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Abstract
In this paper, we present the mathematical and implementation details of an
ab initio method for calculating spin-polarized quantum transport properties
of atomic scale spintronic devices under external bias potential. The method
is based on carrying out density functional theory (DFT) within the Keldysh
non-equilibrium Green’s function (NEGF) formalism to calculate the
self-consistent spin densities. We apply this method to investigate nonlinear
and non-equilibrium spin-polarized transport in a Fe/MgO/Fe trilayer
structure as a function of external bias voltage.

1. Introduction

The physics of tunneling magnetoresistance (TMR) and
its application to electronic devices has been an area of
tremendous experimental and theoretical interest over the last
two decades [1–5]. Based on the TMR effect, nanostructured
magnetic tunnel junctions (MTJs) are a promising technology
for magnetoresistive random access memory (MRAM),
magnetic sensors and possibly programmable logic devices [1].
The simplest MTJ consists of two ferromagnetic metal leads
sandwiching a very thin insulating barrier layer. The TMR
effect [6] in MTJs originates from the quasi-particle electronic
structure of the ferromagnetic leads which depends on their
magnetization orientation. The tunneling conductance tends
to be smallest when the orientations are opposite, leading to a
spin valve character [6–10].

An important measure of device merit is the TMR
ratio which is defined as RTMR = (IPC − IAPC)/IAPC,
where IPC, IAPC are total tunneling current for parallel
configuration (PC) and anti-parallel configuration (APC) of
the magnetization moments of the ferromagnetic leads. A
larger RTMR gives a more sensitive device which is desirable.
Until rather recently, many different MTJs produced a modest
RTMR at �70% at room temperature or low temperature, and
a major research goal has been the realization of devices
with higher RTMR. Following the prediction and elegant
physics explanation [11, 12] that Fe/MgO/Fe MTJs may
have extremely high RTMR, there has been significant recent
advances in the fabrication of MgO-based MTJ with measured
room-temperature RTMR of the order of several hundred
percent [13–15].

The tremendous success of first principles model-
ing [11, 12] in helping drive the discovery of new materials
for MTJ application illustrates the importance of such ab ini-
tio techniques to the larger field of spintronics. For instance,
in addition to the intense research efforts devoted to studying
devices composed of inorganic materials, there have been re-
cent attempts to use organic molecular layers as the tunnel-
ing barrier which offer an interesting approach where spin-
polarized transport can be tuned by the peculiarities of the or-
ganic molecule [16, 17]. In particular, π-conjugated organic
semiconductors (OSEs) are a relatively new class of electronic
materials that are revolutionizing important technology appli-
cations including information display and large-area electron-
ics. The OSEs have weak spin–orbit interaction and large spin
coherence giving rise to very long spin diffusion lengths, mak-
ing them good candidates for spin-polarized electron injection
and transport applications. Xiong et al reported the injec-
tion, transport and detection of spin-polarized carriers using 8-
hydroxy-quinoline aluminum (Alq3) molecules as the spacing
region of a spin-valve structure, and obtained low-temperature
RTMR as large as 40% [16]. Petta et al found that spin polar-
ization can be maintained during the tunneling process through
an organic monolayer and demonstrated RTMR values of 16%
in Ni/octanethiol/Ni MTJs [17].

Spin-polarized quantum transport in nanostructured MTJs
has been very sensitive to the chemical and material details of
the device. Therefore, to understand these transport features,
atomic calculations are often necessary [11, 12] to supplement
general physical considerations and arguments [6]. In this
regard, several density functional theory (DFT) based first
principles methods have been popular in studying coherent
spin-polarized tunneling in MTJ. First, a very fruitful approach
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is the layer Korringa–Kohn–Rostoker (LKKR) method [18]
based on multiple-scattering Green’s functions for electronic
structure calculations of interfaces [19], where transport
is analyzed by calculating Bloch-wave transmission and
reflections [20]. The LKKR technique has been used to study
spin-dependent tunneling in a number of devices including
Fe/ZnSe/Fe and Fe/MgO/Fe tunnel junctions [11, 20, 21].
More recently, Zhang et al reported combining LKKR with
the non-equilibrium Green’s function (NEGF) theory to treat
devices under a finite bias [22]. Another very fruitful
atomistic technique for analyzing MTJs is the linear muffin-
tin orbital (TB-LMTO) electronic structure scheme combined
with surface Green’s functions [23–25]. More recently, the
TB-LMTO has also been combined in some way with NEGF
for analyzing finite bias transport situations [26]. So far,
both LKKR and LMTO methods for transport rely on the
atomic sphere approximation (ASA) whose accuracy requires
considerable technical expertise to control.

