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Preface

Symmetry can be seen as the most basic and important concept in physics.
Momentum conservation is a consequence of translational symmetry of space.
More generally, every process in physics is governed by selection rules that
are the consequence of symmetry requirements. On a given physical system,
the eigenstate properties and the degeneracy of eigenvalues are governed by
symmetry considerations. The beauty and strength of group theory applied to
physics resides in the transformation of many complex symmetry operations
into a very simple linear algebra. The concept of representation, connecting
the symmetry aspects to matrices and basis functions, together with a few
simple theorems, leads to the determination and understanding of the funda-
mental properties of the physical system, and any kind of physical property,
its transformations due to interactions or phase transitions, are described in
terms of the simple concept of symmetry changes.

The reader may feel encouraged when we say group theory is “simple linear
algebra.” It is true that group theory may look complex when either the math-
ematical aspects are presented with no clear and direct correlation to applica-
tions in physics, or when the applications are made with no clear presentation
of the background. The contact with group theory in these terms usually leads
to frustration, and although the reader can understand the specific treatment,
he (she) is unable to apply the knowledge to other systems of interest. What
this book is about is teaching group theory in close connection to applications,
so that students can learn, understand, and use it for their own needs.

This book is divided into six main parts. Part I, Chaps. 1–4, introduces
the basic mathematical concepts important for working with group theory.
Part II, Chaps. 5 and 6, introduces the first application of group theory to
quantum systems, considering the effect of a crystalline potential on the elec-
tronic states of an impurity atom and general selection rules. Part III, Chaps. 7
and 8, brings the application of group theory to the treatment of electronic
states and vibrational modes of molecules. Here one finds the important group
theory concepts of equivalence and atomic site symmetry. Part IV, Chaps. 9
and 10, brings the application of group theory to describe periodic lattices in
both real and reciprocal lattices. Translational symmetry gives rise to a lin-
ear momentum quantum number and makes the group very large. Here the
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concepts of cosets and factor groups, introduced in Chap. 1, are used to factor
out the effect of the very large translational group, leading to a finite group
to work with each unique type of wave vector – the group of the wave vector.
Part V, Chaps. 11–15, discusses phonons and electrons in solid-state physics,
considering general positions and specific high symmetry points in the Bril-
louin zones, and including the addition of spins that have a 4π rotation as the
identity transformation. Cubic and hexagonal systems are used as general ex-
amples. Finally, Part VI, Chaps. 16–18, discusses other important symmetries,
such as time reversal symmetry, important for magnetic systems, permutation
groups, important for many-body systems, and symmetry of tensors, impor-
tant for other physical properties, such as conductivity, elasticity, etc.

This book on the application of Group Theory to Solid-State Physics grew
out of a course taught to Electrical Engineering and Physics graduate students
by the authors and developed over the years to address their professional
needs. The material for this book originated from group theory courses taught
by Charles Kittel at U.C. Berkeley and by J.H. Van Vleck at Harvard in the
early 1950s and taken by G. Dresselhaus and M.S. Dresselhaus, respectively.
The material in the book was also stimulated by the classic paper of Bouckaert,
Smoluchowski, and Wigner [1], which first demonstrated the power of group
theory in condensed matter physics. The diversity of applications of group
theory to solid state physics was stimulated by the research interests of the
authors and the many students who studied this subject matter with the
authors of this volume. Although many excellent books have been published
on this subject over the years, our students found the specific subject matter,
the pedagogic approach, and the problem sets given in the course user friendly
and urged the authors to make the course content more broadly available.

The presentation and development of material in the book has been tai-
lored pedagogically to the students taking this course for over three decades
at MIT in Cambridge, MA, USA, and for three years at the University Fed-
eral of Minas Gerais (UFMG) in Belo Horizonte, Brazil. Feedback came from
students in the classroom, teaching assistants, and students using the class
notes in their doctoral research work or professionally.

We are indebted to the inputs and encouragement of former and present
students and collaborators including, Peter Asbeck, Mike Kim, Roosevelt Peo-
ples, Peter Eklund, Riichiro Saito, Georgii Samsonidze, Jose Francisco de Sam-
paio, Luiz Gustavo Cançado, and Eduardo Barros among others. The prepa-
ration of the material for this book was aided by Sharon Cooper on the figures,
Mario Hofmann on the indexing and by Adelheid Duhm of Springer on editing
the text. The MIT authors of this book would like to acknowledge the contin-
ued long term support of the Division of Materials Research section of the US
National Science Foundation most recently under NSF Grant DMR-04-05538.

Cambridge, Massachusetts USA, Mildred S. Dresselhaus
Belo Horizonte, Minas Gerais, Brazil, Gene Dresselhaus
August 2007 Ado Jorio



Contents

Part I Basic Mathematics

1 Basic Mathematical Background: Introduction . . . . . . . . . . . . . 3
1.1 Definition of a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Simple Example of a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Rearrangement Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Conjugation and Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Factor Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Group Theory and Quantum Mechanics . . . . . . . . . . . . . . . . . . . 11

2 Representation Theory and Basic Theorems . . . . . . . . . . . . . . . 15
2.1 Important Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Irreducible Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The Unitarity of Representations . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Schur’s Lemma (Part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Schur’s Lemma (Part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Wonderful Orthogonality Theorem . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Representations and Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Character of a Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Definition of Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Characters and Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Wonderful Orthogonality Theorem for Character . . . . . . . . . . . . 31
3.4 Reducible Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 The Number of Irreducible Representations . . . . . . . . . . . . . . . . 35
3.6 Second Orthogonality Relation for Characters . . . . . . . . . . . . . . 36
3.7 Regular Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Setting up Character Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



X Contents

3.9 Schoenflies Symmetry Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.10 The Hermann–Mauguin Symmetry Notation . . . . . . . . . . . . . . . 46
3.11 Symmetry Relations and Point Group Classifications . . . . . . . . 48

4 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Symmetry Operations and Basis Functions . . . . . . . . . . . . . . . . . 57
4.2 Basis Functions for Irreducible Representations . . . . . . . . . . . . . 58
4.3 Projection Operators P̂ (Γn)

kl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Derivation of an Explicit Expression for P̂ (Γn)

k� . . . . . . . . . . . . . . 64
4.5 The Effect of Projection Operations on an Arbitrary Function 65
4.6 Linear Combinations of Atomic Orbitals for Three

Equivalent Atoms at the Corners of an Equilateral Triangle . . 67
4.7 The Application of Group Theory to Quantum Mechanics . . . . 70

Part II Introductory Application to Quantum Systems

5 Splitting of Atomic Orbitals in a Crystal Potential . . . . . . . . . 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Characters for the Full Rotation Group . . . . . . . . . . . . . . . . . . . . 81
5.3 Cubic Crystal Field Environment

for a Paramagnetic Transition Metal Ion . . . . . . . . . . . . . . . . . . . 85
5.4 Comments on Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Comments on the Form of Crystal Fields . . . . . . . . . . . . . . . . . . 92

6 Application to Selection Rules and Direct Products . . . . . . . 97
6.1 The Electromagnetic Interaction as a Perturbation . . . . . . . . . . 97
6.2 Orthogonality of Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Direct Product of Two Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Direct Product of Two Irreducible Representations . . . . . . . . . . 101
6.5 Characters for the Direct Product . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Selection Rule Concept in Group Theoretical Terms . . . . . . . . . 105
6.7 Example of Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Part III Molecular Systems

7 Electronic States of Molecules and Directed Valence . . . . . . . 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 General Concept of Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Directed Valence Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 Diatomic Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4.1 Homonuclear Diatomic Molecules . . . . . . . . . . . . . . . . . . . 118
7.4.2 Heterogeneous Diatomic Molecules . . . . . . . . . . . . . . . . . . 120



Contents XI

7.5 Electronic Orbitals for Multiatomic Molecules . . . . . . . . . . . . . . 124
7.5.1 The NH3 Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5.2 The CH4 Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5.3 The Hypothetical SH6 Molecule . . . . . . . . . . . . . . . . . . . . 129
7.5.4 The Octahedral SF6 Molecule . . . . . . . . . . . . . . . . . . . . . . 133

7.6 σ- and π-Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.7 Jahn–Teller Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Molecular Vibrations, Infrared, and Raman Activity . . . . . . . 147
8.1 Molecular Vibrations: Background . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Application of Group Theory to Molecular Vibrations . . . . . . . 149
8.3 Finding the Vibrational Normal Modes . . . . . . . . . . . . . . . . . . . . 152
8.4 Molecular Vibrations in H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.5 Overtones and Combination Modes . . . . . . . . . . . . . . . . . . . . . . . 156
8.6 Infrared Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.7 Raman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.8 Vibrations for Specific Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.8.1 The Linear Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.8.2 Vibrations of the NH3 Molecule . . . . . . . . . . . . . . . . . . . . 166
8.8.3 Vibrations of the CH4 Molecule . . . . . . . . . . . . . . . . . . . . 168

8.9 Rotational Energy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.9.1 The Rigid Rotator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.9.2 Wigner–Eckart Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.9.3 Vibrational–Rotational Interaction . . . . . . . . . . . . . . . . . . 174

Part IV Application to Periodic Lattices

9 Space Groups in Real Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.1 Mathematical Background for Space Groups . . . . . . . . . . . . . . . 184

9.1.1 Space Groups Symmetry Operations . . . . . . . . . . . . . . . . 184
9.1.2 Compound Space Group Operations . . . . . . . . . . . . . . . . 186
9.1.3 Translation Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.1.4 Symmorphic and Nonsymmorphic Space Groups . . . . . . 189

9.2 Bravais Lattices and Space Groups . . . . . . . . . . . . . . . . . . . . . . . . 190
9.2.1 Examples of Symmorphic Space Groups . . . . . . . . . . . . . 192
9.2.2 Cubic Space Groups

and the Equivalence Transformation . . . . . . . . . . . . . . . . 194
9.2.3 Examples of Nonsymmorphic Space Groups . . . . . . . . . . 196

9.3 Two-Dimensional Space Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.3.1 2D Oblique Space Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.3.2 2D Rectangular Space Groups . . . . . . . . . . . . . . . . . . . . . . 201
9.3.3 2D Square Space Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.3.4 2D Hexagonal Space Groups . . . . . . . . . . . . . . . . . . . . . . . 203

9.4 Line Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



XII Contents

9.5 The Determination of Crystal Structure and Space Group . . . . 205
9.5.1 Determination of the Crystal Structure . . . . . . . . . . . . . . 206
9.5.2 Determination of the Space Group . . . . . . . . . . . . . . . . . . 206

10 Space Groups in Reciprocal Space and Representations . . . . 209
10.1 Reciprocal Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.2 Translation Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10.2.1 Representations for the Translation Group . . . . . . . . . . . 211
10.2.2 Bloch’s Theorem and the Basis

of the Translational Group . . . . . . . . . . . . . . . . . . . . . . . . . 212
10.3 Symmetry of k Vectors and the Group of the Wave Vector . . . 214

10.3.1 Point Group Operation in r-space and k-space . . . . . . . 214
10.3.2 The Group of the Wave Vector Gk and the Star of k . . 215
10.3.3 Effect of Translations and Point Group Operations

on Bloch Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.4 Space Group Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10.4.1 Symmorphic Group Representations . . . . . . . . . . . . . . . . . 219
10.4.2 Nonsymmorphic Group Representations

and the Multiplier Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.5 Characters for the Equivalence Representation . . . . . . . . . . . . . . 221
10.6 Common Cubic Lattices: Symmorphic Space Groups . . . . . . . . 222

10.6.1 The Γ Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.6.2 Points with k �= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10.7 Compatibility Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.8 The Diamond Structure: Nonsymmorphic Space Group . . . . . . 230

10.8.1 Factor Group and the Γ Point . . . . . . . . . . . . . . . . . . . . . . 231
10.8.2 Points with k �= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10.9 Finding Character Tables for all Groups of the Wave Vector . . 235

Part V Electron and Phonon Dispersion Relation

11 Applications to Lattice Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.2 Lattice Modes and Molecular Vibrations . . . . . . . . . . . . . . . . . . . 244
11.3 Zone Center Phonon Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

11.3.1 The NaCl Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
11.3.2 The Perovskite Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.3.3 Phonons in the Nonsymmorphic Diamond Lattice . . . . . 250
11.3.4 Phonons in the Zinc Blende Structure . . . . . . . . . . . . . . . 252

11.4 Lattice Modes Away from k = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 253
11.4.1 Phonons in NaCl at the X Point k = (π/a)(100) . . . . . . 254
11.4.2 Phonons in BaTiO3 at the X Point . . . . . . . . . . . . . . . . . 256
11.4.3 Phonons at the K Point in Two-Dimensional Graphite . 258



Contents XIII

11.5 Phonons in Te and α-Quartz Nonsymmorphic Structures . . . . . 262
11.5.1 Phonons in Tellurium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
11.5.2 Phonons in the α-Quartz Structure . . . . . . . . . . . . . . . . . 268

11.6 Effect of Axial Stress on Phonons . . . . . . . . . . . . . . . . . . . . . . . . . 272

12 Electronic Energy Levels in a Cubic Crystals . . . . . . . . . . . . . . 279
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
12.2 Plane Wave Solutions at k = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
12.3 Symmetrized Plane Solution Waves along the Δ-Axis . . . . . . . . 286
12.4 Plane Wave Solutions at the X Point . . . . . . . . . . . . . . . . . . . . . . 288
12.5 Effect of Glide Planes and Screw Axes . . . . . . . . . . . . . . . . . . . . . 294

13 Energy Band Models Based on Symmetry . . . . . . . . . . . . . . . . . 305
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
13.2 k · p Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
13.3 Example of k · p Perturbation Theory

for a Nondegenerate Γ+
1 Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

13.4 Two Band Model:
Degenerate First-Order Perturbation Theory . . . . . . . . . . . . . . . 311

13.5 Degenerate second-order k · p Perturbation Theory . . . . . . . . . . 316
13.6 Nondegenerate k · p Perturbation Theory at a Δ Point . . . . . . 324
13.7 Use of k · p Perturbation Theory

to Interpret Optical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 326
13.8 Application of Group Theory to Valley–Orbit Interactions

in Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
13.8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
13.8.2 Impurities in Multivalley Semiconductors . . . . . . . . . . . . 330
13.8.3 The Valley–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . 331

14 Spin–Orbit Interaction in Solids and Double Groups . . . . . . . 337
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
14.2 Crystal Double Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
14.3 Double Group Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
14.4 Crystal Field Splitting Including Spin–Orbit Coupling . . . . . . . 349
14.5 Basis Functions for Double Group Representations . . . . . . . . . . 353
14.6 Some Explicit Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.7 Basis Functions for Other Γ+

8 States . . . . . . . . . . . . . . . . . . . . . . 358
14.8 Comments on Double Group Character Tables . . . . . . . . . . . . . . 359
14.9 Plane Wave Basis Functions

for Double Group Representations . . . . . . . . . . . . . . . . . . . . . . . . 360
14.10 Group of the Wave Vector

for Nonsymmorphic Double Groups . . . . . . . . . . . . . . . . . . . . . . . 362



XIV Contents

15 Application of Double Groups to Energy Bands with Spin . 367
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
15.2 E(k) for the Empty Lattice Including Spin–Orbit Interaction . 368
15.3 The k · p Perturbation with Spin–Orbit Interaction . . . . . . . . . 369
15.4 E(k) for a Nondegenerate Band Including

Spin–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
15.5 E(k) for Degenerate Bands Including Spin–Orbit Interaction . 374
15.6 Effective g-Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
15.7 Fourier Expansion of Energy Bands: Slater–Koster Method . . . 389

15.7.1 Contributions at d = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
15.7.2 Contributions at d = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
15.7.3 Contributions at d = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
15.7.4 Summing Contributions through d = 2 . . . . . . . . . . . . . . 397
15.7.5 Other Degenerate Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Part VI Other Symmetries

16 Time Reversal Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
16.1 The Time Reversal Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
16.2 Properties of the Time Reversal Operator . . . . . . . . . . . . . . . . . . 404
16.3 The Effect of T̂ on E(k), Neglecting Spin . . . . . . . . . . . . . . . . . . 407
16.4 The Effect of T̂ on E(k), Including

the Spin–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
16.5 Magnetic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

16.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
16.5.2 Types of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
16.5.3 Types of Magnetic Point Groups . . . . . . . . . . . . . . . . . . . . 419
16.5.4 Properties of the 58 Magnetic Point Groups {Ai,Mk} . 419
16.5.5 Examples of Magnetic Structures . . . . . . . . . . . . . . . . . . . 423
16.5.6 Effect of Symmetry on the Spin Hamiltonian

for the 32 Ordinary Point Groups . . . . . . . . . . . . . . . . . . . 426

17 Permutation Groups and Many-Electron States . . . . . . . . . . . . 431
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
17.2 Classes and Irreducible Representations

of Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
17.3 Basis Functions of Permutation Groups . . . . . . . . . . . . . . . . . . . . 437
17.4 Pauli Principle in Atomic Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 440

17.4.1 Two-Electron States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
17.4.2 Three-Electron States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
17.4.3 Four-Electron States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
17.4.4 Five-Electron States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
17.4.5 General Comments on Many-Electron States . . . . . . . . . 451



Contents XV

18 Symmetry Properties of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
18.2 Independent Components of Tensors

Under Permutation Group Symmetry. . . . . . . . . . . . . . . . . . . . . . 458
18.3 Independent Components of Tensors:

Point Symmetry Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
18.4 Independent Components of Tensors

Under Full Rotational Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 463
18.5 Tensors in Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

18.5.1 Cubic Symmetry: Oh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
18.5.2 Tetrahedral Symmetry: Td . . . . . . . . . . . . . . . . . . . . . . . . . 466
18.5.3 Hexagonal Symmetry: D6h . . . . . . . . . . . . . . . . . . . . . . . . . 466

18.6 Elastic Modulus Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
18.6.1 Full Rotational Symmetry: 3D Isotropy . . . . . . . . . . . . . . 469
18.6.2 Icosahedral Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
18.6.3 Cubic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
18.6.4 Other Symmetry Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 474

A Point Group Character Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

B Two-Dimensional Space Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

C Tables for 3D Space Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
C.1 Real Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
C.2 Reciprocal Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

D Tables for Double Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

E Group Theory Aspects of Carbon Nanotubes . . . . . . . . . . . . . . 533
E.1 Nanotube Geometry and the (n,m) Indices . . . . . . . . . . . . . . . . 534
E.2 Lattice Vectors in Real Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
E.3 Lattice Vectors in Reciprocal Space . . . . . . . . . . . . . . . . . . . . . . . 535
E.4 Compound Operations and Tube Helicity . . . . . . . . . . . . . . . . . . 536
E.5 Character Tables for Carbon Nanotubes . . . . . . . . . . . . . . . . . . . 538

F Permutation Group Character Tables . . . . . . . . . . . . . . . . . . . . . . 543

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553



Part I

Basic Mathematics



1

Basic Mathematical Background: Introduction

In this chapter we introduce the mathematical definitions and concepts that
are basic to group theory and to the classification of symmetry proper-
ties [2].

