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Gilbert damping in metallic ferromagnets from Schwinger-Keldysh field theory:
Intrinsically nonlocal, nonuniform, and made anisotropic by spin-orbit coupling
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Understanding the origin of damping mechanisms in the magnetization dynamics of metallic ferromagnets is a
fundamental problem for nonequilibrium many-body physics of systems in which quantum conduction electrons
interact with localized spins assumed to be governed by the classical Landau-Lifshitz-Gilbert (LLG) equation.
It is also of critical importance for applications because damping affects energy consumption and the speed of
spintronic and magnonic devices. Since the 1970s, a variety of linear-response and scattering theory approaches
have been developed to produce widely used formulas for computation of the spatially independent Gilbert
scalar parameter as the magnitude of the Gilbert damping term in the LLG equation. The Schwinger-Keldysh
field theory (SKFT), largely unexploited for this purpose, offers additional possibilities, such as to rigorously
derive an extended LLG equation by integrating quantum electrons out. Here we derive such an equation whose
Gilbert damping for metallic ferromagnets is nonlocal, i.e., dependent on all localized spins at a given time,
and nonuniform, even if all localized spins are collinear and spin-orbit coupling (SOC) is absent. This is in
sharp contrast to standard lore, in which nonlocal damping is considered to emerge only if localized spins are
noncollinear—for such situations, direct comparison using the example of a magnetic domain wall shows that
SKFT-derived nonlocal damping is an order of magnitude larger than the previously considered one. Switching
on SOC makes such nonlocal damping anisotropic, in contrast to standard lore, in which SOC is usually
necessary to obtain a nonzero Gilbert damping scalar parameter. Our analytical formulas, with their nonlocality
being more prominent in low spatial dimensions, are fully corroborated by numerically exact quantum-classical
simulations.
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I. INTRODUCTION

The celebrated Landau-Lifshitz equation [1] is the founda-
tion of standard frameworks, such as classical micromagnetics
[2,3] and atomistic spin dynamics [4], for modeling the
dynamics of local magnetization within magnetic materials
driven by external fields or currents in spintronics [2] and
magnonics [3]. It considers localized spins to be classical vec-
tors M(r) of fixed length normalized to unity whose rotation
around the effective magnetic field Beff is governed by

∂t M = −M × Beff + M × (D · ∂t M), (1)

where ∂t ≡ ∂/∂t . Although spin is a genuine quantum degree
of freedom, such a phenomenological equation can be fully
microscopically justified from open quantum many-body sys-
tem dynamics in which M(r) tracks the trajectories of the
quantum-mechanical expectation values of localized spin op-
erators [5] in ferromagnets, as well as in antiferromagnets as
long as the spin value is sufficiently large, S > 1. The presence
of a dissipative environment in this justification invariably
introduces damping mechanisms, which were phenomenolog-
ically conjectured in the earliest formulation [1], as well as in
later renderings using the so-called Gilbert form of damping
[6,7], written as the second term on the right-hand side (RHS)
of Eq. (1).

*bnikolic@udel.edu

The Gilbert damping D was originally considered a
spatially uniform scalar D ≡ αG or possibly tensor [8,9], de-
pending on the intrinsic properties of a material. Its typical
values are αG ∼ 0.01 in standard ferromagnetic metals [10]
and as low as αG ∼ 10−4 in carefully designed magnetic in-
sulators [11] and metals [12]. Furthermore, recent extensions
[13–21] of the Landau-Lifshitz-Gilbert (LLG) equation (1) to
the dynamics of noncollinear magnetization textures found D
to be a spatially nonuniform and nonlocal tensor,

Dαβ = αGδαβ + η
∑
β ′

(M × ∂β ′M)α (M × ∂β ′M)β, (2)

where ∂β ′ ≡ ∂/∂β ′ and α, β, β ′ ∈ {x, y, z}.
It is generally believed that αG is nonzero only when spin-

orbit coupling (SOC) [22,23], magnetic disorder or both are
present [15,24,25]. For example, αG was extracted from a
nonrelativistic expansion of the Dirac equation [22,23], and
SOC is virtually always invoked in analytical (conducted
for simplistic model Hamiltonians) [26–28] or first-principles
calculations [24,25,29–33] of αG via Kubo linear-response
[9,30,34–36] or scattering [8] theory formulas.

The second term on the RHS of Eq. (2) is the particular
form [13] of the so-called nonlocal (i.e., magnetization-
texture-dependent) and spatially nonuniform (i.e., position-
dependent) damping [13–21,37]. The search for a proper form
of nonlocal damping has a long history [19,37]. Its importance
was revealed by experiments [10] extracting very different
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Gilbert dampings for the same material by using its uniformly
precessing localized spins versus the dynamics of its magnetic
domain walls, as well as in experiments observing wave-
vector-dependent damping of spin waves [38]. Its particular
form [13] in Eq. (2) requires only noncollinear and noncopla-
nar textures of localized spins, so it can be nonzero even in the
absence of SOC, but the presence of SOC can greatly enhance
its magnitude [18] (without SOC, the nonlocal damping in
Eq. (2) is estimated [18] to be relevant only for small, � 1 nm,
noncollinear magnetic textures).