A different tunneling calculation technique that does not
rely on ASA was the embedding potential method due to
Inglesfield [27]. Inglesfield derived an energy-dependent
surface potential that acts on an embedding interface to
include the effect of a bulk crystal. Wortmann et al
reformulated [28] the Landauer–Büttiker formula to derive an
expression for the linear conductance that contains only the
embedding potentials of the bulk system and the boundary
values of the interface Green’s function. Both quantities are
available in a standard embedded Green’s function calculation
and thus it is possible to evaluate conductance for ballistic
transport without additional computation. The embedding
formalism was implemented within the framework of a full-
potential linearized augmented plane-wave (FLAPW) scheme
and applied to systems such as Co/Cu/Co tri-layers [28] and
tunneling through Fe/MgO/Fe MTJ [29].

Another class of ab initio technique for calculating spin-
polarized quantum transport is to combine real-space LCAO
based DFT with the NEGF where the device leads and
the scattering region are treated atomistically on an equal
footing. Such a NEGF-DFT technique has been widely used
in analyzing nonlinear and non-equilibrium quantum transport
in molecular electronics [30–35], and has been adapted to
analyze spin-polarized quantum transport recently [36–38].
The basic idea of the NEGF-DFT technique is to use DFT
to calculate the Hamiltonian and electronic structure of a
device, use NEGF to determine the non-equilibrium quantum
statistics that is needed to populate the electronic structure
during current flow, and use real-space numerical methods
to handle the transport boundary conditions. The NEGF-
DFT methods do not rely on ASA. The NEGF-DFT offers a
relatively new technique for quantitative analysis of spintronic
devices in non-equilibrium from atomic first principles. So
far it has been applied to investigate molecular spintronic
systems [37, 39, 40], Fe/MgO/Fe MTJ [38], spin transfer
torque [41] and magnetoresistance in anti-ferromagnetic tunnel
junctions [42].

Using the NEGF-DFT technique, we have calculated the
bias dependence of TMR in Fe/MgO/Fe MTJs for which a
short account has been published elsewhere [38]. The purpose
of this paper is to present some of the technical details of our
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Figure 1. Schematic diagram of an x–y periodic two-probe device.
Two semi-infinite ferromagnetic electrodes are contacted via a
central scattering region. The electronic structure of the central
region is calculated self-consistently where the potential and
transport boundary conditions are determined by the left and right
ferromagnetic leads which are calculated separately within DFT.

NEGF-DFT implementation1 for calculating spin-polarized
quantum transport in realistic spintronic devices under finite
bias voltage. We formulate the NEGF-DFT formalism in spin-
space and introduce k sampling to treat transverse periodic
devices. Numerical issues related to computational efficiency,
the convergence of k sampling, the hot spots in transmission
coefficients with and without bias, etc., will be discussed in
detail.

The rest of the paper is organized as follows. In section 2,
we briefly outline the theoretical formalism of the NEGF-DFT
method for spin-polarized quantum transport calculations.
Section 3 presents some implementation details. Section 4
reports the simulation of Fe/MgO/Fe MTJ and the last section
is for a short summary.

2. Theoretical formalism

The NEGF-DFT formalism outlined in this paper is a spin-
space generalization of the theory described in [30]. We start
by considering the general device shown in figure 1 where
two semi-infinite ferromagnetic electrodes sandwich a central
scattering region. The device is x–y periodic such that the left
and right electrodes are fully 3D in a half-plane. It is important
to note that, for magnetic systems, 3D leads are necessary in
order to correctly describe both the surface and bulk magnetism
of the ferromagnets. When applied to molecular spintronic
systems involving a single molecule as tunnel barrier [37],
the central scattering region must contain enough vacuum
so that images of the molecule do not interact. Along the
transport direction (z axis), the two ferromagnetic leads extend
to reservoirs at z = ±∞. The central scattering region is
chosen sufficiently large in the z direction such that: (i) the
potentials outside the central region are taken as equivalent to
bulk and (ii) the matrix elements coupling the left and right
leads are zero. The electrochemical potentials of the left and
right leads, μL and μR, are given by the bulk Fermi level of
the ferromagnets that can be calculated by DFT at equilibrium,
and the applied external bias voltage.

1 Our NEGF-DFT electronic package is named ‘MatDcal’, which stands for
Matlab based device calculator [37]. The code is written in Matlab with
a small amount of numerically intensive calculations written in lower level
languages. We have developed a parallelization toolbox so that MatDcal can
be run in a parallel computer environment. For the calculations presented in
this paper, typically 16–32 processors were used in the parallel run.
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Because the device is x–y periodic, the eigenstates of the
system can be labeled according to their transverse momentum:

�k‖(R‖ + r) = eik‖·R‖ × eik‖·rφk‖(r), (1)

where k‖ is a Bloch wavevector, R‖ = nx a + nyb is a lattice
vector and φk‖ is the x–y periodic Bloch function. Using the
Bloch ansatz, the Schrödinger equation can be written in a
matrix form as

H̃k‖φk‖ = E S̃k‖φk‖, (2)

where H̃k‖ is the folded Hamiltonian defined as

H̃k‖ =
∑

nx ,ny

Hnx ,ny eik‖·R‖ , (3)

and overlap matrix S̃k‖ is defined analogously. In this equation,
Hnx ,ny is the Hamiltonian matrix connecting two unit cells
separated by R‖. It is important to note that these matrices
correspond to the entire device and therefore are infinite in
dimension.

