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1Department of Materials Science and Engineering,
University of Delaware, Newark, DE 19716, USA

2Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
(Dated: May 17, 2023)

We analyze theoretically the origin of the spin Nernst and thermal Hall effects in FePS3 as a
realization of two-dimensional antiferromagnet (2D AFM). We find that a strong magnetoelastic
coupling, hybridizing magnetic excitation (magnon) and elastic excitation (phonon), combined with
time-reversal-symmetry-breaking, results in a Berry curvature hotspots in the region of anticrossing
between the two distinct hybridized bands. Furthermore, large spin Berry curvature emerges due to
interband transitions between two magnon-like bands, where a small energy gap is induced by magne-
toelastic coupling between such bands that are energetically distant from anticrossing of hybridized
bands. These nonzero Berry curvatures generate topological transverse transport (i.e., the thermal
Hall effect) of hybrid excitations, dubbed magnon-polaron, as well as of spin (i.e., the spin Nernst
effect) carried by them, in response to applied longitudinal temperature gradient. We investigate
the dependence of the spin Nernst and thermal Hall conductivities on the applied magnetic field and
temperature, unveiling very large spin Nernst conductivity even at zero magnetic field. Our results
suggest FePS3 AFM, which is already available in 2D form experimentally, as a promising platform
to explore the topological transport of the magnon-polaron quasiparticles at THz frequencies.

I. INTRODUCTION

Two-dimensional (2D) antiferromagnets (AFMs [1] are
attracting growing attention due to their potential ap-
plication as material platforms for spintronics, spin-
orbitronics, and spin-caloritronics [2–10]. Because the
strong exchange interaction between their localized spins
results in intrinsic THz frequency dynamics, AFMs are
particularly promising for the development of devices
with high operating speeds. For example, magnon in a
2D AFM can be employed to store and transfer THz fre-
quency information without Joule heating due to the ab-
sence of a charge current or a stray field. Such materials
can also provide efficient spin-transport channels in spin-
tronic devices with low energy consumption [11–16]. De-
spite these advantages, the use of magnons in 2D AFMs
as a part of realistic devices is severely limited by the lack
of efficient ways to generate and manipulate magnon ex-
citations. The hybridization of magnons and phonons
may provide a path toward coherent control of magnons
in 2D AFM material via a manipulation of the hybridized
states [17–21]. For instance, it has been shown that one
can electrically generate magnon spin current through
the interaction between magnon and phonon [22, 23].
Conversely, it has also been shown that the dynamics
of a phonon can be controlled via its interaction with a
magnon [24–26].

Magnons and phonons are the collective and charge-
neutral excitations of localized spins and lattice vibra-
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tions, respectively. They behave as bosonic quasiparti-
cles, obeying the Bose-Einstein distribution function at
finite temperature with zero chemical potential in equi-
librium due to their non-conserved number. Strong cou-
pling between a magnon and a phonon results in a hy-
bridized state that includes both spin and lattice collec-
tive excitations in a single coherent mode [28–31]. As
a result, a new type of quasiparticle, dubbed magnon-
polaron [32, 33], is formed. The intriguing and non-trivial
emergent properties of magnon-polarons provide a possi-
ble foundation for novel devices with unique optical and
electrical functionalities [34–40]. In particular, the hy-
bridization of magnons and phonons to create a magnon-
polaron can generate a finite Berry and spin (general-
ized) Berry curvatures concentrated around anticross-
ing regions [28–31] of the magnon and phonon bands.
These Berry curvatures then lead to nontrivial topolog-
ical transverse transport—the magnon thermal Hall ef-
fect (THE) and magnon spin Nernst effect (SNE)—which
have attracted a lot of attention [27–31, 33, 41–48]. In
particular, recent studied have demonstrated [32, 49–52]
possibly strong magnon-phonon coupling FePS3 as the
realization of 2D AFM. This, together with experimen-
tally accessible 2D form of this material, makes FePS3

a great candidate for investigation of magnon THE and
SHE.

Let us recall that the magnon THE [43] refers to a
phenomenon that occurs when a temperature gradient
applied to a magnetic material generates transverse ther-
mal transport of magnons, perpendicular to both the
temperature gradient and magnetization. The magnon
SNE [27], as an analogy of the electronic spin Hall ef-
fect (SHE) [53, 54] where electrons of opposite spin
travel in opposite directions transverse to applied un-
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FIG. 1. (a) Schematic view of the magnon SNE in a 2D
AFM where transverse flow of magnons carrying opposite out-
of-the plane spins (± ~) is induced by temperature gradient
∇T along the longitudinal direction [27]. (b) The quasi-2D
lattice of FePS3 formed by Fe atoms. The arrows indicate the
direction of the its localized spins within zigzag AFM phase
considered in our study. Here αi, βi and γi (i = 1, 2, 3) are the
vectors joining the first, second, and third-nearest neighbors,
respectively. A unit cell contains four Fe atoms forming a
rectangularly-shaped BZ with periodicity in real space that is√

3a or 3a long in the x- or y-directions (where a is the lattice
constant), respectively.

polarized charge current, involves the flow of magnons
instead of electrons carrying opposite spin flow in oppo-
site directions perpendicular to the temperature gradi-
ent [Fig. 1(a)]. The magnon SNE is made possible by
the existence of two magnon species within AFM car-
rying opposite spin polarization [27]. Recent studies
have shown that the magnon SNE effect can be observed
in: collinear antiferromagnets [27, 41, 55] on a honey-
comb lattice, where the Dzyaloshinskii-Moriya interac-
tion (DMI) acting [56] on magnons plays an analogous
role as spin-orbit coupling (SOC) plays [53, 54] for elec-
trons in the SHE; noncollinear antiferromagnets [47, 57],
even without any SOC responsible for DMI, and in zero
applied magnetic field; as well as in collinear antiferro-
magnets [29–31] or ferrimagnets [28] with magnetoelas-
tic coupling hybridizing magnon and phonon quasiparti-
cle bands whose anticrossing regions are putatively cru-
cial [28] to obtain nonzero Berry and spin Berry curvature
driving [see Sec. II B] transverse transport in THE and

SNE, respectively.
In contrast, our study highlights a mechanism [31]

where a significant spin Berry curvature can be induced
in an energy window of magnon-like bands that is en-
ergetically distant [for example the 1st and 2nd band in
Fig. 2(a)] from the magnon-phonon hybridized bands and
their anticrossing within a collinear AFM. The magnon-
like bands posses a small phonon character [Fig. 2(a)]
over the entire Brillouin zone (BZ), which causes open-
ing of slight band gaps between them [Fig. S2(b) in
SM [58]]. These band gaps are actually smaller than anti-
crossing gap between magnon-like and phonon-like bands
[Fig. S2(b) in SM [58]]. The smallness of band gaps
between magnon-like bands [Figs. S2(b) and S3(b) in
SM [58]] and phonon-mediated interband transitions [31]
between them lead to significant spin Berry curvature
(Fig. 5) and, thereby, the possibility of a giant SNE in
FePS3 collinear AFM.

The paper is organized as follows. In Sec. II we in-
troduce an effective Hamiltonian to capture the magnon-
phonon hybridization within 2D AFMs belonging to the
MPX3 (M = Fe, Mn, Co, Ni; X = S, Se) family hosting
localized spins and their magnetic moments in a zigzag
phase. The same Section also reviews the theoretical
framework of linear-response theory that can be used to
investigate the transverse transport of magnon-polaron
quasiparticles. In Sec. III we discuss thus generated SNE
and THE for FePS3, including the dependence of the
thermal Hall and spin Nernst conductivities on the ap-
plied magnetic field and temperature. We conclude in
Sec. IV.

II. MODELS AND METHODS

A. 2D AFM Hamiltonian describing magnons,
phonons and their magnetoelastic coupling

The MPX3 (X = Fe, Mn, Co, Ni; X = S, Se) family of
materials are van der Waals magnets [1] forming layered
structures that are weakly bound by van der Waals forces
and possess a stable magnetic order even in the mono-
layer limit [59, 60] because of a huge single ion anisotropy
energy [33, 49, 61–64]. In particular, Fig. 1 shows the lay-
ered structure of FePS3 that is established solely by the
Fe atoms. Within each layer, the Fe atoms arrange in a
honeycomb-like lattice structure with “columns” of spins
having opposite spin moments. We consider the FePS3

magnetic structure in the so-called zigzag AFM phase in
which a unit cell contains two pairs of equivalent atoms
(i.e., having the same spin direction) that are labelled
as ai and bi (i = 1, 2), respectively. Due to the small
value of the interlayer exchange interaction relative to
the intralayer exchange interaction, these AFMs are, to
a very good approximation, quasi-two dimensional mag-
nets even in the bulk [61, 65–69]. The magnon-phonon
hybridization in FePS3 can, therefore, be investigating by
focusing on quasi-2D honeycomb structure of Fe atoms
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(a)

(b)

FIG. 2. (a) The hybridized magnon-phonon band structure
of FePS3 [Fig. 1], along Γ-X-M -Y -Γ-M high symmetry path
in the BZ marked in the inset, calculated for an applied mag-
netic field of Bz = 30 T. The color scale bar encodes whether
the bands have magnon-like, phonon-like, or mixed character.
The bands are labelled 1–8 from the highest to the lowest en-
ergy. (b) The counterpart of panel (a), but in the absence
of magnetoelastic coupling [Hm = 0 in Eq. (4)] and for zero
applied magnetic field [Bz = 0 in Eq. (2)]. This means that
red lines denote purely magnon bands and blue lines denote
purely phonon bands of FePS3, without any hybridization be-
tween them being present.

whose Hamiltonian can be written as

H = Hm +Hp +Hmp. (1)

Here Hm is the Hamiltonian of localized spins whose low-
energy excited states are magnons [14]; Hp is the phonon
Hamiltonian; and Hmp is the term describing magne-
toelastic coupling and thereby induced hybridization of
magnons and phonons. The term Hm is the anisotropic
Heisenberg model [61, 65–67, 70]:

Hm =
∑
i,j

JijSiSj + ∆
∑
i

(Szi )
2

+ gµBBz
∑
i

Szi (2)

where Si = (Sxi , S
y
i , S

z
i ) is the operator of total spin local-

ized at a site i of the lattice; Jij is the exchange coupling
between localized spins at sites i and j; ∆ is the easy-axis
anisotropy energy; the Zeeman (third on the right) term
takes into account coupling to the applied magnetic field
Bz pointing along the z-axis which is perpendicular to
the plane in Fig. 1; g is the Landé g-factor; and µB is the
Bohr magneton. The sum

∑
ij runs over all atom pairs

in the lattice up to the third-nearest neighbor.