However, recent quantum-classical and numerically exact
simulations [39,40] revealed that αG can be nonzero even in
the absence of SOC simply because the expectation value
of the conduction electron spin 〈ŝn〉 always lags behind Mn.
This retarded response of electronic spins with respect to the
motion of classical localized spins, also invoked when postu-
lating the extended LLG equation with a phenomenological
time-retarded kernel [41], generates spin torque ∝ 〈ŝn〉 × Mn

[42] and thereby effective Gilbert-like damping [39–41] that
is nonzero in the absence of SOC and operative even if Mn

at different sites n are collinear [40]. Including SOC in such
simulations simply increases [43] the angle between 〈ŝn〉 and
Mn and therefore the effective damping.

Deepening our understanding of the origin of these
phenomena observed in numerical simulations, which are
analogous to the nonadiabatic effects discussed in diverse
fields in which fast quantum degrees of freedom interact with
slow classical ones [44–47], requires deriving an analytical
expression for Gilbert damping due to the interaction between
fast conduction electrons and slow localized spins. A rigorous
path for this derivation is offered by the Schwinger-Keldysh
nonequilibrium field theory (SKFT) [48], which, however,
remains largely unexplored for this problem. We note that
a handful of studies have employed SKFT to study small
systems of one or two localized spins [49–54] as they inter-
act with conduction electrons. While some of these studies
[49,53,54] also arrived at an extended LLG equation with
nonlocal damping, they are directly applicable to only small
magnetic molecules rather than the macroscopic ferromagnets
that are the focus of our study. It is also worth mentioning that
an early work [55] did apply SKFT to the same model we
are using—electrons whose spins interact via sd exchange in-
teraction with many Heisenberg-exchange-coupled localized
spins representing a metallic ferromagnet in a self-consistent
manner—but the authors did not obtain a damping term in
their extended Landau-Lifshitz equation and instead focused
on fluctuations in the magnitude of Mn. In contrast, the vectors
Mn are of fixed length in classical micromagnetics [2,3] and
atomistic spin dynamics [4], as well as in our SKFT-derived
extended LLG equation (9) and all other SKFT-based analyses
of one or two localized spin problems [49–54].

In this study we consider either an infinite metallic magnet
[Fig. 1(a)] or a finite one [Fig. 1(b)] sandwiched between
two semi-infinite normal metal (NM) leads terminating in
macroscopic electronic reservoirs [8,52,53], whose localized
spins are coupled by ferromagnetic exchange in equilibrium.
The setups in Fig. 1 have direct relevance to experiments
[10,38] on external field [Fig. 1(a)] or current-driven dynam-
ics [Fig. 1(b)] of localized spins in spintronics and magnonics.
Our principal result is encapsulated by Fig. 1(c): Gilbert
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FIG. 1. Schematic view of (a) classical localized spins, mod-
eled by unit vectors Mn (red arrows), within an infinite metallic
ferromagnet defined on a cubic lattice in one to three dimensions
(one dimension is used in this illustration) and (b) a finite-size
metallic ferromagnet (central region) attached to semi-infinite NM
leads terminating in macroscopic reservoirs, whose difference in
electrochemical potentials injects charge current, as commonly done
in spintronics. The localized spins interact with conduction electron
spin 〈ŝ〉 (green arrow) via sd exchange of strength Jsd , while both
subsystems can experience external magnetic field B (blue arrow).
(c) Nonlocal damping λD

nn′ [Eq. (10)] obtained from SKFT vs the dis-
tance |rn − rn′ | between two sites n and n′ of the lattice for different
dimensionalities D of space.

damping due to conduction electron spins lagging behind
the classical localized ones which is nonlocal and inhomo-
geneous, with such features becoming more prominent in
low-dimensional ferromagnets. This result is independently
confirmed (Fig. 2) in one dimension by numerically exact sim-
ulations based on the time-dependent nonequilibrium Green’s
function combined with the LLG equation (TDNEGF+LLG)
scheme [40,43,56,57].

We note that conventional linear-response formulas
[9,30,34–36] produce unphysical divergent Gilbert damping
[33] in a perfectly crystalline magnet at zero temperature.
In contrast to previously proposed solutions to this problem,
which require [58–60] going beyond the standard picture of
electrons that do not interact with each other while interacting
with classical localized spins, our formulas are finite in the
clean limit, as well as in the absence of SOC. Scattering theory
[8] yields a formula for αG which is also always finite (in
the absence of SOC, it is finite due to spin pumping [61]).
However, that result can be viewed only as a spatial average
of our nonlocal damping, which cannot produce proper LLG
dynamics of local magnetization (Fig. 3).

