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Abstract
One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is
steadily precessing (around, for example, the z-axis) with frequency ω0 due to absorption of
low-power microwaves of frequency ω0 under the resonance conditions and in the absence of any
applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering
theory of adiabatic quantum pumping, predicts that component ISz of spin current vector(
ISx(t), ISy(t), ISz

)
∝ ω0 is time-independent while ISx(t) and ISy(t) oscillate harmonically in time

with a single frequency ω0 whereas pumped charge current is zero I≡ 0 in the same adiabatic∝ ω0

limit. Here we employ more general approaches than the ‘standard model’, namely the
time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict
unforeseen features of spin pumping: namely precessing localized magnetic moments within a
ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are
exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spin
ISα(t) and charge I(t) currents. All four of these functions harmonically oscillate in time at both
even and odd integer multiples Nω0 of the driving frequency ω0. The cutoff order of such high
harmonics increases with SOC strength, reaching Nmax ' 11 in the one-dimensional FM or AFM
models chosen for demonstration. A higher cutoff Nmax ' 25 can be achieved in realistic
two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription
of how to realize them using 2D magnets and their heterostructures.

1. Introduction

The pumping of electronic spin current by dynamical magnetization of a ferromagnetic metal (FM) into an
adjacent normal metal (NM) was originally discovered [1, 2] for steadily precessing magnetization of a FM
due to the absorption of low-power (∼mW [3]) microwaves in the∼GHz range under ferromagnetic (F)
resonance conditions. Since it occurs in the absence of any bias voltage, it is termed ‘pumping’, akin to
low-temperature quantum transport where time-dependent quantum systems emit currents [4–6]. Spin
pumping has turned out to be a ubiquitous phenomenon in room-temperature spintronic devices, emerging
whenever the dynamics of localized magnetic moments is initiated while they interact with conduction
electrons to drive them out of equilibrium. For example, recent observations include spin pumping into an
adjacent NM from microwave-driven F and ferrimagnetic insulators [7] and antiferromagnetic (AF)
insulators [8, 9], as well as from dynamical noncollinear magnetic textures (such as domain walls [10–13],
skyrmions [14] and spin waves [15]).

Despite being quintessentially a quantum transport phenomenon, spin pumping is observed even at
room temperature because of its interfacial nature [1] where the relevant region around the magnetic
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Figure 1. Schematic view of (a), (c) FM- or (b) anti-ferromagnetic metal (AFM)-based setups whose magnetic moments are
steadily precessing with frequency ω0 around the z-axis due to resonant absorption of∼GHz or∼THz microwaves, respectively.
The setups in (a) and (b) are modeled on a one-dimensional tight-binding lattice attached to two semi-infinite NM leads, while
the setup in (c) is modeled on a honeycomb lattice of two-dimensional magnets [35–37] and attached to two semi-infinite
graphene nanoribbon leads (SOC, spin–orbit coupling). The precession cone angle is θ in the FM case or θ1 > θ2 for two
sublattices in the right-handed mode of precession [8, 17] in the AFM case. In the absence of any bias voltage between
macroscopic reservoirs into which NM leads terminate, dynamical magnetic moments interact with conduction electrons via sd
exchange coupling Jsd to drive them out of equilibrium and pump time-dependent spin ISα (t) and charge I(t) currents into the
NM leads. Electrons hop between the sites with parameter γ, as well as with an additional (equations (1) and (2)) spin-dependent
hopping γSO [39], describing the Rashba SOC [34] within the FM or AFM central region.

material/NM interface is always thinner [16] than the decoherence lengths for electronic orbital and spin
degrees of freedom. Thus, the ‘standard model’ [1] of spin pumping is built using the scattering theory [5] of
quantum transport to describe how magnetization of ferromagnets, or both the Néel vector and
nonequilibrium magnetization of antiferromagnets [8, 9, 17], precessing with frequency ω0 around the easy
(z-axis) pushes electrons out of equilibrium. The ensuing flowing electronic spins comprise a spin current
vector

(
ISx(t), ISy(t), ISz

)
whose ISz component is time-independent while ISx(t) and ISy(t) oscillate

harmonically in time at a single frequency ω0 [1]. These DC and AC components of the pumped spin current
can be converted into DC [18] and AC [19] voltages, respectively, by the inverse spin Hall effect and then
measured using standard electrical circuits [2]. The magnitude of each component is∝ ω0, as the signature
of general adiabatic quantum pumping [4–6], as well as∝ sin2 θ [1, 16] when the precession cone angle θ is
controlled by the input microwave power [3, 20]. The spin pumping effectively generates additional
dissipation [1, 10, 13] for the magnetization dynamics, so that such loss of spin angular momentum can be
employed for indirect [1, 2, 11] detection of pumping.