We take into account the magnetoelastic coupling by
assuming that it acts only between magnons and out-of-
plane phonons. Such assumption is particularly relevant
for FePS3 2D AFM, where out-of-plane phonon modes
are closely aligned with the magnon modes in terms of
energy and have been observed to hybridize with them
under an applied magnetic field [49]. Therefore, we focus
only on the z-component of the lattice vibrations, so that
describing them with a simple harmonic oscillator model
yields the following effective phonon Hamiltonian [45, 71]

Hp =
∑
i

(pzi )
2

2M
+

1

2

∑
ij

uziΦ
z
i,ju

z
j . (3)

Here pzi and uzi are the operators of out-of-plane momen-
tum and displacement of the atom at site i of the lattice,
respectively; Φz is a spring constant matrix; and M is
the mass of the atom. Finally, for the magnetoelastic
coupling, which generates hybridization of magnon and
phonon bands [Fig. 2(a)], we adopt Hamiltonian derived
by Kittel [72] to linear order in the magnon amplitude,
and adapted [49, 73] to magnons coupled to out-of-plane
phonons in FePS3

Hmp = −ξ
∑
i

[εyzi (Sxi S
z
i + Szi S

x
i ) + εxzi (Syi S

z
i + Szi S

y
i )] ,

(4)
where ξ is the coupling strength and εxzi and εyzi are strain
functions at the i site computed by averaging over the
strain from nearest-neighboring ions

εαβi =
1

N

∑
j

εαβij . (5)

The two-ion strain tensor in the small displacement ap-
proximation is given by [73, 74]

εαβij =
1

2

[(
rαi − rαj

) (
uβi − u

β
j

)
+
(
rβi − r

β
j

) (
uαi − uαj

)]
,

(6)
where rαi and uαi are the α-component of the location
vector in equilibrium and the displacement of the atom
from equilibrium, respectively, for site i of the lattice.

The transformation of Eq. (1) into second-quantized
notation is given in the Supplemental Material (SM) [58].
Since this Hamiltonian is quadratic in creation and an-
nihilation operators for magnons and phonons, it can be
exactly diagonalized to obtain quasiparticle band struc-
ture in Figs. 2 for magnon-polaron quasiparticle. For
easy comparison, Fig. 2(b) plots non-hybridized magnon
(red curves) and phonon (blue curves) bands in the ab-
sence of magnetoelastic coupling [Hm = 0 in Eq. (4)] and
for zero applied magnetic field [Bz = 0 in Eq. (2)].

B. Transverse thermal and spin transport in the
linear response regime

Within the linear response theory, the equations de-
scribing transverse quasiparticle transport underlying
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THE and SNE are given by [31, 47, 75–78]

jQy = −κxy∂xT, (7)

jS
z

y = −ηS
z

xy ∂xT, (8)

where jQy and jS
z

y are thermal and spin current, respec-
tively, flowing along the y-axis in response to the tem-
perature gradient ∂xT applied along the x-axis [Fig. 1].
The coefficients of proportionality in Eqs. (7) and (8)
are the thermal Hall conductivity

κxy = −k
2
BT

~

N∑
n=1

∫
F2 (ρn) Ωzndk, (9)

and the spin Nernst conductivity

ηS
z

xy =
kB
~

N∑
n=1

∫
F1 (ρn) ΩzSz,ndk. (10)

Here ρn = [eEn/kBT − 1]−1 is the Bose-Einstein distri-
bution function, with En being the eigenenergy of the
nth band, which enters into the conductivity expressions
through functions

F1 (ρn) = (1 + ρn) ln (1 + ρn)− ρnln (ρn) , (11)

or

F2 (ρn) = (1 + ρn) ln2

(
1 +

1

ρn

)
− ln2 (ρn)−2Li2 (−ρn) ,

(12)
where Li2 is the polylogarithm function. Finally, the
Berry Ωn(k) and spin (generalized) spin Berry ΩSα,n(k)
curvature of the nth band are given by [31, 47]

Ωn (k) =
∑
m 6=n

i~2〈n(k)|v|m(k)〉〈m(k)|σ3|m(k)〉 × 〈m(k)|v|n(k)〉〈n(k)|σ3|n(k)〉
[σnn3 En (k)− σmm3 Em (k)]

2 , (13)

and

ΩSα,n (k) =
∑
m 6=n

i~2〈n(k)|jSα |m(k)〉〈m(k)|σ3|m(k)〉 × 〈m(k)|v|n(k)〉〈n(k)|σ3|n(k)〉
[σnn3 En (k)− σmm3 Em (k)]

2 , (14)

where we use En(k) and |n(k)〉 to denote the eigenvec-
tors and eigenvalues, respectively, obtained from Colpa’s
diagonalization algorithm [79–82] (see the SM [58] for
details); v = (vx, vy, vz) denotes the velocity vector op-

erator; jS
α

denotes the spin current tensor operator

jS
α

= Sασ3v + vσ3S
α; (15)

and σ3 matrix is given by

σ3 =

(
1N×N 0

0 −1N×N

)
, (16)

where 1N×N is N × N identity matrix and
σnn3 = 〈n(k)|σ3|n(k)〉 is the nth diagonal element
of σ3. Thus, evaluating Berry [Eqs. (13)] and spin Berry
[Eq. (14)] curvatures directly yields the thermal and
spin Nernst conductivities, respectively.

III. RESULTS AND DISCUSSION

A. Topological transport of magnon-polarons:
Thermal Hall and spin Nernst effects

We first assume that FePS3 is exposed to an applied
magnetic field of 30 T. Figure 3(a) show a zoom onto

magnon-phonon hybridized bands from Fig. 2 focused
on 4th (predominantly magnon, as it is mostly red) and
5th (predominantly phonon, as it is mostly blue) band
in the energy window between 10 and 20 meV along
the X-Γ-M path. These two bands are strongly cou-
pled, which results in two anticrossings [Fig. 3(a)]. In
the vicinity of these anticrossings, the eigenstates are hy-
bridized, ψhybrid = ψmagnon±ψphonon, with both magnon
and phonon character. The presence of such superposi-
tions are denoted by the bright green-yellow color of the
bands in the anticrossing region [Fig. 3(a)]. We note that
both an applied magnetic field and magnetoelastic cou-
pling between magnons and phonons are required for such
hybridization and anticrossing to emerge—the magnetoe-
lastic coupling provides the necessary interaction, while
the magnetic field tunes the magnon and phonon bands
toward energy degeneracy.

The hybridization of two distinct excitations leads to
a finite Berry curvature. Let us recall that, e.g., hy-
bridization of s- and p-states in HgTe/CdTe semicon-
ductor quantum wells causes nontrivial topological prop-
erties for electrons at the Fermi level [83]. The physics
here is analogous—in the region of the BZ where the
magnon band (4th band) and phonon band (5th band)
anticross we expect nonzero Berry curvature. In con-
trast, we expect that away from the anticrossing regions,
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(a)

(b)

4
5

4th band

FIG. 3. (a) The hybridized magnon-phonon band structure of
2D FePS3, along X-Γ-M high symmetry path, calculated for
an applied magnetic field of Bz = 30 T. (b) The correspond-
ing Berry curvature Ωz

n along the X-Γ-M path calculated for
the 4th band in panel (a).

the Berry curvature should vanish because either band is
dominated solely by magnon or phonon character. Fig-

ure 3(b), showing the Berry curvature [Eq. 13] for the 4th
band along the same X-Γ-M path, confirms this expecta-
tion as Ωzn (k) 6= 0 in Fig. 3(b) only around the anticross-
ing regions identified in Fig. 3(a). Thus, the nontrivial
topology of magnon and phonon bands in FePS3 emerges
due to their hybridization via magnetoelastic coupling
[Eq. (4)], while these bands individually [Fig. 2] exhibit
trivial topology [Fig. 3(b)].

Figure 4 shows the Berry curvature for the eight bands
1–8 in Fig. 2 as a function of the in-plane wave vector
k = (kx, ky). In each panel, we also report the Chern
number calculated as

Cn =
1

2π

∫
BZ

Ωzn(k)dkxdky. (17)

These calculations were performed for an applied mag-
netic field Bz = 30 T that causes the lowest magnon band
to overlap with the out-of-plane optical phonon bands, as
shown in Fig. 3(a). Non-zero Berry curvature is observed
in the vicinity of anticrossing regions in the 4th, 5th, and
6th bands in the color plot. The 1st band [Fig. 4(a)] has
zero Berry curvature everywhere, which obviously leads
to zero Chern number. The 4th and 6th bands [Figs. 4(d)
and 4(f)] have non-zero Berry curvature, but the integral
of the Berry curvature over the entire BZ of these bands
vanishes. As a result, the Chern number is zero and
these are topologically trivial bands. The other bands all
have nonzero Chern number, with the sum of their Chern

numbers obeying the sum rule,
∑N
i=1 Ci = 0, as expected

for a Bogoliubov-de Gennes (BdG) Hamiltonian [28] (see
the SM [58] for more details on the BdG Hamiltonian
construction). The bands with nonzero Chern number
will contribute to THE via Eq. (9).