This paper is organized as follows. In Sec. II we for-
mulate the SKFT approach to the dynamics of localized
spins interacting with conduction electrons within a metallic
ferromagnet. Sections III A and III B show how this approach

024413-2



GILBERT DAMPING IN METALLIC FERROMAGNETS FROM … PHYSICAL REVIEW B 109, 024413 (2024)

FIG. 2. (a) Time evolution of two localized spins Mn, located
at sites n = 1 and n′ = 3 within a chain of 19 sites in the setup of
Fig. 1(b), computed numerically using the TDNEGF+LLG scheme
[40,43,56,57]. The two spins are collinear at t = 0 and point along
the x axis, while magnetic field is applied along the z axis. (b) The
same information as in (a), but for two noncollinear spins with angle
∈ {0, 45, 90, 135, 180} between them. (c) and (d) Effective damping
extracted from TDNEGF+LLG simulations (red dashed line) vs the
one from SKFT [the black solid line plots the 1D case in Eq. (10)]
as a function of the site n′ of the second spin. The two spins are
initially parallel in (c) and antiparallel in (d). The Fermi wave vector
of conduction electrons is chosen to be kF = π/2a, where a is the
lattice spacing.

leads to nonlocal and isotropic or nonlocal and anisotropic
damping in the presence or absence of SOC, respectively.
The SKFT-derived analytical results are corroborated by nu-
merically exact TDNEGF+LLG simulations [40,43,56,57]
in Sec. III C. Then, in Secs. III D and III E we compare
SKFT-derived formulas with the widely used scattering the-
ory of conventional scalar Gilbert damping [8,61,62] and
spin-motive force (SMF) theory [13,19] of nonlocal damping.
Finally, in Sec. III F, we discuss how to combine our SKFT-
derived formulas with first-principles calculations of realistic
materials via density functional theory (DFT). We conclude in
Sec. IV.

II. SCHWINGER-KELDYSH FIELD THEORY
FOR METALLIC FERROMAGNETS

The starting point of SKFT is the action [48] of the metallic
ferromagnet, S = SM + Se,

SM =
∫
C

dt
∑

n

{∂t Mn(t ) · An − H[Mn(t )]}, (3a)

Se =
∫
C

dt
∑
nn′

[ψ̄n(t )(i∂t − γnn′ )ψn′ (t )

− δnn′Jsd Mn(t ) · sn′ (t )], (3b)

where SM is the contribution from localized spins and Se is
the contribution from conduction electrons. The integration∫
C is along the Keldysh closed contour C [48]. Here the

subscript n labels the site of a D-dimensional cubic lattice;

∂t Mn · An is the Berry phase term [63,64]; H[Mn] is the
Hamiltonian of localized spins; ψn = (ψ↑

n , ψ↓
n )T is the Grass-

mann spinor [48] for an electron at site n; γnn′ = −γ is the
nearest-neighbor (NN) hopping; sn = ψ̄nσψn is the electronic
spin density, where σ is the vector of the Pauli matrices; and
Jsd is the magnitude of the sd exchange interaction between
flowing spins of conduction electrons and localized spins. For
simplicity, we use h̄ = 1.

The Keldysh contour C, as well as all functions defined
on it, can be split into forward (+) and backward (−) seg-
ments [48]. These functions can, in turn, be rewritten as
M±

n = Mn,c ± 1
2 Mn,q for the real-valued localized spins field,

and ψ±
n = 1√

2
(ψ1,n ± ψ2,n) and ψ̄±

n = 1√
2
(ψ̄2,n ± ψ̄1,n) for

the Grassmann-valued fermion fields ψn and ψ̄n. The sub-
scripts c and q refer to the classical and quantum components
of time evolution. This rewriting yields the following expres-
sions for the two actions:

SM =
∫

dt
∑

n

Mα
nq

(
εαβγ ∂t M

β
n,cMγ

nc + Bα
eff [Mn,c]

)
, (4a)

Se =
∫

dtdt ′ ∑
nn′

ψ̄
σ

n

(
Ǧ−1

nn′δσσ ′ − Jsd M̌α
nn′σ

α
σσ ′

)
ψσ ′

n′ , (4b)

where the subscript σ =↑,↓ indicates spin; summation over
repeated Greek indices is implied; ψ ≡ (ψ1, ψ2)T ; Beff =
−δH/δM is the effective magnetic field; εαβγ is the Levi-
Civita symbol; and Ǒ are 2×2 matrices in the Keldysh space,
such as

Ǧnn′ =
(

GR GK

0 GA

)
nn′

, M̌α
nn′ =

(
Mc

Mq

2
Mq

2 Mc

)α

n

δnn′ . (5)

Here GR/A/K
nn′ (t, t ′) are electronic retarded/advanced/Keldysh

Green’s functions (GFs) [48] in the real-space representation
of sites n.