Thus, the ‘standard model’ of spin pumping excludes the possibility of higher harmonics in periodic time
dependence of any of the three components of the thus generated spin current. Alternatives to the ‘standard
model’ include the Floquet nonequilibrium Green’s function (Floquet NEGF) [21–25] or the Kubo
formalism [26], developed in order to include possibly strong spin–orbit coupling (SOC) directly at the
F(AF) material/NM interface where the analytical formula of the ‘standard model’ ceases to be applicable [1,
21, 23, 27]. However, these alternatives have focused on computing the time-averaged (i.e. DC) component
of pumped spin or charge currents, ISα,DC = 1

τ

´ τ
0 dt I

Sα(t) or IDC = 1
τ

´ τ
0 dt I(t), where τ = 2π/ω0 is the

period, so possible high harmonics in periodic time dependence of ISα(t) (α ∈ {x,y,z}) or I(t) are
overlooked by them as well. The same focus on the DC component of current appears in studies of pumping
from nonmagnetic systems [28]. Extending scattering [29] or Floquet NEGF [30] formalisms to obtain
complete periodic time dependence, ISα(t) = ISα(t+ τ) and I(t) = I(t+ τ), can detect integer high
harmonics but would miss the possibility of non-integer [31] harmonics (or interharmonics in the
engineering literature [32]).

In this paper we examine two-terminal (one-dimensional, 1D) setups illustrated in figures 1(a) and (b)
via the time-dependent NEGF (TDNEGF) formalism [33]. In addition, we examine a two-terminal
two-dimensional (2D) setup in figure 1(c) via the time-independent Floquet NEGF [21, 29]. The TDNEGF
formalism is more general than the commonly used scattering approach to spin pumping [1, 17] or the
Floquet NEGF formalism as it can yield both transient and (at longer times) time-periodic (or nonperiodic
when magnetic moments are not steadily precessing [12, 13]) pumped spin and charge currents in a
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Figure 2. Time-dependent NEGF-computed time dependence of (a), (b) spin ISzR (t) and (c), (d) charge IR(t) currents, after the
transient response has died out, pumped into the right NM lead in (a), (c) a FM setup or (b), (d) an AFM setup. The Rashba SOC
(equation (1)) is turned off (γSO = 0) or turned on (γSO = 0.1γ = Jsd) within the entire magnetic central region in figure 1.

Figure 3. (a)–(d) FFT power spectrum of TDNEGF-computed pumped spin |ISzR (ω)|2 and charge |IR(ω)|2 currents from
figures 2(a)–(d), respectively. Panels (a) and (b) also show the FFT power spectrum of pumped spin current |ISxR (ω)|2.

numerically exact fashion. However, it is also more expensive computationally and not really necessary if
only integer harmonics are confirmed in time-periodic currents in the long time limit. In figure 1(a) a FM
and in figure 1(b) an antiferromagnetic metal (AFM), host both magnetic moments and conduction
electrons subject to the Rashba type of SOC [34] throughout the whole magnetic region. These FM or AFM
regions are sandwiched between two semi-infinite NM leads terminating in macroscopic reservoirs kept at
the same chemical potential µL = µR = EF = 0 (so, lattices in figure 1 are half filled by electrons) and
temperature T= 300K [38]. In figure 1(c), we assume that the 2D FM region—typically defined on a
honeycomb lattice and hosting strong SOC [35–37], chosen here to be also of the Rashba type—is
sandwiched between two semi-infinite graphene leads. Starting from an equilibrium state described by the
grand canonical density matrix (see equation (4) in [12]), all magnetic moments modeled as classical vectors
Mi of unit length start to precess uniformly at time t= 0 around the z-axis with frequency ω0 and precession
cone angle θ in the case of FMs in figures 1(a) and (c) or with precession cone angles θ1 and θ2 for magnetic
momentsMi on sublattice A andMi+1 on sublattice B of an AFM.

Our principal results in figures 2–5 for pumping at F or AF resonance show that, once Rashba SOC is
turned on, ISz(t) becomes time dependent (figures 2(a) and (b)) and pumping of nonzero charge current I(t)
(figures 2(c) and (d)) occurs as well. Both spin and charge currents exhibit high harmonics in their fast
Fourier transform (FFT) power spectrum (figure 3) at both even and odd integer multiples Nω0 of the
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Figure 4. (a)–(d) High harmonics of Floquet NEGF-computed (equation (11)) pumped spin |ISzR,N| and charge |IR,N| currents for
the same 1D FM and AFM systems studied in figures 2(a)–(d), respectively, for three different values of the Rashba SOC
(equation (1)) γSO.

