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Motivated by the recent experimental observation [Abanin et al., Science 332, 328 (2011)] of nonlocality in
magnetotransport near the Dirac point in six-terminal graphene Hall bars, for a wide range of temperatures and
magnetic fields, we develop a nonequilibrium Green’s function theory of this phenomenon. In the quantum-
coherent regime and strong magnetic field, we find large Zeeman-splitting-driven spin Hall (SH) conductance
in four-terminal bars, where the SH current is pure only at the Dirac point (DP). In six-terminal Hall bars, this
leads to the nonlocal voltage at a remote location due to direct and inverse SH effect operating at the same time
in different parts of the device. The “momentum-relaxing” dephasing reduces their values at the DP by two
orders of magnitude while concurrently washing out any features away from the DP. Our theory is based on
the Meir-Wingreen formula for spin-resolved charge currents with dephasing introduced via phenomenological
many-body self-energies, which is then linearized for multiterminal geometries to extract currents and voltages.
This provides a generalization of the multiprobe Landauer-Biittiker formula without employing traditional

Biittiker voltage probes to introduce dephasing.
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I. INTRODUCTION

The recent experiments' on magnetotransport near the
Dirac point (DP) in graphene have unveiled yet another
exotic electronic property of this one-atom-thick carbon
allotrope? which involves nonlocality and quantum mechanics
while manifesting even at room temperature. The traditional
observation of nonlocality, where current is injected through
a pair of terminals and voltage is measured between an-
other pair of terminals at some remote location, requires
two-dimensional (2D) systems placed in a strong external
magnetic field to generate the integer quantum Hall effect?
(QHE) or spin-orbit coupling* (SOC) that can give rise to
mesoscopic>® or quantum™’ spin Hall effects (SHEs). In the
former case, nonlocality is due to transport through chiral edge
states. In the latter case, injected longitudinal charge current
generates transverse spin Hall current, which is then detected
in the remote part of the device via the inverse-SHE-induced
voltages®® on the proviso that spins can survive dephasing
between two locations.

On the other hand, nonlocal voltage was observed in Ref. 1
even in weak magnetic fields B ~ 1 T and at room temperature
T = 300 K, which is outside of the integer QHE regime. Also,
high-mobility graphene samples were supported by substrate
made of atomically flat hexagonal boron nitride, which rules
out Rashba SOC,* introduced by charge impurities from the
substrate® or lattice distortion by adatoms,'© which would be
responsible for the mesoscopic SHE scenario.’

It turns out that SHE in the absence of SOC has a
simple intuitive explanation based on the classical Newto-
nian dynamics of massless Dirac fermions. The classical
Hamiltonian of low-energy quasiparticles close to the Dirac
point is given by H*(p) = +vr+/p; + p;, which in the
weak external magnetic field B = V x A becomes H*(p) =
:i:vF\/(px —eA)’ + (py — eAy)z. The classical velocity is

then given by vi = dH*/dp,, = £vpll,,/VII*, where
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IT = p — eA, and the corresponding acceleration is

izﬂz evpviszev%VixB )
dt VT2 E*

Thus, the quasiparticles with energy E* above the DP (or
below with energy E~) moving in a weak (i.e., nonquantizing)
perpendicular magnetic field will experience a transverse force
which deflects them to the left (right). Furthermore, when E*
is very close to the DP, such deflecting force will be very large.

Although the Zeeman splitting Ay in 2D electron gases
(2DEGs) is typically small in a weak external magnetic field,*
it can play an essential role in graphene for kg7 < Az by
shifting the Dirac cones for opposite spins to induce two
types of carriers, illustrated in the lower inset in Fig. 1. The
quasiparticles with energy E™ are spin-up polarized, while
those with energy E~ are spin-down polarized. These two
effects, classical for charge and quantum for spin, conspire
to generate transverse spin current in response to longitudinal
charge current, as illustrated in Fig. 1. Such phenomenology is
similar to SHE in multiterminal 2DEG devices,>® even though
no SOC is involved to provide the deflecting force of opposite
direction for opposite spins.'!

These simple arguments for the existence of the Zeeman-
splitting-driven SHE (ZSHE) in graphene can be converted
into a quasiclassical transport theory based on the Boltzmann
equation.'® However, quasiclassical theory is valid in the
high-T and weak- B regime, while experiments' have observed
increasingly more profound nonlocality in the low-7 and/or
high-B regime, so that a unified theory is called for that can
cover such wide range of parameters. For example, such theory
should explain the nonlocal voltage in a strong (quantizing)
external magnetic field but at intermediate temperatures where
the edge-state transport mechanism is removed.