At the heart of the NEGF-DFT formalism [30] is
the Keldysh Green’s functions which are required for the
calculation of electron density matrix at non-equilibrium and
transport properties of the system. The finite part of the
retarded Green’s function in k‖ space corresponding to the L–
C–R (left, central and right) regions of the device is given by

GR
k‖ =

⎛

⎝
H̃

k‖
L +�

k‖
L Ṽ

k‖
L 0

Ṽ
k‖,†

L H̃
k‖
C Ṽ

k‖
R

0 Ṽ
k‖,†

R H̃
k‖
R +�

k‖
R

⎞

⎠
−1

, (4)

where H̃
k‖
L , H̃

k‖
R and H̃

k‖
C are the finite sub-matrices of H̃k‖

corresponding to the L, R and C regions, respectively. Ṽ
k‖

L

(Ṽ
k‖

R ) are the finite sub-matrices connecting the L(R) and C
regions. The coupling of the L and R to the remaining part
of the semi-infinite electrodes is fully taken into account by
the self-energies, �

k‖
L and �

k‖
R . The partition of the transport

system into L–C–R regions has been well known [43] and
equation (4) can be easily proved [44].

To analyze spin-polarized transport, the matrices above
have been extended into spin space. Each matrix element in the
non-spin formalism [30] becomes a two-by-two matrix which
specifies spin-up, spin-down and the connection between the
two spin spaces [45]:

Hi j →
[

Hi j,↑↑ Hi j,↑↓
Hi j,↓↑ Hi j,↓↓

]
. (5)

There is no restriction of spin collinearity, hence the left and
right leads (and possibly any other part of the system) can have
arbitrary relative magnetic orientation. For problems such as
spin transfer torque [41], anti-ferromagnet tunnel junction [42]
and spin–orbital interaction, the calculation capability of non-
colinear spin is important. For the rest of this paper we do
not consider non-colinearity; all the formulations below are for
colinear systems.

The Hamiltonian of each region is calculated self-
consistently within DFT by solving the Kohn–Sham equa-
tion [46]:
[
−∇2

2
+

∫
dr′ ρ(r

′)
|r − r′| +Vext(r)+Vxc(r)

]
ψ(r) = εiψ(r), (6)

where ρ(r) is the total electron density, Vxc is the exchange–
correlation functional and Vext is any external potential
including the pseudopotential that defines the atomic core and
the applied bias potential that drives current flow. The spin-
dependent exchange–correlation potential is treated at the local
spin density approximation (LSDA) level [47, 48], where one
distinguishes spin-up and spin-down densities ρα = ρ↑ or ρ↓,
and the total density is given by ρ = ρ↑ + ρ↓.

As discussed above, when the central scattering region
includes enough layers of the ferromagnetic lead atoms, the
electronic structure of the left and right regions can be safely
considered as that of bulk—which can be calculated with a
supercell DFT analysis. In other words, in equation (4) the
upper and lower parts of the Hamiltonian (e.g. H̃

k‖
L(R) + �

k‖
L(R))

corresponding to the left and right ferromagnetic electrodes,
are calculated as isolated bulk material whose electron density
is given by the Kohn–Sham single-particle states:

ρ(r) =
∑

i

f (Ei )|ψi |2, (7)

where f (E) is a Fermi–Dirac distribution. By using the
Fermi–Dirac distribution we have assumed that the left and
right ferromagnetic leads are in equilibrium contact with
their corresponding reservoirs, as is well established in the
Landauer–Büttiker transport formulation [44]. These left and
right regions have fully periodic boundary conditions and will
exhibit the desired bulk magnetism. The k‖-dependent retarded

self-energies of each lead, �
k‖
L ,�

k‖
R , are determined using

the recursion method of periodic 1D systems [49], however
with HL(R) for 1D replaced by H̃

k‖
L(R) for 3D leads. In

constructing the self-energies and potential matrices for each
lead, the reference spin direction is rotated to specify the
relative magnetic orientation (for example, PC or APC) of the
two ferromagnetic leads.