The electrons can be integrated out [49] up to the second
order in Jsd coupling, thereby yielding an effective action for
only localized spins,

Seff
M =

∫
dt

∑
n

Mα
n,q

{
εαβγ ∂t M

β
n,cMγ

n,c + Bα
eff [Mn,c]

+
∫

dt ′ ∑
n′

Mα
n′,c(t ′)ηnn′ (t, t ′)

}
, (6)

where

ηnn′ (t, t ′) = iJ2
sd

[
GR

nn′ (t, t ′)GK
nn′ (t ′, t ) + GK

nn′ (t, t ′)GA
nn′ (t ′, t )

]
(7)

is the non-Markovian time-retarded kernel. Note that terms
that are second order in the quantum fluctuations Mn,q are
neglected [48] in order to write Eq. (6). The magnetization
damping can be explicitly extracted by analyzing the ker-
nel, as demonstrated for different ferromagnetic setups in
Secs. III A and III B.
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III. RESULTS AND DISCUSSION

A. Nonlocality of Gilbert damping in metallic ferromagnets
in the absence of SOC

Since ηnn′ (t − t ′) depends only on the difference t − t ′, it
can be Fourier transformed to energy ε. Thus, the kernel can
be written explicitly for low energies as

ηnn′ (ε) = J2
sd

iε

2π

∑
k,q

eik·(rn−rn′ )eiq·(rn−rn′ )Ak(μ)Aq(μ), (8)

where Ak(μ) ≡ i[GR
k (μ) − GA

k (μ)] is the spectral function
[52] evaluated at chemical potential μ, k is a wave vec-
tor, and rn and rn′ are the position vectors of sites n and
n′. Equation (8) remains finite in the clean limit and for
low temperatures, so it evades unphysical divergences in the
linear-response approaches [58–60]. By transforming it back
into the time domain, we minimize the effective action in
Eq. (6) with respect to the quantum fluctuations to obtain
semiclassical equations of motion for classical localized spins.
This procedure is equivalent to the so-called large-spin ap-
proximation [65,66] or a one-loop truncation of the effective
action. The higher-order terms neglected in Eq. (6) contribute
a stochastic noise that vanishes in the low-temperature and
large-spin limit. Although the fluctuating effect of this noise
can modify the exact dynamics [54,65], the deterministic
regime suffices for a qualitative understanding and is often the
main focus of interest [66,67].

Thus, we arrive at the following extended LLG equation:

∂t Mn = −Mn × Beff,n + Mn ×
∑

n′
λD

nn′∂t Mn′ , (9)

where the conventional αGMn × ∂t Mn Gilbert term is re-
placed by the second term on the RHS exhibiting nonlocal
damping λD

nn′ instead of the Gilbert damping scalar pa-
rameter αG. A closed expression for λD

nn′ can be obtained
for one-dimensional (1D), two-dimensional (2D), and three-

FIG. 3. (a) Comparison of trajectories of localized spins Mz
n(t )

in the setup in Fig. 1(b), whose central region is a 1D metal-
lic ferromagnet composed of five sites, using LLG equation (9)
with SKFT-derived nonlocal damping (solid red lines) vs the LLG
equation with conventional spatially independent αG = 0.016 (black
dashed line). This value of αG is obtained by averaging nonlocal
damping over the whole ferromagnet. The dynamics of Mn(t ) is
initiated by an external magnetic field along the z axis, while all five
localized spins point along the x axis at t = 0. (b) Comparison of spin
current ISz

R (t ) pumped [56,57,61] by the dynamics of Mn(t ) for the
two cases [i.e., nonuniform Mn(t ) for nonlocal damping vs uniform
Mn(t ) for conventional damping] from (a). The Fermi wave vector of
conduction electrons is chosen to be kF = π/2a.

dimensional (3D) metallic ferromagnets by considering the
quadratic energy-momentum dispersion of their conduction
electrons:

λD
nn′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2J2
sd

πv2
F

cos2(kF |rn − rn′ |) 1D,

k2
F J2

sd

2πv2
F

J2
0 (kF |rn − rn′ |) 2D,

k2
F J2

sd

2πv2
F

sin2(kF |rn−rn′ |)
|rn−rn′ |2 3D.

(10)

Here kF is the Fermi wave vector of electrons, vF is their
Fermi velocity, and J0(x) is the zeroth Bessel function of the
first kind.

B. Nonlocality and anisotropy of Gilbert damping in metallic
ferromagnets in the presence of SOC

Taking into account that previous analytical calculations
[26–28] of the conventional Gilbert damping scalar parame-
ter always included SOC, often of the Rashba type [68], in
this section we show how to generalize Eq. (8) and nonlocal
damping extracted in the presence of SOC. For this purpose,
we employ the Rashba Hamiltonian in one dimension, with its
diagonal representation given by Ĥ = ∑

kσ εkσ ĉ†
kσ

ĉkσ , where
ĉ†

kσ
(ĉkσ ) creates (annihilates) an electron with wave number

k and spin σ oriented along the y axis, εkσ = −2γ cos k +
2σγSO sin k is the Rashba spin-split energy-momentum dis-
persion, and γSO is the strength of the Rashba SOC coupling.
By switching from second-quantized operators ĉ†

kσ
and ĉkσ

to Grassmann-valued two-component fields [64] c̄σ
n and cσ

n ,
where cσ

n = (cσ
1,n, cσ

2,n)T , we obtain, for the electronic action,

Se =
∫

dtdt ′ ∑
nn′

c̄σ
n

[(
Ǧσ

nn′
)−1

δσσ ′ − Jsd M̌α
nn′σ

β

σσ ′
]
cσ ′

n′ . (11)

Here Ǧσ
nn′ is diagonal, but it depends on spin through εkσ . In

addition, M̌x,y,z
nn′ , as the matrix which couples to the same σ x,y,z

Pauli matrix in the electronic action without SOC [Eq. (3b)],
is coupled in Eq. (11) to a different Pauli matrix σ y,z,x.

