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and Branislav K Nikolíc1,∗
1 Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States of America
2 H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
3 Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, United States of America
∗ Authors to whom any correspondence should be addressed.

E-mail: freyes@udel.edu and bnikolic@udel.edu

Keywords: open quantum systems, non-Markovian, Schwinger–Keldysh, spin-boson, spin chain, nonperturbative

Corresponding editor: Dr Lorna Brigham

Abstract
We develop a unified framework for open quantum systems composed of many mutually interact-
ing quantum spins, or any isomorphic systems like qubits and qudits, surrounded by one or more
independent bosonic baths. Our framework, based on Schwinger–Keldysh field theory (SKFT), can
handle arbitrary spin value S, dimensionality of space, and geometry, while being applicable to a
large parameter space for system and bath. It can probe regimes in which non-Markovian dynamics
and nonperturbative effects pose formidable challenges for other state-of-the-art theoretical meth-
ods. This is achieved by working with the two-particle irreducible (2PI) effective action, which
resums classes of Feynman diagrams of SKFT to an infinite order. Furthermore, such diagrams
are generated via an expansion in 1/N, where N is the number of Schwinger bosons we employ
to map spin operators onto canonically commuting ones, rather than via conventional expan-
sion in system-bath coupling constant. We carefully benchmark our SKFT+2PI-computed res-
ults vs. numerically (quasi)exact ones from tensor network calculations applied to the archetyp-
ical spin-boson model where both methodologies are applicable. Additionally, we demonstrate the
capability of SKFT+2PI to handle a much more complex spin-chain-boson model with multiple
baths interacting with each spin where no benchmark from other methods is available at present.
The favorable numerical cost of solving integro-differential equations produced by the SKFT+2PI
framework with an increasing number of spins and time steps makes it a promising route for sim-
ulating driven-dissipative systems in quantum computing, quantum magnonics, and quantum
spintronics.

1. Introduction

The conventional approach to open quantum system dynamics [1–5] formulates quantum master
equations (QMEs) that evolve the reduced density operator of the subsystem of interest via equations
that are, in general, integro-differential. The Markovian regime is typically well-described by time-local
(i.e. differential) equations, often in the Lindblad form [6, 7]. On the other hand, the more demanding
non-Markovian regime [3, 4, 8] usually requires time-nonlocal (i.e. integro-differential) equations [9,
10], or handling additional intricacies to preserve time-locality [2, 11–14]. For many-body systems, the
operators within QMEs are usually expressed as polynomials of creation/annihilation operators acting
in an exponentially increasing Hilbert space, so that a full matrix representation of the QME quickly
becomes intractable by brute force methods. For example, even for a small number NS of quantum spins
of S= 1/2 or, equivalently, qubits, the size of matrices 2NS × 2NS within QME is prohibitively computa-
tionally expensive.
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The Markovian limit is characterized by time evolution that depends only on its present state and
not on its history. It requires that system-environment coupling is weak and that environment correla-
tions are short compared to the timescale of the system evolution (see [7] and section 5.1 for quantitat-
ive criteria involving these parameters to differentiate [3, 4, 8] Markovian vs. non-Markovian regimes).
For Markovian QMEs where the system contains noninteracting degrees of freedom, so its Hamiltonian
is quadratic in creation/annihilation operators, and the dissipative Lindbladian [6, 7] operators are lin-
ear in creation/annihilation operators, specialized techniques like ‘third quantization’ [15–17] can dra-
matically reduce the computational cost—for example, for noninteracting fermions, third quantization
replaces 4Ne × 4Ne matrices required in brute force methods with much more manageable 4Ne× 4Ne

matrices. Beyond such special cases, the search for polynomially scaling algorithms that can solve many-
body Lindblad QME beyond quadratic Hamiltonians has recently led to the development [18, 19]
of methods based on nonequilibrium quantum field theory in both functional integral [20–24] and
second-quantization formulation [25]. In particular, the functional integral [20, 23] formulation of
Schwinger–Keldysh field theory (SKFT) offers a convenient starting point for calculating expectation
values (EVs) and correlation functions of various observables [19, 24], as well as a plethora of field-
theoretic tools [18, 20, 23] developed within elementary particle physics. Indeed, SKFT was originally
developed for problems in high-energy physics and cosmology [21–23] and later applied to low-energy
physics [20, 24]. Such SKFT for open quantum systems has been applied to a number of dissipative
and/or driven problems [26] in condensed matter and atomic-molecular-optical physics. However, while
SKFT can, in principle, deal with both Markovian and non-Markovian systems on equal footing, prior
works have mostly focused only on the Markovian regime [17–19, 24, 26, 27] by building Lindbladian
evolution into the functional integral.

On the other hand, many open quantum systems, including notably quantum computers where
a dissipative and noisy environment limits operational time of qubits [35, 36], exhibit pronounced
memory effects and thereby time-retarded dynamics. A hallmark of such a non-Markovian regime is the
revival of genuine quantum properties, such as quantum coherence, correlations, and entanglement [3,
4]. Such effects are enabled by backflow of information from the environment to the system. The ability
to efficiently simulate non-Markovian open quantum systems also opens new avenues for their optimal
control [37], including via environmental engineering [38]. However, non-Markovian open quantum sys-
tems exhibit exponential growth of complexity with the memory time of the environment, in quite ana-
logous way to how complexity of closed quantum many-body systems grows with the number of degrees
of freedom. This generally restricts many methods developed for the non-Markovian dynamics to min-
imal system sizes; or, if they can handle larger systems [39–44], they are typically restricted in evolution
times, choice of environment(s) [40, 41, 44] and spatial geometry [39, 42–44].

Thus, these unresolved challenges call for exploration of alternative avenues that could allow one to
handle many mutually interacting quantum degrees of freedom, each of which is strongly coupled to
possibly multiple [34] structured environments. In addition, to describe experimentally relevant systems
in quantum computing [35, 36, 45] or quantum spintronics [46–50] and quantum magnonics [51], one
needs to evolve for sufficiently long and experimentally relevant times while handling arbitrary spatial
dimensionality (including three-dimensional systems [45, 51]) and geometry [52] of both the degrees of
freedom and their environments.

In this study, we introduce a field-theoretic approach offering such capabilities. Our approach com-
bines SKFT with a two-particle irreducible (2PI) effective action [22, 53–57] that sums [58, 59] classes
of Feynman diagrams to infinite order. The Feynman diagrams in our SKFT+2PI approach are obtained
not from conventional perturbative expansion in the system-bath coupling constant, but instead from
expansion in powers of a nonphysical small parameter 1/N, where N is the number of Schwinger bosons
we employ to map spin operators onto canonically commuting ones. This approach makes it possible to
reach regimes that are non-perturbative in the system-environment coupling constant. Although both
1/N expansion and 2PI resummation techniques were originally developed long ago for problems in
high-energy physics [23, 60, 61], with the understanding that 1/N expansion itself provides a non-
perturbative resummation of the conventional perturbation theory, it is only recently [62] that a more
profound understanding of how the 1/N expansion captures non-perturbative effects has been achieved.
For example, in many problems, 1/N expansion generates [62] terms of a resurgent transseries [63, 64]
in the system-bath coupling constant.

Our SKFT+2PI approach is developed for a general system of many quantum spins of length S, with
arbitrary geometry and spatial dimensionality, which interact with each other and with one or many
environments composed of infinitely many bosonic modes (figure 1 and equation (1)). Note that [55]
and [56] have already employed a similar combination of SKFT, 2PI and 1/N expansions to study closed
systems of quantum spins. Since such closed system dynamics is a limiting case of our more general

2



Rep. Prog. Phys. 89 (2026) 018002 F Reyes-Osorio et al

Figure 1. (a) Illustration of the spin-boson model (equation (2)) in which a two-level system, such as spin S= 1/2 or a qubit,
interacts via a system-bath coupling constant γ with a dissipative environment modeled as a bosonic bath with infinite frequency
content [28, 29]. The bath spectral density is given by equation (3), where s= 1 is Ohmic, 0< s< 1 is sub-Ohmic, and s> 1 is
super-Ohmic. The high-frequency content of the bath decays exponentially and is characterized by a cutoff frequency ωc. The
state of the two-level system is uniquely determined by the Bloch vector P, so that |P| quantifies the purity of the mixed quantum
state [30, 31]. (b) Illustration of the spin-chain-boson model (equation (4)) in which a chain of NS = 4 spins S= 1/2 interact
with each other, and can couple to multiple independent baths per spin [32–34]. In the chosen system, each component of the
spin at the edge of the chain couples to a separate bosonic bath kept at temperatures T1 on the left edge and T4 on the right edge,
with T1 > T4 causing thermal transport carried by spin excitations.

SKFT+2PI for open quantum systems, in section 5.4 we provide comparison of SKFT+2PI vs. exact
results for a small closed system of quantum spins, revealing failure of the former over relatively short
time scales. In contrast, our SKFT+2PI for open quantum systems matches surprisingly well numeric-
ally (quasi)exact tensor network (TN) methods developed recently. In particular, we carefully benchmark
our SKFT+2PI calculations against: the Lindblad QME describing the Markovian dynamics; or meth-
ods for non-Markovian dynamics including hierarchical equations of motion (HEOM) [65] and TN
methods implemented as the time-evolving density operator with orthogonal polynomials algorithm
(TEDOPA) [66–68] or the time-evolving matrix product operator (TEMPO) [40, 69]. Our results
demonstrate that SKFT+2PI can replicate results of these four methods in a large region of the system
and bath parameter space. Thus, our SKFT+2PI is a promising unified framework for open quantum sys-
tems even in the presence of strong interactions and non-Markovian effects. The related recent efforts
include [57], where SKFT and 2PI are combined to study open systems of spins S= 1/2, but mostly in
the Markovian regime.

To demonstrate the capability of our SKFT+2PI approach to probe nonperturbative and non-
Markovian features of open quantum systems, we apply it to the spin-boson model (figure 1(a)) as an
archetypical problem in the field of open quantum systems [1, 28, 70]. Despite its apparent simplicity
(equation (2)), it contains plenty of challenges in the non-Markovian regime that have ignited the devel-
opment of numerous specialized approaches [66–86]. Furthermore, by applying our SKFT+2PI to a
much more complicated spin-chain-boson model (figure 1(b)), we demonstrate that it can tackle the pre-
viously unsolved problem of multiple independent environments coupled to noncommuting spin oper-
ators [39–44, 84]. For both problems, we study the dynamics of spin EVs, as well as multitime two-spin
correlators. In contrast, the knowledge of the reduced density operator obtained from conventional QME
approaches [1, 9, 10, 65, 87] is insufficient [39, 40] to obtain multitime correlators.

The paper is organized as follows. The general Hamiltonian on which our SKFT+2PI approach is
demonstrated is presented in section 2; the spin-boson and spin-chain-boson models are discussed as
particular cases of it in sections 2.1 and 2.2, respectively. Standard methods for solving the spin-boson
model are overviewed in section 3, where we also provide details of specific algorithms among those that
we employ as benchmarks. In sections 4 and 4.2, the SKFT+2PI theory and its numerical implementa-
tion are developed, while section 4.3 discusses how initial conditions are handled. Results obtained with
SKFT+2PI for various regimes and specific models are shown in section 5. We conclude in section 6.