The remaining parts of the Hamiltonian in equation (4) are
for the central region: Ṽ

k‖
L , Ṽ

k‖
R and H̃

k‖
C . They are calculated

self-consistently using the non-equilibrium electron density
matrix [30]. The non-equilibrium density matrix is calculated
by integrating over the 2D (in the x–y direction) Brillouin zone
(BZ) for contributions of each transverse Bloch state:

ρ =
∫

BZ
dk‖ρk‖ , (8)

where the density matrix ρk‖ is constructed using the non-
equilibrium Green’s function G<

k‖ :

ρk‖ = − i

2π

∫ ∞

−∞
dεG<

k‖(ε). (9)

Here G<
k‖ is calculated using the Keldysh equation:

G<
k‖ = GR

k‖�
<
k‖ GA

k‖ (10)

where GA
k‖ = (GR

k‖)
† is the advanced Green’s function. Within

a mean-field type theory such as DFT, the lesser self-energy
�<

k‖ is given by a linear combination of the Fermi–Dirac
functions of the two leads [44], �<

k‖ = i
L,k‖ fL + i
R,k‖ fR,
where the linewidth functions of left and right leads are
related to the retarded self-energies, for instance 
L,k‖ =

3
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i
2 [�k‖

L − (�
k‖
L )

†]. It is therefore important to note that the
calculation of the density matrix for the device scattering
region, equation (9), involves a distribution function that
is non-Fermi–Dirac, reflecting the non-equilibrium nature of
the transport physics. For further discussions of the non-
equilibrium transport physics we refer interested readers to the
paper of Wingreen et al [50] and the book of Datta [44].

Finally, the spin currents (spin-polarized charge currents)
are calculated by integrating the contributions from each
transverse Bloch state using the Landauer formula:

Iσ = 2e2

h

∫

BZ
dk‖

∫
dε[ f (ε − μL)− f (ε − μR)]

× Tσ (ε,k‖), (11)

where the k‖ resolved transmission coefficient is given by

Tσ (E,k‖) = Tr[
L,k‖(E)G
A
k‖(E)
R,k‖ (E)G

R
k‖(E)], (12)

where the trace is taken over the spatial, orbital, or any matrix
index. Note that each quantity in the right-hand side is defined
in spin space (see equation (5)), we have restored the spin index
σ = ↑,↓ in the transmission coefficient and the current. The
total charge current is calculated by adding the current of each
spin channel, I = I↑ + I↓.

The introduction of x–y periodicity dramatically increases
the number of calculation steps compared to a 1D device.
First, there are significantly more interacting unit cells in the
x–y direction. Even with nearest-cell interaction, the central
region of a 3D device interacts with 23 neighboring cells (nine
between the central plane and each of the left/right planes,
and five in the central plane) compared to only three unique
interactions in the 1D device. Second, there is an additional
k‖ integration for the calculation of the density matrix and the
current. For magnetic tunnel junctions, a huge number of k‖
are necessary to converge the results, as will be discussed in
more detail below.

3. Numerical details

In the numerical calculations (see footnote 1), we use an
s, p, d linear combination of atomic orbitals (LCAO) basis
set [45, 51]:

φlm(r) = Rl (r)Ylm (�r ), (13)

to expand the electronic wavefunctions and construct the
matrix elements of equation (4). The atomic cores are defined
by standard norm-conserving nonlocal pseudopotentials [52].
Both the pseudopotentials and basis sets (i.e. Rl(r) in
equation (13)) can be generated, for instance using the
electronic package SIESTA [45] or similar tools.

Special care must be given to the pseudopotentials and
basis sets in order to obtain an accurate description of the band
structure near the Fermi level, which is particularly important
in studying spin-polarized transport. On the one hand, the
calculation of the Green’s function in equation (4) requires
a reasonable sized basis set so that the matrix on the right-
hand side is not prohibitively large to be inverted, while, on
the other hand a small basis set does not give accurate results.
Therefore a reasonable compromise should be adopted. We
also found that pseudopotentials and basis sets that accurately
reproduce the electronic structure of the electrode and barrier
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Figure 2. Density of states versus k‖ for a five-layer Fe/MgO/Fe
device in PC evaluated (a) on the real energy axis at E = Ef and
(b) in the complex plane at E = Ef − 5 − 5i (eV). (c) Convergence
of T (Ef) versus number of k‖ points used for integration. (i) Solid
line (diamonds): APC; (ii) dotted line (circles): I↓ for PC; (iii)
dashed line (squares): I↑ for PC. Note that T (Ef) for each case has
been normalized to unity for presentation purposes. Its value is
actually very small for APC case.

materials do not necessarily reproduce the electronic structure
of the more complicated electrode/barrier interface. Therefore,
in our calculations these inputs are carefully constructed to
accurately reproduce electronic structures of the bulk materials
and interfaces obtained by a full potential linear augmented-
plane-wave (LAPW) method [53]. The latter comparison for a
periodic superlattice of Fe(100)/MgO(100) interface with five
layers of each material is shown in figure 3(b). For many
systems we have studied, such a good comparison can be
achieved by adjusting the LCAO basis sets.