1.1 Definition of a Group

A collection of elements A,B,C, . . . form a group when the following four
conditions are satisfied:

1. The product of any two elements of the group is itself an element of
the group. For example, relations of the type AB = C are valid for all
members of the group.

2. The associative law is valid – i.e., (AB)C = A(BC).
3. There exists a unit element E (also called the identity element) such that

the product of E with any group element leaves that element unchanged
AE = EA = A.

4. For every element A there exists an inverse elementA−1 such thatA−1A =
AA−1 = E.

In general, the elements of a group will not commute, i.e., AB �= BA. But if
all elements of a group commute, the group is then called an Abelian group.

1.2 Simple Example of a Group

As a simple example of a group, consider the permutation group for three
numbers, P (3). Equation (1.1) lists the 3! = 6 possible permutations that
can be carried out; the top row denotes the initial arrangement of the three
numbers and the bottom row denotes the final arrangement. Each permutation
is an element of P (3).
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Fig. 1.1. The symmetry operations on an equilateral triangle are the rotations by
±2π/3 about the origin and the rotations by π about the three twofold axes. Here
the axes or points of the equilateral triangle are denoted by numbers in circles

E =
(

1 2 3
1 2 3

)
A =

(
1 2 3
1 3 2

)
B =

(
1 2 3
3 2 1

)

C =
(

1 2 3
2 1 3

)
D =

(
1 2 3
3 1 2

)
F =

(
1 2 3
2 3 1

)
. (1.1)

We can also think of the elements in (1.1) in terms of the three points of an
equilateral triangle (see Fig. 1.1). Again, the top row denotes the initial state
and the bottom row denotes the final position of each number. For example,
in symmetry operation D, 1 moves to position 2, and 2 moves to position 3,
while 3 moves to position 1, which represents a clockwise rotation of 2π/3
(see caption to Fig. 1.1). As the effect of the six distinct symmetry operations
that can be performed on these three points (see caption to Fig. 1.1). We can
call each symmetry operation an element of the group. The P(3) group is,
therefore, identical with the group for the symmetry operations on a equilat-
eral triangle shown in Fig. 1.1. Similarly, F is a counter-clockwise rotation of
2π/3, so that the numbers inside the circles in Fig. 1.1 move exactly as defined
by Eq. 1.1.

It is convenient to classify the products of group elements. We write these
products using a multiplication table. In Table 1.1 a multiplication table is
written out for the symmetry operations on an equilateral triangle or equiva-
lently for the permutation group of three elements. It can easily be shown that
the symmetry operations given in (1.1) satisfy the four conditions in Sect. 1.1
and therefore form a group. We illustrate the use of the notation in Table 1.1
by verifying the associative law (AB)C = A(BC) for a few elements:

(AB)C = DC = B

A(BC) = AD = B . (1.2)

Each element of the permutation group P (3) has a one-to-one correspondence
to the symmetry operations of an equilateral triangle and we therefore say
that these two groups are isomorphic to each other. We furthermore can
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Table 1.1. Multiplicationa table for permutation group of three elements; P (3)

E A B C D F

E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

a AD = B defines use of multiplication table

use identical group theoretical procedures in dealing with physical problems
associated with either of these groups, even though the two groups arise from
totally different physical situations. It is this generality that makes group
theory so useful as a general way to classify symmetry operations arising in
physical problems.

Often, when we deal with symmetry operations in a crystal, the geomet-
rical visualization of repeated operations becomes difficult. Group theory is
designed to help with this problem. Suppose that the symmetry operations in
practical problems are elements of a group; this is generally the case. Then if
we can associate each element with a matrix that obeys the same multiplica-
tion table as the elements themselves, that is, if the elements obey AB = D,
then the matrices representing the elements must obey

M(A) M(B) = M(D) . (1.3)

If this relation is satisfied, then we can carry out all geometrical opera-
tions analytically in terms of arithmetic operations on matrices, which are
usually easier to perform. The one-to-one identification of a generalized sym-
metry operation with a matrix is the basic idea of a representation and
why group theory plays such an important role in the solution of practical
problems.

A set of matrices that satisfy the multiplication table (Table 1.1) for the
group P (3) are:

E =
(

1 0
0 1

)
A =

(−1 0
0 1

)
B =

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)

C =

(
1
2

√
3

2√
3

2 − 1
2

)
D =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
F =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
. (1.4)

We note that the matrix corresponding to the identity operation E is always
a unit matrix. The matrices in (1.4) constitute a matrix representation of
the group that is isomorphic to P (3) and to the symmetry operations on
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an equilateral triangle. The A matrix represents a rotation by ±π about the
y axis, while the B and C matrices, respectively, represent rotations by ±π
about axes 2 and 3 in Fig. 1.1. D and F , respectively, represent rotation of
−2π/3 and +2π/3 around the center of the triangle.

1.3 Basic Definitions

Definition 1. The order of a group ≡ the number of elements in the group.
We will be mainly concerned with finite groups. As an example, P (3) is of
order 6.

Definition 2. A subgroup ≡ a collection of elements within a group that by
themselves form a group.

Examples of subgroups in P (3):

E (E,A) (E,D, F )
(E,B)
(E,C)

Theorem. If in a finite group, an element X is multiplied by itself enough
times (n), the identity Xn = E is eventually recovered.

Proof. If the group is finite, and any arbitrary element is multiplied by itself
repeatedly, the product will eventually give rise to a repetition. For example,
for P (3) which has six elements, seven multiplications must give a repetition.
Let Y represent such a repetition:

Y = Xp = Xq , where p > q . (1.5)

Then let p = q + n so that

Xp = Xq+n = XqXn = Xq = XqE , (1.6)

from which it follows that
Xn = E . (1.7)

�

Definition 3. The order of an element ≡ the smallest value of n in the rela-
tion Xn = E.

We illustrate the order of an element using P (3) where:

• E is of order 1,
• A,B,C are of order 2,
• D,F are of order 3.
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Definition 4. The period of an element X ≡ collection of elements E, X,
X2, . . . , Xn−1, where n is the order of the element. The period forms an
Abelian subgroup.

Some examples of periods based on the group P (3) are

E,A
E,B
E,C
E,D, F = E,D,D2 .

(1.8)

1.4 Rearrangement Theorem

The rearrangement theorem is fundamental and basic to many theorems to
be proven subsequently.

Rearrangement Theorem. If E,A1, A2, . . . , Ah are the elements of
a group, and if Ak is an arbitrary group element, then the assembly of
elements

AkE,AkA1, . . . , AkAh (1.9)

contains each element of the group once and only once.

Proof. 1. We show first that every element is contained.
Let X be an arbitrary element. If the elements form a group there will
be an element Ar = A−1

k X . Then AkAr = AkA
−1
k X = X . Thus we can

always find X after multiplication of the appropriate group elements.
2. We now show that X occurs only once. Suppose that X appears twice

in the assembly AkE,AkA1, . . . , AkAh, say X = AkAr = AkAs. Then by
multiplying on the left by A−1

k we get Ar = As, which implies that two
elements in the original group are identical, contrary to the original listing
of the group elements.
Because of the rearrangement theorem, every row and column of a multi-

plication table contains each element once and only once. �

1.5 Cosets

In this section we will introduce the concept of cosets. The importance of
cosets will be clear when introducing the factor group (Sect. 1.7). The cosets
are the elements of a factor group, and the factor group is important for
working with space groups (see Chap. 9).

Definition 5. If B is a subgroup of the group G, and X is an element of G,
then the assembly EX,B1X,B2X, . . . , BgX is the right coset of B, where B
consists of E,B1, B2, . . . , Bg.

A coset need not be a subgroup. A coset will itself be a subgroup B if X is
an element of B (by the rearrangement theorem).
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Theorem. Two right cosets of given subgroup either contain exactly the same
elements, or else have no elements in common.

Proof. Clearly two right cosets either contain no elements in common or at
least one element in common. We show that if there is one element in common,
all elements are in common.

Let BX and BY be two right cosets. If BkX = B�Y = one element that
the two cosets have in common, then

B−1
� Bk = Y X−1 (1.10)

and Y X−1 is in B, since the product on the left-hand side of (1.10) is in B.
And also contained in B is EY X−1, B1Y X

−1, B2Y X
−1, . . . , BgY X

−1. Fur-
thermore, according to the rearrangement theorem, these elements are, in
fact, identical with B except for possible order of appearance. Therefore the
elements of BY are identical to the elements of BY X−1X , which are also
identical to the elements of BX so that all elements are in common. �

We now give some examples of cosets using the group P (3). Let B = E,A be
a subgroup. Then the right cosets of B are

(E,A)E → E,A (E,A)C → C,F

(E,A)A → A,E (E,A)D → D,B

(E,A)B → B,D (E,A)F → F,C , (1.11)

so that there are three distinct right cosets of (E,A), namely

(E,A) which is a subgroup
(B,D) which is not a subgroup
(C,F ) which is not a subgroup.

Similarly there are three left cosets of (E,A) obtained by X(E,A):

(E,A)
(C,D)
(B,F ) .

(1.12)

To multiply two cosets, we multiply constituent elements of each coset in
proper order. Such multiplication either yields a coset or joins two cosets. For
example:

(E,A)(B,D) = (EB,ED,AB,AD) = (B,D,D,B) = (B,D) . (1.13)

Theorem. The order of a subgroup is a divisor of the order of the group.

Proof. If an assembly of all the distinct cosets of a subgroup is formed (n of
them), then n multiplied by the number of elements in a coset, C, is exactly
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the number of elements in the group. Each element must be included since
cosets have no elements in common.

For example, for the group P (3), the subgroup (E,A) is of order 2, the
subgroup (E,D, F ) is of order 3 and both 2 and 3 are divisors of 6, which is
the order of P (3). �

1.6 Conjugation and Class

Definition 6. An element B conjugate to A is by definition B ≡ XAX−1,
where X is an arbitrary element of the group.

For example,

A = X−1BX = Y BY −1 , where BX = XA and AY = Y B .

The elements of an Abelian group are all selfconjugate.

Theorem. If B is conjugate to A and C is conjugate to B, then C is conjugate
to A.

Proof. By definition of conjugation, we can write

B = XAX−1

C = Y BY −1 .

Thus, upon substitution we obtain

C = Y XAX−1Y −1 = Y XA(Y X)−1 .

�

Definition 7. A class is the totality of elements which can be obtained from
a given group element by conjugation.

For example in P (3), there are three classes:

1. E;
2. A,B,C;
3. D,F .

Consistent with this class designation is

ABA−1 = AF = C (1.14)
DBD−1 = DA = C . (1.15)

Note that each class corresponds to a physically distinct kind of symmetry
operation such as rotation of π about equivalent twofold axes, or rotation
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of 2π/3 about equivalent threefold axes. The identity symmetry element is
always in a class by itself. An Abelian group has as many classes as elements.
The identity element is the only class forming a group, since none of the other
classes contain the identity.

Theorem. All elements of the same class have the same order.

Proof. The order of an element n is defined by An = E. An arbitrary conju-
gate of A is B = XAX−1. Then Bn = (XAX−1)(XAX−1) . . . n times gives
XAnX−1 = XEX−1 = E.

Definition 8. A subgroup B is self-conjugate (or invariant, or normal) if
XBX−1 is identical with B for all possible choices of X in the group.

For example (E,D, F ) forms a self-conjugate subgroup of P (3), but (E,A)
does not. The subgroups of an Abelian group are self-conjugate subgroups. We
will denote self-conjugate subgroups by N . To form a self-conjugate subgroup,
it is necessary to include entire classes in this subgroup.

Definition 9. A group with no self-conjugate subgroups ≡ a simple group.

Theorem. The right and left cosets of a self-conjugate subgroup N are the
same.

Proof. If Ni is an arbitrary element of the subgroup N , then the left coset is
found by elements XNi = XNiX

−1X = NjX , where the right coset is formed
by the elements NjX , where Nj = XNkX

−1.
For example in the group P (3), one of the right cosets is (E,D, F )A =

(A,C,B) and one of the left cosets is A(E,D, F ) = (A,B,C) and both cosets
are identical except for the listing of the elements. �

Theorem. The multiplication of the elements of two right cosets of a self-
conjugate subgroup gives another right coset.

Proof. Let NX and NY be two right cosets. Then multiplication of two right
cosets gives

(NX)(NY ) ⇒ NiXN�Y = Ni(XN�)Y
= Ni(NmX)Y = (NiNm)(XY ) ⇒ N (XY ) (1.16)

and N (XY ) denotes a right coset. �

The elements in one right coset of P (3) are (E,D, F )A = (A,C,B) while
(E,D, F )D = (D,F,E) is another right coset. The product (A,C,B)(D,F,E)
is (A,B,C) which is a right coset. Also the product of the two right cosets
(A,B,C)(A,B,C) is (D,F,E) which is a right coset.
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1.7 Factor Groups

Definition 10. The factor group (or quotient group) is constructed with re-
spect to a self-conjugate subgroup as the collection of cosets of the self-
conjugate subgroup, each coset being considered an element of the factor group.
The factor group satisfies the four rules of Sect. 1.1 and is therefore a group:

1. Multiplication – (NX)(NY ) = NXY .
2. Associative law – holds because it holds for the elements.
3. Identity – EN , where E is the coset that contains the identity element.

N is sometimes called a normal divisor.
4. Inverse – (XN )(X−1N ) = (NX)(X−1N ) = N 2 = EN .

Definition 11. The index of a subgroup ≡ total number of cosets = (order of
group)/ (order of subgroup).

The order of the factor group is the index of the self-conjugate subgroup.
In Sect. 1.6 we saw that (E,D, F ) forms a self-conjugate subgroup, N .

The only other coset of this subgroup N is (A,B,C), so that the order of this
factor group = 2. Let (A,B,C) = A and (E,D, F ) = E be the two elements
of the factor group. Then the multiplication table for this factor group is

E A
E E A
A A E

E is the identity element of this factor group. E and A are their own inverses.
From this illustration you can see how the four group properties (see Sect. 1.1)
apply to the factor group by taking an element in each coset, carrying out the
multiplication of the elements and finding the coset of the resulting element.
Note that this multiplication table is also the multiplication table for the
group for the permutation of two objects P (2), i.e., this factor group maps
one-on-one to the group P (2). This analogy between the factor group and
P (2) gives insights into what the factor group is about.

1.8 Group Theory and Quantum Mechanics

We have now learned enough to start making connection of group theory to
physical problems. In such problems we typically have a system described
by a Hamiltonian which may be very complicated. Symmetry often allows us
to make certain simplifications, without knowing the detailed Hamiltonian.
To make a connection between group theory and quantum mechanics, we
consider the group of symmetry operators P̂R which leave the Hamiltonian
invariant. These operators P̂R are symmetry operations of the system and the
P̂R operators commute with the Hamiltonian. The operators P̂R are said to
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form the group of the Schrödinger equation. If H and P̂R commute, and if P̂R

is a Hermitian operator, then H and P̂R can be simultaneously diagonalized.
We now show that these operators form a group. The identity element

clearly exists (leaving the system unchanged). Each symmetry operator P̂R

has an inverse P̂−1
R to undo the operation P̂R and from physical considerations

the element P̂−1
R is also in the group. The product of two operators of the

group is still an operator of the group, since we can consider these separately
as acting on the Hamiltonian. The associative law clearly holds. Thus the
requirements for forming a group are satisfied.

Whether the operators P̂R be rotations, reflections, translations, or per-
mutations, these symmetry operations do not alter the Hamiltonian or its
eigenvalues. If Hψn = Enψn is a solution to Schrödinger’s equation and H
and P̂R commute, then

P̂RHψn = P̂REnψn = H(P̂Rψn) = En(P̂Rψn) . (1.17)

Thus P̂Rψn is as good an eigenfunction of H as ψn itself. Furthermore, both
ψn and P̂Rψn correspond to the same eigenvalue En. Thus, starting with
a particular eigenfunction, we can generate all other eigenfunctions of the same
degenerate set (same energy) by applying all the symmetry operations that
commute with the Hamiltonian (or leave it invariant). Similarly, if we consider
the product of two symmetry operators, we again generate an eigenfunction
of the Hamiltonian H

P̂RP̂SH = HP̂RP̂S

P̂RP̂SHψn = P̂RP̂SEnψn = En(P̂RP̂Sψn) = H(P̂RP̂Sψn) , (1.18)

in which P̂RP̂Sψn is also an eigenfunction of H. We also note that the action
of P̂R on an arbitrary vector consisting of � eigenfunctions, yields a � × �
matrix representation of P̂R that is in block diagonal form. The representation
of physical systems, or equivalently their symmetry groups, in the form of
matrices is the subject of the next chapter.