By integrating electrons out up to the second order in Jsd

and repeating steps analogous to those in Sec. II while care-
fully differentiating the spin-split bands, we find that nonlocal
damping becomes anisotropic:

λ1D
nn′ =

⎛
⎜⎝

α⊥
nn′ 0 0

0 α
‖
nn′ 0

0 0 α⊥
nn′

⎞
⎟⎠, (12)

where

α⊥
nn′ = J2

sd

π

(
cos2(k↑

F |rn − rn′ |)
v

↑
F

2 + cos2(k↓
F |rn − rn′ |)
v

↓
F

2

)
,

(13a)

α
‖
nn′ = J2

sd

π |v↑
F v

↓
F | {cos[(k↑

F + k↓
F )|rn − rn′ |]

+ cos[(k↑
F − k↓

F )|rn − rn′ |]}, (13b)

and k↑/↓
F and v

↑/↓
F are the Fermi wave vectors and velocities,

respectively, of the Rashba spin-split bands. This means that
the damping term in Eq. (9) is now given by Mn × ∑

n′ λ1D
nn′ ·

∂t Mn′ .
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We note that previous experimental [69], numerical [9,70],
and analytical [26–28] studies also found SOC-induced
anisotropy of the Gilbert damping scalar parameter. However,
our results [Eqs. (12) and (13)] exhibit the additional features
of nonlocality (i.e., damping at site n depends on spin at
site n′) and nonuniformity (i.e., dependence on |rn − rn′ |).
As expected from Sec. III A, nonlocality persists for γSO =
0, i.e., k↑

F = k↓
F = kF , with λ1D

nn′ properly reducing to con-
tain three equal diagonal elements. Additionally, the damping
component α

‖
nn′ given by Eq. (13b) can take negative values,

revealing the driving capability of the conduction electrons
(see Sec. III C). However, for realistic small values of γSO,
the driving contribution of nearby localized spins is like-
wise small. Furthermore, the decay of nonlocal damping
with increasing distance observed in two and three dimen-
sions, together with the presence of intrinsic local damping
from other sources, ensures that the system tends toward
equilibrium.

C. Comparison of SKFT-derived formulas with numerically
exact TDNEGF+LLG simulations

An analytical solution to Eq. (9) can be obtained in a few
special cases, such as for two exchange-uncoupled localized
spins at sites n = 1 and n′ �= 1 within a 1D wire placed in
an external magnetic field Bext = Bextez, with the proviso that
the two spins are collinear at t = 0. The same system can be
simulated by the TDNEGF+LLG scheme, so that comparing
the analytical solution to such a numerically exact solution
for trajectories Mn(t ) makes it possible to investigate the
accuracy of our derivation and approximations involved in it,
such as truncation to J2

sd order, keeping quantum fluctuations
Mn,q to first order, and low-energy approximation used in
Eq. (8). While such a toy model is employed to verify the
SKFT-based derivation, we note that two uncoupled localized
spins can also be interpreted as macrospins of two distant
ferromagnetic layers within a spin valve for which oscillatory
Gilbert damping as a function of distance between the lay-
ers was observed experimentally [71]. Note that semi-infinite
NM leads from the setup in Fig. 1(b), which are always
used in TDNEGF+LLG simulations to ensure a continuous
energy spectrum of the whole system [40,56], can also be
included in the SKFT-based derivation by using self-energy
�

R/A
k (ε) [52,72], which modifies the GFs of the central mag-

netic region in Fig. 1(b), GR/A
k = (ε − εk − �

R/A
k )−1, where

εk = −2γ cos k.
The TDNEGF+LLG-computed trajectory M1(t ) of local-

ized spin at site n = 1 is shown in Figs. 2(a) and 2(b) using
two localized spins which are initially collinear and non-
collinear, respectively. For the initially parallel [Fig. 2(a)] and
antiparallel localized spins, we can extract Gilbert damping
from such trajectories because Mz

1(t ) = tanh{λ̄1D
nn′Bextt/[1 +

(λ̄1D
nn′ )2]} [4,40], where the effective damping is given by

λ̄1D
nn′ = λ1D

00 ± λ1D
nn′ (+ for the parallel initial condition and

− for the antiparallel initial condition). The nonlocality of
this effective damping in Figs. 2(c) and 2(d) manifests as
its oscillation with increasing separation of the two localized
spins. The same result is predicted by the SKFT-derived for-
mula [1D case in Eq. (10)], which remarkably closely traces

the numerically extracted λ̄1D
nn′ despite the approximations in-

volved in the SKFT-based analytical derivation. Note also
that the two localized spins remain collinear at all times t ,
but damping remains nonlocal. The feature missed by the
SKFT-based formula is the decay of λ̄1D

nn′ with increasing
|rn − rn′ |, which is present in numerically extracted effective
damping in Figs. 2(c) and 2(d). Note that effective damping
is drastically reduced for antiparallel initial conditions due to
the driving capabilities of the conduction electrons in addition
to their dissipative nature. For noncollinear initial condi-
tions, TDNEGF+LLG-computed trajectories become more
complicated [Fig. 2(b)], so that we cannot extract effective
damping λ1D

nn′ akin to Figs. 2(c) and 2(d) for the collinear initial
conditions.