FIG. 4. The Berry curvature Ωz
n [Eq. (13)] computed for magnon-phonon bands [Fig. 2] of FePS3 as a function of the in-plane

wavevector (kx, ky) within the first BZ and using applied magnetic field Bz = 30 T. Panels (a)–(h) correspond to bands 1–8
denoted in Fig. 2. Their corresponding Chern number Cn (n = 1, 2, ..., 8) in Eq. (17) is provided in the upper left corner of each
panel. The insets in panels (b) and (c) show a zoom in around kx = −1.64 a−1 where the Berry curvature of the corresponding
bands is nonzero.
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FIG. 5. The spin Berry curvature Ωz
Sz ,n [Eq. (14)] computed for magnon-phonon bands [Fig. 2] of FePS3 as a function of

the in-plane wavevector (kx, ky) within the first BZ and using in the absence of applied magnetic field Bz = 0. Panels (a)–(h)
correspond to bands 1–8 denoted in Fig. 2. The color bar encodes the magnitude of the function L = sgn(Ωz

Sz ,n) log(1+|Ωz
Sz ,n|).

However, it is surprising and quite different from stan-
dard lore [27–30] that non-zero Berry curvature can be
found for the 2nd [Fig. 4(b)], 3rd [Fig. 4(c)] and 8th
[Fig. 4(h)] band because these bands are well above or
well below the energy window in which magnon and
phonon bands become degenerate in energy and anticross
[Fig. 2]. These bands all have non-trivial topology with
a Chern number equal to ±1. The finite Berry curva-
ture and nontrivial topological properties of these bands
can be understood as follows. Magnetoelastic interaction
facilitates coupling between magnon and phonon bands
even when they are not energetically close together, so
that magnon bands have small phononic character and
vice versa [31]. This effect can open a gap between two
magnon-like bands [such as 2nd and 3rd in Figs. 4(b)
and 4(c)] at kx = ±1.64 (a−1), thereby making possi-
ble interband transitions between these two [see the in-
set of Fig. S2(b) in the SM [58] for details]. Without
magnetoelastic coupling, these magnon bands are degen-
erate, i.e., they cross each other at kx = ±1.64 (a−1)
[Fig. S2(a) in the SM [58]]. Precise quantum-mechanical
interpretation of this picture can be obtained from the
perturbation theory—the gap opening between the two
magnon-like bands is due to perturbations from phonons,
which appears as a second order correction term

δEmij ∝
∑
p

[
H̄
]
mi,p

[
H̄
]
p,mj

[
1

Ēmi − Ēp
+

1

Ēmj − Ēp

]
(18)

to the magnon band levels [for derivation of Eq. (18)
see the SM [58]]. Here the indices p, mi, mj indicate
the phonon states which mediate interband transitions

between magnon states i and j;
[
H̄
]
mi,p

(
[
H̄
]
p,mj

) de-

scribes the coupling between i magnon (phonon) band
and phonon (j magnon) states; Ēmi, Ēmj and Ēp
are eigenenergies of i magnon, j magnon, and phonon
states, respectively, as obtained from exact diagonaliza-
tion of the bosonic magnon-phonon Hamiltonian (see the
SM [58] for details). As the result, the Berry curvature
of the 2nd and 3rd band at around kx = ±1.64 (a−1),
which is associated with the tiny avoided crossing points
between the 2nd and 3rd magnon-like bands, becomes fi-
nite. An analogous effect occurs for the phonon bands.
For instance, a magnon-mediated phonon-phonon inter-
band transition between 7th and 8th bands in Fig. 2(a)
generates a finite Berry curvature at ky ≈ ±1 (a−1) for
the 8th (phonon-like) band, as confirmed by Fig. 4(h).

Another consequence of these phonon-mediated
magnon-magnon and magnon-mediated phonon-phonon
interband transitions is that they induce the topological
transverse transport of spin angular momentum carried
by magnons even at zero applied magnetic field. Figure 5
shows the computed spin (generalized) Berry curvature
[Eq. (5)] for bands 1–8 [Fig. 2] calculated for Bz = 0.
We note that in the absence of both applied magnetic
field and magnon-phonon coupling, the magnon bands
exhibit a double degeneracy, with one set of bands car-
rying spin up [such as the 1st band in Fig. 2(a)] and
another set carrying spin down [such as the 2nd band
in Fig. 2(a)]. Consequently, the band structures of the
magnon-phonon system in FePS3 also exhibit a double
degeneracy, as illustrated in Fig. 2(b). However, the mag-
netoelastic coupling between the magnetic and elastic de-
grees of freedom in FePS3 lifts the degeneracy of these
two magnon bands with opposite spin, therefore mak-
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FIG. 6. (a) Thermal Hall and (b) spin Nernst conductivities
as a function of an applied magnetic field Bz. These con-
ductivities are calculated at T = 100 K using FePS3 magnon-
phonon band structure [Fig. 2] and its Berry [Fig. 4] and spin
Berry [Fig. 5] curvatures. Two insets in panel (b) show a
zoom in for: (1) Bz ∈ [−1 T, 1 T]; and (2) Bz ∈ [2 T, 30 T].

ing possible for interband transition between those two
magnon-like bands of opposite spin, even in the absence
an applied magnetic field (see the SM [58] for Fig. S3 and
details of calculations). Such phonon-mediated interband
transitions between magnon-like bands, which are en-
ergetically distant from usually considered [27–30] anti-
crossing regions [Fig. 3(a)] of hybridized magnon-phonon
bands, can result in a very large spin Berry curvature
found in Fig. 5(a)–(d) because of the smallness [31] [with
respect to the gap in anticrossing regions in Fig. 3(a)] of
energy gap between the two magnon-like bands with op-
posite spin polarization [Fig. S3(b) in SM [58]]. The same
effect can operate between phonon-like bands. For exam-
ple, the 7th and 8th (phonon-like) bands in Fig. 2(a) will
exhibit magnon-mediated interband transitions, thereby
developing finite spin Berry curvature [Figs. 5(g) and
5(h)].

B. Magnetic field dependence of the thermal Hall
and spin Nernst effects on applied magnetic field

Using computed Berry [Fig. 4] and spin Berry [Fig. 5]
curvatures, we can obtain directly thermal Hall [via
Eq. (9)] and spin Hall [via Eq. (10)] conductivities shown
in Figs. 6(a) and 6(b), respectively as a function of ap-
plied magnetic field at fixed temperature T = 100 K that

FIG. 7. (a) Thermal Hall and (b) spin Nernst conductivities
of FePS3 as a function of temperature T calculated for applied
magnetic field Bz = 30 T in (a) or Bz = 0 T in (b).

is below the Néel temperature of FePS3. As expected, the
thermal Hall conductivity changes sign when we reverse
the applied magnetic field, i.e., κxy(Bz) = −κxy(−Bz).
In the absence of applied magnetic field [Bz = 0 point
in Fig. 6(a)], the thermal Hall conductivity vanishes. We
can understand this feature by recognizing that when the
applied magnetic field is absent, the system will be in-
variant under the time-reversal symmetry operation T
combined with the spin rotation symmetry operation C
that flips all spins in the system. The combination of
these operations leads to an effective time reversal sym-
metry (TRS) operation T ′ = T C under which ∂xT is
preserved while the thermal Hall current is transformed
as jQy → −jQy . Because this system preserves T ′ = T C
symmetry, jQy = −jQy = 0 and the thermal Hall conduc-
tivity κxy must be zero. We note that even though the
thermal Hall conductivity κxy of the magnon-phonon hy-
bridized system is zero in zero magnetic field, the Berry
curvature Ωzn(k) of individual bands may be finite at
specific k-points within the BZ, as long as the integral
of the Berry curvature over the entire BZ vanishes (see
the SM [58] for a detailed argument). This ensures that
THE induced by the magnon-phonon hybridization does
not occur without breaking the effective TRS [29].

In contrast to the thermal Hall conductivity, the spin
Nernst conductivity shown in Fig. 6(b) is an even func-
tion of Bz, i.e., ηS

z

xy (Bz) = ηS
z

xy (−Bz). Moreover, spin
Nernst conductivity be finite even in the absence of
an applied magnetic field [31], i.e., under the effective
time reversal symmetry T ′. Indeed, if we rewrite the

thermal spin current [Eq. (8)] as jS
z

y = jS
z↑

y − jS
z↓

y ,
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then under T ′ operation the spin-polarized currents on
the right side change the sign and flip the spin, i.e.,

T ′jSz↑y = −jSz↓y and T ′jSz↓y = −jSz↑y . This leads to

T ′jSzy = −jSz↓y +jS
z↑

y = jSzy , which is always true because
our system preserves the effective time reversal symmetry
in the absence of an applied magnetic field. It is therefore
possible for the spin Nernst conductivity to be nonzero at
zero applied magnetic field, as confirmed in Fig. 6(b). At
zero or small applied magnetic field, the giant spin Nernst
conductivity is mainly governed by phonon-mediated in-
terband transitions between magnon-like bands. It then
decays rapidly [inset (1) in Fig. 6] when the applied mag-
netic field is Bz & 2 T, dropping eventually by two or-
ders of magnitude, because the energy spacing between
the two magnon-like bands increases and thus interband
transitions between the two are suppressed.

As the applied magnetic field magnitude increases from
≈ 2 to 30 T the spin Nernst conductivity slightly changes
while becoming negative, ηS

z

xy < 0 [inset (2) in Fig. 6].
We find that from ≈ 2 to ≈ 5 T, the spin Nernst conduc-
tivity originates primarily from magnon-mediated inter-
band transitions between phonon-like bands. Once the
phonon bands start hybridizing with magnon bands at
Bz ≈ 5 T, spin Berry curvature [Fig. 3] at anticrossing
regions of magnon-phonon bands also contribute, as am-
ply explored in prior literature [27–30]. To understand
why the spin Nernst conductivity becomes more negative
with increasing applied magnetic field, we consider that
in the conserved spin approximation the spin Nernst con-
ductivity derived from semi-classical theory is given by
[28, 55, 75]:

ηS
z

xy = − kB
~V

∑
k

N∑
n=1

〈Sz〉ΩznF1(En/kBT ) (19)

where 〈Sz〉 is the expectation value of Sz operator, Ωzn is
the Berry curvature of the nth band and the F1 function
was defined in Eq. 11. From Eq. (19), we see that increas-
ing applied magnetic field leads to both larger spin polar-
ization and stronger hybridizations between magnon and
phonon states due to the shift toward energy degeneracy
of the magnon and phonon states. Consequently, the am-
plitude of the spin Nernst conductivity ηS

z

xy is augmented
within this regime.