Selected Problems

1.1. (a) Show that the trace of an arbitrary square matrix X is invariant
under a similarity (or equivalence) transformation UXU−1.

(b) Given a set of matrices that represent the group G, denoted by D(R) (for
all R in G), show that the matrices obtainable by a similarity transfor-
mation UD(R)U−1 also are a representation of G.

1.2. (a) Show that the operations of P (3) in (1.1) form a group, referring to
the rules in Sect. 1.1.

(b) Multiply the two left cosets of subgroup (E,A): (B,F ) and (C,D), refer-
ring to Sect. 1.5. Is the result another coset?
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(c) Prove that in order to form a normal (self-conjugate) subgroup, it is nec-
essary to include only entire classes in this subgroup. What is the physical
consequence of this result?

(d) Demonstrate that the normal subgroup of P (3) includes entire classes.

1.3. (a) What are the symmetry operations for the molecule AB4, where the
B atoms lie at the corners of a square and the A atom is at the center
and is not coplanar with the B atoms.

(b) Find the multiplication table.
(c) List the subgroups. Which subgroups are self-conjugate?
(d) List the classes.
(e) Find the multiplication table for the factor group for the self-conjugate

subgroup(s) of (c).

1.4. The group defined by the permutations of four objects, P (4), is isomor-
phic (has a one-to-one correspondence) with the group of symmetry opera-
tions of a regular tetrahedron (Td). The symmetry operations of this group
are sufficiently complex so that the power of group theoretical methods can be
appreciated. For notational convenience, the elements of this group are listed
below.

e = (1234) g = (3124) m = (1423) s = (4213)
a = (1243) h = (3142) n = (1432) t = (4231)
b = (2134) i = (2314) o = (4123) u = (3412)
c = (2143) j = (2341) p = (4132) v = (3421)
d = (1324) k = (3214) q = (2413) w = (4312)
f = (1342) l = (3241) r = (2431) y = (4321) .

Here we have used a shorthand notation to denote the elements: for example
j = (2341) denotes

(
1 2 3 4
2 3 4 1

)
,

that is, the permutation which takes objects in the order 1234 and leaves them
in the order 2341:

(a) What is the product vw? wv?
(b) List the subgroups of this group which correspond to the symmetry oper-

ations on an equilateral triangle.
(c) List the right and left cosets of the subgroup (e, a, k, l, s, t).
(d) List all the symmetry classes for P (4), and relate them to symmetry op-

erations on a regular tetrahedron.
(e) Find the factor group and multiplication table formed from the self-

conjugate subgroup (e, c, u, y). Is this factor group isomorphic to P (3)?
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Representation Theory and Basic Theorems

In this chapter we introduce the concept of a representation of an abstract
group and prove a number of important theorems relating to irreducible rep-
resentations, including the “Wonderful Orthogonality Theorem.” This math-
ematical background is necessary for developing the group theoretical frame-
work that is used for the applications of group theory to solid state physics.

2.1 Important Definitions

Definition 12. Two groups are isomorphic or homomorphic if there exists
a correspondence between their elements such that

A → Â

B → B̂

AB → ÂB̂ ,

where the plain letters denote elements in one group and the letters with carets
denote elements in the other group. If the two groups have the same order
(same number of elements), then they are isomorphic (one-to-one correspon-
dence). Otherwise they are homomorphic (many-to-one correspondence).

For example, the permutation group of three numbers P (3) is isomorphic
to the symmetry group of the equilateral triangle and homomorphic to its
factor group, as shown in Table 2.1. Thus, the homomorphic representations
in Table 2.1 are unfaithful. Isomorphic representations are faithful, because
they maintain the one-to-one correspondence.

Definition 13. A representation of an abstract group is a substitution group
(matrix group with square matrices) such that the substitution group is homo-
morphic (or isomorphic) to the abstract group. We assign a matrix D(A) to
each element A of the abstract group such that D(AB) = D(A)D(B).
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Table 2.1. Table of homomorphic mapping of P (3) and its factor group

permutation group element factor group

E,D, F → E
A,B,C → A

The matrices of (1.4) are an isomorphic representation of the permutation
group P (3). In considering the representation

E
D
F

⎫⎬
⎭ → (1)

A
B
C

⎫⎬
⎭ → (−1)

the one-dimensional matrices (1) and (−1) are a homomorphic representa-
tion of P (3) and an isomorphic representation of the factor group E ,A (see
Sect. 1.7). The homomorphic one-dimensional representation (1) is a repre-
sentation for any group, though an unfaithful one.

In quantum mechanics, the matrix representation of a group is important
for several reasons. First of all, we will find that an eigenfunction for a quan-
tum mechanical operator will transform under a symmetry operation similar
to the application of the matrix representing the symmetry operation on the
matrix for the wave function. Secondly, quantum mechanical operators are
usually written in terms of a matrix representation, and thus it is convenient
to write symmetry operations using the same kind of matrix representa-
tion. Finally, matrix algebra is often easier to manipulate than geometrical
symmetry operations.

2.2 Matrices

Definition 14. Hermitian matrices are defined by: Ã = A∗, Ã∗ = A, or A† =
A (where the symbol ∗ denotes complex conjugation, ∼ denotes transposition,
and † denotes taking the adjoint)

A =

⎛
⎜⎝
a11 a12 · · ·
a21 a22 · · ·
...

...

⎞
⎟⎠ , (2.1)

Ã =

⎛
⎜⎝
a11 a21 · · ·
a12 a22 · · ·
...

...

⎞
⎟⎠ , (2.2)

A† =

⎛
⎜⎝
a∗11 a

∗
21 · · ·

a∗12 a∗22 · · ·
...

...

⎞
⎟⎠ . (2.3)
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Unitary matrices are defined by: Ã∗ = A† = A−1;
Orthonormal matrices are defined by: Ã = A−1.

Definition 15. The dimensionality of a representation is equal to the dimen-
sionality of each of its matrices, which is in turn equal to the number of rows
or columns of the matrix.

These representations are not unique. For example, by performing a similarity
(or equivalence, or canonical) transformation UD(A)U−1 we generate a new
set of matrices which provides an equally good representation. A simple phys-
ical example for this transformation is the rotation of reference axes, such as
(x, y, z) to (x′, y′, z′). We can also generate another representation by taking
one or more representations and combining them according to(

D(A) O
O D′(A)

)
, (2.4)

where O = (m×n) matrix of zeros, not necessarily a square zero matrix. The
matrices D(A) and D′(A) can be either two distinct representations or they
can be identical representations.

To overcome the difficulty of non-uniqueness of a representation with re-
gard to a similarity transformation, we often just deal with the traces of the
matrices which are invariant under similarity transformations, as discussed in
Chap. 3. The trace of a matrix is defined as the sum of the diagonal matrix
elements. To overcome the difficulty of the ambiguity of representations in
general, we introduce the concept of irreducible representations.

2.3 Irreducible Representations

Consider the representation made up of two distinct or identical representa-
tions for every element in the group(

D(A) O
O D′(A)

)
.

This is a reducible representation because the matrix corresponding to each
and every element of the group is in the same block form. We could now
carry out a similarity transformation which would mix up all the elements so
that the matrices are no longer in block form. But still the representation is
reducible. Hence the definition:

Definition 16. If by one and the same equivalence transformation, all the
matrices in the representation of a group can be made to acquire the same
block form, then the representation is said to be reducible; otherwise it is
irreducible. Thus, an irreducible representation cannot be expressed in terms
of representations of lower dimensionality.
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We will now consider three irreducible representations for the permutation
group P (3):

E A B
Γ1 : (1) (1) (1)
Γ1′ : (1) (−1) (−1)

Γ2 :
(

1 0
0 1

) (−1 0
0 1

) (
1
2 −

√
3

2

−
√

3
2 − 1

2

)

C D F
Γ1 : (1) (1) (1)
Γ1′ : (−1) (1) (1)

Γ2 :

(
1
2

√
3

2√
3

2 − 1
2

) (
− 1

2

√
3

2

−
√

3
2 − 1

2

) (
− 1

2 −
√

3
2√

3
2 − 1

2

)
.

(2.5)

A reducible representation containing these three irreducible representations is

E A B

ΓR :

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1

2 −
√

3
2

0 0 −
√

3
2 − 1

2

⎞
⎟⎟⎠ · · · , (2.6)

where ΓR is of the form ⎛
⎝Γ1 0 O

0 Γ1′ O
O O Γ2

⎞
⎠ . (2.7)

It is customary to list the irreducible representations contained in a reducible
representation ΓR as

ΓR = Γ1 + Γ1′ + Γ2 . (2.8)

In working out problems of physical interest, each irreducible representation
describes the transformation properties of a set of eigenfunctions and corre-
sponds to a distinct energy eigenvalue. Assume ΓR is a reducible represen-
tation for some group G but an irreducible representation for some other
group G′. If ΓR contains the irreducible representations Γ1 + Γ1′ + Γ2 as il-
lustrated earlier for the group P (3), this indicates that some interaction is
breaking up a fourfold degenerate level in group G′ into three energy levels in
group G: two nondegenerate ones and a doubly degenerate one. Group theory
does not tell us what these energies are, nor their ordering. Group theory
only specifies the symmetries and degeneracies of the energy levels. In gen-
eral, the higher the symmetry, meaning the larger the number of symmetry
operations in the group, the higher the degeneracy of the energy levels. Thus
when a perturbation is applied to lower the symmetry, the degeneracy of the
energy levels tends to be reduced. Group theory provides a systematic method
for determining exactly how the degeneracy is lowered.
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Representation theory is useful for the treatment of physical problems be-
cause of certain orthogonality theorems which we will now discuss. To prove
the orthogonality theorems we need first to prove some other theorems (in-
cluding the unitarity of representations in Sect. 2.4 and the two Schur lemmas
in Sects. 2.5 and 2.6).

2.4 The Unitarity of Representations

The following theorem shows that in most physical cases, the elements of
a group can be represented by unitary matrices, which have the property of
preserving length scales. This theorem is then used to prove lemmas leading
to the proof of the “Wonderful Orthogonality Theorem,” which is a central
theorem of this chapter.

Theorem. Every representation with matrices having nonvanishing determi-
nants can be brought into unitary form by an equivalence (similarity) trans-
formation.

Proof. By unitary form we mean that the matrix elements obey the relation
(A−1)ij = A†

ij = A∗
ji, where A is an arbitrary matrix of the representation.

The proof is carried out by actually finding the corresponding unitary matrices
if the Aij matrices are not already unitary matrices.

Let A1, A2, · · · , Ah denote matrices of the representation. We start by
forming the matrix sum

H =
h∑

x=1

AxA
†
x , (2.9)

where the sum is over all the elements in the group and where the adjoint of
a matrix is the transposed complex conjugate matrix (A†

x)ij = (Ax)∗ji. The
matrix H is Hermitian because

H† =
∑

x

(AxA
†
x)† =

∑
x

AxA
†
x . (2.10)

Any Hermitian matrix can be diagonalized by a suitable unitary transforma-
tion. Let U be a unitary matrix made up of the orthonormal eigenvectors
which diagonalize H to give the diagonal matrix d:

d = U−1HU

=
∑

x

U−1AxA
†
xU

=
∑

x

U−1AxUU
−1A†

xU

=
∑

x

ÂxÂ
†
x , (2.11)
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where we define Âx = U−1AxU for all x. The diagonal matrix d is a special
kind of matrix and contains only real, positive diagonal elements since

dkk =
∑

x

∑
j

(Âx)kj(Â†
x)jk

=
∑

x

∑
j

(Âx)kj(Âx)∗kj

=
∑

x

∑
j

|(Âx)kj |2 . (2.12)

Out of the diagonal matrix d, one can form two matrices (d1/2 and d−1/2)
such that

d1/2 ≡

⎛
⎜⎝

√
d11 O√

d22

O . . .

⎞
⎟⎠ (2.13)

and

d−1/2 ≡

⎛
⎜⎝

1√
d11

O
1√
d22

O . . .

⎞
⎟⎠ , (2.14)

where d1/2 and d−1/2 are real, diagonal matrices. We note that the generation
of d−1/2 from d1/2 requires that none of the dkk vanish. These matrices clearly
obey the relations

(d1/2)† = d1/2 (2.15)
(d−1/2)† = d−1/2 (2.16)

(d1/2)(d1/2) = d (2.17)

so that
d1/2d−1/2 = d−1/2d1/2 = 1̂ = unit matrix . (2.18)

From (2.11) we can also write

d = d1/2d1/2 =
∑

x

ÂxÂ
†
x . (2.19)

We now define a new set of matrices

ˆ̂
Ax ≡ d−1/2Âxd

1/2 (2.20)

and
Â†

x = (U−1AxU)† = U−1A†
xU (2.21)

ˆ̂
A†

x = (d−1/2Âxd
1/2)† = d1/2Â†

xd
−1/2 . (2.22)
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We now show that the matrices ˆ̂
Ax are unitary:

ˆ̂
Ax

ˆ̂
A†

x = (d−1/2Âxd
1/2)(d1/2Â†

xd
−1/2)

= d−1/2ÂxdÂ
†
xd

−1/2

= d−1/2
∑

y

ÂxÂyÂ
†
yÂ

†
xd

−1/2

= d−1/2
∑

y

(ÂxÂy)(ÂxÂy)†d−1/2

= d−1/2
∑

z

ÂzÂ
†
z d

−1/2 (2.23)

by the rearrangement theorem (Sect. 1.4). But from the relation

d =
∑

z

ÂzÂ
†
z (2.24)

it follows that ˆ̂
Ax

ˆ̂
A†

x = 1̂, so that ˆ̂
Ax is unitary.

Therefore we have demonstrated how we can always construct a unitary
representation by the transformation:

ˆ̂
Ax = d−1/2U−1AxUd

1/2 , (2.25)

where

H =
h∑

x=1

AxA
†
x (2.26)

d =
h∑

x=1

ÂxÂ
†
x , (2.27)

and where U is the unitary matrix that diagonalizes the Hermitian matrix H
and Âx = U−1AxU . �

Note: On the other hand, not all symmetry operations can be represented by
a unitary matrix; an example of an operation which cannot be represented by
a unitary matrix is the time inversion operator (see Chap. 16). Time inversion
symmetry is represented by an antiunitary matrix rather than a unitary ma-
trix. It is thus not possible to represent all symmetry operations by a unitary
matrix.

2.5 Schur’s Lemma (Part 1)

Schur’s lemmas (Parts 1 and 2) on irreducible representations are proved in
order to prove the “Wonderful Orthogonality Theorem” in Sect. 2.7. We next
prove Schur’s lemma Part 1.
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Lemma. A matrix which commutes with all matrices of an irreducible repre-
sentation is a constant matrix, i.e., a constant times the unit matrix. There-
fore, if a non-constant commuting matrix exists, the representation is re-
ducible; if none exists, the representation is irreducible.

Proof. Let M be a matrix which commutes with all the matrices of the rep-
resentation A1, A2, . . . , Ah �

MAx = AxM . (2.28)

Take the adjoint of both sides of (2.28) to obtain

A†
xM

† = M †A†
x . (2.29)

Since Ax can in all generality be taken to be unitary (see Sect. 2.4), multiply
on the right and left of (2.29) by Ax to yield

M †Ax = AxM
† , (2.30)

so that if M commutes with Ax so does M †, and so do the Hermitian matrices
H1 and H2 defined by

H1 = M +M †

H2 = i(M −M †) , (2.31)

HjAx = AxHj , where j = 1, 2 . (2.32)

We will now show that a commuting Hermitian matrix is a constant matrix
from which it follows that M = H1 − iH2 is also a constant matrix.

Since Hj (j = 1, 2) is a Hermitian matrix, it can be diagonalized. Let U
be the matrix that diagonalizes Hj (for example H1) to give the diagonal
matrix d

d = U−1HjU . (2.33)

We now perform the unitary transformation on the matrices Ax of the rep-
resentation Âx = U−1AxU . From the commutation relations (2.28), (2.29),
and (2.32), a unitary transformation on all matrices HjAx = AxHj yields

(U−1HjU)︸ ︷︷ ︸
d

(U−1AxU)︸ ︷︷ ︸
Âx

= (U−1AxU)︸ ︷︷ ︸
Âx

(U−1HjU)︸ ︷︷ ︸
d

. (2.34)

So now we have a diagonal matrix d which commutes with all the matrices of
the representation. We now show that this diagonal matrix d is a constant ma-
trix, if all the Âx matrices (and thus also the Ax matrices) form an irreducible
representation. Thus, starting with (2.34)

dÂx = Âxd (2.35)

we take the ij element of both sides of (2.35)
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dii(Âx)ij = (Âx)ijdjj , (2.36)

so that
(Âx)ij(dii − djj) = 0 (2.37)

for all the matrices Ax.
If dii �= djj , so that the matrix d is not a constant diagonal matrix, then

(Âx)ij must be 0 for all the Âx. This means that the similarity or unitary
transformation U−1AxU has brought all the matrices of the representation
Âx into the same block form, since any time dii �= djj all the matrices (Âx)ij

are null matrices. Thus by definition the representationAx is reducible. But we
have assumed the Ax to be an irreducible representation. Therefore (Âx)ij �= 0
for all Âx, so that it is necessary that dii = djj , and Schur’s lemma Part 1 is
proved.

