consider only one branch of the band
where the Fermi energy is sitting. When we consider the
two-band structure, i.e., the 2	2 matrix Hamiltonian
H=vF	�ky −

Mnx

vF
��x− �kx+

Mny

vF
��y
, we have the correction to

the Berry phase term. In analogy with the minimal coupling
of electromagnetic field, A=− M

evF
�−ny ,nx� plays the same

role as the U�1� gauge. By integrating the fermions out, one
can get a Chern-Simons term in terms of the magnetization
LCS=�xy�

���A���A�, where � ,� ,�= t ,x ,y. When the gradi-
ent of magnetization vanishes, it can be rewritten as

LCS = �xy� M

evF
2

�nxṅy − nyṅx� . �16�

This additional term can be interpreted as an additional Berry
phase for the magnetization. In fact, as nz remains constant in
the present case, we have 	nx ,ny
= inz. Therefore, nx and ny
become conjugate variables up to a factor, which naturally
leads to a Berry phase: nxṅy −nyṅx. This term is exactly
equivalent to the Chern-Simons term.

Including all the terms derived above, we finally arrive at
a modified LLG equation,

ṅ − 2�xy� M

evF
2

ṅ/�s0N� = �0Heff 	 n + � M

evFs0N
	− j + �n · j�ẑ
 + ��0 + �/N�ṅ 	 n + tel

�/�s0N� , �17�

where N is the number of ferromagnetic layers. Note that �,
�, and Berry phase terms originate from the interplay be-
tween Dirac fermions and local magnetization which persists
over a few layers of the ferromagnet. Therefore, the overall
coefficients are divided by the number of ferromagnetic
layers N.

Ferromagnetic resonance. Observing the small value of
�, the spatial gradient of magnetization can be neglected
for the time being. Only one uniform domain in the
absence of current is taken into account for simplicity.
Without loss of generality, assume that an external
magnetic field is applied along z direction, and consider
the magnetization precession around that field. ṅz=0
is kept in the first-order approximation, namely, nz is
a constant in the time evolution. By inserting the ansatz
nx�y��t�=nx�y�e

−it into the modified LLG equation, one
obtains

R =
�

�2 + �20, I = −
�

�2 + �20, �18�

where �=�0+� /N, 0=�0Hef f, and �=1−2�xy�
M

evF
�2 / �s0N�.

Expanding up to the first order in �xy and �, one gets R
=0+2�xy�

M
evF

�20 / �s0N� and I=�0. Therefore, the pre-
cession frequency acquires a shift proportional to �xy in the
presence of interplay between Dirac fermions and the ferro-
magnetic layer. The relative shift of R is
2�xy�

M
evF

�2 / �s0N�= 1
�SN

M
�F

� Ma
vF

�2� 1
N � M

�F
�3.18 By tuning the

Fermi level, this shift can be accessible experimentally.
Meanwhile, the Gilbert damping constant � can be mea-

sured directly without referring to the theoretical expression
in Eq. �11�. One can investigate the ferromagnetic layer
thickness dependence of FMR linewidth. While increasing
the thickness N of ferromagnet, the Gilbert damping constant

THEORETICAL STUDY OF THE DYNAMICS OF… PHYSICAL REVIEW B 81, 241410�R� �2010�

RAPID COMMUNICATIONS

241410-3



stemming from the Dirac fermions decreases inversely
proportional to the thickness. Taking into account the realis-
tic estimation with �F��100 and M /�F�0.3, one has
� /s0�1, while �0�0.001 usually. Therefore, even for a
hundred of layers of ferromagnet, the contribution from the
proximity effect is still significant compared to the one com-
ing from the ferromagnet itself. Observing that the imaginary
part of resonance frequency in Eq. �18� is proportional to �,
one may plot the relation between the FMR peak broadening,
namely, I and 1 /N. The broadening is a linear function of
1 /N and approaches the value of the ferromagnet at large
thickness limit. We can find the value of � from the slope of
the plot.

On the other hand, the real part of FMR frequency pro-
vides rich physics as well. Since in the presence of additional
Berry phase, the frequency shift is proportional to the Hall
conductivity on the surface of TI, it leads to a new method to
measure the Hall conductivity without four-terminal probe.
In an ideal case when the Fermi level lies inside the surface
gap, this quantity is quantized as �xy

0 = e2

2h . However, in real-
istic case, Fermi level is away from the surface gap, and
therefore the Hall conductivity is reduced to �xy = e2

2h

Mnz

�F
.18 As

a result, the shift of resonance frequency is proportional to
nz

2�cos2 � and the FMR isotropy is broken. Here, � is the
angle between effective magnetic field and the normal to the
surface of TI. One can perform an angle-resolved FMR mea-
surement. The signal proportional to cos2 � comes from the
additional Berry phase.

Since parameters � and � depend on M and �, it is quite
important to measure these quantities directly. Molecular-
beam epitaxy method can be applied to grow TI coated by a
thin layer of soft ferromagnet. As is required in the above
calculation, Fermi level of TI should lie inside the bulk band

gap. Also, the soft ferromagnet should be an insulator or a
metal with proper work function. One may employ angular-
resolved photoemission spectroscopy �ARPES� or scanning
tunneling microscope techniques to measure the surface gap
� opened by the ferromagnet, which is given by �=Mnz. As
the easy axis nz can be found experimentally, M can be fixed
as well. On the other hand, the lifetime � is indirectly deter-
mined by measuring the diagonal conductivity �xx via
�xx= e2

4� � vFkF

�F
�2�F�. Finally, Fermi surface can be determined

by ARPES and all parameters in LLG equation Eq. �17� can
be obtained.

In summary, we have investigated theoretically the dy-
namics of magnetization on the surface of a three-
dimensional topological insulator. We have derived the
Landau-Lifshitz-Gilbert equation in the presence of charge
current, and analyzed the inverse spin-galvanic effect and
ferromagnetic resonance predicting anomalous features of
these phenomena.

One may expect that topological surface state is affected
by the ferromagnet due to strain and the exchange coupling.
However, topology of the system guarantees that the surface
state at low energy is described by Dirac Hamiltonian. Thus,
our results should be qualitatively unaltered even in the pres-
ence of these effects.
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