D. Comparison of SKFT-derived formulas with the scattering
theory [8] of uniform local Gilbert damping

The scattering theory of Gilbert damping αG was formu-
lated by studying a single-domain ferromagnet in contact with
a thermal bath [8]. In such a setup, energy [8] and spin [61]
pumped out of the system by time-dependent magnetization
contain information about spin-relaxation-induced bulk [8,62]
and interfacial [61] separable contributions to αG, expressible
in terms of the scattering matrix of a ferromagnetic layer
attached to two semi-infinite NM leads. For collinear localized
spins of the ferromagnet, precessing together as a macrospin,
scattering-theory-derived αG is a spatially uniform scalar
which can be anisotropic [62]. Its expression is equivalent
[62] to Kubo-type formulas [9,34–36] in the linear-response
limit while offering an efficient algorithm for numerical first-
principles calculations [24,25] that can include disorder and
SOC on equal footing.

On the other hand, even if all localized spins are initially
collinear, SKFT-derived extended LLG equation (9) predicts
that due to nonlocal damping each localized spin will ac-
quire a distinct Mn(t ) trajectory, as demonstrated by solid
red lines in Fig. 3(a). By feeding these trajectories, which
are affected by nonlocal damping [1D case in Eq. (10)],
into TDNEGF+LLG simulations, we can compute the spin
current ISz

R (t ) pumped [56,57] into the right semi-infinite
lead of the setup in Fig. 1(b) by the dynamics of Mn(t ).
A very similar result for pumped spin current is obtained
[Fig. 3(b)] if we feed identical Mn(t ) trajectories [black
dashed line in Fig. 3(a)] from the conventional LLG equa-
tion with the Gilbert damping scalar parameter αG, whose
value is obtained by averaging the SKFT-derived nonlocal
damping over the whole ferromagnet. This means that the
scattering theory of Gilbert damping [8], which in this ex-
ample is purely due to interfacial spin pumping [61] because
of the lack of SOC and disorder (i.e., the absence of spin
relaxation in the bulk), would predict a constant αG that
can be viewed only as the spatial average of SKFT-derived
nonlocal and nonuniform λ1D

nn′ . In other words, Fig. 3 reveals
that different types of microscopic magnetization dynamics
Mn(t ) can yield the same total spin angular momentum loss
in the external circuit, which is therefore insufficient on its
own to decipher the details (i.e., the proper form of the ex-
tended LLG equation) of the microscopic dynamics of local
magnetization.
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FIG. 4. (a) Comparison of magnetic DW velocity vDW vs DW
width w extracted from numerical simulations using the extended
LLG equation (9) with SKFT-derived nonlocal damping [Eq. (10);
red line], the extended LLG equation (1) with SMF-derived non-
local damping from Ref. [13] [Eq. (2); blue line] or SMF-derived
nonlocal damping from Ref. [19] [with an additional term compared
to Ref. [13]; green line; see Eq. (14)], and the conventional LLG
equation (1) with local Gilbert damping [i.e., η = 0 in Eq. (2); black
line]. (b) Spatial profile of the DW within a quasi-1D ferromagnetic
wire at time t = 410 h̄/J , where J is the exchange coupling between
Mn at NN sites, as obtained from the SKFT-derived extended LLG
equation (9) with nonlocal damping λ2D

nn′ [Eq. (10)]. (c) and (d) The
corresponding spatial profiles of nonlocal damping across the DW in
(b) using the SKFT-derived expression [Eqs. (9) and (10)] and the
SMF-derived [13] expression [second term on the right-hand side of
Eq. (2)], respectively.

E. Comparison of SKFT-derived formulas with spin motive
force theory [13] and [19] of nonlocal damping

The dynamics of noncollinear and noncoplanar magneti-
zation textures, such as magnetic domain walls (DWs) and
skyrmions, leads to pumping of charge and spin currents
assumed to be captured by the SMF theory [16,73,74]. The ex-
cess angular momentum of dynamical localized spins carried
away by the pumped spin current of electrons appears then
as back-action torque [57] exerted by nonequilibrium elec-
trons onto localized spins or, equivalently, nonlocal damping
[13,17–19]. From this viewpoint, i.e., by using expressions
for pumped spin current [13,17–19], a particular form for the
nonlocal damping [second term on the RHS of Eq. (2)] was
derived in Ref. [13] from the SMF theory and extended in
Ref. [19] with an additional term while also invoking a num-
ber of intuitively justified but uncontrolled approximations.