2. Models

To make the discussion transparent, we focus on a specific and general Hamiltonian

Ĥ= h ·
∑
n

ŝn+
∑
nn′

Jαβnn′ ŝ
α
n ŝ

β
n′ +

∑
nk

ωnkb̂
†
nkb̂nk+

∑
nαk

gαnk ŝ
α
n

(
b̂α†nk + b̂αnk

)
, (1)
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where ŝn = (ŝxn, ŝ
y
n, ŝzn)

T are operators for localized quantum spins of length S at sites n= 1 . . .NS that are
mutually interacting via the generalized Heisenberg exchange Jαβnn′ and are subject to an external magnetic
field h. The system of localized quantum spins ŝn is surrounded by an environment composed of many
three-dimensional isotropic quantum harmonic oscillators of frequencies ωnk whose canonical bosonic
operators are b̂nk = (b̂xnk, b̂

y
nk, b̂

z
nk)

T. Here, b̂nk and ωnk correspond to the kth oscillator coupled to the nth
spin via the in-general anisotropic coupling gαnk, Cartesian components are denoted by superscript α=
x,y,z and h̄= 1 for simplicity of notation.

2.1. Spin-bosonmodel
A special case of the general Hamiltonian in equation (1) describing a single two-level quantum
system—such as a spin S= 1/2, a qubit [35, 36], or any two well-separated energy levels [3, 4]—
which is made open by its interaction with a bosonic bath composed of infinitely many harmonic oscil-
lators is known as the spin-boson model [28]. This model is schematically illustrated in figure 1(a).
The Hamiltonian of the spin-boson model is obtained for NS = 1 spin of length S= 1/2 by setting
the external magnetic field to h= (∆,0,ωq), the Heisenberg exchange to Jαβ11 = 0, and all spin-bath
couplings are set to zero except for gz1k = gk. This leads to simplification of the general Hamiltonian in
equation (1) into

Ĥ= ωq ŝ
z+∆ŝx+

∑
k

ωkb̂
†
k b̂k+ ŝz

∑
k

gk
(
b̂k+ b̂†k

)
. (2)

Here, ŝα are the Pauli operators; ωq is the energy difference between the two eigenstates of ŝz, ŝz|↑⟩=
|↑⟩, ŝz|↓⟩=−|↓⟩; ∆ is the tunneling matrix element, which also sets the units of energy; and we sup-
press the subscript n since there is only one spin. The properties of the bath are fully captured by the
coupling-weighted spectral density, J (ω) = 2π

∑
k g

2
kδ(ω−ωk), for which a generic form

J (ω) = γω1−s
c ωse−ω/ωc , (3)

is usually assumed [28, 29]. Here γ is a single parameter characterizing the system-bath coupling
strength; ωc is the cutoff frequency of the bath signifying the exponential decay of the high-frequency
content; parameter 0< s< 1, s= 1 and s> 1 classifies spectral densities as sub-Ohmic, Ohmic, and
super-Ohmic, respectively [74]; and the spectral density J (−ω) =−J (ω) is antisymmetrically exten-
ded [71].

Although the spin-boson model has been intensely studied for many decades [28], its non-Markovian
dynamics [3, 8, 66, 88, 89] still pose a formidable challenge despite the plethora of available numerical
and analytical methods [66–82, 84–86] for open quantum systems developed specifically for it. This is
especially true for the case of zero [70, 74, 89] or ultralow temperatures and/or specific frequency con-
tent of the bosonic bath [74, 88]. For example, the sub-Ohmic case at zero temperature, with a relatively
large portion of low-frequency modes (figure 1(a)), is considered particularly challenging [74, 78–81, 85]
and of relevance to superconducting qubits [35, 36, 45] subjected to electromagnetic noise [80]. Other
challenges are, in general, posed by the long-time limit [74, 85, 86, 90] of non-Markovian dynamics [88,
89], whose memory effects force information to flow from the environment back into the system. Such
effects are not necessarily transient [88]. It is generically assumed that the non-Markovian regime [3,
4, 8] in open quantum system dynamics is entered when the system-bath coupling is sufficiently strong
and correlations of the bath do not decay rapidly [7]. But detailed examination [88, 89] of measures of
non-Markovianity vs. system-bath coupling strength in the case of the spin-boson model shows com-
plex nonmonotonic dependence, including sensitivity to the cutoff frequency ωc, temperature T and fre-
quency content of the bath.

2.2. Spin-chain-bosonmodel
Another special case of the general Hamiltonian in equation (1) is obtained by considering NS > 1 spins
with Heisenberg exchange coupling between the nearest neighbors Jααn,n+1 = Jααn,n−1 = J/2 and with each
component α= x,y,z of the spins at the ends of the chain being coupled to independent bosonic baths
(figure 1(b)). Such coupling to the environment is described by setting all spin-bath couplings to zero
except for gα1k and gαNSk

. An external magnetic field along the x-axis is included by using h= (h,0,0),
and coupling between spins is ferromagnetic (FM) if J< 0 and antiferromagnetic (AF) if J> 0. Thus, the
Hamiltonian of such spin-chain-boson model is given by Ĥ= ĤS + ĤB, where

ĤS =
∑
n

(Jŝn · ŝn+1 + hŝxn) , (4a)
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ĤB =
∑

n=1,NS

∑
k

[
ωnkb̂

†
nkb̂nk+

∑
α

gαnk ŝ
α
n

(
b̂α†nk + b̂αnk

)]
. (4b)

The frequency content of the bosonic baths is assumed to be described by the spectral density in
equation (3), but with independent temperatures Tn, cutoff frequencies ωc,n, exponents sn, and system-
bath couplings γαn for n= 1 and n= NS. The couplings γαn are further assumed to be independent for
each spin component α, thus allowing for anisotropically coupled baths.

This spin-chain-boson model represents a challenge to recently developed approaches [39–44, 84]
for non-Markovian dynamics due to its larger Hilbert space and multiple [34] bosonic environments
coupled to non-commuting operators. Interestingly, prior studies of open quantum magnets in equi-
librium have found that ordinarily forbidden long-range order in one-dimensional (1D) quantum spin
chains can be stabilized by the presence of Ohmic and sub-Ohmic baths [91]. Thus, having a form-
alism that can examine non-Markovian dynamics of standard or exotic quantum magnets (such as
quantum spin liquids [92]), or systems of interacting qubits [35, 36] including their arrangements in
three-dimensional geometries [45], is of great contemporary interest, as they are necessarily interacting
with a dissipative environment at finite temperature in experiments [93]. While methods based on TNs
can be applied to systems similar to the spin-chain-boson model when the coupling to the bath is sim-
plified [39, 40], no standard approach for non-Markovian dynamics in systems with more complicated
bath structures (such as the one assumed in this work or with faster entanglement growth occurring in
higher spatial dimensions) has emerged thus far.

3. Standardmethods for solving the spin-bosonmodel

For solving the spin-boson model described in section 2.1, the brute force numerical solution of QME
in the non-Markovian regime requires computing high-dimensional integrals over time [87] stemming
from time-dependent perturbation theory. Although this can be done for low-order terms in the expan-
sion [94], the inclusion of higher-order terms makes the accuracy of calculations extremely sensitive to
numerical errors. As an alternative, the widely used HEOM approach [65] has been developed by con-
verting the time-nonlocal integro-differential QME of the brute force method [87] into a set of finitely
many time-local differential equations. However, its standard version [65] is limited to high temper-
atures [95], which has motivated recent efforts to extend the HEOM approach [85, 86, 90] to access
zero temperature and much longer simulation times. Multilayer multiconfiguration time-dependent
Hartree (ML-MCTDH) [73, 74], numerical renormalization group [78–81], inchworm quantum Monte
Carlo [96–98], self-consistent dynamical maps [83] and TN approaches [40, 41, 84, 99], that can handle
non-Markovian dynamics at zero temperature have also been developed. However, HEOM and ML-
MCTDH algorithms are prohibitively expensive for many interacting quantum spins or, equivalently,
qubits [35, 36].

Since the spin-boson model offers a playground for benchmarking our SKFT+2PI approach vs.
standard approaches, we overview in sections 3.1 and 3.2 HEOM and specific TN-based algorithms,
respectively, that we employ. We also overview in section 3.3 the Lindblad QME we use as a benchmark
in the weak system-bath coupling regime.

3.1. HEOM approach to non-Markovian dynamics
The HEOM algorithm [65], initially developed for problems in quantum chemistry [100], is a widely
used method for solving QMEs of open quantum systems with arbitrary system-bath coupling. However,
in its original formulation [65, 100] it requires finite temperature, T> 0 [85, 86, 90, 95]. The non-
perturbative treatment of interaction with the bath is achieved by introducing a hierarchy of auxili-
ary density matrices that encode system-bath correlations and entanglement [65, 101]. This hierarchy
relies on the expansion of the bath correlation function into an exponential form. The limitations of
the HEOM method are well known [85, 86, 90, 95] and arise from the truncation of either the number
of auxiliary matrices (a stronger system-bath coupling requires a higher hierarchy cutoff), or the trun-
cation in the exponential decomposition of the bath correlation (typically, lower temperature requires
more terms in the expansion). The exact exponential expansion of an arbitrary spectral density J (ω)
of the bath is not known. We fit the spectral density in equation (3) using a sum of up to four under-
damped [65] spectral densities whose exponential expansion is well known [102]. In order to guarantee
convergence, we ran simulations varying the hierarchy cutoff, up to a maximum of 11. In addition, we
also adjust the number of exponential terms, using a maximum of 16 terms for the lowest temperature
case kBT= 0.1∆ (figure 7), where kB is the Boltzmann constant. All such calculations were performed
using the HEOM extension [103] of the QuTiP [104, 105] package.
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3.2. TN approach to non-Markovian dynamics
The TN approaches to non-Markovian dynamics of open quantum systems are broadly divided into
two complementary classes [84]. One class, which hosts TEDOPA used in our study as a benchmark
(figures 5, 7, and 9), is based on applying a thermofield chain mapping [66, 67]. This approach puri-
fies a finite temperature environment and transforms its representation into a chain geometry ideally
suited to matrix product state (MPS) algorithms. Then, the pure quantum state of the full system and
environment is unitarily evolved using well established MPS techniques like the time-dependent vari-
ational principle (TDVP) [106, 107]. The other class is, instead, based on applying a MPO to describe
the Feynman-Vernon influence functional in the temporal domain [40, 68–70, 108, 109]. Separating
such representation of the Feynman-Vernon influence functional into contributions from the unitary
dynamics and from different additive baths, each of which is represented by a process tensor (PT) leads
to increased performance [39–41, 76, 110, 111]. TEMPO, the second TN-based benchmark we employ
(figures 5, 7, and 9), belongs to this class.