Here we develop a fully quantum transport theory of ZSHE
in four-terminal graphene bars, illustrated by the device within
the dashed box in Fig. 1, as well as the nonlocal voltage
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FIG. 1. (Color online) Schematic view of the six-terminal
graphene Hall bar, modeled on the tight-binding lattice with a single
7 orbital per site, which is employed to investigate nonlocal voltage
between leads 5 and 6 due to current injected between leads 1 and
4. The dashed box on the left marks the four-terminal bar used in
the analysis of Zeeman-splitting-driven SHE, where current injected
between leads 1 and 4 induces spin current in leads 2 and 3. The active
region of the bar consists of a graphene nanoribbon with armchair
edges and a portion of semi-infinite leads modeled as GNRs with
zigzag edges. For simplicity, external magnetic field or many-body
interactions responsible for dephasing are present only within the
illustrated active region.

induced by the combination of direct and inverse ZSHE in
six-terminal Hall bars shown in Fig. 1. Our approach is based
on the nonequilibrium Green’s function formalism'?> (NEGF),
which allows one to express spin-resolved charge currents in
the device terminals via the Meir-Wingreen formula.'>!3 The
dephasing is introduced via phenomenological'* many-body
self-energies which take into account simultaneous phase and
momentum relaxation. We then linearize the Meir-Wingreen
formula to establish the connection between currents and
voltages in the terminals, thereby offering a generalization of
the Landauer-Biittiker formula'® for phase-coherent transport
in multiterminal devices to situations where dephasing is
present within the active region of the device.

Our theory intrinsically accounts for the contributions
of both electrons and holes, which is crucial to describe
transport near the DP,!® and it can also handle arbitrary
scattering processes (in contrast to the Boltzmann equa-
tion, which breaks down'® close to the DP). Our central
results, summarized in Figs. 2—4, interpolate smoothly
between the phase-coherent transport regime at low-7 in
the quantizing external magnetic field and the semiclassical
transport regime where dephasing by many-body interactions
destroys features found at low-7 while leaving peaks (of
reduced magnitude, however) in the SH conductance and
nonlocal voltage around the DP, in accord with experimental
observations.'

This paper is organized as follows. The model Hamiltonian
for the multiterminal graphene Hall bars in Fig. 1 in the
external magnetic field is introduced in Sec. II. In Sec. III,
we discuss how to introduce dephasing via phenomenological
many-body self-energies of NEGF formalism and extract
currents and voltages in the device terminals in the linear-
response transport regime. This approach is applied in Sec. IV
to ZSHE in the four- and six-terminal graphene Hall bars from
Fig. 1. We conclude in Sec. V.
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FIG. 2. (Color online) The charge and spin transport quantities
in the four-terminal graphene Hall bar: (a) charge Hall conductance
G,y = L/(V; — V), (b) charge Hall resistance Ry = (V3 — V»)/1,
(c) spin Hall conductance Gsy = 125 /(Vy — V), and (d) spin Hall
angle Osy = IZS/Il. The width of AGNR channel is W/{p = 3.42 in
the units of the magnetic length £z, and a small momentum-relaxing
dephasing d,, = 0.04y is introduced into the active region shown in
Fig. 1.

II. THE DEVICE HAMILTONIAN

Close to the DP, graphene can be described by the tight-
binding Hamiltonian with a single 7 orbital per site,

A= (ea+gusoB)l,éoo —v Y €™l tme. ()
n (nm),o

Here ¢, is the on-site energy, 0 = +1 for spin-up electrons

and o = —1 for spin-down electrons, so that Zeeman splitting
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FIG. 3. (Color online) The charge and spin transport quantities in
the four-terminal graphene Hall bar: (a) charge Hall conductance G,
(b) charge Hall resistance Ry, (c) spin Hall conductance Gsy, and
(d) spin Hall angle 6sy. The width of the AGNR channel is W /€y =
1.53 in the units of the magnetic length €5, and large momentum-
relaxing dephasing d,, = 0.4y is introduced into the active region
shown in Fig. 1.
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FIG. 4. (Color online) (a) and (c) Charge Hall resistance Ry =
(Vy — Vy)/ I3 and (b) and (d) nonlocal resistance Ry, = (Vs — Vg)/1;
as the central quantity measured in the recent experiments' on six-
terminal graphene Hall bars. The quantum coherence is retained in
(a) and (b), where only a small momentum-relaxing dephasing d,, =
0.02y is present in the active region of the bar, while much larger
dephasing d,, = 0.5y is used for (c) and (d). The width of the AGNR
channel in Fig. 1is W/{z = 3.42in (a) and (b) and W/{z = 1.53 in
(c) and (d), in the units of the magnetic length .