2.6 Schur’s Lemma (Part 2)

Lemma. If the matrix representations D(1)(A1), D(1)(A2), . . . , D(1)(Ah)
and D(2)(A1), D(2)(A2), . . . , D(2)(Ah) are two irreducible representations
of a given group of dimensionality �1 and �2, respectively, then, if there is
a matrix of �1 columns and �2 rows M such that

MD(1)(Ax) = D(2)(Ax)M (2.38)

for all Ax, then M must be the null matrix (M = O) if �1 �= �2. If �1 = �2,
then either M = O or the representations D(1)(Ax) and D(2)(Ax) differ from
each other by an equivalence (or similarity) transformation.

Proof. Since the matrices which form the representation can always be trans-
formed into unitary form, we can in all generality assume that the matrices of
both representations D(1)(Ax) and D(2)(Ax) have already been brought into
unitary form. �

Assume �1 ≤ �2, and take the adjoint of (2.38)

[D(1)(Ax)]†M † = M †[D(2)(Ax)]† . (2.39)

The unitary property of the representation implies [D(Ax)]† = [D(Ax)]−1 =
D(A−1

x ), since the matrices form a substitution group for the elements Ax of
the group. Therefore we can write (2.39) as

D(1)(A−1
x )M † = M †D(2)(A−1

x ) . (2.40)

Then multiplying (2.40) on the left by M yields

MD(1)(A−1
x )M † = MM †D(2)(A−1

x ) = D(2)(A−1
x )MM † , (2.41)
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which follows from applying (2.38) to the element A−1
x which is also an element

of the group

MD(1)(A−1
x ) = D(2)(A−1

x )M . (2.42)

We have now shown that if MD(1)(Ax) = D(2)(Ax)M then MM † commutes
with all the matrices of representation (2) and M †M commutes with all ma-
trices of representation (1). But if MM † commutes with all matrices of a rep-
resentation, then by Schur’s lemma (Part 1), MM † is a constant matrix of
dimensionality (�2 × �2):

MM † = c 1̂ , (2.43)

where 1̂ is the unit matrix.
First we consider the case �1 = �2. Then M is a square matrix, with an

inverse

M−1 =
M †

c
, c �= 0 . (2.44)

Then if M−1 �= O, multiplying (2.38) by M−1 on the left yields

D(1)(Ax) = M−1D(2)(Ax)M (2.45)

and the two representations differ by an equivalence transformation.
However, if c = 0 then we cannot write (2.44), but instead we have to

consider MM † = 0
∑

k

MikM
†
kj = 0 =

∑
k

MikM
∗
jk (2.46)

for all ij elements. In particular, for i = j we can write
∑

k

MikM
∗
ik =

∑
k

|Mik|2 = 0 . (2.47)

Therefore each element Mik = 0 so that M is a null matrix. This completes
proof of the case �1 = �2 and M = O.

Finally we prove that for �1 �= �2, then M = O. Suppose that �1 �= �2, then
we can arbitrarily take �1 < �2. Then M has �1 columns and �2 rows. We can
make a square (�2 × �2) matrix out of M by adding (�2 − �1) columns of zeros

�1 columns

�2 rows

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0
0 0 · · · 0

M 0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

= N = square (�2 × �2) matrix .
(2.48)



2.7 Wonderful Orthogonality Theorem 25

The adjoint of (2.48) is then written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M †

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= N † (2.49)

so that
NN † = MM † = c 1̂ dimension (�2 × �2) . (2.50)

∑
k

NikN
†
ki =

∑
k

NikN
∗
ik = c 1̂

∑
ik

NikN
∗
ik = c�2 .

But if we carry out the sum over i we see by direct computation that some
of the diagonal terms of

∑
k,i NikN

∗
ik are 0, so that c must be zero. But this

implies that for every element we have Nik = 0 and therefore also Mik = 0,
so that M is a null matrix, completing the proof of Schur’s lemma Part 2.

2.7 Wonderful Orthogonality Theorem

The orthogonality theorem which we now prove is so central to the applica-
tion of group theory to quantum mechanical problems that it was named the
“Wonderful Orthogonality Theorem” by Van Vleck, and is widely known by
this name. The theorem is in actuality an orthonormality theorem.

Theorem. The orthonormality relation

∑
R

D(Γj)
μν (R)D

(Γj′ )
ν′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δνν′ (2.51)

is obeyed for all the inequivalent, irreducible representations of a group, where
the summation is over all h group elements A1, A2, . . . , Ah and �j and �j′

are, respectively, the dimensionalities of representations Γj and Γj′ . If the
representations are unitary, the orthonormality relation becomes

∑
R

D(Γj)
μν (R)

[
D

(Γ ′
j)

μ′ν′ (R)
]∗

=
h

�j
δΓj ,Γj′ δμμ′δνν′ . (2.52)
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Example. To illustrate the meaning of the mathematical symbols of this theo-
rem, consider the orthogonality between the Γ1 and Γ1′ irreducible represen-
tations for the P (3) group in Sect. 2.5 using the statements of the theorem
(2.52):∑

R

D(Γ1)
μν (R)D(Γ1′ )∗

μ′ν′ (R) = [(1) · (1)] + [(1) · (1)] + [(1) · (1)] (2.53)

+[(1) · (−1)] + [(1) · (−1)] + [(1) · (−1)] = 0 .

Proof. Consider the �j′ × �j matrix

M =
∑
R

D(Γj′ )(R)XD(Γj)(R−1) , (2.54)

where X is an arbitrary matrix with �j′ rows and �j columns so that M is
a rectangular matrix of dimensionality (�j′ × �j). Multiply M by D(Γj′ )(S) for
some element S in the group:

D(Γj′ )(S)M︸ ︷︷ ︸
�j′×�j

=
∑
R

D(Γj′ )(S)D(Γj′ )(R) X D(Γj)(R−1) . (2.55)

We then carry out the multiplication of two elements in a group

D(Γj′ )(S)M︸ ︷︷ ︸
�j′×�j

=
∑
R

D(Γj′ )(SR) X D(Γj)(R−1S−1)D(Γj)(S) , (2.56)

where we have used the group properties (1.3) of the representations Γj and
Γj′ . By the rearrangement theorem, (2.56) can be rewritten

D(Γj′ )(S)M =
∑
R

D(Γj′ )(R) X D(Γj)(R−1)

︸ ︷︷ ︸
M

D(Γj)(S) = M D(Γj)(S) . (2.57)

Now apply Schur’s lemma Part 2 for the various cases. �
Case 1. �j �= �j′ or if �j = �j′ , and the representations are not equivalent.

Since D(Γj′ )(S)M = MD(Γj)(S), then by Schur’s lemma Part 2, M must
be a null matrix. From the definition of M we have

0 = Mμμ′ =
∑
R

∑
γ,λ

D
(Γj′ )
μγ (R)XγλD

(Γj)
λμ′ (R−1) . (2.58)

But X is an arbitrary matrix. By choosing X to have an entry 1 in the νν′

position and 0 everywhere else, we write

X =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠

, Xγλ = δγνδλν′ . (2.59)
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It then follows by substituting (2.59) into (2.58) that

0 =
∑
R

D
(Γj′ )
μν (R)D(Γj)

ν′μ′ (R−1) . (2.60)

Case 2. �j = �j′ and the representations Γj and Γj′ are equivalent.
If the representations Γj and Γj′ are equivalent, then �j = �j′ and Schur’s

lemma part 1 tells us that M = c1̂. The definition for M in (2.54) gives

Mμν′ = cδμμ′ =
∑
R

∑
γ,λ

D
(Γj′ )
μγ (R)XγλD

(Γj′ )
λμ′ (R−1) . (2.61)

Choose X in (2.59) as above to have a nonzero entry at νν′ and 0 everywhere
else. Then Xγλ = c′νν′δγνδλν′ , so that

c′′νν′δμμ′ =
∑
R

D
(Γj′ )
μν (R) D

(Γj′ )
ν′μ′ (R−1) , (2.62)

where c′′νν′ = c/c′νν′ . To evaluate c′′νν′ choose μ = μ′ in (2.62) and sum on μ:

c′′νν′
∑

μ

δμμ

︸ ︷︷ ︸
�j′

=
∑
R

∑
μ

D
(Γj′ )
μν (R) D

(Γj′ )
ν′μ (R−1) =

∑
R

D
(Γj′ )
ν′ν (R−1R) . (2.63)

since D(Γj′ )(R) is a representation of the group and follows the multiplication
table for the group. Therefore we can write

c′′νν′�j′ =
∑
R

D
(Γj′ )
ν′ν (R−1R) =

∑
R

D
(Γj′ )
ν′ν (E) = D

(Γj′ )
ν′ν (E)

∑
R

1 . (2.64)

But D
(Γj′ )
ν′ν (E) is a unit (�j′ × �j′) matrix and the ν′ν matrix element is δν′ν .

The sum of unity over all the group elements is h. Therefore we obtain

c′′νν′ =
h

�j′
δνν′ . (2.65)

Substituting (2.65) into (2.62) gives:

h

�j′
δμμ′δνν′ =

∑
R

D
(Γj′ )
μν (R) D

(Γj′ )
ν′μ′ (R−1) . (2.66)

We can write the results of Cases 1 and 2 in compact form
∑
R

D(Γj)
μν (R) D

(Γj′ )
ν′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δνν′ . (2.67)

For a unitary representation (2.67) can also be written as
∑
R

D(Γj)
μν (R) D

(Γj′ )∗
μ′ν′ (R) =

h

�j
δΓj ,Γj′ δμμ′δνν′ . (2.68)

This completes the proof of the wonderful orthogonality theorem, and we see
explicitly that this theorem is an orthonormality theorem.
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2.8 Representations and Vector Spaces

Let us spend a moment and consider what the representations in (2.68) mean
as an orthonormality relation in a vector space of dimensionality h. Here h
is the order of the group which equals the number of group elements. In this
space, the representations D(Γj)

μν (R) can be considered as elements in this h-
dimensional space:

V (Γj)
μ,ν =

[
D(Γj)

μν (A1), D(Γj)
μν (A2), . . . , D(Γj)

μν (Ah)
]
. (2.69)

The three indices Γj , μ, ν label a particular vector. All distinct vectors in
this space are orthogonal. Thus two representations are orthogonal if any one
of their three indices is different. But in an h-dimensional vector space, the
maximum number of orthogonal vectors is h. We now ask how many vectors
V

(Γj)
μ,ν can we make? For each representation, we have �j choices for μ and ν

so that the total number of vectors we can have is
∑

j �
2
j where we are now

summing over representations Γj . This argument yields the important result
∑

j

�2j ≤ h . (2.70)

We will see later (Sect. 3.7) that it is the equality that holds in (2.70). The
result in (2.70) is extremely helpful in finding the totality of irreducible (non-
equivalent) representations (see Problem 2.2).

Selected Problems

2.1. Show that every symmetry operator for every group can be represented
by the (1 × 1) unit matrix. Is it also true that every symmetry operator for
every group can be represented by the (2 × 2) unit matrix? If so, does such
a representation satisfy the Wonderful Orthogonality Theorem? Why?

2.2. Consider the example of the group P (3) which has six elements. Using the
irreducible representations of Sect. 2.3, find the sum of �2j . Does the equality
or inequality in (2.70) hold? Can P (3) have an irreducible representation with
�j = 3? Group P (4) has 24 elements and 5 irreducible representations. Using
(2.70) as an equality, what are the dimensionalities of these 5 irreducible
representations (see Problem 1.4)?
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Character of a Representation

We have already discussed the arbitrariness of a representation with re-
gard to similarity or equivalence transformations. Namely, if D(Γj)(R) is
a representation of a group, so is U−1D(Γj)(R)U . To get around this ar-
bitrariness, we introduce the use of the trace (or character) of a matrix
representation which remains invariant under a similarity transformation.
In this chapter we define the character of a representation, derive the most
important theorems for the character, summarize the conventional nota-
tions used to denote symmetry operations and groups, and we discuss the
construction of some of the most important character tables for the so-
called point groups, that are listed in Appendix A. Point groups have no
translation symmetry, in contrast to the space groups, that will be dis-
cussed in Chap. 9, and include both point group symmetry operations and
translations.

3.1 Definition of Character

Definition 17. The character of the matrix representation χΓj (R) for a sym-
metry operation R in a representation D(Γj)(R) is the trace (or the sum over
diagonal matrix elements) of the matrix of the representation:

χ(Γj)(R) = traceD(Γj)(R) =
�j∑

μ=1

D(Γj)(R)μμ , (3.1)

where �j is the dimensionality of the representation Γj and j is a representa-
tion index. From the definition, it follows that representation Γj will have h
characters, one for each element in the group. Since the trace of a matrix is
invariant under a similarity transformation, the character is invariant under
such a transformation.
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3.2 Characters and Class

We relate concepts of class (see Sect. 1.6) and character by the following the-
orem.

Theorem. The character for each element in a class is the same.

Proof. Let A and B be elements in the same class. By the definition of class
this means that A and B are related by conjugation (see Sect. 1.6)

A = Y −1BY , (3.2)

where Y is an element of the group. Each element can always be represented
by a unitary matrix D (see Sect. 2.4), so that

D(A) = D(Y −1) D(B) D(Y ) = D−1(Y ) D(B) D(Y ) . (3.3)

And since a similarity transformation leaves the trace invariant, we have the
desired result for characters in the same class: χ(A) = χ(B), which completes
the proof. �

The property that all elements in a class have the same character is responsible
for what van Vleck called “the great beauty of character.” If two elements of
a group are in the same class, this means that they correspond to similar sym-
metry operations – e.g., the class of twofold axes of rotation of the equilateral
triangle, or the class of threefold rotations for the equilateral triangle.

Sometimes a given group will have more than one kind of twofold sym-
metry axis. To test whether these two kinds of axes are indeed symmetrically
inequivalent, we check whether or not they have the same characters.

We summarize the information on the characters of the representations
of a group in the celebrated character table. In a character table we list the
irreducible representations (IR) in column form (for example, the left-hand
column of the character table) and the class as rows (top row labels the
class). For example, the character table for the permutation group P (3) (see
Sect. 1.2) is shown in Table 3.1. (Sometimes you will see character tables with
the columns and rows interchanged relative to this display.)

Table 3.1. Character table for the permutation group P (3) or equivalently for group
“D3” (see Sect. 3.9 for group notation)

class → C1 3C2 2C3

IR ↓ χ(E) χ(A,B,C) χ(D,F )

Γ1 1 1 1

Γ1′ 1 −1 1

Γ2 2 0 −1
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Table 3.2. Classes for group “D3” or equivalently for the permutation group P (3)
and for the symmetry operations of the equilateral triangle

notation for each class of D3 equilateral triangle P (3)a

class 1 E (Nk = 1) 1C1 (identity class) (1)(2)(3)

class 2 A,B,C (Nk = 3) 3C2 (rotation of π about twofold axis) (1)(23)

class 3 D,F (Nk = 2) 2C3 (rotation of 120◦ about threefold axis) (123)

aFor the class notation for P (3) see Chap. 17

We will see in Sect. 3.9 that this group, more specifically this point group
is named D3 (Schoenflies notation). In Table 3.1 the notation NkCk is used in
the character table to label each class Ck, where Nk is the number of elements
in Ck. If a representation is irreducible, then we say that its character is
primitive. In a character table we limit ourselves to the primitive characters.
The classes for group D3 and P (3) are listed in Table 3.2, showing different
ways that the classes of a group are presented.

Now that we have introduced character and character tables, let us see
how to use the character tables. To appreciate the power of the character
tables we present in the following sections a few fundamental theorems for
character.

3.3 Wonderful Orthogonality Theorem for Character

The “Wonderful Orthogonality Theorem” for character follows directly
from the wonderful orthogonality theorem (see Sect. 2.7). There is also

a second orthogonality theorem for character which is discussed later (see
Sect. 3.6). These theorems give the basic orthonormality relations used to set
up character tables.

Theorem. The primitive characters of an irreducible representation obey the
orthogonality relation

∑
R

χ(Γj)(R) χ(Γj′ )(R−1) = hδΓj ,Γj′ (3.4)

or ∑
R

χ(Γj)(R) χ(Γj′ )(R)∗ = hδΓj ,Γj′ , (3.5)

where Γj denotes irreducible representation j with dimensionality �j.

This theorem says that unless the representations are identical or equivalent,
the characters are orthogonal in h-dimensional space, where h is the order of
the group.
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Example. We now illustrate the meaning of the Wonderful Orthogonality The-
orem for characters before going to the proof. Consider the permutation group
P (3). Let Γj = Γ1 and Γj′ = Γ1′ . Then use of (3.13) yields

∑
k

Nkχ
(Γj)(Ck)

[
χ(Γj′ )(Ck)

]∗
= (1)(1)(1)︸ ︷︷ ︸

class of E

+ (3)(1)(−1)︸ ︷︷ ︸
class of A,B,C

+ (2)(1)(1)︸ ︷︷ ︸
class of D,F

= 1 − 3 + 2 = 0 . (3.6)

It can likewise be verified that the Wonderful Orthogonality Theorem works
for all possible combinations of Γj and Γj′ in Table 3.1.