When implementing TEDOPA the chain mapping representation of an environment spectral function
is truncated to a finite length which places an upper limit on the time for which the dynamics faith-
fully captures the environment’s continuum [112, 113]. However, this is rarely a practical issue since the
computational cost of increasing the chain length scales linearly. Nonetheless the strongest limitation of
TEDOPA is the short time evolution that can reached. The reason for this can be (i) the unfavorable
scaling of the method with the local Hilbert space dimension of the bosonic modes when oscillators are
highly excited, and (ii) the transient ‘entanglement barrier’ [114–116] that some dynamics can exhibit
where the MPS bond dimension grows prohibitively quickly with time. For example, even Markovian
dynamics can lead to a spike [117] of the many-body entanglement of the system, despite the pres-
ence of a dissipative environment and naïve expectation [118] that interactions with the environment
should curtail entanglement growth. Recently, new approaches have been developed to overcome these
issues, including a Markovian closure of the chain that accurately models the effects of the infinitely long
truncated part of the chain [119], adaptive one-site TDVP which makes more efficient use of the bond
dimension [120], and interaction-picture chain mapping that results in lower oscillation occupation in
the environment [121]. For TEMPO and PT-TEMPO, there is a combination of Trotter errors and trun-
cation errors from the compression of the MPS bond dimension whose interplay is not currently fully
understood and, alas, also limits the reachable simulation times [108, 109].

For the spin-boson model (equation (2)) at ultralow temperatures, we use (figures 5(a), (c) and 7(a),
(c)) TEDOPA, based on an MPS description of a thermofield-chain-mapped system [66, 67]. An MPS is
a representation of an arbitrary pure state as a product of local tensors given by [122]

|ψ⟩=
∑

s1,...,sN

As1
1 . . .A

sN−1

N−1A
sN
N |s1. . .sN⟩, (5)

where Asi
j is a χj×χj+1 matrix (with χ1 = χN = 1 fixed) for the jth local degree of freedom possessing a

dj dimensional Hilbert space. The bond dimension χj is a crucial parameter controlling the expressive-
ness of the MPS ansatz and is directly related to the maximum bipartite entanglement it can support.

In order to represent the equilibrium state of the bath in the form of a pure state MPS, we use ther-
mofield purification in which the finite temperature of the bath is encoded in two different baths at zero
temperature [123]. The density operator of a bosonic bath at inverse temperature β = 1/kBT is given by

ρ̂β =
⊗
k

( ∞∑
n=0

e−βnωk

Zk
|n⟩k⟨n|k

)
, (6)

where Zk = (1− e−βωk)−1; n is the occupation of mode k; and kB is the Boltzmann constant. By
introducing an identical auxiliary system A, with canonical operators â†k , âk and Hamiltonian HA =

−
∑

kωkâ
†
k âk, we define the thermofield double state as a purification of ρ̂β , given by

|Ωβ⟩=
⊗
k

 ∞∑
n=0

√
e−βnωk

Zk
|n⟩k⊗ |n⟩Ak


= exp

(∑
k

θk

(
b̂kâk− b̂†k â

†
k

))
|vac⟩. (7)
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Figure 2. (a) Illustration of how thermofield purification of the initial thermal state of the bath entangles each bath eigenmode
with an ancilla. The geometry of interactions of the spin S with the bath modes is a star. (b) After performing a Bogoliubov trans-
formation and orthogonal polynomial tridiagonalization, we arrive at a two-chain geometry ideal for MPS calculations.

Here, |vac⟩ is the bosonic vacuum state; |n⟩Ak is a state of the k mode in the auxiliary system; θk =
atanh(e−βωk/2); and ρ̂β = TrA|Ωβ⟩⟨Ωβ | is recovered by partial trace over the states of auxiliary system
A. The state |Ωβ⟩ is the vacuum for the modes

ĉ1,k = cosh(θk) b̂k− sinh(θk) â
†
k , (8)

ĉ2,k = cosh(θk) âk− sinh(θk) b̂
†
k , (9)

obtained from a thermal Bogoliubov transformation. In this new basis, the extended Hamiltonian is
given by

Ĥ= ωq ŝ
z+∆ŝx+

∑
k

ωk

(
ĉ†1,kĉ1,k− ĉ†2,kĉ2,k

)
+ ŝz

∑
k

[
g1k
(
ĉ1,k+ ĉ†1,k

)
+ g2k

(
ĉ2,k+ ĉ†2,k

)]
, (10)

where g1k = gkcosh(θk) and g2k = gksinh(θk).
As it stands, this setup has a star geometry in which the spin interacts with each mode of the bath,

as illustrated graphically in figure 2(a). This corresponds to long-ranged interactions within a 1D repres-
entation of the system, which are more difficult to handle using MPSs. For this reason, we map via con-
tinuous mode tridiagonalization the two zero-temperature star geometry baths into two 1D tight-binding
chains, each coupled to the system spin [66], as shown in figure 2(b). In the continuum representation,
these two baths are characterized by spectral densities J1(k) = [1+ nBE(k)]J (k) and J2(k) = nBE(k)J (k),
where nBE(k) is the Bose–Einstein distribution function. We then define new bosonic operators B̂n and
Ĉn such that

2ĉ1,k =
∑
n

U1,n (k) B̂n, ĉ2,k =
∑
n

U2,n (k) Ĉn. (11)

Here, Uj,n(k) = gj(k)πj,n(k)/ρn,j for j = 1,2 and πj,n(k) are monic orthogonal polynomials that obey

ˆ ∞

0
dkJj (k)πj,n (k)πj,m (k) = ρ2j,nδn,m, (12)

with ρ2j,n =
´∞
0 dkJj(k)π2

j,n(k) [67]. This description simplifies significantly at zero temperature, as
J1(k) = 0, so only one chain is needed. Using a finite cutoff of M modes for the mapping, we have

Ĥ= ωq ŝ
z+∆ŝx+ ŝz

[
ρ1,0

(
B0 +B†

0

)
+ ρ2,0

(
C0 +C†

0

)]
+

M∑
n=0

(
α1,nB̂

†
nB̂n−α2,nĈ

†
nĈn+

√
β1,n+1B̂

†
n+1B̂n−

√
β2,n+1Ĉ

†
n+1Ĉn+H.c.

)
, (13)

where the coefficients αj,n and βj,n are defined through the recurrence relation πj,n+1(k) = (k−
αj,n)πj,n(k)−βj,nπj,n−1(k), with πj,−1(k) = 0. These chain parameters were generated using the ORTHPOL
package [124]. Generically, they are found to quickly converge to constants αi,n → αi, βi,n → βi. Using
the Lieb-Robinson bounds [112, 113], sites further than ∼ τβi have a negligible effect on the system
dynamics up to time τ , giving a well-defined measure of the length of bath chains we need. In this
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sense, the discretization generated by orthogonal polynomials is exact up to a finite time. To time evolve
the MPS, we use the two-site variant of the TDVP [106, 125–127] which dynamically updates the MPS
bond dimensions to maintain a desired level of precision.

3.3. Lindblad QME approach toMarkovian dynamics
In the weak system-bath coupling regime of the spin-boson model (equation (2)), where the system (i.e.
spin) dynamics is expected to be Markovian [88, 89], the Lindblad QME [6, 7]

dρ̂

dt
=−i

[
ĤS, ρ̂

]
+

2∑
i=0

(
L̂i ρ̂L̂

†
i −

1

2

{
L̂†i L̂i , ρ̂

})
, (14)

can accurately capture the open quantum system dynamics. Here ĤS is the Hamiltonian of an isolated
spin, composed of the first two terms on the right-hand side (RHS) of equation (2); ρ̂ is the spin dens-
ity operator [30]; and L̂i is a set of three Lindblad operators [6, 7] which account for the presence of
the bosonic bath. Those three L̂i operators for the spin-boson model can be expressed [1] in the energy
eigenbasis of ĤS, ĤS|±⟩= E±|±⟩, of ĤS as

L̂0 =
√
J(∆E) [1+ nBE (∆E)] [⟨+|ŝz|−⟩]2|−⟩⟨+|, (15a)

L̂1 =
√
J(∆E)nBE (∆E) [⟨+|ŝz|−⟩]2|+⟩⟨−|, (15b)

L̂2 =
√

2γLT⟨−|ŝz|−⟩⟨+|ŝz|+⟩|−⟩⟨−|, (15c)

where ∆E= E+ − E− is the energy difference of the two levels, and γL is the system-bath coupling. Note
that γL has to be adjusted in figure 5 by hand to match SKFT+2PI- or TN-computed results.

4. SKFT+ 2PI for open quantum spin systems

To define the functional integral of SKFT, it is convenient to first map the spin operators in the gen-
eral Hamiltonian of equation (1) onto fermionic or bosonic operators [55, 56, 128] subject to canonical
commutation relations, so that the Wick theorem and other field-theoretic machinery applicable to such
operators can be utilized. Here we employ the Schwinger boson mapping [56, 129–131], in which oper-
ators of spin S are expressed using N flavors of bosons. Any spin length S can be represented by any
number of Schwinger boson flavors N. Therefore, N is not a physical parameter; rather, it is an auxiliary
object of the mathematical framework. For N = 2, which we use in this work to curtail computational
complexity, the spin operators are expressed as

ŝαn =
1

2
ψ̂†
nσ

αψ̂n, (16)

where σα is a matrix representation of the Pauli operators, and ψ̂n = (â(1)n , â(2)n )T is a doublet of the
two flavors of Schwinger bosons for spin n. Although other mappings from spin to bosons or fer-
mions can be employed, Schwinger bosons preserve rotational symmetry, as opposed to Holstein–
Primakoff bosons [132]; and are also generalizable to larger spin values S, unlike Majorana [55] or
Jordan–Wigner [133] fermions applicable only to S= 1/2. The spin length S is set by constraining the
Schwinger boson occupation at each site to be

â(1)†n â(1)n + â(2)†n â(2)n = 2S. (17)

The constraint ensures that only a subspace of the infinite dimensional bosonic Hilbert space is utilized
for spin dynamics. For example, the one-boson subspace corresponds to the physical Hilbert space of a
spin S= 1

2 spanned by |1,0⟩ ≡ |↑⟩ and |0,1⟩ ≡ |↓⟩. Similarly, the two-boson subspace corresponds to a
spin S= 1, spanned by |2,0⟩ ≡ |↑⟩, |1,1⟩ ≡ |0⟩, and |0,2⟩ ≡ |↓⟩; the three-particle subspace corresponds
to S= 3

2 , and so forth [129, 130].
The Schwinger–Keldysh (SK) functional integral is formulated in terms of complex fields ψn which

are complex eigenvalues

ψ̂n|ψ1, . . .ψn, . . .ψNS⟩= ψn|ψ1, . . .ψn, . . .ψNS⟩, (18)

8
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of ψ̂n, and whose corresponding eigenvectors |ψ1, . . .ψn, . . .ψNS⟩ are the bosonic coherent states. Instead
of working with complex-valued fields for the Schwinger bosons, we expand in terms of their real and

imaginary parts, a(σ)n = (x(σ)n + ip(σ)n )/
√
2, which are grouped into the 4-component field

φn =
(
x(1)n ,p(1)n ,x(2)n ,p(2)n

)T
. (19)

Working with the real-valued fields φn simplifies the rules that generate the diagrammatic expansion of
the 2PI action. Additionally, it manifests the O(4) symmetry of the theory. Since an O(2) theory, which
has fewer fields, is already remarkably close to the large-N limit [134], we conclude that the usage of a
1/N expansion [61] is justified, despite only employing two flavors of complex Schwinger bosons.