For MTJ simulations, we found that integration over
k‖ must be handled very carefully in order to ensure
numerical convergence. We calculate the density matrix
using standard complex contour integration for the equilibrium
contribution and real-axis integration for the non-equilibrium
contribution [30]. The k‖ integration is handled differently for
complex energy values on the complex contour versus energy
values near the real axis which lies close to the poles of GR

in the lower-half complex energy plane. Figures 2(a) and (b)
compare the density of states of a five-layer Fe/MgO/Fe MTJ
device in PC as a function of k‖ at E = EF versus an energy
value on the complex contour at E = EF − 5 + 5i (eV),
respectively. This figure clearly shows that a larger imaginary
energy component gives rise to a smoother density of states.
Because of the smoothness of the DOS for energies on the
complex contour (i.e. figure 2(b)), it was found that relatively
few k‖ points, for instance 12 × 12 = 144 in the full 2D

4



Nanotechnology 18 (2007) 424026 D Waldron et al

-1

0

1

E
 (

eV
) LAPW

LCAO

RXΓ

(a)

(b)

Γ

Figure 3. (a) Schematic plot of a two-probe
Fe(100)/MgO(100)/Fe(100) device. The system has infinite extent in
the (x, y) direction with a lattice constant of 2.82 Å and extends to
±∞ in the z direction. (b) Band structure of a periodic
· · · Fe/MgO/Fe/MgO· · · lattice obtained using optimized LCAO
pseudopotentials and basis sets compared to that from the full
potential LAPW method. A good agreement is found to be necessary
in order to carry out the NEGF-DFT analysis for the two-probe
Fe/MgO/Fe devices.

Brillouin zone, are sufficient to converge the k‖ integral of the
equilibrium contribution to the density matrix. On the other
hand, it was found that several hundred thousand k‖ points are
necessary to converge k‖ integration for quantities evaluated
at energy values on the real energy axis, including evaluation
of the non-equilibrium contribution to the density matrix and
the evaluation of transmission coefficients. Such a necessity of
using high-density k-point sampling is consistent with results
obtained by other authors [29]. Figure 2(c) plots the relative
convergence of the transmission coefficient for the same five-
layer Fe/MgO/Fe device for both spin channels in PC and APC
as a function of the number of k‖ points used in the integration
of equation (9) over the 2D Brillouin zone. These results
clearly show that very large numbers of k‖ points are needed
for convergence. Fortunately, each k‖ point is calculated
separately, thus the calculation can be fully parallelized.

Significant research efforts have been devoted to the
development of O(N) electronic structure methods where
computational timescales linearly with system size [54, 55].
Most of these techniques are based on direct methods of
calculating the density matrix through iterative or minimization
schemes in order to avoid an O(N 3) eigenvalue decomposition.
For transport, we have developed a reasonably efficient O(N)
calculation scheme within the NEGF-DFT framework where
the computational timescales linearly with the size of the
central region along the z axis by exploiting the block-
tridiagonal matrix structure of Hk‖ and using the method of
inverse by partitioning [57] for the evaluation of equation (4).
Suppose that an N × N matrix A is partitioned into

A =
[

A11 A12

A21 A22

]
, (14)

where Aii are square matrices although not necessarily of the
same dimension. If the inverse of A is partitioned in the same
manner,

A−1 =
[

Ã11 Ã12

Ã21 Ã22

]
, (15)

then Ãi j which have the same size as Ai j , can be found by the
following formula [57]:

Ã11 = (A11 − A12 A−1
22 A21)

−1

Ã12 = − Ã11 A12 A−1
22

Ã21 = −A−1
22 A21 Ã11

Ã22 = A−1
22 + A−1

22 A21 Ã11 A12 A−1
22 .

(16)

The above formulae generalize easily for a block-
tridiagonal matrix:

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

B11 B12 0 · · · 0 0
B21 B22 B23 · · · 0 0
0 B32 B33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Bn−1,n−1 Bn−1,n

0 0 0 · · · Bn,n−1 Bnn

⎤

⎥⎥⎥⎥⎥⎥⎦
, (17)

and the corresponding tridiagonal blocks of B−1 can be found
recursively by [56]

B̃i,i+1 = −B̃ii Bi,i+1Ci+1,i+1

B̃i+1,i = −Ci+1,i+1 Bi+1,i B̃ii

B̃i+1,i+1 = Ci+1,i+1(I − Bi+1,i B̃i,i+1)

(18)

with i = 1, 2, . . . , n − 1 and B̃11 = C11, or alternatively by

B̃i,i+1 = −Dii Bi,i+1 B̃i+1,i+1

B̃i+1,i = −B̃i+1,i+1 Bi+1,i Dii

B̃ii = Dii (I − Bi,i+1 B̃i+1,i )

(19)

with i = n − 1, n − 2, . . . , 1 and B̃nn = Dnn , where Cii and
Dii are, respectively, defined recursively by

Cii = [Bii − Bi,i+1Ci+1,i+1 Bi+1,i ]−1

with i = n − 1, n − 2, . . . , 1 and Cnn = B−1
nn , and

Di+1,i+1 = [Bi+1,i+1 − Bi+1,i Dii Bi,i+1]−1

with i = 1, 2, . . . , n − 1 and D11 = B−1
11 .