Since the computed spin Nernst conductivity of FePS3

around zero applied magnetic field is two orders of mag-
nitude [Fig. 6] larger than at Bz ≈ 10 T, it should be
possible to experimentally probe this effect by sweep-
ing magnetic field. Furthermore, we note that spin
Nernst conductivity of FePS3 is much larger than that
of other recently investigated 2D transition phospho-
rus trichalcogenides materials, such as MnPS3, NiPS3,
NiPSe3. Specifically, for FePS3 in the zigzag phase stud-
ied here, the computed spin Nernst conductivity is about
four orders of magnitude larger than that of MnPS3 in
the Néel phase [30].

We also emphasize that in the absence of magnetoelas-
tic coupling, both the thermal Hall and spin Nernst con-

ductivities vanish, irrespective of the applied magnetic
field. This is because the system without magnetoelas-
tic coupling preserves TaMy symmetry, whereMy is the
mirror symmetry about the plane normal to the y-axis
and Ta is a translation operator that moves the system
by the vector β2 [Fig. 1]. Unlike the effective time rever-
sal symmetry T ′, TaMy does not change the spin direc-
tion but does change the sign of both the thermal Hall
and thermal spin Nernst current. In other words, one
must have jQy = −jQy = 0 and jS

z

y = −jSzy = 0, therefore
both the thermal Hall and spin Nernst conductivity must
be zero. It is only when the magnetoelastic interaction
breaks TaMy symmetry that one obtains finite topolog-
ical transverse transport of quasiparticles and their spin
in a 2D AFM material.

Finally, Fig. 7 shows the thermal Hall and spin
Nernst conductivities as a function of temperature using
Bz = 30 T or Bz = 0 applied magnetic field, respectively.
Both conductivities increase in magnitude with increas-
ing temperature because there are increasing contribu-
tions to Berry and spin Berry curvature from phonon and
magnon bands at higher energy. They start to saturate at
T ' 100 K when all magnon bands at higher energy have
already been included. We note that when T ' 0 K, the
spin Nernst conductivity is almost zero, while the ther-
mal Hall conductivity changes from positive to negative.
This is because at very low temperature the main con-
tributions to the THE come from the acoustic phonon
band [8th band in Fig. 2(a)] with positive Chern number
C8 = 1 [Fig. 4(h)]. As the temperature increases even
slightly, the other bands with negative Chern number
begin to contribute to topological transverse transport
of quasiparticle and, thus, the thermal Hall conductiv-
ity becomes negative. In contrast, even though the spin
Berry curvature of the lowest phonon-like band [8th band
in Fig. 2(a)] is finite, the sum of the spin Berry curva-
ture of the 8th band over the entire BZ vanishes to yield
ηS

z

xy → 0 at zero temperature.

IV. CONCLUSIONS

In conclusion, we have investigated the transverse
topological transport of magnon-polaron quasiparticles
in the zigzag phase of FePS3 2D AFM. While we repro-
duce previous findings [27–30], obtained for different real-
izations of 2D AFMs, on magnetoelastic coupling mech-
anism where anticrossing regions of hybridized magnons-
phonon bands provide key contribution [28] to THE and
SNE, we also predict giant spin Nernst current carried by
magnons even in zero applied magnetic field. This sur-
prising finding was noticed before [31], but here we ex-
plain it thoroughly by using perturbative Eq. (18) which
reveals principal contribution to the spin Berry curvature
behind SNE coming from interband transition between
slightly gapped magnon-like bands that are far away in
energy from usually considered anticrossing regions [27–
30]. Of relevance to experimental probing of THE and
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SNE, which are currently lacking [27], our analysis in-
dicates that FePS3 will exhibit sizable thermal Hall con-
ductivity and giant spin Nernst conductivities at temper-
atures of T ' 100 K, which is still below its Néel temper-
ature TN ≈ 118 K [49, 84].
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Constant, S. Mañas-Valero, M. Matzer, R. Adhikari,
A. Bonanni, E. Coronado, A. M. Kalashnikova, et al.,
Ultrafast coherent thz lattice dynamics coupled to spins
in the van der Waals antiferromagnet FePS3, Adv. Mater.
35, 2208355 (2023).

[41] V. A. Zyuzin and A. A. Kovalev, Magnon spin Nernst
effect in antiferromagnets, Phys. Rev. Lett. 117, 217203
(2016).

[42] R. Takahashi and N. Nagaosa, Berry curvature in
magnon-phonon hybrid systems, Phys. Rev. Lett. 117,
217205 (2016).

[43] S. Murakami and A. Okamoto, Thermal Hall effect of
magnons, J. Phys. Soc. Jpn 86, 011010 (2017).

[44] G. Go, S. K. Kim, and K.-J. Lee, Topological magnon-
phonon hybrid excitations in two-dimensional ferromag-
nets with tunable Chern numbers, Phys. Rev. Lett. 123,

237207 (2019).
[45] X. Zhang, Y. Zhang, S. Okamoto, and D. Xiao, Ther-

mal Hall effect induced by magnon-phonon interactions,
Phys. Rev. Lett. 123, 167202 (2019).

[46] A. Okamoto, S. Murakami, and K. Everschor-Sitte, Berry
curvature for magnetoelastic waves, Phys. Rev. B 101,
064424 (2020).

[47] B. Li, S. Sandhoefner, and A. A. Kovalev, Intrinsic spin
Nernst effect of magnons in a noncollinear antiferromag-
net, Phys. Rev. Res. 2, 013079 (2020).

[48] B. Ma and G. A. Fiete, Antiferromagnetic insulators
with tunable magnon-polaron Chern numbers induced
by in-plane optical phonons, Phys. Rev. B 105, L100402
(2022).

[49] S. Liu, A. Granados del Águila, D. Bhowmick, C. K.
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S1. MAGNON-PHONON HAMILTONIAN OF FEPS3 IN BOGOLIUBOV-DE GENNES FORM:
EXACT DIAGONALIZATION AND PERTURBATION THEORY

A. Magnon Hamiltonian via Holstein-Primakoff transformation

To derive a second-quantization version of Eq. (2) in the main text in terms of bosonic operators creating and
annihilating magnons, we employ standard Holstein-Primakoff transformation [1] which maps spin operators [Eq. (2)
in the main text] residing on sublattice A or B of a two-dimensional antiferromagnet (2D AFM), to bosonic ones and
with its square root of operators expanded into Taylor series and then truncated [2] to linear order

S+
A =

√
2Sai S−

A =
√
2Sa†i Sz

A = S − a†iai, (S1)

S+
B =

√
2Sb†j S−

B =
√
2Sbj Sz

B = −S + b†jbj . (S2)

Such truncation is valid as long as the temperature is low, kBT ≪ Jij where Jij is the exchange coupling in Eq. (2)
in the main text, and the number of magnons excited is sufficiently small [2]. Here ai and bj (a†i and b†j) are operators
annihilating (creating) magnon at site i ∈ A or site j ∈ B, respectively. Using the Fourier transform of these operators

ai =
1√
N

∑
k

eik·raiak,i, (S3)

a†i =
1√
N

∑
k

e−ik·raia†k,i, (S4)

bi =
1√
N

∑
k

eik·rbi bk,i, (S5)

b†i =
1√
N

∑
k

e−ik·rbi b†k,i, (S6)

the Heisenberg Hamiltonian in Eq. (2) of the main text can be re-written in second-quantization form as

Hm = E0
m +Hm(k). (S7)

Here E0
m is k-independent energy which simply shifts the energy-momentum dispersion of magnons by a constant value

and, hence, can be neglected. The k-dependent terms, containing operators which create and annihilate magnons in
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momentum ℏk, are collected into Hm(k) which can be written compactly in a matrix-vector multiplication form as

Hm(k) = −2S
∑
k



a†k,1
a†k,2
b†k,1
b†k,2
a−k,1

a−k,2

b−k,1

b−k,2



T 

A1(k) B∗(k) 0 0 0 0 C(k) D(k)
B(k) A1(k) 0 0 0 0 D(k) C∗(k)
0 0 A2(k) B(k) C∗(k) D(k) 0 0
0 0 B∗(k) A2(k) D(k) C(k) 0 0
0 0 C(k) D(k) A1(k) B∗(k) 0 0
0 0 D(k) C∗(k) B(k) A1(k) 0 0

C∗(k) D(k) 0 0 0 0 A2(k) B(k)
D(k) C(k) 0 0 0 0 B∗(k) A2(k)





ak,1
ak,2
bk,1
bk,2
a†−k,1

a†−k,2

b†−k,1

b†−k,2


, (S8)

with the matrix elements given by

A1(k) = 3J3 − J1 +∆+ J2
[
2 + eik·β1 + e−ik·β1

]
+

gµB

2S
Bz, (S9)

A2(k) = 3J3 − J1 +∆+ J2
[
2 + eik·β1 + e−ik·β1

]
− gµB

2S
Bz, (S10)

B(k) = J1
(
eik·α2 + eik·α3

)
, (S11)

C(k) = −J1e−ik·α1 − J3
(
e−ik·γ1 + eik·γ2 + e−ik·γ3

)
, (S12)

D(k) = −J2
[
eik·β2 + e−ik·β2 + eik·β3 + e−ik·β3

]
. (S13)

The vectors αi, βi and γi (i = 1, 2, 3)—connecting the first, second and third nearest neighbor atoms, respectively
(see Fig. 1 in the main text)—are given by

α1 = a(0,−1, 0), α2 = a

(√
3

2
,
1

2
, 0

)
, α3 = a

(
−
√
3

2
,
1

2
, 0

)
, (S14)

β1 = a
(√

3, 0, 0
)
, β2 = a

(√
3

2
,−3

2
, 0

)
, β3 = a

(√
3

2
,
3

2
, 0

)
, (S15)

γ1 = a (0, 2, 0) , γ2 = a
(√

3, 1, 0
)

γ3 = a
(√

3,−1, 0
)
, (S16)

where a is the lattice spacing.