The spin fields can be constructed as sαn = φT
nK

αφn/2, where

Kx = σx⊗ I2, Ky =−σy⊗σy, Kz = σz⊗ I2, (20)

and I2 is the 2×2 identity matrix. Then, the SK action, S= SS+ SB, as one of the central quantities in
SKFT, is given by

SS =−
ˆ
C
dt
∑
n

φT
n

(
i

2
K0∂t+H

)
φn+

∑
αβnn ′

Jαβnn′ s
α
n s

β
n′ , (21a)

SB =

ˆ
C
dt
∑
nαk

[bα⋆nk (i∂t−ωnk)b
α
nk− gαnks

α
n (b

α
nk+ bα⋆nk )] , (21b)

where C is the SK closed time contour [21–24]. Here SS and SB are the contributions to the total action
S from the system of spins and the bath, respectively; K0 = I2 ⊗σy; and H=

∑
α h

αKα/4. For simpli-
city, we consider bosonic baths that are local, i.e. no more than a single spin can couple to a given bath.
This does not preclude multiple baths from coupling to the same spin, which can also be straightfor-
wardly generalized to nonlocal baths. Since SB is in the Gaussian form, it can be integrated out exactly.
The quartic term that is produced,

∝ sαn (t)Ξ
α
n (t, t

′) sαn (t
′) , (22)

is the so-called influence phase [29], and represents a nonlocal-in-time effective self-interaction of the
spins generated by the presence of the bath. The bath kernel

Ξα
n (t, t

′) =
∑
k

(gαnk)
2Bα

nk (t− t ′) , (23)

is given in terms of the noninteracting GF of the bosonic bath

iBα
nk (t, t

′) = ⟨bαnk (t)bα⋆nk (t ′)⟩0, (24)

where ⟨. . .⟩0 is the EV [24] neglecting spin-bath and spin-spin coupling. The possibility of placing the
two times t and t′ on the forward and backward branches of the SK contour C makes Bα

nk(t, t
′) and

any other GF of the theory contain four components [23, 24, 135, 136]. However, only two of those
components are independent, motivating different expressions in terms of GFs that take real-time argu-
ments. In condensed matter physics, it is common to use either the lesser G< and greater G> GFs, often
employed in the second-quantized operator formulation of Keldysh GFs [135, 136]; or the retarded and
Keldysh GFs, often employed in the equivalent functional integral formulation [24]. In this work, we will
decompose contour GFs in terms of their Keldysh (K) and spectral (s) components [22], respectively
expressed as

GK/s (t, t ′) = G> (t, t ′)±G< (t, t ′) , (25)

where + sign is for GK and − sign is for Gs. The physical meaning of Gs is to describe the density of
available states, while GK describes how those states are occupied. The contour GFs are then reconstruc-
ted as

G(t, t ′) =
1

2
GK (t, t ′)+

1

2
sgnC (t, t

′)Gs (t, t ′) , (26)

9
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where the contour sign function sgnC(t, t
′) equals 1 if its arguments are ordered on the contour; −1 if

its arguments are not ordered on the contour; and 0 if its arguments are the same. Through this decom-
position, integrals over C simplify to become real-time causal integrals, which, otherwise, in the lesser/-
greater representation [135, 137] require the usage of the much more demanding Langreth rules [138].

For the noninteracting GFs of the bosonic bath Bα
nk(t, t

′), closed expressions for Bα,K/s
nk are given by

Bα,K
nk (t, t ′) =−i coth

(
ωnk

2kBTn

)
e−iωnk(t−t ′), (27a)

Bα,s
nk (t, t ′) =−ie−iωnk(t−t ′), (27b)

where Tn is the temperature of the nth bath [24].
The total SK action thus has two quartic terms, the influence phase displayed in equation (22) that

stems from integrating out the bosonic environment, and the last term on the RHS of equation (21a)
that stems from the Heisenberg spin-spin exchange interaction. These quartic terms can both be
decoupled through the Hubbard–Stratonovich transformation [139], yielding the modified total action

S=

ˆ
C
dt

[
−
∑
n

φT
n

(
i

2
K0∂t+ H̃n

)
φn+

1

4

ˆ
C
dt ′
∑
αn

λαn (t)λ
α
n (t

′)

Ξα
n (t, t

′)
+

1

4

∑
Λα
n

[
J−1
]αβ
nn′

Λβ
n′

]
. (28)

Here, the Hubbard–Stratonovich fields λαn and Λα
n mediate the nonlocal-in-time spin-bath and the spin-

spin interactions, respectively, and H̃n =
1
4

∑
α(h

α +λαn +Λα
n )K

α is the effective Hamiltonian.
Nonequilibrium connected EVs can be obtained from the functional derivatives of the generating

functional

W [J,K] =−i ln

ˆ
DΦ exp

(
iS [Φ]+ i

ˆ
C
dt J(t)Φ(t)

ˆ
C
dtdt ′K(t, t ′)Φ(t)Φ(t ′)

)
, (29)

where DΦ indicates functional integration over all possible configurations of six-component field Φ =
(φ,λ,Λ)T, and J and K are one- and two-particle sources [23, 56], respectively. However, in practice this
is a difficult calculation that requires perturbative approximation of the influence phase in equation (22),
except for very simple environments [29]. Thus, it is more convenient to work with the Legendre trans-
form of the functional W[J,K] with respect to both arguments,

Γ
[
Φ̄,G

]
=W [J,K]−

ˆ
C
dt J(t)Φ̄(t)−

ˆ
C
dtdt ′K(t, t ′)

(
G(t ′, t)− iΦ̄(t ′)Φ̄(t)

)
, (30)

known as the 2PI effective action [20, 22, 23]. Here, Φ̄ and G are the one- and two-particle connected
EVs generated by W[J,K]. That is, Φ̄ is the EV and G is the connected GF of the fields. It is advantage-
ous to work with Γ[Φ̄,G] instead of W[J,K] because it produces EVs via a comparatively simpler vari-
ational approach, i.e. the full nonequilibrium EVs satisfy the saddle-point equations δΓ/δΦ̄ = 0 and
δΓ/δG= 0. Such variational calculations for real fields can be performed on the expansion [23, 60]

Γ
[
Φ̄,G

]
= S

[
Φ̄
]
+

i

2
Tr lnG−1 +

i

2
Tr
[
G−1
0

[
Φ̄
]
G
]
− iΓ2, (31)

where a constant term has been ignored; the trace is taken over all possible indices and times; G−1
0 =

δ2S/δΦ̄δΦ̄ is the inverse of the noninteracting GF including one-loop or mean-field corrections; and
Γ2 contains all 2PI vacuum Feynman diagrams. The 2PI diagrams contain two or more loops in which
edges represent the full nonequilibrium GF G and vertices correspond to interactions contained in the
action S, with possible insertions of the EV of the field Φ̄. Let us recall that 2PI diagrams are those that
cannot be separated by cutting two edges or fewer, and vacuum diagrams have no external edges [23].
Since the diagrammatic expansion contained in Γ2 is a functional of the full interacting nonequilib-
rium GF, each diagram within the 2PI effective action formalism effectively sums an infinite number
of Feynman diagrams of particular topology with bare edges [58]. This can unravel effects that are non-
perturbative [61, 62], which would otherwise be unattainable when using standard perturbative expan-
sion in the coupling constant [136, 140, 141].

The spin-to-Schwinger-boson mapping implies that any EV containing an odd number of Schwinger
bosons vanishes for physical states. In particular, φ̄ = 0 and ⟨φ(t)λ(t ′)⟩= ⟨φ(t)λ(t ′)⟩= 0. Additionally,
⟨λ(t)Λ(t ′)⟩= 0 due to the absence of terms coupling λ and Λ in the action of equation (28). Therefore,
each diagram in the 2PI expansion is made up of vertices
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Table 1. Summary of the key quantities of the SKFT+2PI framework for open quantum spin systems that appear in the equations of
motion, equations (34) and (37), with their respective symbols, definitions, and labels. All indices are shown explicitly, such as
a,b= 1 . . .4, α,β = x,y,z, and n= 1 . . .NS.

Symbol Definition Name Symbol Definition Name

Ξα
n (t, t

′)
∑

k(g
α
nk)

2Bα
nk(t− t ′) Bath kernel λ̄α

n (t) ⟨λα
n (t)⟩ EV of the bath field

Jαβ
nn′ Heisenberg coupling Λ̄α

n (t) ⟨Λα
n (t)⟩ EV of the mean-field

gabn (t, t ′) −i⟨φb
n(t

′)φa
n(t)⟩ GF of the Schwinger

bosons
Σab

n (t, t ′) 2δΓ2/δg SE of the Schwinger
bosons

Dα
n (t, t

′) −i⟨λα
n (t

′)λα
n (t)⟩+ iλ̄α

n (t)λ̄
β
n (t

′) Bath propagator Πα
n (t, t

′) 2δΓ2/δD SE of the bath
Mαβ

nn′(t, t
′) −i⟨Λα

n′(t
′)Λβ

n (t)⟩+ iΛ̄α
n (t)Λ̄

β
n (t

′) Mean-field propagator Ωαβ
n 2δΓ2/δM SE of the mean-field

M̌αβ
nn′(t, t

′) equation (36) Mean-field propagator

H̃ab
n

1
4

∑
α(h

α +λα
n +Λα

n )K
α
ab Effective Hamiltonian Kα

ab equation (20) Spin matrices for
real fields

where, within a particular diagram, solid lines correspond to the GF of the Schwinger bosons
igabnn′(t, t

′) =
〈
φa
n(t)φ

b
n′(t

′)
〉
; dashed lines to the propagator iDα

n = ⟨λαn (t)λαn (t ′)⟩; and wavy lines to the

propagator iMαβ
nn′ =

〈
Λα
n (t)Λ

β
n′(t

′)
〉
. Table 1 summarizes our nomenclature for all non-vanishing EVs

and other relevant quantities.
Handling the infinite number of diagrams contained within Γ2 in equation (31) requires a con-

trolled approximation scheme. We adopt the scheme used in [56], where diagrams are truncated based
on powers of the inverse of the number of Schwinger bosons 1/N, which has been previously used to
capture relevant features of closed quantum systems [53, 55, 56, 134, 142–144]. We emphasize that
N = 2 flavors of Schwinger bosons, which translate into an O(4) theory, have been shown to already
be remarkably close to the large-N limit in spite of our N = 2 not being as large as typically invoked
in elementary particle physics [61, 134]. The scaling with 1/N of a particular diagram is set by the
number of closed loops of solid lines, and the number of dashed and wavy lines. Closed loops of solid
lines scale ∼N due to corresponding to traces over the space of Schwinger bosons. To determine the
scaling of dashed (wavy) lines, we consider that all terms in the action of equation (28) are relevant
in the large-N limit on the proviso that the bath kernel and the Heisenberg coupling constant scale as
Ξ ∼ J∼ 1/N because the fields λ and Λ do not scale with N themselves. Then, the equations of motion
equations (34c) and (34b), in which D∼ Ξ and M∼ J, imply that dashed (wavy) lines scale ∼1/N.
Thus, the 2PI diagrams that scale with the lowest power of 1/N are the two-loop ones:

At this order of truncation, the equations of motion for the EVs of the fields and the connected
nonequilibrium GFs, as obtained from the expansion of the 2PI action in equation (31) via variational
principle, are given by