Figure 5. (a)–(d) High harmonics of Floquet NEGF-computed (equation (11)) pumped spin (a) |ISzR,N| and (b) charge |IR,N|
currents for a 2D FM system on the honeycomb lattice (figure 1(c)) for three different values of the Rashba SOC (equation (2))
γSO.

driving frequency ω0, whose cutoff Nmax can be controlled by the strength of the SOC (figures 4 and 5). In
particular, using a 2D FM cutoff can reach Nmax ' 25. Prior to delving into these results, we introduce useful
concepts and notation.

2. Models andmethods

The electronic system within the FM region in figure 1(a) or the AFM region in figure 1(b) is modeled by a
1D tight-binding (TB) Hamiltonian

Ĥ1D(t) =−γ
∑
⟨ij⟩

ĉ†i ĉj − Jsd
∑
i

ĉ†i σ̂ ·Mi(t)̂ci − iγSO
∑
⟨ij⟩

ĉ†i σ̂yĉj, (1)

where ĉ†i = (̂c†i↑ ĉ†i↓) is a row vector containing operators ĉ†iσ which create an electron with spin σ =↑,↓ at site
i, ĉi is a column vector containing the corresponding annihilation operators, γ is the hopping between the
nearest-neighbor (NN) sites (signified by 〈. . .〉), also setting the unit of energy, γSO is an additional
spin-dependent hopping [39] due to the Rashba SOC [34] and the conduction electron spin, described by
the vector of the Pauli matrices σ̂ = (σ̂x, σ̂y, σ̂z), interacts with the classical magnetic momentsMi(t) via sd
exchange interaction of strength Jsd = 0.1γ [40]. We use Nsites = 9 (Nsites = 10) sites in the FM (AFM) central
region, ensuring maximum outflowing spin current (which in one dimension oscillates as a function of
Nsites [12]). The left (L) and the right (R) NM leads, sandwiching the FM or AFM region in figure 1, are
semi-infinite 1D TB chains described by the first term alone in equation (1). The Fermi energy of the
macroscopic reservoirs into which the NM leads terminate is EF = 0.
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Similarly, the electronic system within the FM region in figure 1(c) is modeled by a 2D TB Hamiltonian
defined on the honeycomb lattice

Ĥ2D(t) =−γ
∑
⟨i j⟩

ĉ†i ĉj − Jsd
∑
i

ĉ†i σ̂ ·M(t)̂ci + iγSO
∑
⟨i j⟩

ĉ†i
(
σ̂× di j

)
· ezĉj, (2)

where di j is the vector connecting NN sites i and j, γSO is the strength of the Rashba SOC and ez is the unit
vector along the z-axis. The L and R leads in figure 1(c) are semi-infinite graphene nanoribbons (GNRs) with
zigzag edges described by the first term alone in equation (2). In equation (2), we use the same hopping γ in
the FM region and in the GNR leads, while Jsd = 0.1γ in the FM region only. The size of the FM region is
4.5

√
a× 8a, with a being the distance between NN sites. The Fermi energy of the macroscopic reservoirs into

which the GNR leads terminate is EF = 0.
In the FM cases (figures 1(a) and (c)), all magnetic moments precess uniformly with the same frequency

ω0 and the cone angle θ = 20◦ (which is near the maximum that can be achieved in practice without
introducing nonlinearities [3, 20]). This means thatMi(t) =

(
sinθ cos(ω0t), sinθ sin(ω0t),cosθ

)
is plugged

into equation (1). On the other hand, at AF resonance two precession modes of sublattice magnetic
moments are possible, with left-handed and right-handed (RH) chiralities [17], where bothMA

i (t) andM
B
i (t)

undergo a clockwise or counterclockwise precession with π phase difference, respectively. Thus, in the case of
the AFM central region (figure 1(b)) we use the RH mode,Mi(t) =

(
sinθ cos(ω0t), sinθ sin(ω0t),cosθ

)
and

Mi+1(t) =
(
sinθ cos(ω0t+π), sinθ sin(ω0t+π),cosθ

)
, with θ1 = 20◦ and the ratio θ1/θ2 = 1.29 fixed to

correspond to the RH mode of MnF2 employed in recent experiments [8]. We use the same driving
frequency h̄ω0 = 0.01γ for both FM and AFM 1D cases, which is realistic for the latter but too large for the
former. This reduces the computational expense of TDNEGF calculations, while not affecting the result since
the magnitude of all pumped currents scales linearly with ω0 (so the results for the FM case are easily rescaled
to realistic frequencies). For calculations of the 2D FM case (figure 1(c)) via the Floquet NEGF formalism the
choice of frequency is not important computationally as long as h̄ω� EF, so that the expression for
harmonics of the pumped current can be simplified to equation (11) that does not require integration [29]
over energy.