B. Phonon Hamiltonian

Using the Fourier transform of the momentum operator along the z-axis perpendicular to the plane of 2D AFM

pzi =
1√
N

∑
k

pzke
ik·ri , (S17)

and of the lattice displacement operator

uz
i =

1√
N

∑
k

uz
ke

−ik·ri , (S18)

the Hamiltonian of out-of-plane lattice vibration [Eq. (3) in the main text] can be recast as

Hp =
∑
k

pzkp
z
−k

2M
+
∑
k


uz
k,a1

uz
k,a2

uz
k,b1

uz
k,b2


T E1 (k) E2 (k) E3 (k) E4 (k)

c.c E1 (k) E4 (k) E∗
3 (k)

c.c c.c E1 (k) E∗
2 (k)

c.c c.c c.c E1 (k) ,



uz
−k,a1

uz
−k,a2

uz
−k,b1

uz
−k,b2

 (S19)

where the elements of the dynamical matrix are given by

E1 (k) = ζz0 + ζz2
(
eik·β1 + e−ik·β1

)
, (S20)

E2 (k) = ζz1
(
e−ik·α2 + e−ik·α3

)
, (S21)

E3 (k) = ζz1e
−ik·α1 + ζz3

(
e−ik·γ1 + eik·γ2 + e−ik·γ3

)
, (S22)

E4 (k) = ζz2
(
eik·β2 + e−ik·β2 + eik·β3 + e−ik·β3

)
. (S23)
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Here ζ0 = −3(ζ1+ζ3)−6ζ2, with ζzi (i = 1, 2, 3), are the spring constant of the first, second and third nearest neighbor
atoms.

C. Magnetoelastic coupling Hamiltonian

Using Eqs. (S1)–(S6), the Hamiltonian of magnetoelastic coupling [Eq. (4) in the main text] can be recast as

Hmp =
∑
k


uz
k,a1

uz
k,a2

uz
k,b1

uz
k,b2


T

M(k)



ak,1
ak,2
bk,1
bk,2
a†−k,1

a†−k,2

b†−k,1

b†−k,2


+H.c., (S24)

where

M(k) =


0 −AC + BD

2 −Be−ikα1 0 0 −AC − BD
2 Be−ikα1 0

AC∗ − BD∗

2 0 0 Beikα1 AC∗ + BD∗

2 0 0 −Beikα1

Beikα1 0 0 −AC∗ − BD∗

2 −Beikα1 0 0 −AC∗ + BD∗

2
0 −Be−ikα1 AC + BD

2 0 0 Be−ikα1 AC − BD
2 0

 ,

(S25)
with

A =
aS
√
S

2
√
6

ξ, B = i
aS
√
S

3
√
2

ξ, C = e−ik·α2 − e−ik·α3 , D = e−ik·α2 + e−ik·α3 . (S26)

Here, S is the spin value of Fe atom, ξ is the magnetoelastic (or magnon-phonon) coupling strength, and A∗ denotes
complex conjugate of A.

D. Hybridized magnon-phonon band structure of FePS3 from exact diagonalization of BdG Hamiltonian

By adding [Eq. (1) in the main text] magnon [Eq. (S8)], phonon [Eq. (S19)] and magnetoelastic [Eq. (S20)] Hamil-
tonians, we then can construct the total Hamiltonian of magnon and phonons, including their hybridization, in 2D
AFM FePS3. With additional transformations, this Hamiltonian can be recast as bosonic Bogoliubov-de Gennes
(BdG) Hamiltonian [3, 4]

H =
∑
k

Ψ†H(k)Ψ (S27)

where Ψ† = [x†
k,1, x

†
k,2, ..., x

†
k,n, x−k,1, x−k,2, ..., x−k,n] is the Nambu spinor. By using Colpa’s method [5], we diago-

nalize this Hamiltonian to obtain the eigenenergies of the system E(k) satisfying the following eigenvalue equation

σ3H(k)T (k) = T (k)σ3E(k), (S28)

as the generalized eigenvalue problem in which σ3H(k) is a non-Hermitian matrix even though H(k) is Hermitian [6].
In other words, the diagonalization of the BdG Hamiltonian deals with non-Hermitian quantum mechanics [3, 4], but
the eigenvalues E(k) remain real. In Eq. (S28), matrix T (k)

T †(k)σ3T (k) = T (k)σ3T
†(k) = σ3, (S29)

is “paraunitiary”, and σ3 matrix is given in Eq. (16) of the main text.
Table I lists the exchange couplings between localized spins used in Eq. (2) of the main text, spring constants used

in Eq. (3) of the main text, and magnon-phonon coupling strength used in Eq. (4) of the main text. Using those
parameters, Fig. S1(a) plots independent magnon and phonon bands of FePS3 computed without applied magnetic
field or magnetoelastic coupling—since Bz = 0, the magnon band is doubly-degenerate. The out of plane vibrational
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Table I. The exchange coupling between localized spins, spring constants, and magnon-phonon coupling strengths for 2D AFM
FePS3.

Materials a (Å) S J1 (meV) J2 (meV) J3 (meV) J′ (meV) ∆ (meV) ζ1 (meV/Å2) ζ2 (meV/Å2) ζ3 (meV/Å2) M ξ (meV/Å)
FePS3 [7, 8] 3.5 2 1.49 0.04 -0.6 -0.0073 -3.6 -129.9 -76.88 -0.769 5.6 0.95

Figure S1. (a) The independent magnon and phonon band of FePS3 along Γ-X-M -Y -Γ-M high symmetry path in the BZ
calculated in the absence of both the applied magnetic field and magnon-phonon coupling. (b) Schematic of lattice vibrations
at the Γ point associating with three modes P1, P2 and P3. The arrows indicate the direction of motion of corresponding Fe
atoms.

modes, i.e., phonons as the quanta of vibrational energy, include both acoustic and optical branches. By looking at
the eigenvector of the phonon bands at the Γ point, we can specify three optical phonon modes Pi (i = 1, 2, 3), as
denoted in the Fig. S1(b).

Figure S2(a) also shows independent magnon and phonon bands computed in the absence of magnetoelastic coupling,
but with applied magnetic field switched on and along X̄-Γ-X path. Figure S2(a) highlights crossing of magnon and
phonon bands (near Γ point), as well as between two magnon-like bands with zoom on their crossing provided in
the inset. Once the magnetoelastic coupling is switched on, the magnon and phonon bands hybridize, while all of
their crossings are lifted to become anticrossings in Fig. S2(b). The small anticrossing gap emerges between two
magnon-like bands [inset of Fig. S2(b)], which leads to a finite Berry curvature of the 2nd and 3rd bands, as discussed
in Sec. IIIA in the main text.

Figure S3 plots 1st and 2nd magnon-like bands calculated without an applied magnetic field, while zooming in on
the region in the vicinity of the Γ point. In the absence of the magnetoelastic, Fig. S3(a) is the zoomed version of
Fig. S2(a) but without applied magnetic field, showing clearly that magnon bands are degenerate in energy. When
the magnetoelastic coupling is switched on [Fig. S3(b)], this degeneracy is lifter so that the same bands acquire slight
energy splitting. Futhermore, the energy gap that opens between two magnon-like bands possessing opposite spin
[Fig. S2(b)] as the consequence of the influence of perturbations from phonons onto magnon bands, as discussed using
Eq. (18) in the main text, whose complete derivation is provided in Sec. S1 E.



5

𝑋 𝑋𝑋 𝑋Γ Γ

Figure S2. The magnon phonon dispersion in FePS3 along the X̄-Γ-X high symmetry path in the BZ calculated in applied
magnetic field Bz = 30 T and with magnetoelastic coupling [Eq. (S20)] (a) switched off or (b) switched on. The inset in panel
(b) shows the tiny gap between two magnon-like bands (2nd band and 3rd band) that is a result of magnetoelastic coupling,
while in the inset of panel (a) these two bands cross each other because magnetoelastic is switched off. We note that in panel
(b) the gap between 2nd and 3rd magnon-like band is very small in comparison to the hybridized gap near the Γ point between
magnon and phonon bands (4th and 5th band).

a a

Figure S3. The 1st and 2nd magnon-like bands. marked in Fig. S2, calculated without the applied magnetic field (Bz = 0)
and: (a) without the magnetoelastic coupling [ξ = 0 in Eqs. (S24)–(S26)]; or (b) with finite magnetoelastic coupling [ξ ̸= 0 in
Eqs. (S24)–(S26)].

E. Löwdin partitioning of BdG Hamiltonian

In order to elucidate the splitting between the first and second magnon-like bands due to perturbations from phonons
[Fig S3(b)], we apply the Löwdin partitioning [9, 10] approach to the BdG Hamiltonian [Eq. (S27)]. A key concept in
Löwdin partitioning, which is also known as the Schrieffer-Wolff transformation [11–16], is investigation of the effect
of a perturbation on a subset of contiguous energy states of a Hermitian Hamiltonian [9]. Because the diagonalization
of our bosonic BdG Hamiltonian requires to diagonalize a non-Hermitian Hamiltonian, in the following we discuss
the Krein-Hermitian [16] and related properties of BdG Hamiltonian and then adapt the Löwdin partitioning to this
case.
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From Eq. (S29), we can obtain

T †(k) = σ−1
3 T−1(k)σ3 = σ3T

−1(k)σ3, (S30)

where we use property σ−1
3 = σ3. The congruence transformation of the magnon-phonon Hamiltonian can then be

rewritten in terms of the following transformation

T (k)†H(k)T (k) = σ3

{
T−1(k) [σ3H(k)]T (k)

}
, (S31)

of a non-Hermitian matrix σ3H(k). The matrix σ3H(k) and the paraunitary matrix T (k) are Krein-Hermitian and
Krein-unitary, respectively, with respect to the σ3 [13]. If we define

H̄ = σ3H(k), (S32)

together with a Krein-adjoint of matrix T (k) as

T#(k) = σ−1
3 T †(k)σ3 = σ3T

†(k)σ3, (S33)

then we find their following properties

T#(k)T (k) = T (k)T#(k) = I, (S34)

and

H̄T (k) = T (k)Ē(k), (S35)

where Ē(k) = σ3E(k) and I is the identity matrix. Equations (S34) and (S35) provide an eigenbasis for bosons
analogous to the case of a fermionic system. We can, therefore, adapt the Löwdin partitioning to the Hamiltonian H̄,
from which we obtain the spectrum of H(k) order by order in its perturbation. In the spirit of Löwdin partitioning,
we decompose H̄ as

H̄ = H̄0 + H̄ ′ (S36)

where H̄0 is the zeroth order diagonal matrix, and H̄
′
is the first order perturbation that can also be decomposed into

two terms—H̄
′
= H̄1 + H̄2 with H̄1 being block-diagonal and composed of two submatrices while H̄2 is composed of

off-diagonal submatrices, as illustrated visually in Fig. S4.