∂tgn (t, t
′) = iK0δtt′ + 2iK0H̃n (t)gn (t, t

′)+ iK0

ˆ
C
dt1Σn (t, t1)gn (t1, t

′) , (34a)

M(t, t ′) = 2Jδtt′ + 2

ˆ
C
dt1 JΩ(t, t1)M(t1, t

′) , (34b)

Dα
n (t, t

′) = 2Ξα
n (t, t

′)+ 2

¨
C
dt1dt2Ξ

α
n (t, t1)Π

α
n (t1, t2)D

α
n (t2, t

′) , (34c)

Λ̄ (t) =
i

2
JTrS [Kg(t, t)] , (34d)
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λ̄αn (t) =
i

2

ˆ
C
dt ′Ξα

n (t, t
′)TrS [K

αgn (t
′, t ′)] . (34e)

We remind the reader that definitions for all quantities in these equations are provided in table 1.
Here, matrix multiplication is assumed for indices not shown; TrS traces over the space of Schwinger
bosons; δtt′ is the contour Dirac delta function [22]; integrals are over the SK closed contour C; and
Π = 2δΓ2/δD, Ω= 2δΓ2/δM, and Σ= 2δΓ2/δg are the self-energies (SEs) derived through func-
tional differentiation of the 2PI vacuum diagrams. The diagrams considered within our 1/N expansion
(equation (33)) yield expressions for the SEs

Πα
n (t, t

′) =
i

8
TrS
[
Kαgn (t, t

′)KαgTn (t, t
′)
]
, (35a)

Ωαβ
n (t, t ′) =

i

8
TrS
[
Kαgn (t, t

′)KβgTn (t, t
′)
]
, (35b)

Σab (t, t ′) =
i

4

∑
α

Kαgn (t, t
′)KαDα

n (t, t
′)+

i

4

∑
αβ

Kαgn (t, t
′)KβMαβ

nn (t, t ′) . (35c)

Although the GF of the Schwinger bosons gnn′ can in principle be nonlocal in space, such as in spin
systems with fractional excitations [131, 145], the separable initial spin states we consider in this work
imply gnn′ = gnδnn′ at all times, and, therefore Σnn′ ,Ωnn′ ,Πnn′ ∝ δnn′ . The self-consistency [58] built into
2PI resummation and the SEs evades [54] the so-called secularity problem for expansion in terms of
the free Keldysh GFs, where elapsed time appearing next to the coupling constant makes the effective
coupling arbitrarily large at late times. The same self-consistency ensures that all conservation laws are
satisfied in spite of truncating the diagrammatic expansion [135].

Equations (34) and (35), which utilize integrals over the SK contour C, can be transformed to con-
tain real-time integrals by decomposing all GFs and SEs into their Keldysh and spectral components
according to equation (26). In addition to the MK and Ms components, the propagator M(t, t ′) has a
time-local part proportional to δtt′ (equation (34b)). The time-local part can be extracted by defining
M̌(t, t ′) such that

M(t, t ′) = 2Jδtt′ + JM̌(t, t ′) J. (36)

Assuming that there is no single-ion anisotropy, i.e. Jαβnn = 0, no other GFs or SEs have a time-local
component. Therefore, the system of equations of motion that produce the real-time dynamics of the
system are given by

∂tg
K
n (t, t

′) = 2iK0H̃n (t)g
K
n (t, t

′)+ iK0

ˆ t

0
dt1Σ

s
n (t, t1)g

K
n (t1, t

′)− iK0

ˆ t′

0
dt1Σ

K
n (t, t1)g

s
n (t1, t

′) , (37a)

∂tg
s
n (t, t

′) = 2iK0H̃n (t)g
s
n (t, t

′)+ iK0

ˆ t

t′
dt1Σ

s
n (t, t1)g

s
n (t1, t

′) , (37b)

M̌K (t, t ′) = 4ΩK (t, t ′)+ 2

ˆ t

0
dt1Ω

s (t, t1) JM̌
K (t1, t

′)− 2

ˆ t′

0
dt1Ω

K (t, t1) JM̌
s (t1, t

′) (37c)

M̌s (t, t ′) = 4Ωs (t, t ′)+ 2

ˆ t

t′
dt1Ω

s (t, t1) JM̌
s (t1, t

′) (37d)

DαK
n (t, t ′) = 2ΞαK

n (t, t ′)+ 2

ˆ t

0

ˆ t1

0
dt1dt2Ξ

αs
n (t, t1)Π

αs
n (t1, t2)D

αK
n (t2, t

′)

+ 2

ˆ t′

0

ˆ t1

0
dt1dt2Ξ

αK
n (t, t2)Π

αs
n (t2, t1)D

αs
n (t1, t

′)

− 2

ˆ t

0

ˆ t′

0
dt1dt2Ξ

αs
n (t, t1)Π

αK
n (t1, t2)D

αs
n (t2, t

′) , (37e)

Dαs
n (t, t ′) = 2Ξαs

n (t, t ′)+ 2

ˆ t

t′

ˆ t1

t′
dt1dt2Ξ

αs
n (t, t1)Π

αs
n (t1, t2)D

αs
n (t2, t

′) , (37f )

ΣK
n (t, t

′) =
i

8

∑
α

{
KαgKn (t, t

′)KαDαK
n (t, t ′)+Kαgsn (t, t

′)KαDαs
n (t, t ′)

}
+

i

8

∑
αβ

{
KαgKn (t, t

′)Kβ
[
JM̌K (t, t ′) J

]αβ
nn

+Kαgsn (t, t
′)Kβ

[
JM̌s (t, t ′) J

]αβ
nn

}
, (37g)
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Σs
n (t, t

′) =
i

8

∑
α

{
KαgKn (t, t

′)KαDαs
n (t, t ′)+Kαgsn (t, t

′)KαDαK
n (t, t ′)

}
(37h)

+
i

8

∑
αβ

{
KαgKn (t, t

′)Kβ
[
JM̌s (t, t ′) J

]αβ
nn

+Kαgsn (t, t
′)Kβ

[
JM̌K (t, t ′) J

]αβ
nn

}
,

ΩαβK
n (t, t ′) =

i

16
TrS
[
KαgKn (t, t

′)KβgKTn (t, t ′)+Kαgsn (t, t
′)KβgsTn (t, t ′)

]
, (37i)

Ωαβs
n (t, t ′) =

i

8
TrS
[
KαgKn (t, t

′)KβgsTn (t, t ′)
]
, (37j)

ΠαK
n (t, t ′) =

i

16
TrS
[
KαgKn (t, t

′)KαgKTn (t, t ′)+Kαgsn (t, t
′)KαgsTn (t, t ′)

]
, (37k)

Παs
n (t, t ′) =

i

8
TrS
[
KαgKn (t, t

′)KαgsTn (t, t ′)
]
, (37l)

Λ̄α
n (t) =

i

4

∑
βn ′

Jαβnn′TrS
[
KβgKn′ (t, t)

]
, (37m)

λ̄αn (t) =
i

4

ˆ t

0
dt1Ξ

αs
n (t, t1)TrS

[
KαgKn (t1, t1)

]
, (37n)

which are obtained from combining the equations of motion for the GFs on the Keldysh contour
(equation (34)) with the expressions for the SEs (equation (35)) and using the decomposition of
equation (26) and (36) to extract the Keldysh and spectral components.

4.1. Spin EVs and two-spin correlators from SKFT+2PI
The dynamics of spin EVs is obtained from the SKFT+2PI equations of motion from

⟨ŝαn ⟩(t) =
i

8
TrS
[
gKn (t, t)K

α
]
. (38)

As such, the EV of the Hubbard–Stratonovich fields can be expressed as

Λ̄α
n (t) = 2

∑
βn ′

Jαβnn′⟨ŝ
α
n ⟩(t) , (39a)

λ̄αn (t) =

ˆ t

0
dt1Ξ

αs
n (t, t1)⟨ŝαn ⟩(t1) . (39b)

The RHS of equation (39a) is proportional to the magnetic mean field that spin n is subject to due
to being coupled to other spins via Heisenberg exchange. The dynamics of the propagator of the mean

field, iMαβ
nn′(t, t

′) =
〈
Λα
n (t)Λ

β
n′(t

′)
〉
, includes all fluctuations of Λα

n . Similarly, the RHS of equation (39b)

is an average over all past spin states weighed by the spectral component of the bath kernel Ξαs
n , high-

lighting the generally non-Markovian nature of the dynamics.

The two-spin connected correlator functions
〈
sαn (t)s

β
n′(t

′)
〉
in the SKFT+2PI approach are obtained

from the connected generating functional

W [η] =−i ln

ˆ
DΦ exp

(
iS [Φ]+

i

4

ˆ
C
dt
∑
nα

ηαn φ
T
nK

αφn

)
(40)

via functional derivative with respect to the source field ηαn in the limit where ηαn vanishes, i.e.

〈
sαn (t) s

β
n′ (t

′)
〉
=−i

δ2W [η]

δηαn (t)δη
β
n′ (t

′)

∣∣∣∣
η=0

. (41)

The source term can be absorbed into the effective Hamiltonian, so that H̃n[η] =
1
4

∑
α(h

α +λαn +Λα
n +

ηαn )K
α. Since the functional integral is over all configurations of the fields, it is invariant under the con-

stant shift Λ→ Λ− η. Such shift produces an action identical to the one in equation (28), except that
the last term on the RHS becomes

1

4

ˆ
C
dt
∑

(Λα
n − ηαn )

[
J−1
]αβ
nn′

(
Λβ
n′ − ηαn

)
. (42)
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Now taking the functional derivative with respect to source η generates EVs of the mean field Λ. It turns
out that 〈

sαn (t) s
β
n′ (t

′)
〉
=

i

4
M̌αβ

nn′ (t, t
′) , (43)

where we used equation (36) to isolate the time-local part of the mean field propagator. Instead of shift-
ing the mean field Λα

n , the bath field λαn can also be shifted, potentially leading to an expression for the
two-spin correlator in terms of the bath propagator Dα

n . However, such approach is made difficult by
requiring to carefully invert convolutions with the bath kernel Ξα

n on the SK contour. Thus, we compute
two-spin correlators exclusively via equation (43).

In single-spin systems, such as the spin-boson model (equation (2)), there is no mean field propag-
ator. Still, the two-spin correlator

〈
sα(t)sβ(t ′)

〉
at the same site but for different times and spin com-

ponents can be obtained by introducing a replica spin and bath with identical initial states. By weakly
coupling the spin and its replica ferromagnetically, the two-spin correlator between the spin and its rep-
lica mimics the original same-site two-spin correlator.

4.2. Numerical implementation of SKFT+2PI equations
The equations of motion produced by SKFT+2PI form an integro-differential system of the Volterra
type [146, 147] that must be integrated carefully due to the self-consistent interdependence between
14 functions. For this purpose, we discretize both time arguments t and t′, so that all functions of two
times can be considered matrices in these two arguments. The Keldysh and spectral components are
symmetric and antisymmetric, respectively, under transposition and exchange of the two time argu-
ments, i.e.