In addition, the first and the last column blocks of B−1 can
recursively be found, respectively, by

B̃i+1,1 = −Ci+1,i+1 Bi+1,i B̃i,1

with i = 1, 2, . . . , n − 1 and B̃11 = C11, and

B̃i,n = −Dii Bi,i+1 B̃i+1,n

with i = n − 1, n − 2, . . . , 1 and B̃nn = Dnn .

Since only the block-tridiagonal matrix elements of GR
k‖

corresponding to overlapping basis functions are required for
the equilibrium density matrix, and only additional matrix
elements in the first and the last column blocks of GR

k‖ are
required for the non-equilibrium density matrix, the above
recursive approach can be used for O(N) calculation of these
matrix elements. We have implemented this algorithm for
calculating density matrix and electric current so that the total
calculation timescales as O(N) with respect to the size of the
central region along the z axis.
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The criteria for convergence during the self-consistent
density matrix calculation is max(H) < δ, where H is the
difference in the Hamiltonian matrix between two consecutive
iterations and δ is a pre-specified tolerance. Typical values of
δ are 10−4 Hartree or less. Broyden’s method [58] is used
to accelerate convergence, with a typical mixing parameter
of β = 0.01. It was found that convergence during a two-
probe calculation typically takes 5–10 times the number of
self-consistent iteration steps compared to an equivalent bulk
calculation. Therefore, prior to the two-probe calculation
a separate bulk calculation of the central cell is performed
and the converged spin density is used as the initial density
in the two-probe calculation. For devices with non-periodic
central cells (i.e. different leads) the separate bulk calculation
is performed for a mirror-extended central cell to force
periodicity and only half of the converged spin density is used
as the initial guess in the final two-probe calculation.

4. Application: MgO magnetic tunnel junction

First-principles calculations [11, 12] have so far played
a key role in elucidating the reason behind the observed
large TMR in Fe/MgO/Fe MTJs [11–14]. Many first-
principles studies have also identified surface roughness and/or
oxidization of the Fe/MgO interface as the likely reason for the
discrepancy between experimental TMR values and theoretical
predictions [25, 38, 59]. However, to date there has been
relatively little work on understanding the bias dependence
of TMR. Experimental data on MgO-based MTJs show a
monotonically decreasing TMR as a function of applied bias
voltage [13, 14] reducing to zero on a scale of about 1 V.
Early theory [61] on Al2O3-based MTJs has attributed small-
bias dependence of magnetoresistance to magnon scattering.
Previous first-principles calculations of the bias dependence
of TMR have predicted a substantial increase of TMR versus
bias for an Fe/FeO/MgO/Fe device [22], while reference [59]
found a roughly constant TMR, a decaying TMR or an entirely
negative TMR versus bias for an Fe/MgO/Fe device, depending
on the atomic structural details of the interface. More recently,
Heiliger et al further investigated [60] effects of interface
structure on tunneling in MgO devices, and reported different
current–voltage behaviors as a function of the interface
structure. Given the importance of MgO-based MTJs in
near-future spintronics and the accumulated experimental data,
further quantitative understanding on quantum transport in
Fe/MgO/Fe at finite bias is needed.

Here we present a calculation of the nonlinear and non-
equilibrium quantum transport in an Fe/MgO/Fe MTJ using
the NEGF-DFT formalism described above. A short account of
these results have appeared elsewhere [38]. Our results show
that for fully relaxed atomic structure of the Fe/MgO/Fe device,
the zero bias equilibrium TMR ratio reaches several thousand
percent, consistent with previous theoretical results [11, 62].
Our calculation also shows that this value is drastically reduced
to about 1000% if the Fe/MgO interfaces are oxidized by
50% oxygen. We found that the TMR ratio is quenched by
bias voltage Vb with a scale of about 1 V, consistent with
experimental data. The microscopic details of these transport
features can be understood by the behavior of bias-dependent
scattering states.

3 4 5 6 7 8 9
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0.0001
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f ,k
||=
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(a) (b)
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Figure 4. (a), (b) T (EF,k‖) for the three-layer PC, majority- and
minority-spin, respectively. These figures are to be compared with
figure 2(b) of [29]. (c) Semi-log plot of T (Ef,k‖ = 0) versus
number of MgO layers.