Figure S4. Visualization of the submatrix (or block) structure of the matrix representation of Hamiltonian H̄ [Eq. (S32)] as a
sum of H̄0, H̄1 and H̄2, where H̄0 is truly diagonal; H̄1 is a block-diagonal; and H̄2 is a block off-diagonal matrix.

Our strategy is to find a matrix W that block-diagonalizes H̄ with the Schrieffer-Wolff transformation:

H̃ = e−W H̄eW = H̄ +
[
H̄,W

]
+

1

2

[[
H̄,W

]
,W
]
+ ..., (S37)

Here eW is a paraunitary matrix and W is a block off-diagonal matrix like H̄2. One can see that we must construct
a matrix W such that the transformation in Eq. (S37) converts H̄2 into a block diagonal matrix like H̄1. Moreover,
because eW is Krein-unitary, W must be skew-Krein-unitary, i.e., W = −σ−1

3 W †σ3 = −σ3W
†σ3. To determine W ,

we define W = W (1) + W (2) + ... where W (i) is the ith order perturbation of W . The matrix W is then evaluated
recursively order by order [

H̄0,W (1)
]
= −H̄2, (S38)[

H̄0,W (2)
]
= −

[
H̄1,W (1)

]
, (S39)[

H̄0,W (3)
]
= −

[
H̄1,W (2)

]
− 1

3

[[
H̄2,W (1)

]
,W (1)

]
, (S40)

... = ... (S41)
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The eigenbasis T 0(k) and its Krein-adjoint T 0#(k) of H̄0 defined matrix representation of H̄0 which is a diagonal
matrix satisfying

H̄0T 0(k) = T 0(k)Ē0(k). (S42)

Here T 0(k) obeys

T 0#(k)T 0(k) = T 0(k)T 0#(k) = I, (S43)

leading to

T 0#(k)H̄0T 0(k) = Ē0(k). (S44)

We then solve, for instance, Eq. (S38) by multiplying its both sides—by T 0#(k) from the left and by T 0(k) from the
right—to arrive at

T 0#(k)
[
H̄0,W (1)

]
T 0(k) = −T 0#(k)H̄2T 0(k), (S45)

⇒ T 0#(k)H̄0W (1)T 0(k)− T 0#(k)W (1)H̄0T 0(k) = −T 0#(k)H̄2T 0(k). (S46)

Using Eq. (S43) then leads to

T 0#(k)H̄0T 0(k)T 0#(k)W (1)T 0(k)− T 0#(k)W (1)T 0(k)T 0#(k)H̄0T 0(k) = −T 0#(k)H̄2T 0(k), (S47)

making it possible to write

Ē0(k)
[
W (1)

]
−
[
W (1)

]
Ē0(k) = −

[
H̄2
]
, (S48)

where [M] = T 0#(k)MT 0(k). Since Ē0(k) is a diagonal matrix, the diagonal terms of
[
W (1)

]
vanish, i.e.,[

W (1)
]
nn

= 0. The off-diagonal terms of
[
W (1)

]
obtained from Eq. (S48) are then given by

[
W (1)

]
mn

= −
[
H̄2
]
mn

Ē0
m(k)− Ē0

n(k)
, (S49)

where Ē0
i (k) is the ith eigenvalue of H̄0. By repeating the same procedure one can generate expressions for higher

orders of W [
W (2)

]
mn

=
1

Ē0
m(k)− Ē0

n(k)

(∑
m′

[
H̄2
]
mm′

[
H̄1
]
m′n

Ē0
m′(k)− Ē0

n(k)
−
∑
n′

[
H̄1
]
mn′

[
H̄2
]
n′n

Ē0
m(k)− Ē0

n′(k)

)
, (S50)

... = ... (S51)

Using Eqs. (S37), (S38), (S39) and (S40), we then obtain up to the second order

H̃ ≈ H̄0 + H̄1 +
1

2

[
H̄2,W (1) +W (2)

]
. (S52)

The matrix elements of H̃ in the eigenbasis of H̄0 can thus be expressed order by order as follows

H̃
(0)
nn′ =

[
H̄0
]
nn′ , (S53)

H̃
(1)
nn′ =

[
H̄1
]
nn′ , (S54)

H̃
(2)
nn′ =

1

2

∑
m

[
H̄2
]
nm

[
H̄2
]
mn′

(
1

Ē0
n(k)− Ē0

m(k)
+

1

Ē0
n′(k)− Ē0

m(k)

)
. (S55)

Finally, we can describe the energy gap opening [inset of Fig. S2(b)] between the 1st and 2nd magnon bands due
to the perturbations from phonons in the 2D AFM FePS3 without an applied magnetic field (Bz = 0). For this
purpose we suppose the magnetoelastic coupling Hamiltonian Hmp [Eq. (S24)] plays the role of a perturbation for the
Hamiltonian of independent magnons and phonons, Hm +Hp [i.e., the sum of Eqs. (S8) and (S19)]. We then apply
the Löwdin partitioning to H̄0 = Hm +Hp while using H̄

′ ≡ Hmp, to arrive at 2× 2 effective Hamiltonian describing
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the first two magnon bands under the perturbation by magnetoelastic coupling. Because Hmp does not couple the
two magnon states, such 2× 2 effective Hamiltonian describing the first two magnon bands obtained from the Löwdin
partitioning can be expressed as

H̃2×2 = H̄0
2×2 + H̄2

2×2, (S56)

where

H̄0
2×2 =

(
Ē1(k) 0

0 Ē2(k)

)
, (S57)

and

H̄2
2×2 =

(
h11 h12

h21 h22

)
. (S58)

Here Ē1(k) = Ē2(k) are the non-perturbed energy-momentum dispersion of the 1st and 2nd magnon bands, which
are degenerate [Fig. S3(a)] in the absence of magnetoelastic coupling and applied magnetic field. The matrix elements
of H̄2

2×2 are given by

hmn =
1

2

∑
l

[
H̄2
]
ml

[
H̄2
]
ln

(
1

Ē0
m(k)− Ē0

l (k)
+

1

Ē0
n(k)− Ē0

l (k)

)
. (S59)

Using the Maclaurin series, ex =
∑∞

0
xn

n! = 1 + x + x2

2 + ..., in the limit x ≪ 1, so that ex ≈ 1 + x, Eq. (S25)
for magnetoelastic coupling in the vicinity of the Γ-point is found to be linear in the wavevector k. In other words,[
H̄2
]
ml

is linear in k, thereby leading to hmn which is quadratic in the wavevector k. Because hmn determines the
energy splitting between the 1st and 2nd magnon-like bands, the energy gap between them due to magnon-phonon
coupling is quadratic in the wavevector k near the Γ-point. Using the same argument, when the wave vector k
becomes comparable to ∼ a−1 then the higher order terms, specifically the second order in k, would contribute to the
magnetoelastic coupling and the energy gap will acquire quartic dependence on wavevector k.

a a

Figure S5. The energy splitting [Fig. S3(b)] between the 1st and 2nd magnon-like bands along [100] direction induced by
magnetoelastic coupling in the absence of applied magnetic field (Bz = 0).

Figure S5 plot the energy splitting δE between the 1st and 2nd magnon bands [Fig. S3(b)] as a function of
wavevector k along the [100] direction calculated from the total effective magnon-phonon Hamiltonian (with 16× 16
bands), Hm + Hp + Hmp. When the wavevector varies over a wide range, the δE behaves like a quartic function
[Fig. S5(a)]. As shown in Fig. S5(b), when the wavevector is small, typically in a range between ±0.1 a−1, we observe
the expected quadratic (parabolic) dependence of δE on k. This analysis fully explains the origin of the gap opening
between the two magnon-like bands carrying opposite spin [Fig. S3(b)] as the consequence of perturbations from
phonons, despite these two bands being distant in energy from manifestly hybridized magnon-phonon bands [around
15 meV in Fig. S2(b)] and their anticrossings near the Γ-point. Such gap opening between the magnon-like bands
makes possible interband transition inducing spin-Berry curvature, which is very large due to the smallness of the
gap, as discussed in the main text and elaborated further in Sec. S2.
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S2. BERRY AND SPIN BERRY CURVATURE OF HYBRIDIZED MAGNON-PHONON BANDS

A. Berry curvature

In this Section, we provide detailed derivation of Eq. (13) in the main text for the Berry curvature of magnon-phonon
bands. Starting from the Berry curvature formula for the BdG Hamiltonian [3, 4]

Ωz
n(k) = iϵxy

[
σ3

∂T †(k)

∂kx
σ3

∂T (k)

∂ky

]
nn

, (S60)

we obtain

Ωz
n(k) = i

∑
m

[
σ3

∂T †(k)

∂kx

]
nm

[
σ3

∂T (k)

∂ky

]
mn

− i
∑
m

[
σ3

∂T †(k)

∂ky

]
nm

[
σ3

∂T (k)