is given by Az =2gugB with g =2.0, @,T,G (Cno) creates
(annihilates) electrons with spin ¢ in the m orbital located
on site n, and y is the nearest-neighbor hopping parameter.

The active region of the Hall bar in Fig. 1 consists of
a graphene nanoribbon with armchair edges (AGNR) and
a portion of semi-infinite ideal leads modeled as graphene
nanoribbons with zigzag edges (ZGNR). The electronic
structure and density of states of AGNR composed of 3p 4 2
dimer lines resembles'” (if we assume that only the nearest-
neighbor hopping y is nonzero) those of large-area graphene
employed experimentally. Although ZGNRs are insulating at
very low temperatures due to one-dimensional spin-polarized
edge states coupled across the width of the nanoribbon, such
unusual magnetic ordering and the corresponding band gap is
easily destroyed'*?’ above T > 10 K, so we employ them as
a model for metallic leads.

The external magnetic field enters through the phase factor
Pom = % fnm A - ds, where the vector potential A = (By,0,0)
is chosen in the Landau gauge and ¢y = h/e is the flux
quantum. The weak vs. strong magnetic field is tuned using
the ratio W/€p, where W is the width of the AGNR channel
of the bar in Fig. 1. All graphene bars studied in Figs. 2—4 are
placed in the quantizing external magnetic field, W/€p > 1.

III. NEGF-BASED MODEL FOR DEPHASING
IN QUANTUM TRANSPORT THROUGH
MULTITERMINAL DEVICES

While the integer QHE and quantum SHE have introduced
the intricate physics of Hall conductivity viewed as a topologi-
cal invariant,’ the operational description of these effects used
to analyze transport measurements®’ is typically based on the
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multiprobe Landauer-Biittiker formula'?
2
lo =3 Top(Va = V), 3)
B

written here assuming zero temperature. They relate total
charge current /, in lead « to voltages Vg in all other
leads via the matrix of transmission coefficients T,4. These
formulas are valid when phase coherence is retained in the
active region of the device, while phase breaking events are
assumed to be taking place only in the reservoirs to which
the leads are attached at infinity and where electrons are
equilibrated to acquire the Fermi-Dirac distribution f,(E) =
fE —eVy).

To take into account dephasing effects phenomenologically,
Biittiker introduced®' an elegant concept of voltage probes
attached to the active region where no net current flows
through them. Thus, for every electron that enters the probe
and is absorbed by its reservoir another one has to come out
which is not coherent with the one going in. For example,
to apply this method to the graphene Hall bar in Fig. 1,
one has to attach one-dimensional leads to each site?” of the
honeycomb lattice. This is equivalent to adding a complex
energy —in to &, in the Hamiltonian Eq. (2) (parameter 7 is
related to the dephasing time n = /1/27y). In addition, one has
to solve Eq. (3) by imposing that current through extra 1D
leads is zero, thereby ensuring conservation of the total charge
current.??

However, besides washing out quantum-coherence-
generated fluctuations in T,g, Biittiker voltage probes are also
introducing additional scattering (i.e., reduction of Tgg) in
an uncontrolled fashion.'* The NEGF formalism'? provides
a rigorous prescription for including any dephasing process
to any order by starting from a microscopic Hamiltonian
and by constructing interacting self-energies due to electron-
electron,” electron-phonon,”* or electron-spin® interactions.
Although the NEGF formalism is virtually the only fully quan-
titative quantum transport approach capable of scaling to large
systems,?® the self-consistent computation of self-energies
by starting from some microscopic many-body Hamiltonian
is at present prohibitively expensive for devices containing
a realistic number of atoms. Thus, to include dephasing
processes in the device in Fig. 1 containing a few thousand
carbon atoms, we adopt a phenomenological model of Ref. 14
that is comparable to Biittiker voltage probes in conceptual
and numerical simplicity and yet allows one the flexibility
of adjusting the degree of phase and momentum relaxation
independently.