OK/s (t, t ′) =±
(
OK/s

)T
(t ′, t) . (44)

Therefore, it suffices to compute and store all quantities at times t ′ ≤ t.
For the numerical integration of the integro-differential system in equation (37), we implement a

predictor-corrector algorithm which consists of two stages. In the first (predictor) stage, the RHSs of
equations (37a) and (37b) are computed using all known quantities for all t′ and the current t. The

results are used to predict the GFs of the Schwinger bosons at the next time t+ h, i.e. g̃K/sn (t+ h, t ′) =

gK/sn (t, t ′)+ h∂tgFn(t, t
′) where h is the time step, for all discrete t′. Predicting the diagonal time step

g̃Kn (t+ h, t+ h) requires the derivative with respect to the second time argument, ∂t′gKn (t, t
′), obtained

from the transpose of equation (37a) and the symmetry properties of the nonequilibrium GFs in
equation (44). The time-diagonal of gsn(t, t) =−i⟨[φb

n(t),φ
a
n(t)]⟩= iK0 is fixed by the equal-time com-

mutation relations of the Schwinger bosons. With the predicted values for the GFs of the Schwinger

bosons g̃K/sn (t+ h, t ′), the value of all the other functions at the next time step can be predicted in the
order shown in figure 3. All integrals appearing on the RHSs of equations (37) are computed with the
trapezoid method, although higher performance could be achieved by implementing recently developed
integration schemes based on tensor trains [148, 149].

In the second (corrector) stage of the predictor-corrector algorithm, the predicted quantities are
used to recompute the RHSs of equations (37a) and (37b). The new value for the GFs of the Schwinger
bosons is then obtained from averaging the RHSs of equations (37a) and (37b) obtained in the predic-
tion and correction stages, i.e.

gK/sn (t+ h, t ′) = gK/sn (t, t ′)+
h

2

[
∂tg

K/s
n (t, t ′)+ ∂tg̃

K/s
n (t+ h, t ′)

]
. (45)

Using the corrected gK/sn (t+ h, t ′), all other quantities are recalculated following the same order as in the
predictor stage (figure 3). It is possible to repeat the corrector stage iteratively to improve accuracy of
the algorithm, but we find that a single run is enough to achieve convergence for the studied models.
We also choose small enough time steps so that further decrease does not result in appreciable changes
to the results. Typically, this means employing time steps h= 0.1/∆, but shorter ones are required as the
system-bath coupling is increased, down to h= 0.03/∆ in the ultrastrong coupling regime. Additional
details of this type of predictor-corrector scheme can be found in [56].

In order to estimate the numerical cost of solving the equations of motion produced by SKFT+2PI,
we evolved one closed system and two open systems using our implementation of the predictor-corrector
algorithm. For the closed system, we choose an AF spin chain subjected to a transverse field along the
x-axis (equation (4a)). For the open systems, we evolve the spin-boson model (equation (2)) and the
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Figure 3. Flowchart of the predictor-corrector algorithm used in the numerical integration of SKFT+2PI-derived coupled
equations (37a)–(37n). The type of equation used at each step (integro-differential, integral, or generalized matrix product) is
indicated in dark blue. All sub- and super-scripts are omitted for simplicity (see table 1 for their detailed notation). Functions at
time t are used as an input to the prediction stage (light blue arrows), in which all functions are computed at the next time step
t+ h for all t ′ ⩽ t+ h, starting with the Keldysh and spectral components of the GFs of the Schwinger bosons gK/s. The results
of the prediction stage are used to correct gK/s, as well as subsequent functions, by repeating the cycle of the self-consistent loop
(orange lines). The results of the correction stage are saved as the values for the next time step.

spin-chain-boson-model with an independent bosonic bath for each spin (equation (4), but the first
sum in equation (4b) is over n= 1,2, . . . ,NS). As a function of the number of spins NS, the elapsed time
for both closed and open systems scales as ∝ N3

S. This is due to the largest matrix being the propagator
M̌αβ

nn′(t, t
′) (table 1), which can be reshaped into a 3NS× 3NS matrix. Concomitantly, the total memory

allocated scales as ∝ N2
S. On the other hand, as a function of the number of time steps Nt, both the

elapsed time and the memory scale as ∝ N3
t for the closed system, and as ∝ N4

t for the open systems.
This is because evolving functions of two times t, t ′ for Nt time steps requires computing and storing
such functions at ∝ N2

t pairs of times. Moreover, computing each one of those values requires perform-
ing single (for the closed system) or double (for the open systems) time integrals, which scale as ∝ Nt

and ∝ N2
t , respectively, therefore producing the observed scaling.

4.3. Initial conditions and the Schwinger boson constraint
Initial conditions must be given to begin the predictor-corrector algorithm. Within the SKFT+2PI
approach, initial states must be described by a Gaussian density operator [22, 55, 56], i.e. only the EVs
and the connected nonequilibrium GFs of the fields are nonzero. In this work, we consider separable
initial states described by a density operator that is a tensor product

ρ̂(t= 0) =
⊗
ν

ρ̂Bν
⊗
n

ρ̂Sn. (46)

Here, ρ̂Bν is the thermal density operator of bosonic bath ν at temperature Tν , and ρ̂Sn is a Gaussian
density operator for spin n. In our numerical implementation of the SKFT+2PI equations, these initial
conditions are achieved by setting the bath propagator as DK/s(0,0) = 2ΞK/s(0,0), as well as the GFs of
the Schwinger bosons as i gKn (0,0) =

∑
α 2K

α ⟨ŝαn (0)⟩+ S+ 1
2 and gsn = iK0.

Due to the symmetries of the SK action (equation (28)), the total number of bosons per site is con-
served [56]. Therefore, if the initial conditions satisfy the Schwinger boson constraint in equation (17),
it will also be satisfied at all later times. This is in contrast to the usage of Schwinger bosons in imagin-
ary time calculations, which require enforcing the constraint via Lagrange multipliers [129–131]. The
Gaussian initial conditions we employ enforce that the EV of the constraint〈

â(1)†n â(1)n + â(2)†n â(2)n

〉
= 2S, (47)

holds at all times. Deviations from this equality are typically less than 10−14 in our numerical imple-
mentation (inset of figure 4(a)). However, the original Schwinger boson constraint (equation (17))
relates operators, which implies infinite additional constraints in terms of EVs, namely,〈(

â(1)†n â(1)n + â(2)†n â(2)n

)2〉
= (2S)2 , (48a)〈(

â(1)†n â(1)n + â(2)†n â(2)n

)3〉
= (2S)3 , (48b)

...
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Figure 4. (a), (b) Elapsed time and (c), (d) memory consumed by our numerical implementation of the predictor-corrector
algorithm for solving the SKFT+2PI equations (37a)–((37n) as a function of the number of spins NS (left column of panels)
or the number of time steps Nt (right column of panels). The black lines are for a closed AF spin chain in a transverse magnetic
field (equation (4a)); the red ones are for the spin-boson model (equation (2)); and the orange ones are for the spin-chain-boson
model with NS baths (equation (4)) where each spin couples to three independent baths. The inset in panel (a) shows numerical
deviations from the EV of the Schwinger boson constraint (equation (48)) in the case of a spin-chain-boson model with NS = 4.

Because these higher-order EVs are zero for an initial Gaussian density operator, the constraints in
equation (48) are not satisfied at any time t≥ 0. Thus, artifactual virtual processes outside the physical
finite-size Hilbert space of spins can contribute (see section 5.2) to the discrepancy between SKFT+2PI
and numerically (quasi)exact benchmark results. It is worth noting that problems posed by the Gaussian
initial state are unrelated to the truncation of the 2PI effective action. In fact, if one were able to
provide the full correct initial state, all Schwinger boson constraints derived from the operator identity
in equation (17) would be satisfied despite truncating the diagrammatic expansion. However, usage of
arbitrary initial states for time evolution via SKFT is an unsolved problem, despite many proposed rem-
edies [150–154].

5. Results and discussion

5.1. Dynamics of semiclassical spins
To understand the physical meaning of SKFT+2PI equations (37), we warm up in this section by dis-
cussing semiclassical spin dynamics [155–157], which is easier to decipher than fully quantum dynam-
ics of spin-boson (section 5.2) and spin-chain-boson (section 5.3) models. Such dynamics is obtained
from SKFT+2PI by neglecting even the 1/N0 contributions to the 2PI effective action, i.e. Γ2 ≡ 0 in
equation (31). Under this approximation, all SEs vanish, and equations (37) of motion decouple. Using
equation (38) for the EVs of the spins and equation (37a) for the evolution of the Keldysh GF of the
Schwinger bosons gK yields

∂t ⟨sαn ⟩(t) =
∑
βγ

ϵαβγ
(
hβn +λβn +Λβ

n

)
⟨sαn ⟩(t) , (49)

where ϵαβγ is the Levi–Civita symbol. By defining the vector of spin EVs, Sn ≡ (⟨sxn⟩ ,
〈
syn
〉
,⟨szn⟩), and by

using equations (39) for the fields λβn and Λβ
n , the time evolution Sn(t) is given by

∂tSn (t) = h
eff
n × Sn (t)− Sn (t)×

ˆ t

0
dt ′ ηn (t, t

′) · Sn (t ′) , (50)

where the effective magnetic field is hα eff
n = hαn +Λα

n . Equation (50) is of the Landau–Lifshitz type [158],
but it is ‘extended’ by having non-Markovian kernel ηαβn (t, t ′) = δαβΞαs

n (t, t ′) due to effects of the
bosonic baths. Similar equations have been recently derived [155–157, 159–161], including via the min-
imization of the SK action with respect to quantum fluctuations [155, 156]. Thus, our SKFT+2PI form-
alism further justifies such derivations by explaining that they utilize only the first three terms on the
RHS of equation (31) containing tree-level or classical (1st term on the RHS of equation (31)) and
one-loop or semiclassical (2nd and 3rd terms on the RHS of equation (31)) diagrams of the 2PI effect-
ive action [162]. If multiple spins are allowed to couple to a single bath, the non-Markovian kernel in
equation (50), besides being nonlocal in time, also becomes nonlocal in space [155, 161].
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Figure 5. Time dependence of spin expectation values ⟨ŝα⟩ of the spin-boson model (equation (2)) computed from our
SKFT+2PI (solid lines) approach vs. standard Lindblad QME (triangles) or TN methods (dashed lines) with bath cutoff
frequency ωc = 7.5∆ in the weak system-bath coupling regime, γ ≪∆, where the system dynamics is expected [7] to be
Markovian [88, 89] for the chosen Ohmic bath [s= 1 in equation (3)]. Panels in different columns and rows use different values
of temperature T and two-level splitting ωq, respectively. For kBT= 0, the chosen TN method is TEDOPA, while for kBT= 10∆,
we use TEMPO (see sections 3.2 and 5 for details). The SKFT+2PI and TN-computed benchmark results follow each other
closely for the chosen γ = 0.02∆, while the system-bath coupling in equations (14) and (15) for the Lindblad QME, γL, must
be adjusted by increasing it to match the other two calculations (this points to artifacts of the Lindblad QME derived [1] for the
spin-boson model).