The MTJ is shown in figure 3(a), where a number
of MgO(100) layers are sandwiched by two Fe(100). As
discussed above, the MTJ is periodic in the x–y direction and
the Fe leads extend to z = ±∞ (transport direction). The
atomic structure was fully relaxed by the LAPW method [53]
between three Fe layers on each side of the MgO, with the most
remote layer of Fe atoms fixed at crystalline positions during
relaxation. The x–y lattice constant a of the interface was fixed
to our calculated one for bcc Fe, a = 2.82 Å. The Fe–O
distance was found to be 2.236 Å for a completely relaxed
structure, in agreement with previous studies [11]. For the
transport calculation, the spin densities were calculated self-
consistently for a central region containing eight layers of Fe
on either side of the MgO.

Reference [29] reported embedding potential LAPW
calculation of equilibrium transmission coefficients for parallel
configuration of a three-layer MgO barrier MTJ with Fe leads.
To compare, we calculated T (EF,k‖) for the majority and
minority-spin channels for a three-layer MgO device in PC and
the result is plotted in figures 4(a) and (b). Our results are very
similar to those reported in [29] (see figure 2(b) of [29]). In
particular, the majority-spin transport is dominated by regions
around k‖ = 0 with circularly symmetric transport pattern,
while the minority-spin transport is dominated by k‖ values at
the zone boundary. There are small quantitative differences
for the minority-spin channel near the zone center: results
in [29] show some tiny transmission values near k‖ ≈ 0,
while our calculations show basically zero transmission there.
At zone center we obtain a total transmission T (E,k‖ =
0) = 0.41, which is in good quantitative agreement to that
of [29]. Given that the two methods are totally different in all
implementation aspects, i.e. plane waves versus LCAO basis,
full potential versus pseudopotential, embedding versus NEGF
device partition, as well as differences in the atomic structures,
the comparison can be considered as satisfactory. Finally,
figure 4(c) shows a semi-log plot of T (EF,k‖) in PC for the
majority-spin versus the thickness of the MgO barrier, and it
shows very good consistency with the physics of tunneling.

Next, we use a five-layer MgO MTJ to show the bias
dependence of TMR. Figure 5 plots T (EF,k‖) both PC and
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(a) (b)

(c)

Figure 5. (a), (b) T (EF,k‖) for the five-layer PC, majority- and
minority-spin, respectively. (c) T (EF, k‖) for the five-layer APC.

APC at zero bias. Roughly, T (EF,k‖) behaves in a similar
way as that of the three-layer MgO device. Namely for PC,
the majority-spin transport channel is s-like, i.e. dominated
by k‖ ≈ 0 region; and minority-spin channel has non-
zero transmission away from k‖ = 0 but the transmission
value is much smaller than the majority channel. We find
that T (EF,k‖) for minority-spin channel exhibits many sharp
peaks as a function of k‖ as result of the interface minority-
spin state of the Fe/MgO interface, consistent with previous
theoretical results [9, 67, 68]. Hence for PC, the total
transmission coefficient is dominated by the majority channel.
For APC, figure 5(c) shows that T (EF,k‖) has a value of the
order of 10−4, much smaller than PC transmission. The pattern
of T (EF,k‖) for APC is also interesting, dominated by four
relatively large peaks surrounded by very sharp hot spots. The
large difference in transmission values of PC versus APC gives
large TMR ratio at zero bias.

Figures 6(a) and (b) plot the calculated current–voltage
(I–V ) characteristics (solid line) for a five-layer MgO device
in PC and APC, respectively2. For bias less than 1 V, the total
current remains extremely small. At about 1.5 V, the device
‘turns on’ and current increases rapidly afterward. Such a
turn-on voltage is consistent with experimental I–V curve data
reported in [63]. The spin currents are shown as the dashed
and dotted lines for the up- and down-channels (respectively,
majority, minority channel).

We can calculate the TMR ratio RTMR from the I–V
curves in APC and PC. At Vb = 0 when all currents vanish,
we compute RTMR using transmission coefficients. Because
RTMR is obtained by dividing a very small number (the APC
current), even a small error in APC current makes a large error
in RTMR. That is why very large numbers of k‖ points must
be sampled for as good a convergence as possible (see lower
panels of figure 2). From figure 6(c), for a five-layer MgO

2 Note that quantitative values in bias-dependent current are somewhat
different than the corresponding ones of [38]. In preparing this manuscript,
we discovered a small error in the computation of the inner integral (the dε
integral) of equation (11): the error being the use of an incorrect energy
integration limit. This resulted in some quantitative difference in the values
but does not lead to a qualitative change of results and conclusions.
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Figure 6. (a), (b) I –V curves for the five-layer PC and APC,
respectively. Solid line (diamonds): total current; dashed line
(squares): I↑; dotted line (circles): I↓. Inset: I –V curves for small
ranges of Vb. (c) TMR versus bias Vb for a five-layer device
(diamonds).

device RTMR ∼ 3700% at zero bias and it decays with Vb,
essentially vanishing on a scale of about 1 V. For the three-
layer MgO device, we found RTMR ∼ 850 % at zero bias which
also decays to zero on a similar bias scale. The decrease in
TMR as a function of Vb is in agreement with the experimental
data [14, 64].