The fundamental quantity of quantum statistical mechanics is the density matrix. The time-dependent
one-particle nonequilibrium density matrix can be expressed [33] by ρneq(t) = h̄G<(t, t)/i in terms of the

lesser Green’s function of the TDNEGF formalism defined by G<,σσ ′

ii ′ (t, t ′) = i
h̄ 〈̂c

†
i ′σ ′(t ′)̂ciσ(t)〉nes where

〈. . .〉nes is the nonequilibrium statistical average [41]. We solve a matrix integro-differential equation [12, 38]

ih̄
dρneq

dt
= [H(t),ρneq] + i

∑
p=L,R

[Πp(t)+Π†
p(t)] (3)

for the time evolution of ρneq(t), whereH(t) is the matrix representation of the Hamiltonian in equation (1).
Equation (3) is an exact quantum master equation for the reduced density matrix of the central FM or AFM
region viewed as an open finite-size quantum system attached to macroscopic Fermi liquid reservoirs via
semi-infinite NM leads. TheΠp(t)matrices

Πp(t) =

ˆ t

t0

dt2 [G
>(t, t2)Σ

<
p (t2, t)−G<(t, t2)Σ

>
p (t2, t)] (4)

are expressed in terms of the lesser and greater Green’s functions [41] and the corresponding self-energies
Σ>,<

p (t, t ′) [38]. They yield the directly time-dependent charge current, Ip(t) =
e
h̄Tr [Πp(t)], and spin

current, ISαp (t) = e
h̄Tr [σ̂αΠp(t)], pumped into the lead p= L,R. We use the same units for charge and spin

currents, defined as Ip = I↑p + I↓p and ISαp = I↑p − I↓p , in terms of spin-resolved charge currents Iσp . In our
convention a positive current in the NM lead pmeans charge or spin is flowing out of that lead.

Although we use a 1D TB chain to model FM and AFM setups in figure 1, these setups can be easily
converted into three-dimensional (3D) realistic junctions with a macroscopic cross section by assuming that
the chain is disorder-free and periodically repeated in the y- and z-directions. This means that our TDNEGF
calculations would have to be repeated at each (ky,kz) point [16]. Nevertheless, by studying simpler 1D
models we can capture essential features of pumping from realistic 3D systems (e.g. compare figure 3 for a
3D junction with realistic atomistic structure to figure 4 for a 1D junction described by the simplistic TB
model in [24]).

In addition to TDNEGF calculations, we also employ the Floquet NEGF approach, operating with
time-independent quantities (equations (5)–(12)), which is far less computationally demanding and can also
be used to validate (figure 4) TDNEGF calculations once it is confirmed (figure 3) that only integer

5



J. Phys. Mater. 6 (2023) 045001 J Varela-Manjarres and B K Nikolíc

harmonics are present in the pumped currents. The Floquet theorem is usually discussed [42–44] as
specifying the form of the solution of the time-dependent Schrödinger equation, ih̄∂|ψ(t)〉/∂t=
Ĥ(t)|ψ(t)〉, for a Hamiltonian periodic in time Ĥ(t+ τ) = Ĥ(t). That is, an arbitrary solution
|ψ(t)〉=

∑
η cηe

−iεη(t−t0)|uη(t)〉 can be expanded in terms of Floquet states |ϕη(t)〉= e−iεη t/h̄|uη(t)〉 with
periodic |uη(t+ τ)〉= |uη(t)〉, quasienergy εη ∈ R and cη = 〈uη(t0)|ψ(t0)〉. The same Floquet theorem can
be restated for double Fourier transformed (i.e. from t, t ′ to E,E ′ variables) NEGFs

Gr,<(t, t ′) =

+∞ˆ

−∞

dE

2π

+∞ˆ

−∞

dE ′

2π
e−iEt/h̄+iE ′t ′/h̄Gr,<(E,E ′), (5)

as the requirement that energies E,E ′ are not independent (as would be the case in the general situation
where the Hamiltonian is not time-periodic) but instead satisfy

Gr,<(E,E ′) = Gr,<(E,E+ nh̄ω0) = G
r,<
n (E). (6)

The coupling of energies E and E+ nh̄ω0 (n is an integer) indicates ‘multiphoton’ exchange processes. In the
absence of many-body (electron–electron or electron–boson) interactions, currents can be expressed using
solely [21, 45] the Floquet-retarded GF Ǧr(E)

[E+ Ω̌− ȞF − Σ̌
r
(E)]Ǧr(E) = 1̌, (7)

which is composed of Gr
n(E) submatrices along the diagonal. Here

ȞF =



. . .
...