Proof. The proof of the wonderful orthogonality theorem for character follows
from the Wonderful Orthogonality Theorem itself (see Sect. 2.7). Consider the
wonderful orthogonality theorem (2.51)

∑
R

D(Γj)
μν (R)D

(Γj′ )
ν′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δνν′ . (3.7)

Take the diagonal elements of (3.7)

∑
R

D(Γj)
μμ (R)D

(Γj′ )
μ′μ′ (R−1) =

h

�j
δΓj ,Γj′ δμμ′δμ′μ . (3.8)

Now sum (3.8) over μ and μ′ to calculate the traces or characters

∑
R

∑
μ

D(Γj)
μμ (R)

∑
μ′
D

(Γj′ )
μ′μ′ (R−1) =

h

�j
δΓj ,Γj′

∑
μμ′

δμμ′δμ′μ , (3.9)

where we note that ∑
μμ′

δμμ′δμ′μ =
∑

μ

δμμ = �j , (3.10)

so that ∑
R

χ(Γj)(R)χ(Γj′ )(R−1) = hδΓj ,Γj′ , (3.11)

completing the proof. Equation (3.11) implies that the primitive characters
of an irreducible representation form a set of orthogonal vectors in group-
element space, the space spanned by h vectors, one for each element of the
group, also called Hilbert space (see Sect. 2.8). Since any arbitrary represen-
tation is equivalent to some unitary representation (Sect. 2.4), and the char-
acter is preserved under a unitary transformation, (3.11) can also be writ-
ten as ∑

R

χ(Γj)(R)
[
χ(Γj′ )(R)

]∗
= hδΓj ,Γj′ . (3.12)
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Since the character is the same for each element in the class, the summation
in (3.12) can be written as a sum over classes k

∑
k

Nkχ
(Γj)(Ck)

[
χ(Γj′ )(Ck)

]∗
= hδΓj ,Γj′ , (3.13)

where Nk denotes the number of elements in class k, since the representation
for R is a unitary matrix, χ(Γj′ )(R−1) = [χ(Γj′ )(R)]∗ (see Sect. 2.2). Also,
since the right-hand side of (3.13) is real, we can take the complex conjugate
of this equation to obtain the equivalent form

∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Γj′ )(Ck) = hδΓj ,Γj′ . (3.14)

�
The importance of the results in (3.11)–(3.14) cannot be over-emphasized:

1. Character tells us if a representation is irreducible or not. If a representa-
tion is reducible then the characters are not primitive and will generally
not obey this orthogonality relation (and other orthogonality relations
that we will discuss in Sect. 3.6).

2. Character tells us whether or not we have found all the irreducible rep-
resentations. For example, the permutation group P (3) could not contain
a three-dimensional irreducible representation (see Problem 1.2), since by
(2.70) ∑

j

�2j ≤ h . (3.15)

Furthermore, character allows us to check the uniqueness of an irreducible
representation, using the following theorem.

Theorem. A necessary and sufficient condition that two irreducible represen-
tations be equivalent is that the characters be the same.

Proof. Necessary condition: If they are equivalent, then the characters are
the same – we have demonstrated this already since the trace of a matrix is
invariant under an equivalence transformation.
Sufficient condition: If the characters are the same, the vectors for each of
the irreducible representations in h-dimensional space cannot be orthogonal,
so the representations must be equivalent. �

3.4 Reducible Representations

We now prove a theorem that forms the basis for setting up the characters
of a reducible representation in terms of the primitive characters for the ir-
reducible representations. This theoretical background will also be used in
constructing irreducible representations and character tables, and is essential
to most of the practical applications of group theory to solid state physics.
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Theorem. The reduction of any reducible representation into its irreducible
constituents is unique.

Thus, if χ(Ck) is the character for some class in a reducible representation,
then this theorem claims that we can write the character for the reducible
representation χ(Ck) as a linear combination of characters for the irreducible
representations of the group χ(Γi)(Ck)

χ(Ck) =
∑
Γi

aiχ
(Γi)(Ck) , (3.16)

where the ai coefficients are non-negative integers which denote the number
of times the irreducible representation Γi is contained in the reducible rep-
resentation. Furthermore we show here that the ai coefficients are unique.
This theorem is sometimes called the decomposition theorem for reducible
representations.

Proof. In proving that the ai coefficients are unique, we explicitly determine
the values of each ai, which constitute the characters for a reducible repre-
sentation. Consider the sum over classes k:

∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Ck) = Sj . (3.17)

Since χ(Ck) is reducible, we write the linear combination for χ(Ck) in (3.17)
using (3.16) as

Sj =
∑

k

Nk

[
χ(Γj)(Ck)

]∗∑
Γi

aiχ
(Γi)(Ck)

=
∑
Γi

ai

{∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Γi)(Ck)

}
. (3.18)

We now apply the Wonderful Orthogonality Theorem for Characters (3.13)
to get ∑

Γi

aihδΓi,Γj = ajh =
∑

k

Nk

[
χ(Γj)(Ck)

]∗
χ(Ck) = Sj (3.19)

yielding the decomposition relation

aj =
1
h

∑
k

Nk

[
χ(Γj)(Ck)

]∗
χ(Ck) =

Sj

h
(3.20)

and completing the proof of the theorem. Thus the coefficients ai in (3.16)
are uniquely determined. In other words, the number of times the various
irreducible representations are contained in a given reducible representation
can be obtained directly from the character table for the group.



3.5 The Number of Irreducible Representations 35

This sort of decomposition of the character for a reducible representa-
tion is important for the following type of physical problem. Consider a cubic
crystal. A cubic crystal has many symmetry operations and therefore many
classes and many irreducible representations. Now suppose that we squeeze
this crystal and lower its symmetry. Let us further suppose that the energy
levels for the cubic crystal are degenerate for certain points in the Brillouin
zone. This squeezing would most likely lift some of the level degeneracies. To
find out how the degeneracy is lifted, we take the representation for the cubic
group that corresponds to the unperturbed energy and treat this represen-
tation as a reducible representation in the group of lower symmetry. Then
the decomposition formulae (3.16) and (3.20) tell us immediately the degen-
eracy and symmetry types of the split levels in the perturbed or stressed
crystal. (A good example of this effect is crystal field splitting, discussed in
Chap. 5.) �

3.5 The Number of Irreducible Representations

We now come to another extremely useful theorem.

Theorem. The number of irreducible representations is equal to the number
of classes.

Proof. The Wonderful Orthogonality Theorem for Character (3.14)

k∑
k′=1

Nk′
[
χ(Γi)(Ck′)

]∗
χ(Γj)(Ck′) = h δΓi,Γj (3.21)

can be written as

k∑
k′=1

[√
Nk′

h
χ(Γi)(Ck′)

]∗ [√
N ′

k

h
χ(Γj)(Ck′ )

]
= δΓi,Γj . (3.22)

Each term
√
Nk′

h
χ(Γi)(Ck′)

in (3.22) gives the k′th component of a k-dimensional vector. There can be
only k such vectors in a k-dimensional space, since the (k+1)th vector would
be linearly dependent on the other k vectors. If there were less than k such
vectors, then the number of independent vectors would not be large enough to
span the k-dimensional space. To express a reducible representation in terms
of its irreducible components requires that the vector space be spanned by ir-
reducible representations. Therefore the number of irreducible representations
must be k, the number of classes.
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For our example of the permutation group of three objects, we have three
classes and therefore only three irreducible representations (see Table 3.1).
We have already found these irreducible representations and we now know
that any additional representations that we might find are either equivalent
to these representations or they are reducible. Knowing the number of distinct
irreducible representations is very important in setting up character tables.

As a corollary of this theorem, the number of irreducible representations
for Abelian groups is the number of symmetry elements in the group, because
each element is in a class by itself. Since each class has only one element, all
the irreducible representations are one dimensional. �

3.6 Second Orthogonality Relation for Characters

We now prove a second orthogonality theorem for characters which sums
over the irreducible representations and is extremely valuable for constructing
character tables.

Theorem. The summation over all irreducible representations
∑
Γj

χ(Γj)(Ck)
[
χ(Γj)(Ck′)

]∗
Nk = hδkk′ (3.23)

yields a second orthogonality relation for the characters. Thus, the Wonderful
Orthogonality Theorem for Character yields an orthogonality relation between
rows in the character table while the second orthogonality theorem gives a sim-
ilar relation between the columns of the character table.

Proof. Construct the matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

χ(1)(C1) χ(1)(C2) · · ·
χ(2)(C1) χ(2)(C2) · · ·
χ(3)(C1) χ(3)(C2) · · ·

...
...

⎞
⎟⎟⎟⎟⎟⎠
, (3.24)

where the irreducible representations label the rows and the classes label the
columns. Q is a square matrix, since by (3.22) the number of classes (desig-
nating the column index) is equal to the number of irreducible representations
(designating the row index). We now also construct the square matrix

Q′ =
1
h

⎛
⎜⎜⎜⎜⎜⎝

N1χ
(1)(C1)∗ N1χ

(2)(C1)∗ · · ·
N2χ

(1)(C2)∗ N2χ
(2)(C2)∗ · · ·

N3χ
(1)(C3)∗ N3χ

(2)(C3)∗ · · ·
...

...

⎞
⎟⎟⎟⎟⎟⎠
, (3.25)
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where the classes label the rows, and the irreducible representations label the
columns. The ij matrix element of the product QQ′ summing over classes is
then

(QQ′)ij =
∑

k

Nk

h
χ(Γi)(Ck)

[
χ(Γj)(Ck)

]∗
= δΓi,Γj (3.26)

using the Wonderful Orthogonality Theorem for Character (3.13). Therefore
QQ′ = 1̂ or Q′ = Q−1 and Q′Q = 1̂ since QQ−1 = Q−1Q = 1̂, where 1̂ is the
unit matrix. We then write Q′Q in terms of components, but now summing
over the irreducible representations

(Q′Q)kk′ =
∑
Γi

Nk

h
χ(Γi)(Ck)

[
χ(Γi)(Ck′)

]∗
= δkk′ (3.27)

so that ∑
Γi

χ(Γi)(Ck)
[
χ(Γi)(Ck′)

]∗
=

h

Nk
δkk′ , (3.28)

which completes the proof of the second orthogonality theorem. �

3.7 Regular Representation

The regular representation provides a recipe for finding all the irreducible
representations of a group. It is not always the fastest method for finding the
irreducible representations, but it will always work.

The regular representation is found directly from the multiplication table
by rearranging the rows and columns so that the identity element is always
along the main diagonal. When this is done, the group elements label the
columns and the inverse of each group element labels the rows. We will il-
lustrate this with the permutation group of three objects P (3) for which the
multiplication table is given in Table 1.1. Application of the rearrangement
theorem to place the identity element along the main diagonal gives Table 3.3.
Then the matrix representation for an element X in the regular representation
is obtained by putting 1 wherever X appears in the multiplication Table 3.3

Table 3.3. Multiplication table for the group P (3) used to generate the regular
representation

E A B C D F

E = E−1 E A B C D F

A = A−1 A E D F B C

B = B−1 B F E D C A

C = C−1 C D F E A B

F = D−1 F B C A E D

D = F−1 D C A B F E
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and 0 everywhere else. Thus we obtain

Dreg(E) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, (3.29)

which is always the unit matrix of dimension (h × h). For one of the other
elements in the regular representation we obtain

Dreg(A) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.30)

and so on. By construction, only Dreg(E) has a non-zero trace!
We now show that the regular representation is indeed a representation.

This means that the regular representation obeys the multiplication table
(either Table 1.1 or 3.3). Let us for example show

Dreg(BC) = Dreg(B)Dreg(C) . (3.31)

It is customary to denote the matrix elements of the regular representation
directly from the definition Dreg(X)A−1

k
,Ai

, where A−1
k labels the rows and Ai

labels the columns using the notation

Dreg(X)A−1
k

,Ai
=

⎧⎨
⎩

1 if A−1
k Ai = X

0 otherwise .
(3.32)

Using this notation, we have to show that

Dreg(BC)A−1
k

,Ai
=
∑
Aj

Dreg(B)A−1
k

,Aj
Dreg(C)A−1

j
,Ai

. (3.33)

Now look at the rearranged multiplication table given in Table 3.3. By con-
struction, we have for each of the matrices

Dreg(B)A−1
k

,Aj
=

⎧⎨
⎩

1 if A−1
k Aj = B

0 otherwise ,
(3.34)

Dreg(C)A−1
j

,Ai
=

⎧⎨
⎩

1 if A−1
j Ai = C

0 otherwise .
(3.35)
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Therefore in the sum
∑

Aj
Dreg(B)A−1

k
,Aj
Dreg(C)A−1

j ,Ai
of (3.33), we have

only nonzero entries when

BC = (A−1
k Aj)(A−1

j︸ ︷︷ ︸
1

Ai) = A−1
k Ai . (3.36)

But this coincides with the definition of Dreg(BC):

Dreg(BC)A−1
k

,Ai
=

⎧⎨
⎩

1 if A−1
k Ai = BC

0 otherwise .
(3.37)

ThereforeDreg is, in fact, a representation of the groupA1, . . . , Ah, completing
the proof.

The following theorem allows us to find all the irreducible representations
from the regular representation.

Theorem. The regular representation contains each irreducible representa-
tion a number of times equal to the dimensionality of the representation.

(For the group P (3), this theorem says that Dreg contains D(Γ1) once, D(Γ1′ )

once, and D(Γ2) twice so that the regular representation of P (3) would be of
dimensionality 6.)

Proof. Since Dreg is a reducible representation, we can write for the characters
(see (3.16))

χreg(Ck) =
∑
Γi

aiχ
(Γi)(Ck) , (3.38)

where
∑

Γi
is the sum over the irreducible representations and the ai coeffi-

cients have been shown to be unique (3.20) and given by

ai =
1
h

∑
k

Nk

[
χ(Γi)(Ck)

]∗
χreg(Ck) . (3.39)

We note that NE = 1 for the identity element, which is in a class by itself.
But by construction χreg(Ck) = 0 unless Ck = E in which case χreg(E) = h.
Therefore ai = χ(Γi)(E) = �i, where χ(Γi) is the trace of an �i dimensional
unit matrix, thereby completing the proof.

The theorem (3.38) that we have just proven tells us that the regular
representation contains each irreducible representation of the group at least
once. To obtain these irreducible representations explicitly, we have to carry
out a similarity transformation which brings the matrices of the regular rep-
resentation into block diagonal form. It turns out to be very messy to extract
the matrices of the regular representation – in fact, it is so tedious to do
this operation that it does not even make an instructive homework problem.
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It is much easier to write down the matrices which generate the symmetry
operations of the group directly.

Consider for example the permutation group of three objects P (3) which
is isomorphic to the symmetry operations of a regular triangle (Sect. 1.2). The
matrices for D and F generate rotations by ±2π/3 about the z axis, which
is ⊥ to the plane of the triangle. The A matrix represents a rotation by ±π
about the y axis while the B and C matrices represent rotations by ±π about
axes in the x–y plane which are ±120◦ away from the y axis. In setting up
a representation, it is advantageous to write down those matrices which can
be easily written down – such as E,A,D, F . The remaining matrices such as
B and C can then be found through the multiplication table. �

We will now make use of the regular representation to prove a useful
theorem for setting up character tables. This is the most useful application of
the regular representation for our purposes.

Theorem. The order of a group h and the dimensionality �j of its irreducible
representations Γj are related by

∑
j

�2j = h . (3.40)

We had previously found (2.70) that
∑

j �
2
j ≤ h. The regular representation

allows us to prove that it is the equality that applies.

Proof. By construction, the regular representation is of dimensionality h
which is the number of elements in the group and in the multiplication table.
But each irreducible representation of the group is contained �j times in the
regular representation (see (3.38)) so that

χreg(E) = h =
∑
Γj

aj︸︷︷︸
�j

χΓj (E)︸ ︷︷ ︸
�j

=
∑
Γj

�j
2 , (3.41)

where one �j comes from the number of times each irreducible representation
is contained in the regular representation and the second �j is the dimension
of the irreducible representation Γj .

We thus obtain the result ∑
j

�2j = h , (3.42)

where
∑

j is the sum over irreducible representations. For example for P (3),
we have �1 = 1, �1′ = 1, �2 = 2 so that

∑
�2j = 6 = h. �

3.8 Setting up Character Tables

For many applications it is sufficient to know just the character table without
the actual matrix representations for a particular group. So far, we have only
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set up the character table by taking traces of the irreducible representations
– i.e., from the definition of χ. For the most simple cases, the character table
can be constructed using the results of the theorems we have just proved –
without knowing the representations themselves. In practice, the character
tables that are needed to solve a given problem are found either in books or
in journal articles. The examples in this section are thus designed to show the
reader how character tables are constructed, should this be necessary. Our
goal is further to give some practice in using the theorems proven in Chap. 3.

A summary of useful rules for the construction of character tables is given
next.

(a) The number of irreducible representations is equal to the number of classes
(Sect. 3.5). The number of classes is found most conveniently from the
classification of the symmetry operations of the group. Another way to
find the classes is to compute all possible conjugates for all group elements
using the group multiplication table.

(b) The dimensionalities of the irreducible representations are found from∑
i �

2
i = h (see (3.42)). For simple cases, this relation uniquely determines

the dimensionalities of the irreducible representations. For example, the
permutation group of three objects P (3) has three classes and therefore
three irreducible representations. The identity representation is always
present, so that one of these must be one-dimensional (i.e., the matrix
for the identity element of the group is the unit matrix). So this gives
12+?2+?2 = 6.This equation only has one integer solution, namely 12 +
12 + 22 = 6. No other solution works!

(c) There is always a whole row of 1s in the character table for the identity
representation.

(d) The first column of the character table is always the trace for the unit
matrix representing the identity element or class. This character is always
�i, the dimensionality of the (�i × �i) unit matrix. Therefore, the first
column of the character table is also filled in.

(e) For all representations other than the identity representation Γ1, the fol-
lowing relation is satisfied:

∑
k

Nkχ
(Γi)(Ck) = 0 , (3.43)

where
∑

k denotes the sum on classes. Equation (3.43) follows from the
wonderful orthogonality theorem for character and taking the identity
representation Γ1 as one of the irreducible representations.
If there are only a few classes in the group, (3.43) often uniquely deter-
mines the characters for several of the irreducible representations; partic-
ularly for the one-dimensional representations.