The spectral component of the bath kernel Ξαs
n (t, t ′), which yields the non-Markovian kernel

within equation (50), is computed for the spectral density in equation (3) for arbitrary parameter s via
equations (23) and (27) to give

Ξαs
n (t, t ′) =−γ

α
n ω

2
c

π

Γ(1+ s) sin
[
(1+ s) tan−1(ωcτ)

]
[1+(ωcτ)2)]

(1+s)/2
. (51)

Here, τ ≡ t− t ′, and Γ(x) is the Gamma function. The slow algebraic decay of Ξαs
n (τ) is linked to non-

analyticities of the spectral density [163], namely, the second derivative of J (ω) in equation (3) is not
defined at ω= 0. Such power law decay of the bath kernel means that the contribution of states in the
far past to the dynamics of open quantum systems can persist beyond other relevant time scales. For
instance, even if the system-bath coupling γ is small, a low cutoff frequency ωc ensures that the power
law tails of the bath are relevant, and the dynamics remains non-Markovian.

Nevertheless, Markovian dynamics of the extended LLG equation (50) can be recovered in the limit
ωc →∞ of an Ohmic bath s= 1 [79, 156] for which the bath kernel becomes local in time Ξαs

n (t, t ′) =
γαn ∂tδ(t− t ′). In this limit, the non-Markovian equation (50) simplifies into

∂tSn (t) = h
eff
n × Sn (t)− γnSn (t)× ∂tSn (t) , (52)

where we also assume isotropic spin-bath couplings, for simplicity. Equation (52) is the standard
Landau–Lifshitz–Gilbert equation [158], in which damping term (second on the RHS) is in the Gilbert
form [164]. Considering the parameter s ̸= 1 transmutes the time derivative in the damping term of
equation (52) into a fractional derivative [156].

5.2. Dynamics of the spin-bosonmodel
In this section, we present dynamics of spin EV in the spin-boson model (equation (2)) using the
Ohmic (s= 1 in equation (3)) and sub-Ohmic baths (s= 0.5 in equation (3)). We start with the ana-
lysis of the Markovian regime in figure 5 for which we employ small γ = 0.02∆ and high ωc = 7.5∆ to
ensure entering such a regime [88]. The Markovian nature of the results in figure 5 is signified by the
irreversible decay of purity (orange solid line in figure 6) of the mixed quantum state of spin S= 1/2.
Since the spin density operator ρ̂S for S= 1/2 and the Bloch vector P= (Px,Py,Pz) are in one-to-one
correspondence [30]

ρ̂=
1

2

(
Î+ 2

∑
α

Pα ŝα
)
, (53)
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Figure 6. Time dependence of purity |P|= 2
√∑

α⟨ŝα⟩2 of mixed quantum state of spin S= 1/2 from SKFT+2PI-computed
curves in figures 5–9. Orange, green, and black solid lines are for the case of an Ohmic bath (figures 5, 7 and 9), while orange
dotted line is for the case of a sub-Ohmic bath (figure 8).

Figure 7. The same information as in figure 5, but for bath cutoff frequency ωc = 1∆ and in the strong system-bath coup-
ling regime, γ = 0.5∆, where the system dynamics is expected to be non-Markovian [88, 89] for the chosen [7] Ohmic bath
[s= 1 in equation (3)]. Different columns and rows of panels use different values of temperature T and two-level splitting ωq

(equation (2)), respectively. Note that standard HEOM calculations [65] cannot be conducted at kBT= 0 temperature, so in the
left column of panels we use higher temperature kBT= 0.1∆ in HEOM calculations instead of kBT= 0 [as marked on the top of
panel (a)] employed in SKFT+2PI and TN-based calculations.

where Î is the unit operator in the spin space, we use |P| as a measure of the state purity. The stand-
ard purity Trρ̂2 is a function of |P|, where |P|= 1 signifies a fully coherent or pure quantum state of
spin S= 1/2, while 0≤ |P|< 1 denotes mixed quantum states. In figure 5, we find excellent agree-
ment between SKFT+2PI (solid lines) and Lindblad-QME-computed results (triangles). However, such
a match is ensured only by adjusting the system-bath coupling in the Lindblad QME, thereby pointing to
an artifact of the standard equation for the spin-boson model [1]. This is because our SKFT+2PI results
independently and closely match the results of TN calculations (dashed lines in figures 5 and 7) employ-
ing the same γ. Our TN calculations for the kBT= 0 case used TEDOPA [66–68], whereas for the higher
temperature kBT= 10∆ we switched to TEMPO [40, 69]. Beyond the Markovian regime, the Lindblad
QME cannot capture the memory effects of the bath, which can cause the revival of quantum proper-
ties. Such revival is exemplified by the purity |P| of the mixed quantum state of spin initially decaying
in figures 6(a) and (c), as the signature of decoherence [31], but later increasing towards |P|= 1 of the
pure state at t= 0 as the signature of recoherence [3].

In the non-Markovian regime of figure 7, we replace benchmarking via the Lindblad QME with
HEOM and TN-based benchmarks. The non-Markovian regime is induced by using a strong system-
bath coupling γ = 0.5∆ and low cutoff frequency ωc =∆, while keeping the Ohmic bath as in figure 5.
We find that, for zero temperature, the TEDOPA results (dashed lines in figures 7(a) and (c)) follow
closely those from HEOM (circles in figure 7), on the proviso that we use slightly higher temperature
kBT= 0.1∆ in the HEOM calculations. The necessity for such an ad hoc fixing of standard HEOM
calculations stems from their inability to handle kBT= 0 limit [85, 86, 90]. The spin EV computed by
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Figure 8. Time dependence of spin expectation values ⟨ŝα⟩ computed from SKFT+2PI for bosonic bath with Ohmic (solid lines)
or sub-Ohmic (dotted lines) spectral density, i.e. s= 1 or s= 0.5 in equation (3), respectively. Other parameters are the same as
in the weak system-bath coupling regime of figure 5. Note that solid lines are identical to solid lines in figure 5, which are plotted
here for easy comparison.

SKFT+2PI is capable of tracking both benchmark results, but it appears as if its damping is slightly
smaller (compare solid lines from SKFT+2PI to circles from HEOM and dashed lines from TEDOPA
calculations in figure 7(c)).

Furthermore, figure 8 demonstrates the ability of our SKFT+2PI formalism to treat various other
parameter regimes of the system and bath, such as the case of zero temperature and sub-Ohmic
bath that is considered particularly challenging [74, 78–81, 85]. For this purpose, we compute from
SKFT+2PI the spin EV for a sub-Ohmic bath (s= 0.5 in equation (3)) while using the same values
of other parameters as in the weak system-bath coupling regime of figure 5 for the sake of comparing
Ohmic vs. sub-Ohmic cases. The results in figure 8 show faster decrease of the spin EV when the bath
is sub-Ohmic. However, the purity in the sub-Ohmic case (orange dotted line in figure 6) does not decay
monotonically as in the case of the Markovian regime for the Ohmic bath (orange solid line in figure 6).
Instead, at zero temperature it saturates at a finite value, akin to the Ohmic non-Markovian case (green
and black lines in figure 6 obtained using SKFT+2PI from figures 7 and 9). Moreover, at high temper-
ature, the purity of spin state in the sub-Ohmic regime closely resembles the time evolution of it in the
strong system-bath coupling (i.e. non-Markovian) regime, except for small revivals (orange dotted curve
in figures 6(b) and (d)) at intermediate time scales. Thus, figure 6 illustrates the difficulties [74, 78–81,
85] posed by the sub-Ohmic case because of the skew towards low bath frequencies (figure 1(a)) which
enhances the memory effects of the bath. These features make it possible for the non-Markovian regime
to emerge despite weak system-bath coupling.

Finally, we examine the non-Markovian regime brought by ultrastrong system-bath coupling γ = 4∆
(figure 9), while keeping the remaining parameters the same as in figure 7. At zero temperature of this
regime, the spin-boson transition to a localized phase occurs [165, 166]. It is characterized by long-range
correlations in time and ⟨ŝz⟩(t) saturating at a finite value despite the presence of the dissipative envir-
onment and regardless of two-level splitting ωq. Such saturation is observed in the stationary state of the
spin EV obtained with both TEDOPA and our SKFT+2PI, demonstrating the ability of the latter to cap-
ture highly non-perturbative effects. The quantum phase transition can be further probed by computing
the order parameter m2 [165, 166], given by the time integral

m2 =

ˆ
dt iCzz,K (t,0) , (54)

of the Keldysh component of the connected two-spin correlator Cαβ
nn′(t, t

′) = 4i
〈
sαn (t)s

β
n′(t

′)
〉
, as obtained

via equation (26). Such an order parameter is zero in the delocalized phase (figures 5, 7 and 8), but
it abruptly acquires a finite value in the localized phase (figure 9). The two-spin correlator extracted
from SKFT+2PI on the delocalized side of the transition oscillates as a function of time (orange line
in figure 10(b)), whereas it is almost always positive on the localized side (green line in figure 10(b)).
Integrating the two-spin correlator over time for different system-bath couplings, the non-thermal crit-
ical coupling [167] is found to be γc ≈∆ in figure 10. In this calculation, we use ωq = 0, s= 0.5 and
ωc =∆.
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Figure 9. The same information as in figure 7, but for bath cutoff frequency ωc = 1∆ and in the ultrastrong system-bath coupling
regime, γ = 4∆, where the system dynamics is expected to be highly non-Markovian [88, 89] for the chosen [7] Ohmic bath
(s= 1 in equation (3)). The ultrastrong system-bath coupling induces localization [165, 166] of the spin for kBT= 0, i.e. ⟨ŝz⟩(t)
plateaus at a finite noninteger value. This non-perturbative behavior of a plateau reached in the long-time limit is captured by
SKFT+2PI (solid lines), but the asymptotic value defining the plateau differs from the TN-computed benchmark (dashed lines)
at low temperatures.

Figure 10. (a) Order parameter (equation (54)) of the quantum phase transition [165, 166] of the spin-boson model as a func-
tion of the system-bath coupling constant γ. The transition is signified by a kink at the critical coupling γc ≈∆ [166]. (b)
Multitime two-spin correlator, at time t and the initial time t= 0, for γ values in the delocalized (orange line) and localized phase
(green lines), respectively.

Nevertheless, in the localized phase, SKFT+2PI predicts an incorrect long-time limit of the spin EV,
especially for ωq = 0.5∆ (figure 9(c)). We believe that such discrepancy stems from the initial conditions
being restricted to a Gaussian density operator, since, in the localized phase, properties of the initial state
are not erased by the bath. Such memory effects make the stationary spin EV particularly sensitive to
any non-Gaussian initial correlations. These are not captured by SKFT+2PI, but are well described by
TEDOPA. On the other hand, SKFT+2PI performs much better for ultrastrong coupling at high tem-
peratures (figures 9(b) and (d)) than TN-based calculations like TEMPO, where the latter struggles to
converge in the same regime. In fact, in this regime, SKFT+2PI results match the HEOM benchmark
better than TEMPO results. Let us re-emphasize that the standard version of HEOM cannot [85, 86,
90] handle zero temperature kBT= 0, which is essential for the transition to the localized phase, and
so HEOM results are omitted from figures 9(a) and (c).