In this section, we employ an example of a magnetic-
field-driven DW [Fig. 4(b)] of width w within a quasi-1D
ferromagnetic wire to compare its dynamics obtained by
solving the extended LLG equation (1), which includes the
nonlocal damping tensor [Eq. (2)] of Ref. [13], with the dy-
namics obtained by solving the SKFT-derived extended LLG
equation (9) whose nonlocal damping is different from that
in Ref. [13]. By neglecting nonlocal damping in Eq. (2), the

ferromagnetic DW velocity vDW is found [75] to be directly
proportional to Gilbert damping αG, vDW ∝ −BextwαG, as-
suming a high external magnetic field Bext and sufficiently
small αG. Thus, the value of αG can be extracted by mea-
suring the DW velocity. However, experiments found that
αG determined in this fashion can be up to three times
larger than αG extracted from the ferromagnetic resonance
linewidth measurement scheme applied to the same ma-
terial with uniform dynamical magnetization [10]. This is
considered strong evidence of the importance of nonlo-
cal damping in systems hosting noncollinear magnetization
textures.

In order to properly compare the effect of two different
expressions for the nonlocal damping, we use αG = 0.1 in
Eq. (1), and we add the same standard local Gilbert damp-
ing term, αGMn × ∂t Mn, to the SKFT-derived extended LLG
equation (9). In addition, we set λ2D

00 = η in Eq. (10), so that
we can vary the same parameter η in all versions of the ex-
tended LLG [Eqs. (1), and (9)]. Note that we use λ2D

nn′ in order
to include realistic decay of nonlocal damping with increasing
distance |rn − rn′ |, thereby assuming a quasi-1D wire. By
changing the width of the DW, the effective damping can be
extracted from the DW velocity [Fig. 4(a)]. Figure 4(a) shows
that vDW ∝ w regardless of the specific version of nonlocal
damping employed, and it increases in its presence—compare
the red, blue, and green data points with the black ones ob-
tained in the absence of nonlocal damping. Nevertheless, the
clear distinction between the red data points and the blue and
green data points indicates that our SKFT-derived nonlocal
damping can be quite different from previously discussed
SMF-derived nonlocal dampings [13,19], which are compara-
ble regardless of the inclusion of the nonadiabatic terms. For
example, the effective dampings extracted from the blue and
green data points are D = 0.17 and D = 0.15, respectively,
while λ2D

nn′ = 0.48. This distinction is further clarified by com-
paring spatial profiles of the SKFT-derived and SMF-derived
nonlocal dampings in Figs. 4(c) and 4(d), respectively, at the
instant of time used in Fig. 4(b). In particular, the profiles
differ substantially in the out-of-DW-plane, or y, component,
which is, together with the x component, an order of magni-
tude greater in the case of SKFT-derived nonlocal damping.
In addition, the SKFT-derived nonlocal damping is nonzero
across the whole wire, while the nonlocal damping in Eq. (2)
is nonzero only within the DW width, where Mn vectors
are noncollinear [which is obvious from the presence of the
spatial derivative in the second term on the RHS of Eq. (2)].
Thus, the spatial profile of SKFT-derived nonlocal damping in
Fig. 4(c) illustrates how its nonzero value in the region outside
the DW width does not require noncollinearity of Mn vectors.

Since the SKFT-derived formulas are independently con-
firmed via numerically exact TDNEGF+LLG simulations in
Figs. 2(c) and 2(d), we conclude that the previously derived
[13] type of nonlocal damping [second term on the RHS of
Eq. (2)] does not fully capture back-action of nonequilibrium
conduction electrons on localized spins. This could be due to
nonadiabatic corrections [16,19,74] to spin current pumped
by dynamical noncollinear magnetization textures, which are
present even in the absence of disorder and SOC [43]. One
such correction was derived in Ref. [19] also using the spin
current pumping approach, thereby adding a second nonlocal
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damping term,

η
∑
β ′

[
(M · ∂β ′∂t M)M × ∂β ′M − M × ∂2

β ′∂t M
]
, (14)

to the extended LLG equation (1). However, combined usage
[green line in Fig. 4(a)] of both this term and the one in
Eq. (2) as nonlocal damping still does not match the effect of
SKFT-derived nonlocal damping [compare with the red line
in Fig. 4(a)] on the magnetic DW. As demonstrated already
in Fig. 3, the knowledge of total spin angular momentum loss
carried away by pumped spin current [Fig. 3(b)], which is the
key input in the derivations of Refs. [13,19], is, in general,
insufficient to decipher the details of the microscopic dynam-
ics and dissipation exhibited by localized spins [Fig. 3(a)] that
pump such current.

F. Combining SKFT-derived nonlocal damping
with first-principles calculations

Obtaining the closed-form expressions for the nonlocal
damping tensor λnn′ in Secs. III A and III B was made possible
by using simplistic model Hamiltonians and geometries. For
realistic materials and more complicated geometries, in this
section we provide general formulas which can be combined
with DFT quantities and evaluated numerically.