We also found that drastic changes of zero-bias TMR are
obtained when the two Fe/MgO interfaces are oxidized [65].
For two five-layer MgO atomic structures with 100% and 50%
oxygen at the interfaces3, the zero-bias TMR is dropped to
∼169% and ∼1000%, respectively. The reason for this drop
is found to be due to a decrease of PC current while the
APC current remains at a similar value as that of unoxidized
interfaces, consistent with the conclusion of [66].

The voltage dependence of the total current and spin
current (figures 6(a) and (b)) can be understood from the
behavior of the transmission coefficient Tσ . Figure 7 plots
Tσ = Tσ (E) versus electron energy E at zero bias for PC
and APC of the five-layer MgO device. In PC, the majority
carrier transmission T↑ (solid line) is smooth and several orders
of magnitude larger than T↓ (dashed line) when E is near the
Fermi energy of the leads. By analyzing the spin-dependent
scattering states [30] of the MTJ, we were able to determine
which bands of the Fe leads contribute to the transmission.
We found that T↑ is dominated by the 1 band of the Fe
leads, in agreement with [11]. Below −1 eV, T↑ becomes
extremely small due to the disappearance of the 1 band. The

3 In our calculations, the atomic structure with oxidization is relaxed using the
FLAPW package WIEN2K, see [53].
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Figure 7. Transmission coefficient Tσ versus energy E for Vb = 0,
E = 0 is the Fermi energy of the leads. Solid line: T↑ for PC set-up;
dashed line: T↓ for PC; dotted line: T↑ = T↓ for APC. Inset: the
same transmission coefficients at energies between −3 and 1 eV.

T↓, on the other hand, is considerably less smooth because
the transmission near the Fermi level is mostly dominated by
interface resonance states [67]. In particular, a large peak in
T↓ appears above E = 1 eV: as E is increased, different
Fe bands may participate in transport and this peak is due to
such a contribution. This T↓ peak explains the much larger
minority-channel current than the majority-channel current in
PC at Vb = 1.5 V.

For APC, we obtain T↑ = T↓ for all E at zero bias due
to the geometrical symmetry of the device. We found that
the BZ resolved total transmission, T (E,k‖) = T↑(E,k‖) +
T↓(E,k‖) for APC shown in figure 8(c) for Vb = 0 and
figure 8(d) for Vb = 0.05 V is dominated by broad and smooth
peaks at around |kx | = |ky| = 0.12π/a (see also figure 5),
and there is almost no transmission at kx = ky = 0. For
Vb = 0, figure 8(c) also shows that the dominating peaks
are surrounded by other much sharper peaks. We found that
bias voltage has dramatic effects for APC. The very sharp
peaks in figure 8(c), which are due to interface resonances
occurring at zero bias, are completely removed by a finite bias
of 0.05 V, as shown in figure 8(d). Moreover, the dominating
peaks become considerably higher than those in figure 8(c).
The origin of the TMR quenching is therefore due to a faster

increase of the APC current than the PC current as a function
of bias. Thus, our results show that the observed decrease of
TMR in Fe/MgO/Fe MTJs as a function of bias voltage can
be explained by a simple band-to-band transmission, which
is a different mechanism than that proposed to explain TMR
quenching in Al2O3 MTJs [61].

5. Conclusion

In this paper, we presented the technical details of a relatively
new ab initio formalism for calculating spin-polarized quantum
transport in magnetic tunnel junctions. The technique is
based on real-space DFT in combination with the Keldysh
non-equilibrium Green’s function formalism. We believe
the NEGF-DFT method provides a useful alternative and
supplements other atomistic techniques for analyzing spin-
polarized quantum transport. The main advantage of the
NEGF-DFT formalism is its close ‘proximity’ to modern
many-body theory and quantum transport theory which are
largely based on Green’s functions. As such, new effects
and new transport physics can be readily implemented in the
NEGF-DFT software tool. From a computational point of
view, the NEGF-DFT technique can be implemented into a
rather efficient manner so that larger systems can be simulated.
By comparing with results obtained from FLAPW, the LCAO
basis sets can be tuned to obtain excellent agreement in
electronic band structure. For simulating MTJs, it was found
that very large numbers of k‖ points are necessary to converge
the k‖-dependent quantities such as transmission coefficients
and real energy density matrix.

For Fe/MgO/Fe MTJs, our results are consistent with
those obtained by LAPW within the embedding potential. The
obtained voltage scales for transport features are consistent
with experimental data, including the turning-on voltage for
currents and the voltage scale for TMR quenching. The quench
of TMR by bias voltage is found to be due to a relatively fast
increase of channel currents in APC and can be explained by
simple band-to-band transmission behavior under bias. Very
large TMR at zero bias is obtained which is substantially
reduced by oxidization of the Fe/MgO interfaces.
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