The two fundamental objects'? of the NEGF formalism are
the retarded G7:2%'(t,t") = —i®(t — t/)({ém,(t),éjm,(t’)}) and
the lesser G:,;,‘”’/(t,t’) = i(éfm,(t’)ém(t)) GFs, which describe
the density of available quantum states and how electrons
occupy those states, respectively. Here (---) denotes the
nonequilibrium statistical average.'? In stationary problems,
G” and G~ depend only on the time difference r — ¢’ or energy
E after Fourier transformation. Their matrix representations
in the basis of local orbitals, such as the 7 ones in Eq. (2)
which define the matrix representation H of the corresponding
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Hamiltonian, satisfy the following equations:

—1
G'(E) = [E —H- Z T (E —eV,) — ):{m(E)] ,

4

G*(E) = G'(E) [Z 25 (E) + EE&E)} G“(E). (5)

Here X[ (FE) is the retarded self-energy determining the
escape rates for electrons to exit into the attached leads,
Y(E)=—folZL(E —eVy) — ZL(E — eV,)] is the corre-
sponding lesser self-energy matrix due to the coupling to the
leads, and advanced quantities are defined by 0% = [0"] .
In the “momentum-conserving” model of dephasing, the
interacting self-energies are given'* by

Zi(E) = d,G'(E), (6)
Yo (E) =d,G™(E), @)
while in the “momentum-relaxing” model
XiW(E) = Dld,G"(E)], (®)
X(E) = DldnG=(E)]. )

The operator D[- - - ] selects the diagonal elements of the matrix
on which it acts while setting to zero all the off-diagonal
elements. Any linear combination of these two choices can
be used to adjust the phase and momentum relaxation lengths
independently. When computed self-consistently together
with G"(E) and G=(E), both of these choices for X} (E)
and X (E) ensure the conservation” of charge current,
Yola=0.

The spin-resolved charge current in lead « is given by the
Meir-Wingreen formula,'>!3

Ig — gde Tr [Z;,G'G(E)G>,O'G(E)_ Z;,UO'(E)G<,GU(E)]’
(10)

which assumes that interactions responsible for dephasing are
localized within the active region of the graphene Hall bar
(a generalization to situations where interactions are spread
throughout the system, including the leads and the lead-sample
interfaces, can be found in Ref. 27). The total charge current in
lead o is I, = I + I}, and the total spin currentis IS = I —
I}. The first term in Eq. (10) gives the current flowing from
lead « toward the active region [because it is proportional to
G~ (E), which describes the empty states in the active region],
while the second term gives the current flowing in the opposite
direction [because it is proportional to G <(E), which describes
the occupied states in the active region]. Likewise, the self-
energies ©S(E) are proportional to the occupied lead states
and the empty lead states, respectively.

While Eq. (10) is valid both in the linear and nonlinear
transport regimes, in its original form it is not useful for the
analysis of currents and voltages in multiterminal devices.
That is, instead of voltages hidden in the self-energy and GF
matrices, one would like to recast Eq. (10) into a form similar
to Eq. (3), so that such equations can be easily inverted to get
voltages measured between the terminals for known currents
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injected into the device. For this purpose, we expand all quanti-
ties in Egs. (4) and (5) to linear order in V,: G (E) ~ G{(E) +
Gy(E)Y., TL(E — V) — TLE)GH(E), EL(E —eVo) ~
Y (E)— eV, 02 (E)/JE, and f,(E) ~ f(E)—eV,df/0E.
Here

—1
HE) = [E ~H- ) ZL(E)- Efn[(E>} (11)

is the retarded GF in equilibrium (V,, = const).

For both momentum-conserving and momentum-relaxing
dephasing (or their linear combination) one has to solve for
G{(E)and X} (E) using a self-consistent loop where the initial
guess is

12)

-1
b.n(E) = [E -H-)_ 2;<E)} :

Then

—1
Gg,oul(E) = |:E -H- Z EZ(E) - dpG(r)m(E):| (13)

in the case of momentum-conserving dephasing or

-1
G6,0ut(E) = {E -H- Z Ztrx(E) - D[deam(E)]}
(14)

in the case of momentum-relaxing dephasing is used as the
input Gy ;,(E) for the next iteration. We assume that the loop
has converged when ||G}, . (E) — G} (E)|| < 107

Using the converged’G(’)(E) matrix, the next step is to
compute G (E), which proceeds differently for momentum-
conserving and momentum-relaxing dephasing while yielding
the same form for the generalization of Eq. (3) in the zero
temperature limit:

2

e .
lo =+ D (TS + T (Ve — V). (15)
B
Here the “coherent” transmission function is
Tog"(E) = Tr{To(E)G(E)T 4(E)GG(E)}, (16)
while the “incoherent” contribution is given by
Ty NE) = Tr{To(E)Gy(E)T4(E)G(E)},  (17)

where both are evaluated at E = Ef in Eq. (15). Note that
although the expression for Tofgh in Eq. (16) resembles the

transmission function'? for phase-coherent transport of a sin-
gle particle exhibiting elastic scattering only (which is a usual
feature when reexpressing®® the Meir-Wingreen formula), it
actually takes into account the many-body interaction effects
through G{(E) in Eq. (11), which includes X} (E).

In the case of momentum-conserving dephasing, the matrix
I'4 in Eq. (17) is obtained from

[G]'T% — d,T4GE — d, TG4 = 0. (18)
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This is recognized as the Sylvester equation’’ of matrix
algebra, AX + XB + C = 0, where we identify the unknown
matrix as X = I‘Idg, while the known coefficients are A =
[G(’)]_l, B = —d,G{, and C = —d,I',Gj.

In the case of momentum-relaxing dephasing, the diag-
onal elements of the matrix F‘é in Eq. (17) are obtained
from

[T4],; = dn D_1Q1L[GiT sG], (19)

usingQ =[1 — d,P]~ ! and [P];, = [G(’)]ju[Gf)l]vj.30 Here the
notation [M];, denotes the matrix element of M.

IV. APPLICATION OF MOMENTUM-RELAXING MODEL
OF DEPHASING TO ZSHE IN GRAPHENE

Since we find that the momentum-conserving model
of dephasing cannot reproduce the experimental results of
Ref. 1, we focus on momentum-relaxing model. An inter-
ested reader can find a detailed comparison of momentum-
conserving, momentum-relaxing, and traditional Bittiker
voltage probe’’">> phenomenological methods to introduce
dephasing in quantum transport in Ref. 14 for a simple example
of disordered wire attached to two ideal semi-infinite leads.

The momentum-relaxing model we employ in this section
accounts for the local simultaneous phase and momentum
relaxation. Also, it can be physically interpreted as a highly
simplified version (valid in the high-temperature limit) of the
so-called self-consistent Born approximation'>>* for electron-
phonon interaction. We note that the momentum-relaxing
model has been employed before to study dephasing effects
in the integer QHE,*® where the phenomenological dephasing
length is often invoked?! to account for electron-electron and
electron-phonon scattering without delving into the micro-
scopic details of such interactions.

For phase-coherent transport in multiterminal devices,
which is described by Eq. (3), the recently developed
algorithms®>33 that exploit the sparse nature of the Hamil-
tonian matrix of an open system, Hopen + Za X/ (E), make it
possible to find specific submatrices of the inverse matrix £ —
Hopen (i-€., the retarded GF), which enter into the computation
of T;gh(E ) in Eq. (16), even for large active regions of the size
~1 pum encountered in experiments. However, in the presence
of dephasing Hopen + >, T (E) + X/, (E) is a dense matrix
which then requires brute force (multithreaded or parallelized)
computation of all elements of G{(E), which is prohibitively
expensive for multiterminal Hall bars of the size employed in
the experiments of Ref. 1.

Therefore, since we have to perform such a computation
on a grid of energy points, we select a much smaller size for
the active region of the device in Fig. 1: W ~ 2.7 nm for four-
terminal graphene Hall bars and W ~ 2.0 nm for six-terminal
bars. Given the very small device size in our simulation, we
have to apply unrealistically large external magnetic fields in
order to bring the device into the quantizing regime W/lp >
1. Nevertheless, the important parameter for comparing our
results with experiments is not the absolute value of W or B
but their ratio W/£€g, which is indicated in the captions for
Figs. 24
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A. Four-terminal graphene Hall bars

In the analysis of four-terminal bars, voltage V' /2 is applied
to lead 1 and —V/2 to lead 4, while voltages on leads 2
and 3 are set to zero. Figure 2 shows that in the quantizing
external magnetic field W/€p > 1, where £ =+/fi/|eB] is the
magnetic length in graphene, the four-terminal bar generates
large spin Hall conductance Gsy = (12T — 12i )/ (Vi1 — V4) and
the corresponding SH angle 6sy = Gsy/GL, with G =
I,/(V; — V4) being the longitudinal charge conductance.
The spin current I5 = 12T - 12¢ in the ZSHE is carried by
spins polarized along the z axis orthogonal to the plane
of graphene.