...
... ···

· · · H0 H1 H2 · · ·
· · · H−1 H0 H1 · · ·
· · · H−2 H−1 H0 · · ·

···
...

...
...

. . .

 (8)

is a time-independent but infinite matrix representation of the so-called Floquet Hamiltonian [42–44] whose
finite submatricesHn of size Nsites ×Nsites are matrix representations (in the basis of orbitals |i〉) of the
coefficients Ĥn in the Fourier expansion Ĥ(t) =

∑∞
n=−∞ e−inω0tĤn. In addition, in equation (7) we use the

following notation

Ω̌=



. . .
...

...
... ···

· · · −h̄ω01 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 h̄ω01 · · ·

···
...

...
...

. . .

 (9)

and Σ̌
r
(E) is the retarded Floquet self-energy matrix

Σ̌
r
(E) =



. . .
...

...
... ···

· · · Σr(E− h̄ω0) 0 0 · · ·
· · · 0 Σr(E) 0 · · ·
· · · 0 0 Σr(E+ h̄ω0) · · ·

···
...

...
...

. . .

 (10)

composed of the usual self-energies of the leads [46],Σr(E) =
∑

p=L,RΣ
r
p(E), on the diagonal. All matrices

labeled as Ǒ are representations of operators acting in the so-called Floquet–Sambe [43] space,
HF =Hτ ⊗He, whereHe is the Hilbert space of electronic states spanned by localized orbitals |i〉 andHτ is
the Hilbert space of periodic functions with period τ = 2π/ω0 spanned by orthonormal Fourier vectors
〈t|n〉= exp(inω0t). Note that 1 is the unit matrix inHe space and 1̌ is the unit matrix inHF =Hτ ⊗He

space.
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The scattering matrix [1] of the Landauer–Büttiker approach to quantum transport, generalized to
time-periodic multi-terminal devices [28, 29], makes it possible to express the Nth harmonic of spin current
flowing into lead p as [29]

ISαp,N =
e

h
h̄ω0

∑
p ′=L,R

∞∑
n=−∞

nTr

[
σ̂αS

†
pp ′

(
EF + nh̄ω0,EF

)
Spp ′

(
EF +(n+N)h̄ω0,EF

)]
. (11)

Equation (11) is written in the limit of zero temperature and small frequency h̄ω0 → 0, which removes
integrals [29] over energy and sets all quantities to depend only on the Fermi energy EF. The charge current
in lead p is obtained from the same equation (11) by the replacement σ̂α 7→ σ̂0, where σ̂0 is the unit 2× 2
matrix. Note that ISzp,0 (Ip,0) is the DC component of spin (charge) current, respectively. The Floquet
scattering matrix [28, 29] Spp ′(EF + nh̄ω0,EF) describes quantum transport of electrons at the Fermi energy
from lead p′ to p while they absorb or emit nh̄ω0 ‘photons’. We compute Spp ′(EF + nh̄ω0,EF) by using the
generalization [28, 47, 48] of the Fisher–Lee formula, originally derived for steady-state quantum
transport [49], to the case of periodically driven multi-terminal devices

Spp ′(EF + nh̄ω0,EF) = δpp ′δEF+nh̄ω0,EF − i
√
Γp(EF + nh̄ω0)G

r
pp ′(EF + nh̄ω0,EF)

√
Γp ′(EF). (12)

Here Gr
pp ′(EF + nh̄ω0,EF) is the submatrix of the Floquet retarded GF Ǧr(E) (equation (7)), whose matrix

elements connect sites along the edges of the central region that are also connected (via nonzero hopping) to
the sites of the leads p and p′, and Γp(E) = i [Σr

p(E)−Σr
p(E)

†] is the level-broadening matrix [33, 38, 41, 46]
of lead p. By truncating the infinite-dimensional spaceHτ to dimension |n|⩽ nmax we also convert infinite
matrices Ǒ to finite-size ones suitable for numerical calculations, where convergence in n is achieved by
ensuring that each Nth harmonic of pumped current in lead p satisfies |(Ip,N(nmax)− Ip,N(nmax − 1)/
Ip,N(nmax − 1)|< δ with δ = 10−2 chosen. This typically requires the use of nmax ⩽ 6 for all harmonics N.