(f) The Wonderful Orthogonality Theorem for character works on rows of the
character table:
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∑
k

[
χ(Γi)(Ck)

]∗
χ(Γj)(Ck)Nk = hδΓi,Γj . (3.44)

This theorem can be used both for orthogonality (different rows) or for
normalization (same rows) of the characters in an irreducible representa-
tion and the complex conjugate can be applied either to the χ(Γi)(Ck) or
to the χ(Γj)(Ck) terms in (3.44) since the right hand side of (3.44) is real.

(g) The second orthogonality theorem works for columns of the character
table: ∑

Γi

[
χ(Γi)(Ck)

]∗
χ(Γi)(Ck′) =

h

Nk
δkk′ . (3.45)

This relation can be used both for orthogonality (different columns) or
normalization (same columns), as the wonderful orthogonality theorem
for character.

(h) From the second orthogonality theorem for character, and from the char-
acter for the identity class

χ(Γi)(E) = �i (3.46)

we see that the characters for all the other classes obey the relation∑
Γi

χ(Γi)(Ck)�i = 0 , (3.47)

where
∑

Γi
denotes the sum on irreducible representations and �i is the

dimensionality of representation Γi. Equation (3.47) follows from the won-
derful orthogonality theorem for character, and it uses the identity rep-
resentations as one of the irreducible representations, and for the second
any but the identity representation (Γi �= Γ1) can be used.

With all this machinery it is often possible to complete the character tables
for simple groups without an explicit determination of the matrices for a rep-
resentation.

Let us illustrate the use of the rules for setting up character tables with
the permutation group of three objects, P (3). We fill in the first row and first
column of the character table immediately from rules #3 and #4 in the earlier
list (see Table 3.4).

In order to satisfy #5, we know that χ(Γ1′ )(C2) = −1 and χ(Γ1′ )(C3) = 1,
which we add to the character table (Table 3.5).

Table 3.4. Character table for P(3) – Step 1

C1 3C2 2C3

Γ1 1 1 1

Γ1′ 1

Γ2 2
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Table 3.5. Character table for P(3) – Step 2

C1 3C2 2C3

Γ1 1 1 1

Γ1′ 1 −1 1

Γ2 2

Table 3.6. Character table for P(3)

C1 3C2 2C3

Γ1 1 1 1

Γ1′ 1 −1 1

Γ2 2 0 −1

Table 3.7. Multiplication table for the cyclic group of three rotations by 2π/3 about
a common axis

E C3 C2
3

E E C3 C2
3

C3 C3 C2
3 E

C2
3 C2

3 E C3

Now apply the second orthogonality theorem using columns 1 and 2 and
then again with columns 1 and 3, and this completes the character table,
thereby obtaining Table 3.6.

Let us give another example of a character table which illustrates another
principle that not all entries in a character table need to be real. Such a sit-
uation can occur in the case of cyclic groups. Consider a group with three
symmetry operations:

• E – identity,
• C3 – rotation by 2π/3,
• C2

3 – rotation by 4π/3.

See Table 3.7 for the multiplication table for this group. All three oper-
ations in this cyclic group C3 are in separate classes as can be easily seen
by conjugation of the elements. Hence there are three classes and three irre-
ducible representations to write down. The character table we start with is
obtained by following Rules #3 and #4 (Table 3.8). Orthogonality of Γ2 to
Γ1 yields the algebraic relation: 1 + a+ b = 0.

Since C2
3 = C3C3 and C2

3C3 = E, it follows that b = a2 and ab = a3 = 1,
so that a = exp(2πi/3). Then, orthogonality of the second column with the
first yields c = exp(4πi/3) and orthogonality of the third column with the
first column yields d = [exp(4πi/3)]2. From this information we can read-
ily complete the Character Table 3.9, where ω = exp[2πi/3]. Such a group
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Table 3.8. Character table for Cyclic Group C3

E C3 C2
3

Γ1 1 1 1

Γ2 1 a b

Γ3 1 c d

Table 3.9. Character table for cyclic group C3

E C3 C2
3

Γ1 1 1 1

Γ2 1 ω ω2

Γ3 1 ω2 ω

often enters into a physical problem which involves time inversion symme-
try, where the energy levels corresponding to Γ2 and Γ3 are degenerate
(see Chap. 16).

This idea of the cyclic group can be applied to a four-element group: E,
C2, C4, C3

4 – to a five-element group: E, C5, C2
5 , C3

5 , C4
5 – and to a six-element

group: E, C6, C3, C2, C2
3 , C5

6 , etc. In each case, use the fact that the Nth
roots of unity sum to zero so that each Γj is orthogonal to Γ1 and by the
rearrangement theorem each Γj is orthogonal to Γj′ . For the case of Bloch’s
theorem, we have an N -element group with characters that comprise the Nth
roots of unity ω = exp[2πi/N ].

All these cyclic groups are Abelian so that each element is in a class by
itself. The representations for these groups correspond to the multiplication
tables, which therefore contain the appropriate collections of roots of unity.

The character tables for all the point groups used in this chapter are listed
in Appendix A. The notation used in these tables is discussed in more detail
in the next sections.

3.9 Schoenflies Symmetry Notation

There are two point group notations that are used for the symmetry operations
in the character tables printed in books and journals. One is the Schoenflies
symmetry notation, which is described in this section and the other is the
Hermann–Mauguin notation that is used by the crystallography community
and is summarized in Sect. 3.10. For the Schoenflies system the following no-
tation is commonly used:

• E = Identity
• Cn = rotation through 2π/n. For example C2 is a rotation of 180◦. Likewise

C3 is a rotation of 120◦, while C2
6 represents a rotation of 60◦ followed
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Fig. 3.1. Schematic illustration of a dihedral symmetry axis. The reflection plane
containing the diagonal of the square and the fourfold axis is called a dihedral plane.
For this geometry σd(x, y, z) = (−y,−x, z)

by another rotation of 60◦ about the same axis so that C2
6 = C3. In

a Bravais lattice it can be shown that n in Cn can only assume values of
n = 1, 2, 3, 4, and 6. The observation of a diffraction pattern with fivefold
symmetry in 1984 was therefore completely unexpected, and launched the
field of quasicrystals, where a six-dimensional space is used for obtaining
crystalline periodicity.

• σ = reflection in a plane.
• σh = reflection in a “horizontal” plane. The reflection plane here is per-

pendicular to the axis of highest rotational symmetry.
• σv = reflection in a “vertical” plane. The reflection plane here contains

the axis of highest rotational symmetry.
• σd is the reflection in a diagonal plane. The reflection plane here is a verti-

cal plane which bisects the angle between the twofold axes ⊥ to the prin-
cipal symmetry axis. An example of a diagonal plane is shown in Fig. 3.1.
σd is also called a dihedral plane.

• i is the inversion which takes ⎧⎨
⎩
x→ −x
y → −y
z → −z .

• Sn is the improper rotation through 2π/n, which consists of a rotation by
2π/n followed by a reflection in a horizontal plane. Alternatively, we can
define Sn as a rotation by 4π/n followed by the inversion.

• iCn = compound rotation–inversion, which consists of a rotation followed
by an inversion.
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In addition to these point group symmetry operations, there are several space
group symmetry operations, such as translations, glide planes, screw axes,
etc. which are discussed in Chap. 9. The point groups, in contrast to the
space groups, exhibit a point that never moves under the application of all
symmetry operations. There are 32 common point groups for crystallographic
systems (n = 1, 2, 3, 4, 6), and the character tables for these 32 point groups
are given in many standard group theory texts. For convenience we also list
the character tables for these point groups in Appendix A (Tables A.1–A.32).
Tables A.22–A.28 are for groups with fivefold symmetry axes and such tables
are not readily found in group theory books, but have recently become im-
portant, because of the discovery of quasicrystals, C60, and related molecules.
Note that the tables for fivefold symmetry are: C5 (Table A.22); C5v (Ta-
ble A.23); C5h ≡ C5 ⊗ σh; D5 (Table A.24); D5d (Table A.25); D5h (Ta-
ble A.26); I (Table A.27); and Ih (Table A.28). Recurrent in these tables is
the “golden mean,” τ = (1 +

√
5)/2 where τ − 1 = 2 cos(2π/5) = 2 cos 72◦.

These are followed by Tables A.33 and A.34 for the semi-infinite groups C∞v

and D∞h, discussed later in this section.
Certain patterns can be found between the various point groups. Groups

C1, C2, . . . , C6 only have n-fold rotations about a simple symmetry axis Cn

(see for example Table A.15) and are cyclic groups, mentioned in Sect. 3.8.
Groups Cnv have, in addition to the n-fold axes, vertical reflection planes σv

(e.g., Table A.16). Groups Cnh have, in addition to the n-fold axes, hor-
izontal reflection planes σh and include each operation Cn together with
the compound operations Cn followed by σh (Tables A.3 and A.11 illus-
trate this relation between groups). The groups S2, S4, and S6 have mostly
compound operations (see Tables A.2, A.17, and A.20). The groups de-
noted by Dn are dihedral groups and have non-equivalent symmetry axes
in perpendicular planes (e.g., Table A.18). The group of the operations of
a square is D4 and has in addition to the principal fourfold axes, two sets
of non-equivalent twofold axes (Table A.18). We use the notation C′

2 to in-
dicate that these twofold axis are in a different plane (see also Table A.12
for group D3, where this same situation occurs). When non-equivalent axes
are combined with mirror planes we get groups like D2h, D3h, etc. (see Ta-
bles A.8 and A.14). There are five cubic groups T , O, Td, Th, and Oh. These
groups have no principal axis but instead have four threefold axes (see Ta-
bles A.29–A.32).

3.10 The Hermann–Mauguin Symmetry Notation

There is also a second notation for symmetry operations and groups, namely
the Hermann–Mauguin or international notation, which is used in the Interna-
tional Tables for X-Ray Crystallography, a standard structural and symmetry
reference book. The international notation is what is usually found in crys-
tallography textbooks and various materials science journals. For that reason
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Table 3.10. Comparison between Schoenflies and Hermann–Mauguin notation

Schoenflies Hermann–Mauguin

rotation Cn n

rotation–inversion iCn n̄

mirror plane σ m

horizontal reflection

plane ⊥ to n-fold axes σh n/m

n-fold axes in

vertical reflection plane σv nm

two non-equivalent

vertical reflection planes σv′ nmm

Table 3.11. Comparison of notation for proper and improper rotations in the
Schoenflies and International systems

proper rotations improper rotations

international Schoenflies international Schoenflies

1 C1 1̄ S2

2 C2 2̄ ≡ m σ

3 C3 3̄ S−1
6

32 C−1
3 3̄2 S6

4 C4 4̄ S−1
4

43 C−1
4 4̄3 S4

5 C5 5̄ S10

54 C−1
5 5̄4 S−1

10

6 C6 6̄ S−1
3

65 C−1
6 6̄5 S3

it is also necessary to become familiar with this notation. The general corre-
spondence between the two notations is shown in Table 3.10 for rotations and
mirror planes. The Hermann–Mauguin notation n̄ means iCn which is equiv-
alent to a rotation of 2π/n followed by or preceded by an inversion. A string
of numbers like 422 (see Table A.18) means that there is a fourfold major
symmetry axis (C4 axis), and perpendicular to this axis are two inequivalent
sets of twofold axes C′

2 and C′′
2 , such as occur in the group of the square (D4).

If there are several inequivalent horizontal mirror planes like

2
m
,

2
m
,

2
m
,

an abbreviated notation mmm is sometimes used [see notation for the group
D2h (Table A.8)]. The notation 4mm (see Table A.16) denotes a fourfold axis
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and two sets of vertical mirror planes, one set through the axes C4 and denoted
by 2σv and the other set through the bisectors of the 2σv planes and denoted
by the dihedral vertical mirror planes 2σd. Table 3.11 is useful in relating the
two kinds of notations for rotations and improper rotations.

3.11 Symmetry Relations
and Point Group Classifications

In this section we summarize some useful relations between symmetry opera-
tions and give the classification of point groups. Some useful relations on the
commutativity of symmetry operations are:

(a) Inversion commutes with all point symmetry operations.
(b) All rotations about the same axis commute.
(c) All rotations about an arbitrary rotation axis commute with reflections

across a plane perpendicular to this rotation axis.
(d) Two twofold rotations about perpendicular axes commute.
(e) Two reflections in perpendicular planes will commute.
(f) Any two of the symmetry elements σh, Sn, Cn (n = even) implies the

third.

If we have a major symmetry axis Cn(n ≥ 2) and there are either twofold
axes C2 or vertical mirror planes σv, then there will generally be more than
one C2 or σv symmetry operations. In some cases these symmetry operations
are in the same class and in the other cases they are not, and this distinction
can be made by use of conjugation (see Sect. 1.6).

The classification of the 32 crystallographic point symmetry groups shown
in Table 3.12 is often useful in making practical applications of character
tables in textbooks and journal articles to specific materials.

In Table 3.12 the first symbol in the Hermann–Mauguin notation denotes
the principal axis or plane. The second symbol denotes an axis (or plane)
perpendicular to this axis, except for the cubic groups, where the second
symbol refers to a 〈111〉 axis. The third symbol denotes an axis or plane that
is ⊥ to the first axis and at an angle of π/n with respect to the second axis.

In addition to the 32 crystallographic point groups that are involved with
the formation of three-dimensional crystals, there are nine symmetry groups
that form clusters and molecules which show icosahedral symmetry or are
related to the icosahedral group Ih. We are interested in these species because
they can become part of crystallographic structures. Examples of such clusters
and molecules are fullerenes. The fullerene C60 has full icosahedral symmetry
Ih (Table A.28), while C70 has D5h symmetry (Table A.26) and C80 has
D5d symmetry (Table A.25). The nine point groups related to icosahedral
symmetry that are used in solid state physics, as noted earlier, are also listed
in Table 3.12 later that double line.
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Table 3.12. The extended 32 crystallographic point groups and their symbols(a)

system Schoenflies Hermann–Mauguin symbol(b) examples

symbol full abbreviated

triclinic C1 1 1
Ci, (S2) 1̄ 1̄ Al2SiO5

monoclinic C1h, (S1) m m KNO2

C2 2 2
C2h 2/m 2/m

orthorhombic C2v 2mm mm
D2, (V ) 222 222
D2h, (Vh) 2/m 2/m 2/m mmm I, Ga

tetragonal C4 4 4
S4 4̄ 4̄
C4h 4/m 4/m CaWO4

D2d, (Vd) 4̄2m 4̄2m
C4v 4mm 4mm
D4 422 42
D4h 4/m 2/m 2/m 4/mmm TiO2, In, β-Sn

rhombohedral C3 3 3 AsI3
C3i, (S6) 3̄ 3̄ FeTiO3

C3v 3m 3m
D3 32 32 Se
D3d 3̄2/m 3̄m Bi,As,Sb,Al2O3

hexagonal C3h, (S3) 6̄ 6̄
C6 6 6
C6h 6/m 6/m
D3h 6̄2m 6̄2m
C6v 6mm 6mm ZnO, NiAs
D6 622 62 CeF3

D6h 6/m 2/m 2/m 6/mmm Mg, Zn, graphite

Footnote (a): The usual 32 crystallographic point groups are here extended by in-
cluding 9 groups with 5 fold symmetry and are identified here as icosahedral point
groups.
Footnote (b): In the Hermann–Mauguin notation, the symmetry axes parallel to
and the symmetry planes perpendicular to each of the “principal” directions in the
crystal are named in order. When there is both an axis parallel to and a plane
normal to a given direction, these are indicated as a fraction; thus 6/m means
a sixfold rotation axis standing perpendicular to a plane of symmetry, while 4̄ denotes
a fourfold rotary inversion axis. In some classifications, the rhombohedral (trigonal)
groups are listed with the hexagonal groups. Also show are the corresponding entries
for the icosahedral groups (see text).
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Table 3.12. (continued)

the extended 32 crystallographic point groups and their symmetries

system Schoenflies Hermann–Mauguin symbol examples

symbol full abbreviated

cubic T 23 23 NaClO3

Th 2/m3̄ m3 FeS2

Td 4̄3m 4̄3m ZnS
O 432 43 β-Mn
Oh 4/m 3̄ 2/m m3m NaCl, diamond, Cu

icosahedral C5 5 5
C5i, (S10) 1̄0 1̄0
C5v 5m 5m
C5h, S5 5̄ 5̄
D5 52 52
D5d 5̄2/m 5̄/m C80

D5h 1̄02m 1̄02m C70

I 532 532
Ih C60

It is also convenient to picture many of the point group symmetries with
stereograms (see Fig. 3.2). The stereogram is a mapping of a general point on
a sphere onto a plane going through the center of the sphere. If the point on
the sphere is above the plane it is indicated as a +, and if below as a ◦. In
general, the polar axis of the stereogram coincides with the principal axis of
symmetry. The first five columns of Fig. 3.2 pertain to the crystallographic
point group symmetries and the sixth column is for fivefold symmetry.

The five first stereograms on the first row pertaining to groups with a sin-
gle axis of rotation show the effect of two-, three-, four-, and sixfold rotation
axes on a point +. These groups are cyclic groups with only n-fold axes.
Note the symmetry of the central point for each group. On the second row
we have added vertical mirror planes which are indicated by the solid lines.
Since the “vertical” and “horizontal” planes are not distinguishable for C1,
the addition of a mirror plane to C1 is given in the third row, showing the
groups which result from the first row upon addition of horizontal planes.
The symbols ⊕ indicate the coincidence of the projection of points above and
below the plane, characteristic of horizontal mirror planes.