5.3. Dynamics of the spin-chain-bosonmodel
The spin-chain-boson model (figure 1(b)) employed in this section is described by the Hamiltonian
in equation (4) using NS = 4 quantum spins S= 1/2 with AF exchange coupling between the nearest
neighbors Jαβn,n+1 = Jαβn,n−1 = Jδαβ . A set of three independent bosonic baths, one for each spin com-
ponent, is coupled to each end of the chain, as needed for spins interacting with phonons in three-
dimensional magnetic materials [33, 34]. The temperature of the three baths coupled to spin n= 1 is
kBT1 = 5J, while the temperature of the three baths coupled to spin n= 4 is kBT4 = 0. All other paramet-
ers are the same for simplicity, and the external magnetic field is chosen as h= (J,0,0).

The dynamics of the spin n= 4 EV is shown in figure 11(b). Note that in this case we could not pro-
duce any benchmarks from either HEOM (because of too many spins) or from TN calculations (because
of difficulties found in the packages [40] we employ when trying to handle multiple baths). The com-
plexity of physics generated by multiple baths has been noticed previously [32] even in the case of single
spin. We start from the Néel ket |↑↓↑↓⟩ in which ⟨ŝz1⟩= ⟨ŝz3⟩= 1 and ⟨ŝz2⟩= ⟨ŝz4⟩=−1. The fact that
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Figure 11. SKFT+2PI-computed time dependence of the Cartesian components of: (a) the bond spin current (equation (55))
between sites n= 2 and n ′ = 3; and (b) EV of spin at the right edge (n= 4). The spin-chain-boson model considered in this
calculation is AF, composed of NS = 4 spins and driven by temperature gradient, kBT1 = 5J and kBT4 = 0, as illustrated in
figure 1(b). Other parameters of the six baths employed are ωc = 3J and γα = 0.5J.

dynamics of spin EV in figure 11(b), as well as of EVs of other three spins not shown, tend to small val-
ues 2| ⟨ŝn⟩ | ≪ 1 signifies nonzero entanglement of a mixed quantum state. The entanglement can remain
nonzero, despite the presence of a dissipative environment, due to the non-Markovian regime of open
quantum system dynamics [117].

The open AF quantum spin chain with different temperatures of the baths connected at its boundar-
ies [168] will also exhibit nonequilibrium spin and heat currents [169, 170]. Since the total heat current
requires three-spin correlators [169, 170], which are inaccessible from our current implementation of our
SKFT+2PI formalism, we compute only spin current as an illustration. The α-component of the bond
spin current between two spins n,n ′ is expressed as [169]

Iαn→n ′ (t) =−8J
∑
βγ

ϵαβγ

〈
sαn (t) s

β
n′ (t)

〉K
, (55)

using the Keldysh component of two-spin correlators (equation (43) at equal times). The time depend-
ence of the bond spin currents Iαn→n ′ , out of which we plot only Ix2→3 and Iz2→3 in figure 11, is driven
by the temperature difference between the baths at two different edges. The bond current Ix2→3 has a
finite value in the steady state because of the externally applied magnetic field h along the x-axis. On
the other hand, Iz2→3 is transiently nonzero but vanishes in the long-time limit. Transient oscillation of
the currents within the spin chain can be long-lived due to finite-size effects. However, the decay of such
oscillations in figure 11(e) is accelerated by virtual processes outside of the physical Hilbert space. These
processes can be caused by artifacts of resumming infinitely-many Feynman diagrams [171] or by neg-
lected initial non-Gaussian correlations [172].

5.4. Dynamics of closed quantum spins
Since our SKFT+2PI also describes the limiting case of a closed system of quantum spins, we also
benchmark such calculations for the sake of completeness. Such closed quantum system dynamics is
obtained by considering only the second diagram in equation (33) due to spin-spin interaction. We
recall that the time evolution of a closed system of quantum spins has already been studied by differ-
ent flavors of SKFT+2PI formalism in [56] and [55], whose purpose is to enable handling of hundreds
of spins in three spatial dimensions. In contrast, TN methods, which can handle large numbers of spins
in low dimensions, fail in higher dimensions due to increased entanglement [52, 174, 175]. However,
examples studied in [56] and [55] were not benchmarked against numerically exact dynamics, which
can always be computed for sufficiently small systems. Therefore, in figure 12, we plot the time evolu-
tion of EV of a selected spin within a 3× 3 cluster of FM (figure 12(a)) or AF (figure 12(b)) coupled
quantum spins, as computed via SKFT+2PI (solid lines) or exact diagonalization for time-dependent
systems [173] (dashed lines). The comparison of trajectories in figure 12 shows that SKFT+2PI for
closed quantum spin systems fails after a relatively short evolution time, appearing as if it is damped
and, therefore, converging to a stationary state despite the absence of a dissipative environment. This
failure of previously developed SKFT+2PI for closed quantum systems [55, 56] is due to virtual pro-
cesses outside the physical Hilbert space, as has also been pointed out in other problems involving fer-
mionic [171] and bosonic [53] degrees of freedom. For fermionic systems, these virtual processes are
thought to be found within the resummation of infinitely many Feynman diagrams, since diagrams of
high enough order describe processes involving more fermions than are allowed by a finite system [171].
Although such artificial processes would cancel in an exact theory, this is not necessarily the case when
only diagrams of particular topology are summed to infinite order [171]. However, in unconstrained
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Figure 12. Time dependence of EV of a single spin ⟨ŝαn ⟩(t), whose selection is marked in the insets, within a closed 3× 3 lattice
of two-dimensional (a) FM or (b) AF cluster. The initial states are illustrated in the insets of each panel. The solid lines are com-
puted by SKFT+2PI of [56] for closed quantum spin systems, while the dashed lines are obtained by exact diagonalization for
time-dependent systems [173].

bosonic systems, the equivalent high-order processes are within the infinite-dimensional Hilbert space. In
such a case, reasons for the failure of SKFT+2PI for closed systems are less clear, although it has been
conjectured to also be due to neglected diagrams [53]. For constrained bosonic systems, such as the
Schwinger bosons onto which we map spin operators, we believe that neglected non-Gaussian correla-
tions of the initial state significantly contribute to the discrepancy between SKFT+2PI and the bench-
marks in figure 12, as discussed in section 4.3. The artifactual stationary state produced by SKFT+2PI
in figure 12 is determined by the total energy and magnetization of the initial state, since these are
conserved by the symmetries of the action in equation (28). Thus, in the FM system with all-but-one
spins initially pointing up (illustrated in the inset of figure 12(a)), the SKFT+2PI-obtained station-
ary state reflects these conservation laws as it converges to uniform but not saturated magnetization
⟨ŝzn(t→∞)⟩< 1. Similarly, in the AF system initially (illustrated in the inset of figure 12(b)) in the
unentangled Neél state, a nonzero initial magnetization (due to an odd number of spins) is conserved
into the stationary limit.

6. Conclusions and outlook

In conclusion, we construct a promising field-theoretic approach to driven-dissipative many-body sys-
tems, as one of the most challenging unsolved problems in quantum physics [176]. This approach can
tackle various dynamical regimes and system geometries or dimensionalities [45, 51]. In contrast, pre-
viously developed methods, when applied to the spin-boson model as a standard testbed [70], require
changing the method (such as HEOM [65] vs. different flavors of TN approaches [40, 41]) depending
on the chosen parameters of the model. Furthermore, we also demonstrate how our SKFT+2PI frame-
work can handle many interacting quantum spins with noncommuting couplings to multiple [32–34]
baths generating the non-Markovian regime of the dynamics of spins. The complexity of such a setup
(figure 1(b)) causes impediments even for very recent TN methods developed [39] for this frontier
problem due to transient entanglement barrier [114–116], even in the presence of a dissipative envir-
onment [117]. In addition, our SKFT+2PI framework can handle arbitrary spin value S in arbitrary geo-
metry [52] or spatial dimensionality [45, 51], which benefits quantum spintronics [46–50] and quantum
magnonics [51], where the spin value S≥ 1/2; as well as quantum computing [45] where S= 1/2 for
qubits [35, 36] and S> 1/2 for qudits [177].

The ability of our SKFT+2PI framework to closely track numerical (quasi)exact results from TN
methods applied to the spin-boson model demonstrates that our field-theoretic approach is non-
perturbative in the system-bath coupling. This achievement can be traced back to the usage of 2PI
resummation of a class of infinitely many Feynman diagrams generated by the 1/N expansion, instead
of conventional perturbative expansion in the system-bath coupling. Nevertheless, full understanding of
how our 2PI and 1/N resum conventional perturbative expansion in the system-bath coupling constant
to achieve non-perturbative regimes is lacking. It could be further clarified by constructing the associated
resurgent transseries in the coupling constant [62] and comparing it with our expansion. In addition,
our SKFT+2PI offers a single unified framework that can handle arbitrary temperature, cutoff frequency,
and spectral content of the bosonic baths (i.e. Ohmic vs. sub-Ohmic vs. super-Ohmic), or exchange
interaction between many spins. Unlike widely used QMEs for open quantum system dynamics [1],
where only the reduced density operator is accessible as a function of single time, both our SKFT+2PI
framework and TN methods [40, 41] make possible computation of multitime two-spin correlators. For
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example, using such correlators, we can obtain the order parameter (figure 10) of delocalized-localized
quantum phase transition in the spin-boson model or nonequilibrium spin current (figure 11) in the
spin-chain-boson model biased by a temperature gradient. This can be of great interest to modeling
experiments on quantum magnets, such as quantum spin liquids [145], where thermal transport is one
of the major tools [178].

The numerical cost of solving integro-differential equations (37a)–(37n) produced by SKFT+2PI
formalism for open quantum spin systems is cubic-scaling in the number of spins NS of arbitrary value
S, as well as quartic-scaling in the number of time steps Nt. The latter computational complexity could,
in principle, be lowered [146–149, 179, 180] by optimizing numerics. One of the main avenues for
lowering p in the scaling ∝ Np

t is by introducing a memory cut, which consists of neglecting contri-
butions to the dynamics from states before a fixed cutoff time. However, SEs and kernels related to the
environment surrounding open systems may decay algebraically in time [163], rather than exponentially
as in closed systems, for which memory cuts have already been implemented [56, 146, 147]. This is pre-
cisely the case for a bosonic bath with any s parameter in equation (3). As such, implementing memory
cuts in open quantum systems requires additional efforts beyond those of [56, 146, 147].

Finally, we point out that the occasional discrepancies between the SKFT+2PI framework and
numerically (quasi)exact benchmarks, particularly conspicuous in figure 9 for ultrastrong system-bath
coupling, largely stem from the truncation (equation 33) of the diagrammatic series, which may neg-
lect high-energy excitations [53] or include unphysical virtual processes [171]. Our benchmarking efforts
suggest that neglected initial higher-order correlations [172] may also significantly contribute to such
discrepancies, but this issue is much less explored in the literature. This is because non-Gaussian initial
correlations are required to constrain the dynamics of the infinite-dimensional Schwinger bosons to the
finite physical subspace. Including the environment in our formulation of SKFT+2PI for open quantum
spin systems alleviates the issues posed by the neglected non-Gaussian correlations by effectively eras-
ing the initial conditions at longer times. However, when the system transitions into a localized phase,
memory of the initial conditions is retained well into the stationary regime, so deviations from numeric-
ally (quasi)exact benchmarks emerge again (figures 9(a) and (c)). Therefore, finding a general and prac-
tical solution to the fundamental problem [150] of how to include arbitrary non-Gaussian initial states
into SKFT could further improve the capabilities of our approach.
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