3. Results and discussion

We warm up with calculations (flat dashed lines in figure 2) reproducing ‘standard model’ results for spin
pumping from a FM [1] or AFM [17] in the absence of SOC, γSO = 0. As expected, our TDNEGF
calculations reproduce time-independent ISzp and Ip = 0 (in the FM case) at sufficiently long times, after the

transient response has died out. The emergence of ISzp and Ip 6= 0 (in the AFM case) can be understood from
the rotating frame picture of spin pumping [16, 50–53] where time-dependent setups in figure 1 are mapped,
by a unitary transformation into the frame that rotates with magnetization onto four-terminal
time-independent ones with effective bias voltage h̄ω0/e [16, 51, 52] between the left or the right pair of
leads. In the rotating frame, ISzp is time-independent and it remains so upon transforming it into the lab
frame, while Ip = 0 in symmetric FM devices. The general requirement for the appearance of a nonzero DC
component of pumped charge current—that the left–right symmetry of a two-terminal device must be
broken [6, 48, 54]—helps to validate the correctness of the TDNEGF calculations. If this is done by breaking
both inversion symmetry and time-reversal symmetry dynamically (such as by two spatially separated
potentials oscillating out-of-phase [4–6]) then the DC component of charge current is nonzero and∝ ω0 at
(sufficiently low) driving frequencies. If only one of these two symmetries is broken, and this does not have
to occur dynamically, then the DC component of pumped current is∝ ω2

0 as the signature of nonadiabatic
charge pumping [6, 16, 48, 54]. Since the FM setup in figure 1(a) is left–right symmetric, the DC component
of pumped charge current in the presence of SOC is zero in figure 2(c). Conversely, the AFM setup in
figure 1(b) has broken (by configuration of magnetic moments) left–right symmetry, so the DC component
of its pumped charge current is nonzero in figure 2(d).

The rotating frame description becomes inapplicable when time-independent SOC is turned on in the
lab frame because SOC becomes time-dependent in the rotating frame. Therefore, we switch to TDNEGF
calculations in figure 2 revealing that, as soon as the Rashba SOC is turned on, ISzp (t) oscillates harmonically
and nonzero time-periodic Ip(t) is also established. Note that DC or perfectly harmonic currents are ensured
in the long time limit by a continuous energy spectrum of setups in figure 1 brought by the attached NM
leads and, thereby, dissipation effects generated by fermionic reservoirs.

Figure 3 shows that upon turning the Rashba SOC on, the FFT power spectrum of pumped spin (note
that spectra of |ISzR (ω)|2 and |ISxR (ω)|2 are nearly identical) and charge currents will also contain high
harmonics at frequencies n= ω/ω0 for both even and odd integer N. Since only integer harmonics are
present, in figure 4 we switch to the Floquet NEGF formalism to show |IR,N| and |ISzR,N| versus harmonic order
N. This allows us to determine the cutoff harmonic order Nmax ' 11 with increasing SOC more precisely
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than when using TDNEGF calculations and FFT of their results (where apparently Nmax ' 4 in figure 3)
where numerical artifacts are easily introduced by the choice of time step and FFT window.

The microscopic origin of the transition from time-independent ISzp for γSO = 0 to time-dependent ISzp (t)
for γSO 6= 0 can be understood from an animation, provided as supplementary data1, of nonequilibrium spin
density 〈ŝ1〉neq(t) = Tr

[
|1〉〈1| ⊗ σ̂ρneq(t)

]
at site 1 in the FM case. While 〈̂szi 〉neq is time-independent for

γSO = 0 [1, 55], it becomes harmonically time dependent with frequency ω0 and its integer multiples, so that
〈ŝi 〉neq(t) nutates as it flows out of FM to comprise [55] a pumped spin current and give rise to ISzp (t).

The predicted high-harmonic spectra (figure 4) for spin and charge currents pumped by precessing
magnetization bear resemblance to a field where high-harmonic generation in pumped charge current has
been intensely pursued in recent years—solids driven out of equilibrium by laser light of frequency ω0 [56].
For example, inversion symmetric bulk semiconductors driven by strong mid-infrared laser light, whose h̄ω0

is much smaller than the band gap, can exhibit a nonlinear effect generating new radiation at odd multiples
of ω0 [56]. Furthermore, in 2D systems breaking inversion symmetry, such as monolayers of MoS2 [56] or
surface states of topological materials [57], additional even-order harmonics or non-integer harmonics [57]
can emerge. This has inspired recent theoretical studies on possible high-harmonic generation in spin
currents pumped by laser light irradiating magnetic insulators [58, 59] as well as in spin–orbit-split 3D
materials [60] and 2D electron gases [61]. However, these schemes rely on highly nonlinear effects in strong
light–matter coupling, and in the case of magnetic insulators they assume coupling of the magnetic field of
laser light directly to localized magnetic moments. Since such coupling is 1/c times smaller than light–charge
coupling, they would require intense THz laser pulses beyond currently available technologies.