If instead of proper rotations as in the first row, we can also have im-
proper rotations, then the groups on row 4 are generated. Since S1 is identical
with C1h, it is not shown separately; this also applies to S3 = C3h and
to S5 = C5h (neither of which are shown). It is of interest to note that S2

and S6 have inversion symmetry but S4 does not.
The addition of twofold axes ⊥ to the principal symmetry axis for the

groups in the first row yields the stereograms of the fifth row where the twofold
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Fig. 3.2. The first five columns show stereographic projections of simple crystallo-
graphic point groups

axes appear as dashed lines. Here we see that the higher the symmetry of the
principal symmetry axis, the greater the number of twofold axes D5 (not
shown) that would have 5 axes separated by 72◦.

The addition of twofold axes to the groups on the fourth row yields the
stereograms of the sixth row, where D2d comes from S4, while D3d comes from
S6. Also group D5d (not shown) comes from S10. The addition of twofold axes
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Fig. 3.3. Schematic diagram for the symmetry operations of the group Td

to S2 results in C2h. The stereograms on the last row are obtained by adding
twofold axes ⊥ to Cn to the stereograms for the Cnh groups on the third row.
D5h (not shown) would fall into this category. The effect of adding a twofold
axis to C1h is to produce C2v.

The five point symmetry groups associated with cubic symmetry (T , O,
Td, Th and Oh) are not shown in Fig. 3.2. These groups have higher symmetry
and have no single principal axis. The resulting stereograms are very compli-
cated and for this reason are not given in Fig. 3.2. For the same reason the
stereograph for the I and Ih icosahedral groups are not given. We give some
of the symmetry elements for these groups next.

The group T (or 23 using the International notation) has 12 symmetry
elements which include:

1 identity
3 twofold axes (x, y, z)
4 threefold axes (body diagonals – positive rotation)
4 threefold axes (body diagonals – negative rotations)
12 symmetry elements

The point group Th (denoted by m3 in the abbreviated International nota-
tion or by 2/m3 in the full International notation) contains all the symmetry
operations of T and inversion as well, and is written as Th ≡ T ⊗ i, indicating
the direct product of the group T and the group Ci having two symmetry
elements E, i (see Chap. 6). This is equivalent to adding a horizontal plane of
symmetry, hence the notation 2/m; the symbol 3 means a threefold axis (see
Table 3.11). Thus Th has 24 symmetry elements.

The point group Td (4̄3m) contains the symmetry operations of the reg-
ular tetrahedron (see Fig. 3.3), which correspond to the point symmetry for
diamond and the zincblende (III–V and II–VI) structures. We list next the 24
symmetry operations of Td:
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Fig. 3.4. Schematic for the symmetry operations of the group O

Fig. 3.5. Schematic diagram of the CO molecule with symmetry C∞v and symmetry
operations E, 2Cφ, σv, and the linear CO2 molecule in which the inversion operation
together with (E, 2Cφ, σv) are also present to give the group D∞h

• identity,
• eight C3 about body diagonals corresponding to rotations of ±2π/3,
• three C2 about x, y, z directions,
• six S4 about x, y, z corresponding to rotations of ±π/2,
• six σd planes that are diagonal reflection planes.

The cubic groups are O (432) and Oh (m3m), and they are shown schemati-
cally in Fig. 3.4.

The operations for group O as shown in Fig. 3.4 are E, 8C3, 3C2 = 3C2
4 ,

6C2, and 6C4. To get Oh we combine these 24 operations with inversion to
give 48 operations in all. We note that the second symbol in the Hermann–
Mauguin (International) notation for all five cubic groups is for the 〈111〉 axes
rather than for an axis ⊥ to the principal symmetry axis.

In addition to the 32 crystallographic point groups and to the eight fivefold
point groups, the character tables contain listings for C∞v (Table A.33) and
D∞h (Table A.34) which have full rotational symmetry around a single axis,
and therefore have an ∞ number of symmetry operations and classes. These
two groups are sometimes called the semi-infinite groups because they have
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an infinite number of operations about the major symmetry axis. An example
of C∞v symmetry is the CO molecule shown in Fig. 3.5.

Here the symmetry operations are E, 2Cφ, and σv. The notation Cφ de-
notes an axis of full rotational symmetry and σv denotes the corresponding
infinite array of vertical planes. The group D∞h has in addition the inversion
operation which is compounded with each of the operations in C∞v, and this
is written as D∞h = C∞v ⊗ i (see Chap. 6). An example of a molecule with
D∞h symmetry is the CO2 molecule (see Fig. 3.5).

Selected Problems

3.1. (a) Explain the symmetry operations pertaining to each class of the point
group D3h. You may find the stereograms on p. 51 useful.

(b) Prove that the following irreducible representations E1 and E2 in the
group D5 (see Table A.24) are orthonormal.

(c) Given the group T (see Table A.29), verify that the equality
∑

j

�2j = h

is satisfied. What is the meaning of the two sets of characters given for
the two-dimensional irreducible representation E? Are they orthogonal to
each other or are they part of the same irreducible representation?

(d) Which symmetry operation results from multiplying the operations σv

and σd in group C4v? Can you obtain this information from the character
table? If so, how?

3.2. Consider an A3B3 molecule consisting of 3A atoms at the corners of
a regular triangle and 3B atoms at the corners of another regular triangle,
rotated by 60◦ with respect to the first.

(a) Consider the A and B atoms alternately occupy the corners of a planar
regular hexagon. What are the symmetry operations of the symmetry
group and what is the corresponding point group? Make a sketch of the
atomic equilibrium positions for this case.

(b) If now the A atoms are on one plane and the B atoms are on another
parallel plane, what are the symmetry operations and point group?

(c) If now all atoms in (a) are of the same species, what then are the symmetry
operations of the appropriate point group, and what is this group?

(d) Which of these groups are subgroups of the highest symmetry group? How
could you design an experiment to test your symmetry group identifica-
tions?

3.3. (a) What are the symmetry operations of a regular hexagon?
(b) Find the classes. Why are not all the two-fold axes in the same class?
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(c) Find the self-conjugate subgroups, if any.
(d) Identify the appropriate character table.
(e) For some representative cases (two cases are sufficient), check the validity

of the “Wonderful Orthogonality and Second Orthogonality Theorems”
on character, using the character table in (d).

3.4. Suppose that you have the following set of characters: χ(E) = 4, χ(σh) =
2, χ(C3) = 1, χ(S3) = −1, χ(C′

2) = 0, χ(σv) = 0.

(a) Do these characters correspond to a representation of the point group
D3h? Is it irreducible?

(b) If the representation is reducible, find the irreducible representations con-
tained therein.

(c) Give an example of a molecule with D3h symmetry.

3.5. Consider a cube that has Oh symmetry.

(a) Which symmetry group is obtained by squeezing the cube along one of
the main diagonals?

(b) Which symmetry group is obtained if you add mirror planes perpendic-
ular to the main diagonals, and have a mirror plane crossing these main
diagonals in the middle.
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Basis Functions

In the previous chapters we have discussed symmetry elements, their ma-
trix representations and the properties of the characters of these representa-
tions. In this discussion we saw that the matrix representations are not unique
though their characters are unique. Because of the uniqueness of the characters
of each irreducible representation, the characters for each group are tabulated
in character tables. Also associated with each irreducible representation are
“basis functions” which can be used to generate the matrices that represent
the symmetry elements of a particular irreducible representation. Because of
the importance of basis functions, it is customary to list the most important
basis functions in the character tables.

4.1 Symmetry Operations and Basis Functions

Suppose that we have a group G with symmetry elements R and symmetry
operators P̂R. We denote the irreducible representations by Γn, where n labels
the representation. We can then define a set of basis vectors denoted by |Γnj〉.
Each vector |Γnj〉 of an irreducible representation Γn is called a component
or partner and j labels the component or partner of the representation, so
that if we have a two-dimensional representation, then j = 1, 2. All partners
collectively generate the matrix representation denoted by D(Γn)(R). These
basis vectors relate the symmetry operator P̂R with its matrix representation
D(Γn)(R) through the relation

P̂R|Γnα〉 =
∑

j

D(Γn)(R)jα|Γnj〉 . (4.1)

The basis vectors can be abstract vectors; a very important type of basis vector
is a basis function which we define here as a basis vector expressed explicitly
in coordinate space. Wave functions in quantum mechanics, which are basis
functions for symmetry operators, are a special but important example of such
basis functions.
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In quantum mechanics, each energy eigenvalue of Schrödinger’s equation is
labeled according to its symmetry classification, which is specified according
to an irreducible representation of a symmetry group. If the dimensionality of
the representation is j > 1, the energy eigenvalue will correspond to a j-fold
degenerate state, with j linearly independent wave-functions. The effect of
the symmetry operator P̂R on one of these wave functions (e.g., the αth wave
function) will generally be the formation of a linear combination of the j wave
functions, as is seen in (4.1).

Like the matrix representations and the characters, the basis vectors also
satisfy orthogonality relations

〈Γnj|Γn′j′〉 = δnn′δjj′ , (4.2)

and this relation is proved in Sect. 6.2 in connection with selection rules. In
quantum (wave) mechanics, this orthogonality relation would be written in
terms of the orthogonality for the wave functions

∫
ψ∗

n,j(r)ψn′,j′(r)d3r = δnn′δjj′ , (4.3)

where the wave functions ψn,j and ψn′,j′ correspond to different energy eigen-
values (n, n′) and to different components (j, j′) of a particular degenerate
state, and the integration is usually performed in 3D space. The orthogonality
relation (4.3) allows us to generate matrices for an irreducible representation
from a complete set of basis vectors, as is demonstrated in Sect. 4.2.

4.2 Use of Basis Functions
to Generate Irreducible Representations

In this section we demonstrate how basis functions can be used to generate
the matrices for an irreducible representation.

Multiplying (4.1) on the left by the basis vector 〈Γn′j′| (corresponding in
wave mechanics to ψ∗

n′,j′(r)), we obtain using the orthogonality relation for
basis functions (4.2):

〈Γn′j′|P̂R|Γnα〉 =
∑

j

D(Γn)(R)jα〈Γn′j′|Γnj〉 = D(Γn′)(R)j′αδnn′ . (4.4)

From (4.4) we obtain a relation between each matrix element of D(Γn)(R)jα

and the effect of the symmetry operation on the basis functions:

D(Γn)(R)jα = 〈Γnj|P̂R|Γnα〉 . (4.5)

Thus by taking matrix elements of a symmetry operator P̂R between all pos-
sible partners of an irreducible representation as shown by (4.5) the matrix
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Fig. 4.1. Symmetry operations of an equilateral triangle. The notation of this di-
agram defines the symmetry operations in Table 4.1. Each vertex is labeled by the
same number as its axis

representationDΓn(R)jα can be generated. In practice, this turns out to be the
easiest way to obtain these matrix representations for the symmetry elements.

As an example of how basis vectors or basis functions can generate the
matrices for an irreducible representation, consider a planar molecule with
threefold symmetry such that the symmetry operations are isomorphic to
those of an equilateral triangle and also isomorphic to P (3) (see Chap. 1). Thus
there are six symmetry operations and six operators P̂R (see Sect. 1.2). The
proper point group to describe all the symmetry operations of a regular planar
triangle could be D3h = D3 ⊗ σh. However, since the triangle is a 2D object,
the horizontal mirror plane may not be an important symmetry operation
and we can here simplify the algebra by using the group D3 which has six
symmetry elements. Group theory tells us that the energy levels can never be
more than twofold degenerate. Thus no threefold or sixfold degenerate levels
can occur because the largest dimensionality of an irreducible representation
of P (3) is 2 (see Problem 2.2). For the one-dimensional representation Γ1, the
operator P̂R leaves every basis vector invariant. Thus any constant such as
the number one forms a suitable basis function. For many practical problems
we like to express our basis functions in terms of functions of the coordinates
(x, y, z). Some explanation is needed here about the meaning of (x, y, z) as
a basis function. To satisfy the orthonormality requirement, the basis functions
are vectors with unit length and the matrices which represent the symmetry
operations are unitary matrices. The transformation properties of the x, y,
and z components of an arbitrary vector under the symmetry operations of
the group are the same as those for the unit vectors x, y, and z.

In this connection it is convenient to write out a basis function table such
as Table 4.1. On the top row we list the functions to be investigated; in the
first column we list all the symmetry operations of the group (see Fig. 4.1 for
notation). If we denote the entries in the table by f ′(x, y, z), then Table 4.1
can be summarized as

P̂Rf(x, y, z) = f ′(x, y, z) , (4.6)
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where the symmetry operations P̂R label the rows. From Table 4.1 we can
then write down the matrix representations for entries on each irreducible
representation. In the trivial case of the identity representation, the (1 × 1)
matrix 1 satisfies P̂R1 = 1 for all P̂R so that this homomorphic representation
always applies, i.e., |Γ1〉 = 1.

To find the basis functions for the Γ1′ representation (i.e., the representa-
tion of the factor group for P (3)), we note that (E,D, F ) leaves z invariant
while (A,B,C) takes z into −z, so that z forms a suitable basis function for
Γ1′ , which we write as |Γ1′〉 = z. Then application of (4.5) yields the matrices
for the irreducible representation Γ1′

〈z|(E,D, F )|z〉 = 1 , 〈z|(A,B,C)|z〉 = −1 . (4.7)

Thus the characters (1) and (−1) for the (1 × 1) irreducible representations
are obtained for Γ1′ . We note that in the case of (1 × 1) representations, the
characters and the representations are identical.

To find the two-dimensional representation Γ2 we note that all the group
operations take (x, y) into (x′, y′). Table 4.1 shows the results of each P̂R

operator acting on x, y, z to yield x′, y′, z′ and P̂R acting on x2, y2, z2 to yield
x′2, y′2, z′2. Table 4.1 thus can be used to find the matrix representation for Γ2

by taking as basis functions |Γ2, 1〉 = |x〉 and |Γ2, 2〉 = |y〉. We now illustrate
the use of Table 4.1 to generate the matrix D(Γ2)(C−1

3 = D) where D is
a clockwise rotation of 2π/3 about the z-axis:

D|x〉 = −1/2(x+
√

3y) yields first column of matrix representation

D|y〉 = 1/2(
√

3x− y) yields second column of matrix representation

so that

D(Γ2)(C−1
3 = D) =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
. (4.8)

To clarify how we obtain all the matrices for the irreducible representations
with Γ2 symmetry, we repeat the operations leading to (4.8) for each of the
symmetry operations P̂R. We thus obtain for the other five symmetry opera-
tions of the group P̂R using the same basis functions (x, y) and the notation
of Fig. 4.1:

D(Γ2)(E) =

(
1 0
0 1

)
, (4.9)

D(Γ2)(C2(2) = B) =

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)
, (4.10)
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D(Γ2)(C3 = F ) =

(
− 1
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√

3
2√

3
2 − 1

2

)
, (4.11)

D(Γ2)(C2(1) = A) =

(
−1 0
0 1

)
, (4.12)

D(Γ2)(C2(3) = C) =

(
1
2

√
3

2√
3

2 − 1
2

)
. (4.13)

As mentioned before, x and y are both basis functions for representa-
tion Γ2 and are called the partners of this irreducible representation.
The number of partners is equal to the dimensionality of the representa-
tion.

In Table 4.1 we have included entries for P̂Rx
2, P̂Ry

2, P̂Rz
2 and these

entries are obtained as illustrated below by the operation D = C−1
3 :

Dx2 =

(
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2
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√
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2
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)2
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4
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√
3

2
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3
4
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)
, (4.14)

Dy2 =

(
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2
+

√
3

2
x

)2

=

(
y2

4
−

√
3

2
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3
4
x2

)
, (4.15)

D(x2 + y2) = x2 + y2 , (4.16)

D(xy) =

(
−x

2
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√
3

2
y

)(
−y

2
+

√
3

2
x

)

=
1
4

(
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√
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)
, (4.17)

D(x2 − y2) = −1
4

(
2[x2 − y2] − 4

√
3xy

)
, (4.18)

D(xz) =

(
−x

2
−

√
3

2
y

)
z , (4.19)

D(yz) =

(
−y

2
+

√
3

2
x

)
z . (4.20)

Using (4.1) we see that P̂R(x2 +y2) = (x2 +y2) for all P̂R so that (x2 +y2)
is a basis function for Γ1 or as we often say transforms according to the irre-
ducible representation Γ1. Correspondingly z(x2+y2) transforms as Γ1′ and z2
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transforms as Γ1. These transformation properties will be used extensively for
many applications of group theory. It is found that many important basis
functions are given directly in the published character tables. Like the matrix
representations, the basis functions are not unique. However, corresponding
to a given set of basis functions, the matrix representation which is generated
by these basis functions will be unique.

As before, the characters for a given representation are found by tak-
ing the sum of the diagonal elements of each matrix in a given representa-
tion:

χ(Γn)(R) ≡ tr D(Γn)(R) =
∑

j

D(Γn)(R)jj =
∑

j

〈Γnj|P̂R|Γnj〉 . (4.21)

Since the trace is invariant under a similarity transformation, the character
is independent of the particular choice of basis functions or matrix represen-
tations.

If instead of a basis function (which generates irreducible representations)
we use an arbitrary function f , then a reducible representation will result, in
general. We can express an arbitrary function as a linear combination of the
basis functions. For example, any linear function of x, y, z such as f(x, y, z) can
be expressed in terms of linear combinations of basis vectors x, y, z and likewise
any quadratic function is expressed in terms of quadratic basis functions which
transform as irreducible representations of the group. For example for the
group P (3) (see Table 4.1), quadratic forms which serve as basis functions are
(x2 + y2) and z2 which both transform as Γ1; z transforms as Γ1′ ; (xz, yz)
and (xy, x2 − y2) both transform as Γ2.