∂kx

]
mn

= i
∑
m

σnn
3

∂
[
T † (k)

]
nm

∂kx
σmm
3

∂ [T (k)]mn

∂ky
− i
∑
m

σnn
3

∂
[
T † (k)

]
nm

∂ky
σmm
3

∂ [T (k)]mn

∂kx
. (S61)

By defining |n(k)⟩m = [T (k)]mn as the mth element of a column vector |n(k)⟩, so that ⟨n(k)|m =
[
T † (k)

]
nm

is the
mth element of a row vector ⟨n(k)|, Eq. (S34) can be rewritten as∑

n

σnn
3 |n(k)⟩σ3⟨n(k)| =

∑
n

σnn
3 |n(k)⟩⟨n(k)|σ3 = I, (S62)

which is the completeness relation for the BdG Hamiltonian eigenbasis. Using Eq. (S62), we can rewrite Eq. (S61) as

Ωz
n(k) = i

∑
m

σnn
3

∂⟨n(k)|m
∂kx

σmm
3

∂|n(k)⟩m
∂ky

− i
∑
m

σnn
3

∂⟨n(k)|m
∂ky

σmm
3

∂|n(k)⟩m
∂kx

= iσnn
3

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
− iσnn

3

〈
∂n(k)

∂ky

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
= i

∑
m ̸=n

σnn
3 σmm

3

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣m(k)

〉〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
− i

∑
m ̸=n

σnn
3 σmm

3

〈
∂n(k)

∂ky

∣∣∣∣σ3

∣∣∣∣m(k)

〉〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
,

(S63)

leading to

Ωz
n(k) = i

∑
m ̸=n

σnn
3 σmm

3

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣m(k)

〉〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
− (kx ←→ ky). (S64)

By taking the derivative of both sides of Eq. (S28) with respect to kx, and by using ⟨n(k)| =
[
T † (k)

]
n··· (the nth row

of
[
T † (k)

]
matrix) and |n(k)⟩ = [T (k)]···n (the nth column of [T (k)] matrix) we obtain

σ3
∂H(k)

∂kx
|n(k)⟩+ σ3H(k)

∣∣∣∣∂n(k)∂kx

〉
=

[
σ3

∂E(k)

∂kx

]
nn

|n(k)⟩+ [σ3E(k)]nn

∣∣∣∣∂n(k)∂kx

〉
. (S65)

Multiplying both sides of Eq. (S65) with ⟨m(k)|σ3 gives〈
m(k)

∣∣∣∣∂H(k)

∂kx

∣∣∣∣n(k)〉+

〈
m(k)

∣∣∣∣H(k)

∣∣∣∣∂n(k)∂kx

〉
=

[
σ3

∂E(k)

∂kx

]
nn

⟨m(k)|σ3|n(k)⟩+ [σ3E(k)]nn

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
.

(S66)

Note that

⟨m(k)|σ3|n(k)⟩ = 0, (S67)

with m ̸= n and 〈
m(k)

∣∣∣∣H(k)

∣∣∣∣∂n(k)∂kx

〉
= [σ3E(k)]mm

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
. (S68)
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Therefore, 〈
m(k)

∣∣∣∣∂H(k)

∂kx

∣∣∣∣n(k)〉 = {[σ3E(k)]nn − [σ3E(k)]mm}
〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
, (S69)

leads to 〈
m(k)

∣∣∣∂H(k)
∂kx

∣∣∣n(k)〉
[σ3E(k)]nn − [σ3E(k)]mm

=

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂kx

〉
, (S70)

and, similarly, we obtain 〈
n(k)

∣∣∣∂H(k)
∂kx

∣∣∣m(k)
〉

[σ3E(k)]nn − [σ3E(k)]mm

=

〈
∂n(k)

∂kx

∣∣∣∣σ3

∣∣∣∣m(k)

〉
, (S71)

〈
m(k)

∣∣∣∂H(k)
∂ky

∣∣∣n(k)〉
[σ3E(k)]nn − [σ3E(k)]mm

=

〈
m(k)

∣∣∣∣σ3

∣∣∣∣∂n(k)∂ky

〉
, (S72)

〈
n(k)

∣∣∣∂H(k)
∂ky

∣∣∣m(k)
〉

[σ3E(k)]nn − [σ3E(k)]mm

=

〈
∂n(k)

∂ky

∣∣∣∣σ3

∣∣∣∣m(k)

〉
. (S73)

Combining Eq. (S64) with Eqs. (S70)– (S73), we finally arrive at the expression for the Berry curvature

Ωz
n(k) =

∑
m ̸=n

iσnn
3 σmm

3

〈
n(k)

∣∣∣∂H(k)
∂kx

∣∣∣m(k)
〉〈

m(k)
∣∣∣∂H(k)

∂ky

∣∣∣n(k)〉
{[σ3E(k)]nn − [σ3E(k)]mm}

2 − (kx ←→ ky)

=
∑
m ̸=n

iσnn
3 σmm

3

〈
n(k)

∣∣∣∂H(k)
∂kx

∣∣∣m(k)
〉〈

m(k)
∣∣∣∂H(k)

∂ky

∣∣∣n(k)〉
[σnn

3 En(k)− σmm
3 Em(k)]

2 − (kx ←→ ky) (S74)

which can also be generalized into

Ωn (k) =
∑
m ̸=n

iℏ2⟨n(k)|v|m(k)⟩⟨m(k)|σ3|m(k)⟩ × ⟨m(k)|v|n(k)⟩⟨n(k)|σ3|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2 , (S75)

thereby completing the derivation of Eq. (13) in the main text.

B. Symmetry constraints on Berry curvature

The two important symmetries constraining the value of the Berry curvature are effective parity-time (PT ) and
time-reversal symmetry (T RS). Under these two symmetries, either the Berry curvature of the magnon-polaron or its
sum over the entire Brillouin zone (BZ) are forced to vanish. This, in turn, results in zero thermal Hall conductivity.

1. Effective parity-time symmetry

Suppose that the bosonic system we consider is invariant under the effective PT operation

[H(k),PT ] = 0. (S76)

Here PT = CK, where C is a paraunitary matrix obeying C†σ3C = Cσ3C† = σ3 and K is the complex conjugate
operator. The BdG Hamiltonian then satisfied the following relation

C†H∗(k)C = H(k), (S77)
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Substituting Eq. (S77) into the eigenequation for the magnon-phonon Hamiltonian in Eq. (S28), we obtain

σ3C†H∗(k)CT (k) = σ3H(k)T (k) = T (k)σ3E(k), (S78)

σ3C†H∗(k)CT (k) = T (k)σ3E(k). (S79)

By multiplying both sides of Eq. (S79) by C from the left we obtain

Cσ3C†H∗(k)CT (k) = CT (k)σ3E(k), (S80)

leading to

σ3H
∗(k)CT (k) = CT (k)σ3E(k). (S81)

Taking the complex conjugate of Eq. (S81) gives

[σ3H
∗(k)CT (k)]∗ = [CT (k)σ3E(k)]

∗
. (S82)

Since both σ3 and E(k) are composed of real numbers, we obtain

σ3H(k)C∗T ∗(k) = C∗T ∗(k)σ3E(k). (S83)

One can see that C∗T ∗(k) plays the same role as T (k), i.e., it obeys the same eigenvalue equation as T (k). This
means that they differ only by a phase factor matrix, i.e., a diagonal matrix with phase factor entries. We can ignore
this phase factor when considering the Berry curvature [4], therefore, allowing us to write

T (k) = C∗T ∗(k). (S84)

Inserting Eq. (S84) into the expression for the Berry curvature written in terms of the paraunitary matrix T (k) gives

Ωz
n(k) = iϵxy

[
σ3

∂T †(k)

∂kx
σ3

∂T (k)

∂ky

]
nn

= iϵxy

{
σ3

∂
[
T †∗(k)C†∗]

∂kx
σ3

∂ [C∗T ∗(k)]

∂ky

}
nn

= iϵxy

[
σ3

∂T †∗(k)

∂kx
C†∗σ3C

∗ ∂T
∗(k)

∂ky

]
nn

= iϵxy

[
σ3

∂T †∗(k)

∂kx
σ3

∂T ∗(k)

∂ky

]
nn

= −iϵxy
[
σ3

∂T †

∂kx
σ3

∂T

∂ky

]
nn

= −Ωz
n(k), (S85)

where we have used σ3 = σ∗
3 =

(
C†σ3C

)∗
= C∗σ∗

3C†∗ = C∗σ3C†∗ together with noticing that C does not depend on the
wave vector k. Equation (S85) implies that the Berry curvature must be zero. In other words, broken PT symmetry
is a necessary requirement for non-zero Berry curvature in the magnon-phonon system.

2. Effective time-reversal symmetry

Even when the Berry curvature is non-zero locally in the k-space, the thermal Hall conductivity will vanish when
the sum of the Berry curvature over the BZ is zero. Specifically, when the system is invariant under the effective time
reversal symmetry, i.e., when the BdG Hamiltonian satisfies

ΘH(k)Θ−1 = H(−k). (S86)

Here Θ is the antiunitary time-reversal operator satisfying Θ2 = +1, which can be written as Θ = D†K where D is a
paraunitary matrix obeying D†σ3D = Dσ3D† = σ3 and K is the complex conjugate operator. The BdG Hamiltonian
then obeys

D†H∗(k)D = H(−k). (S87)

By rewriting Eq. (S28) as

σ3H(−k)T (−k) = T (−k)σ3E(−k) (S88)

and by inserting Eq. (S87) into Eq. (S88), we obtain

σ3D†H∗(k)DT (−k) = T (−k)σ3E(−k). (S89)
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Multiplying both sides of Eq. (S89) by D from the left

Dσ3D†H∗(k)DT (−k) = DT (−k)σ3E(−k), (S90)

leads to

σ3H
∗(k)DT (−k) = DT (−k)σ3E(−k). (S91)

Taking complex conjugate of both sides of Eq. (S91) yields

[σ3H
∗(k)DT (−k)]∗ = [DT (−k)σ3E(−k)]∗ , (S92)

so, that finally we obtain

σ3H(k)D∗T ∗(−k) = D∗T ∗(−k)σ3E(−k). (S93)

Note that the effective time reversal symmetry also imposes E(−k) = E(k), so that

σ3H(k)D∗T ∗(−k) = D∗T ∗(−k)σ3E(k). (S94)

In the same manner as PT symmetry, this leads to T (k) = D∗T ∗(−k). One can easily show that because of this
condition the Berry curvature must satisfy

Ωz
n(k) = −Ωz

n(−k), (S95)

which leads to a zero thermal Hall conductivity when we integrate (or sum) the Berry curvature over the entire
BZ. Applying this result to the case of 2D AFM FePS3 at zero magnetic field (Bz = 0), under which condition the
magnon-phonon system is invariant under the effective time-reversal symmetry Θ = T ′ = T C, leads to zero thermal
Hall conductivity κxy, as discussed in relation to Eq. (9) in the main text.