On the other hand, setups in figure 1 are routinely made in spintronics using widely available microwave
sources and, in contrast to optical pumping, with low input power (∼mW) [3] and the possibility for
scalability. For example, first-principles Floquet NEGF analysis [24] of the very recent experiments [8] on
spin pumping from the AF insulator MnF2 in contact with heavy metal Pt has revealed that the MnF2 layer
can be significantly modified by the spin–orbit proximity effect [23, 24, 62–65] within such heterostructures
due to SOC at interfaces or from the bulk of the Pt layer. This means that re-examination of such
experiments, where all key ingredients for our predictions are already present, could reveal high harmonics
in electromagnetic radiation produced by pumped time-dependent charge current (figures 2(d) and 3(d)) or
spin current (figures 2(b) and 3(b)) converted to charge current [19] by the Pt layer.

Furthermore, one could search for F or AF materials with strong intrinsic SOC [66]. In this respect, 2D
magnetic materials [35] are a particularly promising choice since their magnetic ordering at finite
temperature crucially relies on magnetic anisotropy originating from strong SOC [36, 37]. In addition, 2D
magnetic materials can be easily spin–orbit proximitized [62] by transition metal dichalcogenides to further
tune their properties [65]. Thus, taking into account that 2D magnetic materials are typically of a
honeycomb or hexagonal lattice type [35–37], we examine a 2D setup in figure 1(c) where the honeycomb
lattice hosting both precessing magnetic moments and Rashba SOC (equation (2)) is attached to
semi-infinite GNR leads. The pumped spin (figure 5(a)) and charge (figure 5(b)) currents in such a model of
a 2D magnet at F resonance exhibit high harmonics with a larger cutoff Nmax ' 25 than in the case of the 1D
setups studied in figure 4. Note that by replacing the honeycomb lattice in figure 1(c) with a square lattice we
obtain Nmax ' 12.

4. Conclusions

Using TDNEGF calculations [33, 38], applicable to arbitrary time-dependent quantum transport of spin and
charge in multi-terminal devices [6, 12, 13], we find that, when periodically driven by microwaves, magnetic
moments of FM or AFMmaterials will pump spin and charge currents oscillating at both the frequency ω0 of
the driving field and its integer high harmonics Nω0. This is in contrast to the results of two decades of
intense studies [1] of current pumping in spintronics by dynamical magnetization where only spin current
ISzp is found, with one of its three components being DC and the other two oscillating with frequency ω0. We
additionally employ the Floquet NEGF formalism, combining the Floquet scattering matrix [29] with
time-independent NEGF calculations [21], which allows us to precisely estimate (figures 4 and 5) the cutoff
harmonic Nmax as well as validate the TDNEGF calculations (that are initially deployed to unearth any

1 See Supplementary data for amovie and its accompanying text, which consist of amovie animating time-dependence of nonequilibrium
electronic spin density, as well as a file explaining details of the movie. The movie animates time-dependence of nonequilibrium spin
density, ⟨̂s1⟩neq(t) at site 1 in the FM case (figure 1(a)), for different values of the Rashba SO coupling γSO ∈ {0,0.4γ,1.0γ}, together
with time-dependence of the classical localized magnetic momentM1(t) steadily precessing with precession cone angle θ and frequency
ω0. The time-dependence and the corresponding FFT of the Cartesian components of ⟨̂s1⟩neq ≡ (⟨̂sx1⟩neq,⟨s

y
1⟩neq,⟨sz1⟩neq) is provided in

the file.
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processes beyond Floquet-based formalism, such as non-integer harmonics). Our prescription for
experimental realization of this effect is based (figures 1(c) and 5) on 2D FM or AFMmaterials [36, 37, 56],
which have intrinsically strong SOC that can be easily further tailored by the proximity effect [62] to
nonmagnetic 2D materials [65] within van der Waals heterostructures. Finally, for AF materials driven into
resonance by ω0 in the sub-THz range [8, 9], the Ip(t) they pump would generate output THz radiation at
multiples of the driving frequency ω0, thereby opening new avenues for THz spintronics where such output
radiation is currently generated by more complex F [67] or AF heterostructures [68, 69] driven by
femtosecond laser pulses.