Notably, the time-retarded dissipation kernel in Eq. (7),
from which λnn′ is extracted, depends on the Keldysh
GFs. The same GFs are also commonly used in first-
principles calculations of the conventional Gilbert damping
scalar parameter via Kubo-type formulas [29–33]. Specif-
ically, the retarded and advanced GFs are obtained from
first-principles Hamiltonians ĤDFT DFT as ĜR/A(ε) = [ε −
ĤDFT + �̂R/A(ε)]

−1
. Here �̂R/A(ε) are the retarded and ad-

vanced self-energies [52,72] describing the escape rate of
electrons into NM leads, allowing for open-system setups akin
to the scattering-theory-derived formula for Gilbert damp-
ing [8,62] and its computational implementation with DFT
Hamiltonians [24,25]. Since escape rates are encoded by the
imaginary part of the self-energy, such calculations do not
require the iη imaginary parameter introduced by hand when
using Kubo-type formulas [29–33] (where η → 0 leads to
unphysical divergent results [58–60]). Therefore, ĤDFT can be
used as an input to compute the nonlocal damping tensor via
the calculation of the GFs ĜR/A(ε) and the spectral function
Â(ε) = i[ĜR(ε) − ĜA(ε)].

For these purposes, it is convenient to separate the
nonlocal damping tensor into its symmetric and antisymmet-
ric components, λ

αβ

nn′ = λ
(αβ )
nn′ + λ

[αβ]
nn′ , where the parentheses

(brackets) indicate that the encompassed indices have been
(anti)symmetrized. They are given by

λ
(αβ )
nn′ = − J2

sd

2π

∫
dε

∂ f

∂ε
Trspin[σαAnn′σβAn′n], (15a)

λ
[αβ]
nn′ = −2J2

sd

π

∫
dε

∂ f

∂ε
Trspin

[
σαRe ĜR

nn′σ
βAn′n − σαAnn′σβRe ĜR

n′n
]

+ J2
sd

2π

∫
dε (1 − 2 f )Trspin

[
σαRe ĜR

nn′σ
β ∂An′n

∂ε
− σα ∂Ann′

∂ε
σβRe ĜR

n′n

]
, (15b)

where f (ε) is the Fermi function and the trace is taken in the
spin space. The antisymmetric component either vanishes in
the presence of inversion symmetry or is orders of magnitude
smaller than the symmetric one. Therefore, it is absent in our
results for simple models on hypercubic lattices. As such,
the nonlocal damping tensors in Eqs. (10) and (13) are fully
symmetric, and Eq. (15a) is a special case that occurs when we
consider specific energy-momentum dispersions and assume
zero temperature.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we derived a formula [Eqs. (15)] for mag-
netization damping of a metallic ferromagnet via a rigorous
approach offered by the Schwinger-Keldysh nonequilibrium
field theory [48] unexploited for this purpose. Our formu-
las could open a new route for calculations of the Gilbert
damping of realistic materials by employing first-principles
Hamiltonian ĤDFT from density functional theory as an input,
as discussed in Sec. III F. Although a thorough numerical
exploration of a small two-spin system based on SKFT was
recently pursued in Ref. [54], our Eqs. (15) not only are

applicable for large systems of many localized spins but are
also refined into readily computable expressions that depend
on accessible quantities.

While traditional, Kubo linear response [9,30,34–36] or
scattering theory [8] based derivations produce spatially
uniform scalar αG, SKFT-derived damping in Eqs. (15) is
intrinsically nonlocal and nonuniform as it depends on the
coordinates of local magnetization at two points in space, rn

and rn′ . In the cases of model Hamiltonians in one to three
dimensions, we reduced Eqs. (15) to analytical expressions for
magnetization damping [Eq. (10)], thereby making it possible
to understand the consequences of such fundamental nonlo-
cality and nonuniformity for local magnetization dynamics,
such as the following: (i) Damping in Eq. (10) oscillates with
the distance between rn and rn′ , and the period of such oscil-
lation is governed by the Fermi wave vector kF [Figs. 1(c),
2(c), and 2(d)]. (ii) It always leads to nonuniform local mag-
netization dynamics [Fig. 3(a)], even though spin pumping
from it can appear [Fig. 3(b)] as if it is driven by the usually
analyzed [8,61] uniform local magnetization (or, equivalently,
macrospin). (iii) When applied to noncollinear magnetic tex-
tures, such as DWs, it produces an order of magnitude larger
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damping and therefore DW wall velocity than predicted by
previously derived [13] nonlocal damping [second term on
the RHS of Eq. (2)]. Remarkably, solutions of the SKFT-
based extended LLG equation (9) are fully corroborated by
numerically exact TDNEGF+LLG simulations [40,43,56,57]
in one dimension, despite the fact that several approximations
are employed in SKFT-based derivations. Finally, while con-
ventional understanding of the origin of the Gilbert damping
scalar parameter αG requires SOC to be nonzero [22,23], our
nonlocal damping is nonzero [Eq. (10)] even in the absence
of SOC due to the inevitable delay [39,40] in electronic spin

responding to the motion of localized classical spins. For
typical values of Jsd ∼ 0.1 eV [76] and NN hopping param-
eter γ ∼ 1 eV, the magnitude of the nonlocal damping is
λD

nn′ � 0.01, which is relevant even in metallic magnets with
conventional local damping αG ∼ 0.01 [10]. By switching
SOC on, such nonlocal damping also becomes anisotropic
[Eq. (13)].
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