C. Spin Berry curvature

The out-of-plane spin Berry curvature, involving Sz operator of electron spin, is given by

Ωz
Sz,n =

∑
m ̸=n

iℏ2σnn
3 σmm

3

⟨n(k)|jSz

x |m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2 − (kx ←→ ky)

= −2ℏ2
∑
m̸=n

σnn
3 σmm

3 Im

{
⟨n(k)|jSz

x |m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}

= −2ℏ2
∑
m̸=n

σnn
3 σmm

3 Im

{
⟨n(k)|Szσ3vx + vxσ3S

z|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
. (S96)

Here Im denotes the imaginary part of a complex number. Using the completeness Eq. (S62), and noting that
σ3σ3 = I, we obtain

⟨n(k)|Szσ3vx + vxσ3S
z|m(k)⟩ = ⟨n(k)|Szσ3vx|m(k)⟩+ ⟨n(k)|vxσ3S

z|m(k)⟩

= ⟨n(k)|Sz
∑
l

σll
3 |l(k)⟩⟨l(k)|σ3σ3vx|m(k)⟩+ ⟨n(k)|vx

∑
q

σqq
3 |q(k)⟩⟨q(k)|σ3σ3S

z|m(k)⟩

= ⟨n(k)|Sz
∑
l

σll
3 |l(k)⟩⟨l(k)|vx|m(k)⟩+ ⟨n(k)|vx

∑
q

σqq
3 |q(k)⟩⟨q(k)|Sz|m(k)⟩, (S97)

and, therefore,

⟨n(k)|Szσ3vx + vxσ3S
z|m(k)⟩ = ⟨n(k)|Szσnn

3 |n(k)⟩⟨n(k)|vx|m(k)⟩+ ⟨n(k)|vxσmm
3 |m(k)⟩⟨m(k)|Sz|m(k)⟩

+
∑
l ̸=n

⟨n(k)|Szσll
3 |l(k)⟩⟨l(k)|vx|m(k)⟩+

∑
q ̸=m

⟨n(k)|vxσqq
3 |q(k)⟩⟨q(k)|Sz|m(k)⟩

= (σnn
3 Sz

nn + σmm
3 Sz

mm) ⟨n(k)|vx|m(k)⟩+
∑
l ̸=n

σll
3 S

z,k
nl ⟨l(k)|vx|m(k)⟩+

∑
q ̸=m

σqq
3 Sz,k

qm ⟨n(k)|vx|q(k)⟩. (S98)
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Figure S6. The projected spin Berry curvature Ωz

Sz ,nm [Eq. (S103)] of magnon-phonon bands in 2D AFM FePS3 as a function
of the in-plane wave vector (kx, ky) within the first BZ calculated without applied magnetic field (Bz = 0 T). The color bar
encodes the magnitude of the function Lij = sgn(Ωz

Sz ,ij) log(1 + |Ωz
Sz ,ij |).

By inserting Eq. (S98) into Eq. (S96), we can decompose the spin Berry curvature into two terms

Ωz
Sz,n = Ω

z,(1)
Sz,n +Ω

z,(2)
Sz,n, (S99)

where

Ω
z,(1)
Sz,n = −2ℏ2

∑
m ̸=n

(σnn
3 Sz

nn + σmm
3 Sz

mm)σnn
3 σmm

3 Im

{
⟨n(k)|vx|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
=
∑
m ̸=n

(σnn
3 Sz

nn + σmm
3 Sz

mm) Ωz
nm (k) , (S100)

and

Ω
z,(2)
Sz,n = −2ℏ2

∑
m̸=n

σnn
3 σmm

3 Im

∑
l ̸=n

σll
3 S

z,k
nl

⟨l(k)|vx|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2 +
∑
q ̸=m

σqq
3 Sz,k

qm

⟨m(k)|vy|n(k)⟩⟨n(k)|vx|q(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

 .

(S101)

Here Sz
ii = ⟨i(k)|Sz|i(k)⟩ is the diagonal spin expectation value of the ith band and Sz,k

ij = ⟨i(k)|Sz|j(k)⟩ is the
off-diagonal spin expectation value; and Ωz

nm (k) is the projected Berry curvature of the nth band on the mth band
given by

Ωz
nm (k) = −2ℏ2Im

{
⟨n(k)|vx|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
, (S102)

We define the projected spin Berry curvature as

Ωz
Sz,nm = −2ℏ2σnn

3 σmm
3 Im

{
⟨n(k)|Szσ3vx + vxσ3S

z|m(k)⟩⟨m(k)|vy|n(k)⟩
[σnn

3 En (k)− σmm
3 Em (k)]

2

}
. (S103)
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Figure S7. The spin Berry curvature of magnon-phonon band in 2D AFM FePS3 as a function of the in-plane wave vector
(kx, ky) within the first BZ calculated with an applied magnetic field Bz = 30 T for (a)–(h) 1st–8th band [Fig. S2], respectively.
The color bar encodes the magnitude of the spin Berry curvature Ωz

Sz ,n of the nth band. The insets in panels (b) and (c) show
a zoom in around kx = −1.64 a−1 where the spin Berry curvature of the corresponding bands is non-zero.

The first contribution, Ωz,(1)
Sz,n, to the spin Berry curvature reveals a relationship between the topological transverse

transport of spin with the Berry curvature and, therefore, the non-zero Chern number induced by magnon-phonon
hybridization. Conversely, the second contribution, Ωz,(2)

Sz,n, describes the spin Nernst conductivity occurring due to
the spin coupling between different magnon and phonon bands, and it is not related to the Chern number.

At zero applied magnetic field, (σnn
3 Sz

nn + σmm
3 Sz

mm) does not depend on the wave vector k, so the spin Nernst
conductivity originating from the first term [Ωz,(1)

Sz,n] vanishes when we take the sum or integral of Ωz,(1)
Sz,n over the entire

BZ. The spin Nernst conductivity then depends only on the second term, Ωz,(2)
Sz,n, which can reach large magnitude

via interband transitions between magnon-like bands mediated by the coupling to phonons. There are also smaller
contributions from magnon-mediated interband transitions between phonon-like bands, as discussed in the main text.
Figure S6 shows the projected spin Berry curvature Ωz

Sz,nm calculated from Eq. (S103) for the 1st band acting on the
2nd, 3rd, 4th (magnon-like) and 5th (phonon-like) band. The phonon-mediated interband transitions between the two
magnon-like bands having opposite helicity dominates the spin Berry curvature of the 1st band—this is made clear
by comparing the magnitude of the projected spin Berry curvature Ωz

Sz,12 with the total spin Berry curvature Ωz
Sz,1

[Fig. 5(a) in the main text]. In contrast, the 3rd, 4th and 5th bands shown in Fig. S5 provide minor contributions to
the spin Berry curvature of the 1st (magnon-like) band.

When a finite magnetic field is applied perpendicular to the system, the second term Ω
z,(2)
Sz,n, accounting for interband

transitions between magnon-like bands mediated by phonons, decays quickly because the gap between two magnon
bands possessing opposite spin polarization increases. In contrast, the second contribution Ω

z,(2)
Sz,n, which accounts for

interband transitions between phonon-like bands mediated by magnons, remains unaffected by the applied magnetic
field. This is because the energy separation between the two phonon bands remains constant. Consequently, in this
region the spin Nersnt conductivity is mainly governed by the Chern number originating from Ω

z,(1)
Sz,n contribution as

well as the interband transitions between phonon bands in the second contribution Ω
z,(2)
Sz,n mediated by magnons. To

illustrate this, Fig. S7 shows the spin Berry curvature of the magnon-phonon bands in the presence of an applied
magnetic field of Bz = 30 T. One can observe the contributions of the Chern number to the spin Nernst conductivity
in this figure through the shape of the spin Berry curvatures of the 1st to 4th magnon bands that is similar to that of
the Berry curvatures in Fig. 4(a)–(d) in the main text. The other phonon bands have mixed contributions from the
Chern number and magnon-mediated interband transitions between phonon-like bands.

D. Handling Berry curvature and spin Berry curvature in a system with exceptional points

We note that both Berry and spin Berry curvatures are not well-defined at band touching points, known as excep-
tional points (EPs), in the dispersion of a bosonic system. In 2D AFM FePS3, EPs occur at the X and M points in
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the magnon-phonon band structure [Fig. 2(a) in the main text]. To avoid divergence of the Berry and spin Berry
curvatures at the EPs and calculate the Chern number, we adopt the technique proposed in Ref. [17]. This technique
involves extending to a complex k-space by introducing an imaginary component of the momentum [17]. Using this
approach, we can calculate the Chern number for a specific band in our system without encountering singularities.
Alternatively, we can introduce a small energy gap at the EPs by adding ∆E ≈ 10−4 meV to the denominator of the
expressions for the Berry and spin Berry curvatures [Eqs. (14) and (15) in the main text]. Either way, we find that
the contribution from EPs to the Chern number is negligible, apart from causing the Berry and spin Berry curvatures
to diverge at specific points in the standard k-space composed of real k vectors.
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