The value of Gsy is comparable to the one predicted®*
for the Rashba SO-coupled four-terminal 2DEGs of the size
of the spin precession length (on which a spin-up state
precesses to a spin-down state). Unlike mesoscopic SHE? in
2DEGs where Rashba SOC induces both the transverse spin
deflection'! and spin dephasing, which compete against each
other in the processes of generating pure (not accompanied
by any net charge flux) spin current, in the ZSHE transverse
spin current is pure only at the DP [where charge current
L= 12T + 12l becomes zero in Figs. 2(a) and 3(a)], and spin
precession is absent. This might be advantageous for spintronic
applications since spin dephasing is evaded, as demonstrated
by the experimental detection of nonlocal voltage even at
distances ~10 um away from the device region where SH
current was induced.! We note that for a very strong magnetic
field, as could be achieved in ferromagnetic graphene, the Ggsy
peaks in Fig. 2(c) would become quantized® as a realization
of quantum SHE? in the absence of SOC.

The introduction of dephasing processes into the four-
terminal bars, which relax both'* the phase and the momentum
of quasiparticles propagating through the active region, de-
stroys the quantization of the charge Hall conductance G, =
I,/(Vy — V4) or charge Hall resistance Ry and underlying
chiral edge states, as demonstrated by the transition from
Figs. 2(a) to 3(a) for G, and from Figs. 2(b) to 3(b) for
Ry. The charge Hall resistance in four-terminal bars is defined
as Ry = (V3 — V) /I, for the measuring setup where current
I, is injected into lead 1 and voltages V3 and V, develop as
the response to it. The SH conductance and SH angle are
concurrently reduced by two orders of magnitude, which are
values similar to those found in quasiclassical approaches'® in
the temperature range 7 = 200-300 K.

B. Six-terminal graphene Hall bars

In the analysis of six-terminal Hall bars, charge current /;
is injected through lead 1 and current —/; flows through lead
4 while I, = 0 in all other leads. We then compute voltages
which develop in the leads o = 2,3,5,6 labeled in Fig. 1 in
response to injected current /;. Figure 4(b) shows peaks in the
nonlocal resistance, defined as Rny = (V5 — Vi)/I;, within
the phase-coherent transport regime which closely resemble
the DP and side peaks observed experimentally in strong
(quantizing) external magnetic field.! The transition of Ryp
from Figs. 4(b) to 4(d) shows how dephasing removes both
side peaks while leaving the nonlocal voltage around the
DP which is two orders of magnitude smaller than in the
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phase-coherent regime. The Hall resistance in the six-terminal
bar, Ry = (V| — V4)/I5 defined for current injected I3 and
voltages measured between leads 1 and 4 (for I} = I, = 0),
changes smoothly from Figs. 4(a) to 4(c) as dephasing in
increased, where the curve in Fig. 4(c) looks exactly the
same as those observed experimentally'® for T = 250 K and
B=1-12T.

V. CONCLUSIONS

In conclusion, we have developed a fully quantum transport
theory of recently observed' nonlocal voltage in magnetotrans-
port near the DP in graphene Hall bars which provides a unified
picture of this phenomenon and the underlying Zeeman-
splitting-driven spin Hall effect from the quantum-coherent
transport regime at low temperatures to a semiclassical
transport regime at higher temperatures. At the same time,
this approach makes it possible to take into account arbitrary
strength of the magnetic field or scattering processes by short-
and long-range static impurity potential near the DP where
the quasiclassical Boltzmann equation breaks down'® even

PHYSICAL REVIEW B 85, 155414 (2012)

for transport at high temperatures. Our theory starts from the
NEGF-based Meir-Wingreen formula for spin-resolved charge
currents in the attached leads, including phenomenological
many-body self-energies that take into account relaxation
of both the phase and the momentum of Dirac fermions
in the active region of the device, which is then linearized
to provide the connection between current and voltages in
different leads. This can be viewed as a generalization of
the Landauer-Biittiker formula for phase-coherent transport in
multiterminal device geometries where the usually employed
additional Bittiker voltage probes to introduce dephasing,
which also generate additional scattering in an uncontrolled
fashion, are avoided.
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