5. Note added

Recently, we became aware of work [70] in which high harmonics in only charge current pumped by a AFM
(defined on the square lattice including Rashba SOC) were studied using a different type of TDNEGF code
than the one employed by us (in figures 2 and 3). However, computed pumped current versus time in [70]
violates ‘two general theorems’ of time-dependent quantum transport as soon as SOC is switched on (as
discussed in more detail in [71]). Also, comparison of figures 3 and 4 shows that it is virtually impossible to
extract the precise value of Nmax solely from FFT of TDNEGF calculations (figure 3), i.e. without involving
some type of Floquet NEGF algorithm, such as the one developed in our study (equations (5)–(12)).
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This Supplementary Data consist of a movie noneq spin density.mp4 and this text guiding the reader on how to
watch and interpret the movie. The movie animates time-dependence of nonequilibrium spin density

⟨ŝ1⟩neq(t) = Tr
[
|1⟩⟨1| ⊗ σ̂ρneq(t)

]
, (1)

on site 1 in the ferromagnetic metal (FM) case [Fig. 1(a) in the main text], for different values of the Rashba SO
coupling γSO ∈ {0, 0.4γ, 1.0γ} [Eq. (1) in the main text]. It also animates M1(t), steadily precessing with precession
cone angle θ = 20◦ and frequency ℏω0 = 0.01 eV employed in the main text, whose time-dependence drives conduction
electron out of equilibrium to generate ⟨ŝ1⟩neq(t). In Eq. (1), |1⟩ is localized orbital on site 1 of one-dimensional (1D)
tight-binding chain; ρneq(t) is time-dependent nonequilibrium density matrix obtained from Eq. (2) in the main text
using time-dependent nonequilibrium Green’s functions; and σ̂ = (σ̂x, σ̂y, σ̂z) is the vector of the Pauli matrices.
The time-dependence and the corresponding fast Fourier transform (FFT) of the Cartesian components of

⟨ŝ1⟩neq ≡ (⟨ŝx1⟩neq, ⟨sy1⟩neq, ⟨sz1⟩neq) are shown in Figs. S1(a)–(c) and Figs. S1(d)–(f), respectively. In the case without
SO coupling (γSO = 0 in the movie and in Fig. S1), time-dependence of ⟨ŝ1⟩neq(t) provides rigorous backing of a
physical picture (see, e.g., Fig. 2 in Ref. [1]) where precessing magnetization of FM layer pumps into adjacent normal
metal layer spin current comprised of flowing and precessing electronic spins. That is, in this case flowing ⟨ŝz1⟩neq is
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y 1
〉ne

q
(ω

)|2
(a
.u

)

(e)

0 1 2 3 4 5
ω
ω0

10−12

10−7

10−2

103

F
F

T
P

ow
er

|〈ŝ
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FIG. S1. (a)–(c) Time-dependence of the Cartesian components of ⟨ŝ1⟩neq on site 1 of FM [Fig. 1(a) in the main text] whose
classical localized magnetic momentsMi(t) are parallel and steadily precessing with precession cone angle θ = 20◦ and frequency
ℏω0 = 0.01 eV. Panels (d)–(f) plot FFT of time-dependences in the respective panels (a)–(c).
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time-independent, so that the corresponding component of spin current vector ISz is also time independent as found
in the “standard model” [2]. However, once the Rashba SO coupling is turned on (γSO ̸= 0 in the movie and in
Fig. S1), ⟨ŝz1⟩neq(t) starts to nutate at ω0 and its multiples [Figs. S1(c) and Figs. S1(f)], which then also leads to
time-dependent ISz (t) [Fig. 2 in the main text] exhibiting high harmonics [Figs. 2(c) and 3(a) in the main text]. In the
movie, time-dependence in Fig. S1(c) is animated by changing the inner color of each of the three arrows representing
⟨ŝ1⟩neq(t) for different values of γSO.

The movie also reveals that even though Mi(t) precesses on much slower time scale than the characteristic time scale
for electron spin dynamics, ⟨ŝi⟩neq is always somewhat behind the ‘adiabatic direction’, i.e., behind Mi(t). That such
nonadiabaticity of electron spin dynamics—where electron spin under time-dependent external field does not remain
in the lowest energy state at each time and nonadiabatic component ⟨ŝi⟩neq ∝ Mi × dMi/dt of nonequilibrium spin
density is, therefore, generated—is essential for spin pumping effect has been discussed before [3] (see insightful Sec.
7.2 and Figs. 18 and 19 of Ref. [3]). Furthermore, our movie demonstrates how turning on and then increasing SO
coupling enhances the time lag between ⟨ŝi⟩neq(t) and Mi(t). Nevertheless, the pumped current remains adiabatic in
the sense (current ∝ ω0) of general (i.e., with or without spins being pumped) quantum pumping theory [4–7].
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