If we now inspect the character table D3(32) found in Table A.12 (and
reproduced below in Table 4.2), we find that these basis functions are listed
in this character table. The basis functions labeled Rα represent the angular
momentum component around axis α (e.g., Rx = ypz − zpy). For the two
dimensional irreducible representations both partners of the basis functions
are listed, for example (xz, xy) and (x2−y2, xy), etc. The reason why (x, y, z)
and (Rx, Ry, Rz) often transform as different irreducible representations (not
the case for the groupD3(32)) is that x, y, z transforms as a radial vector (such
as coordinate, momentum) while Rx, Ry, Rz transforms as an axial vector
(such as angular momentum r × p).

Table 4.2. Character Table for Group D3 (rhombohedral)

D3(32) E 2C3 3C′
2

x2 + y2, z2 A1 1 1 1

Rz, z A2 1 1 −1

(xz, yz)

(x2 − y2, xy)

}
(x, y)

(Rx, Ry)

}
E 2 −1 0
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4.3 Projection Operators P̂
(Γn)
kl

The previous discussion of basis vectors assumed that we already knew how
to write down the basis vectors. In many cases, representative basis functions
are tabulated in the character tables. However, suppose that we have to find
basis functions for the following cases:

(a) An irreducible representation for which no basis functions are listed in
the character table; or

(b) An arbitrary function.

In such cases the basis functions can often be found using projection opera-
tors P̂k�, not to be confused with the symmetry operators P̂R. We define the
projection operator P̂ (Γn)

k� as transforming one basis vector |Γn�〉 into another
basis vector |Γnk〉 of the same irreducible representation Γn:

P̂
(Γn)
k� |Γn�〉 ≡ |Γnk〉 . (4.22)

The utility of projection operators is mainly to project out basis functions
for a given partner of a given irreducible representation from an arbitrary
function. The discussion of this topic focuses on the following issues:

(a) The relation of the projection operator to symmetry operators of the
group and to the matrix representation of these symmetry operators for
an irreducible representation (see Sect. 4.4).

(b) The effect of projection operators on an arbitrary function (see Sect. 4.5).

As an example, we illustrate in Sect. 4.6 how to find basis functions from an
arbitrary function for the case of the group of the equilateral triangle (see
Sect. 4.2).

4.4 Derivation of an Explicit Expression for P̂
(Γn)
k�

In this section we find an explicit expression for the projection operators P̂ (Γn)
kl

by considering the relation of the projection operator to symmetry operators
of the group. We will find that the coefficients of this expression give the
matrix representations of each of the symmetry elements.

Let the projection operator P̂ (Γn)
k� be written as a linear combination of

the symmetry operators P̂R:

P̂
(Γn)
k� =

∑
R

Ak�(R)P̂R , (4.23)

where the Ak�(R) are arbitrary expansion coefficients to be determined. Sub-
stitution of (4.23) into (4.22) yields
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P̂
(Γn)
k� |Γn�〉 ≡ |Γnk〉 =

∑
R

Ak�(R)P̂R|Γn�〉 . (4.24)

Multiply (4.24) on the left by 〈Γnk| to yield

〈Γnk|Γnk〉 = 1 =
∑
R

Ak�(R) 〈Γnk|P̂R|Γn�〉︸ ︷︷ ︸
D(Γn)(R)k�

. (4.25)

But the Wonderful Orthogonality Theorem (2.51) specifies that

∑
R

D(Γn)(R)∗k�D
(Γn)(R)k� =

h

�n
, (4.26)

where h is the number of symmetry operators in the group and �n is the dimen-
sionality of the irreducible representation Γn, so that we can identify Ak�(R)
with the matrix element of the representation for the symmetry element R:

Ak�(R) =
�n
h
D(Γn)(R)∗k� . (4.27)

Thus the projection operator is explicitly given in terms of the symmetry
operators of the group by the relation:

P̂
(Γn)
k� =

�n
h

∑
R

D(Γn)(R)∗k�P̂R . (4.28)

From the explicit form for P̂ (Γn)
k� in (4.28) and from (4.22) we see how to find

the partners of an irreducible representation Γn from any single known basis
vector, provided that the matrix representation for all the symmetry operators
D(Γn)(R) is known.

As a special case, the projection operator P̂ (Γn)
kk transforms |Γnk〉 into itself

and can be used to check that |Γnk〉 is indeed a basis function. We note that
the relation of P̂ (Γn)

kk to the symmetry operators P̂R involves only the diagonal
elements of the matrix representations (though not the trace):

P̂
(Γn)
kk =

�n
h

∑
R

D(Γn)(R)∗kkP̂R , (4.29)

where
P̂

(Γn)
kk |Γnk〉 ≡ |Γnk〉 . (4.30)

4.5 The Effect of Projection Operations
on an Arbitrary Function

The projection operators P̂ (Γn)
kk defined in (4.30) are of special importance

because they can project the kth partner of irreducible representation Γn
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from an arbitrary function. Any arbitrary function F can be written as a linear
combination of a complete set of basis functions |Γn′j′〉:

F =
∑
Γn′

∑
j′
f

(Γn′)
j′ |Γn′j′〉 . (4.31)

We can then write from (4.29):

P̂
(Γn)
kk F =

�n
h

∑
R

D(Γn)(R)∗kkP̂RF (4.32)

and substitution of (4.31) into (4.32) then yields

P̂
(Γn)
kk F =

�n
h

∑
R

∑
Γn′

∑
j′
f

(Γn′)
j′ D(Γn)(R)∗kk P̂R|Γn′j′〉 . (4.33)

But substitution of (4.1) into (4.33) and use of the Wonderful Orthogonality
Theorem (2.51):

∑
R

D(Γn′ )(R)jj′D
(Γn)(R)∗kk =

h

�n
δΓnΓn′ δjkδj′k (4.34)

yields
P̂

(Γn)
kk F = f

(Γn)
k |Γnk〉 , (4.35)

where
P̂

(Γn)
kk =

�n
h

∑
R

D(Γn)(R)∗kkP̂R . (4.36)

We note that the projection operator does not yield normalized basis func-
tions. One strategy to find basis functions is to start with an arbitrary func-
tion F .

(a) We then use P̂ (Γn)
kk to project out one basis function |Γnk〉.

(b) We can then use the projection operator P̂ (Γn)
k� to project out all other

partners |Γn�〉 orthogonal to |Γnk〉 in irreducible representation Γn. Or
alternatively we can use P̂ (Γn)

�� to project out each of the partners � of the
representation, whichever method works most easily in a given case.

If we do not know the explicit representations D(Γn)
k� (R)∗, but only know

the characters, then we can still project out basis functions which trans-
form according to the irreducible representations (using the argument given
in the next paragraph), though we cannot in this case project out specific
partners but only linear combinations of the partners of these irreducible
representations.

If we only know the characters of an irreducible representation Γn, we
define the projection operator for this irreducible representation as P̂ (Γn):
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P̂ (Γn) ≡
∑

k

P̂
(Γn)
kk =

�n
h

∑
R

∑
k

D(Γn)(R)∗kkP̂R , (4.37)

so that
P̂ (Γn) =

�n
h

∑
R

χ(Γn)(R)∗P̂R (4.38)

and using (4.35) we then obtain

P̂ (Γn)F =
∑

k

P̂
(Γn)
kk F =

∑
k

f
(Γn)
k |Γnk〉 , (4.39)

which projects out a function transforming as Γn but not a specific partner
of Γn.

In dealing with physical problems it is useful to use physical insight in
guessing at an appropriate “arbitrary function” to initiate this process for
finding the basis functions and matrix representations for specific problems.
This is the strategy to pursue when you do not know either the matrix repre-
sentations or the basis functions a priori.

4.6 Linear Combinations of Atomic Orbitals
for Three Equivalent Atoms
at the Corners of an Equilateral Triangle

As an example of finding basis functions from an arbitrary function, we here
consider forming linear combinations of atomic orbitals which transform as
irreducible representations of the symmetry group.

In many of the applications that we will be making of group theory
to solid-state physics, we will have equivalent atoms at different sites. We
use the symmetry operations of the group to show which irreducible rep-
resentations result when the equivalent atoms transform into each other
under the symmetry operations of the group. The discussion of projec-
tion operators of an arbitrary function applies to this very important
case.

As an example of this application, suppose that we have three equivalent
atoms at the three corners of an equilateral triangle (see Fig. 4.2) and that
each atom is in the same spherically symmetric ground state described by
a wave function ψ0(ri), where the subscript i is a site index, which can apply
to any of the three sites. As a short-hand notation for ψ0(ra), ψ0(rb), ψ0(rc)
we will here use a, b, c.

We now want to combine these atomic orbitals to make a molecular orbital
that transforms according to the irreducible representations of the group. We
will see that only the Γ1 and Γ2 irreducible representations are contained in the
linear combination of atomic orbitals for a, b, c. This makes sense since we have
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Fig. 4.2. Equilateral triangle and arbitrary functions a, b, c for atomic orbitals at
corners of an equilateral triangle, defining the notation used in Sect. 4.6

three atomic orbitals which split into a nondegenerate and a two-dimensional
representation in trigonal symmetry through the symmetry operations P̂R on
the equivalent site functions a, b, c.

To generate the proper linear combination of atomic orbitals that trans-
form as irreducible representations of the symmetry group, we use the
results on the projection operator to find out which irreducible represen-
tations are contained in the function F . According to the above discus-
sion, we can project out a basis function for representation Γn by consid-
ering the action of P̂ (Γn)

kk on one of the atomic orbitals, as for example
orbital F = a:

P̂
(Γn)
kk a =

�n
h

∑
R

D(Γn)(R)∗kk P̂Ra = f
(Γn)
k |Γnk〉 , (4.40)

in which we have used the definition for P̂ (Γn)
kk given by (4.35) and the expres-

sion for P̂ (Γn)
kk given by (4.36). If the representation Γn is one-dimensional,

then we can obtain D(Γn)(R) directly from the character table, and (4.40)
then becomes

P̂ (Γn)a =
�n
h

∑
R

χ(Γn)(R)∗P̂Ra = f (Γn)|Γn〉 . (4.41)

For the appropriate symmetry operators for this problem we refer to Sect. 1.2
where we have defined: E ≡ identity; (A,B,C) ≡ π rotations about twofold
axes in the plane of triangle; (D,F ) ≡ 2π/3 rotations about the threefold axis
⊥ to the plane of the triangle. These symmetry operations are also indicated
in Fig. 4.2.

For the identity representation Γ1 the characters and matrix representa-
tions are all unity so that
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P̂ (Γ1)a =
1
6
(P̂Ea+ P̂Aa+ P̂Ba+ P̂Ca+ P̂Da+ P̂Fa)

=
1
6
(a+ a+ c+ b+ b+ c)

=
1
3
(a+ b + c) , (4.42)

a result which is intuitively obvious. Each atom site must contribute equally
to the perfectly symmetrical molecular representation Γ1. This example illus-
trates how starting with an arbitrary function a (or ψ(ra)) we have found
a linear combination that transforms as Γ1. Likewise, we obtain the same
result by selecting b or c as the arbitrary function

P̂ (Γ1)b = P̂ (Γ1)c =
1
3
(a+ b+ c) . (4.43)

We now apply a similar analysis for representation Γ1′ to illustrate another
important point. In this case the matrix representations and characters are
+1 for (E,D, F ), and −1 for (A,B,C). Thus

P̂ (Γ1′ )a =
1
6
(P̂Ea− P̂Aa− P̂Ba− P̂Ca+ P̂Da+ P̂Fa)

=
1
6
(a− a− c− b + b+ c) = 0 , (4.44)

which states that no molecular orbital with Γ1′ symmetry can be made by
taking a linear combination of the a, b, c orbitals. This is verified by considering

P̂ (Γ1′ )b = P̂ (Γ1′ )c = 0 . (4.45)

The same approach can be used to obtain the two-dimensional irreducible
representations, but it does not result in a simple set of linear combinations
of atomic orbitals with a set of unitary matrices for the representation of the
symmetry operations of the group (see Problem 4.6).

To obtain a symmetrical set of basis functions for higher dimensional repre-
sentations it is useful to start with an arbitrary function that takes account of
the dominant symmetry operations of the group (e.g., a threefold rotation P̂D)

|Γ2α〉 = a+ ωb+ ω2c , (4.46)

where ω = e2πi/3 and we note here from symmetry that P̂D|Γ2α〉 = ω2|Γ2α〉
and P̂F |Γ2α〉 = ω|Γ2α〉.

Thus |Γ2α〉 is already a basis function. Clearly the partner of |Γ2α〉 is
|Γ2α〉∗ since P̂D|Γ2α〉∗ = P̂D(a + ω2b + ωc) = ω(a + ω2b + ωc) = ω|Γ2β〉,
where we have used the notation (α, β) to denote the two partners of the Γ2

representation:

|Γ2α〉 = a+ ωb+ ω2c , |Γ2β〉 = a+ ω2b+ ωc . (4.47)
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The two partners in (4.47) are complex conjugates of each other. Correspond-
ing to these basis functions, the matrix representation for each of the group
elements is simple and symmetrical

E =
(

1 0
0 1

)
A =

(
0 1
1 0

)
B =

(
0 ω2

ω 0

)
(4.48)

C =
(

0 ω
ω2 0

)
D =

(
ω2 0
0 ω

)
F =

(
ω 0
0 ω2

)
.

By inspection, the representation given by (4.48) is unitary.

4.7 The Application of Group Theory
to Quantum Mechanics

Suppose En is a k-fold degenerate level of the group of Schrödinger’s equa-
tion (see Sect. 1.8). Then any linear combination of the eigenfunctions
ψn1,ψn2, . . . , ψnk is also a solution of Schrödinger’s equation. We can write
the operation P̂Rψnα on one of these eigenfunctions as

P̂Rψnα =
∑

j

D(n)(R)jαψnj , (4.49)

whereD(n)(R)jα is an irreducible matrix which defines the linear combination,
n labels the energy index, α labels the degeneracy index.

Equation (4.49) is identical with the more general equation for a basis
function (4.1) where the states |Γnα〉 and |Γnj〉 are written symbolically rather
than explicitly as they are in (4.49).

We show here that the matrices D(n)(R) form an �n dimensional irre-
ducible representation of the group of Schrödinger’s equation where �n denotes
the degeneracy of the energy eigenvalue En. Let R and S be two symmetry
operations which commute with the Hamiltonian and let RS be their product.
Then from (4.49) we can write

P̂RSψnα = P̂RP̂Sψnα = P̂R

∑
j

D(n)(S)jαψnj (4.50)

=
∑
jk

D(n)(R)kjD
(n)(S)jαψnk =

∑
k

[
D(n)(R)D(n)(S)

]
kα
ψnk

after carrying out the indicated matrix multiplication. But by definition, the
product operator RS can be written as

P̂RSψnα =
∑

k

D(n)(RS)kαψnk , (4.51)
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so that
D(n)(RS) = D(n)(R)D(n)(S) (4.52)

and the matrices D(n)(R) form a representation for the group. We label quan-
tum mechanical states typically by a state vector (basis vector) |α, Γn, j〉 where
Γn labels the irreducible representation, j the component or partner of the
irreducible representation, and α labels the other quantum numbers that do
not involve the symmetry of the P̂R operators.

The dimension of the irreducible representation is equal to the degeneracy
of the eigenvalue En. The representation D(n)(R) generated by P̂Rψnα is an
irreducible representation if all the ψnk correspond to a single eigenvalue En.
For otherwise it would be possible to form linear combinations of the type

ψ′
n1, ψ

′
n2, . . . , ψ

′
ns︸ ︷︷ ︸

subset 1

ψ′
n,s+1, . . . , ψ

′
nk︸ ︷︷ ︸

subset 2

, (4.53)

whereby the linear combinations within the subsets would transform amongst
themselves. But if this happened, then the eigenvalues for the two subsets
would be different, except for the rare case of accidental degeneracy. Thus,
the transformation matrices for the symmetry operations form an irreducible
representation for the group of Schrödinger’s equation.

The rest of the book discusses several applications of the group theory
introduced up to this point to problems of solid state physics. It is convenient
at this point to classify the ways that group theory is used to solve quantum
mechanical problems. Group theory is used both to obtain exact results and
in applications of perturbation theory. In the category of exact results, we
have as examples:

(a) Irreducible representations of the symmetry group of Schrödinger’s equa-
tion label the states and specify their degeneracies (e.g., an atom in
a crystal field).

(b) Group theory is useful in following the changes in the degeneracies of the
energy levels as the symmetry is lowered. This case can be thought of in
terms of a Hamiltonian

H = H0 + H′ , (4.54)

where H0 has high symmetry corresponding to the group G, and H′ is
a perturbation having lower symmetry and corresponding to a group G′

of lower order (fewer symmetry elements). Normally group G′ is a sub-
group of group G. Here we find first which symmetry operations of G
are contained in G′; the irreducible representations of G′ label the states
of the lower symmetry situation exactly. In going to lower symmetry we
want to know what happens to the degeneracy of the various states in the
initial higher symmetry situation (see Fig. 4.3). We say that in general the
irreducible representation of the higher symmetry group forms reducible
representations for the lower symmetry group.
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Fig. 4.3. The effect of lowering the symmetry often results in a lowering of the
degeneracy of degenerate energy states

The degeneracy of states may either be lowered as the symmetry is low-
ered or the degeneracy may be unchanged. Group theory tells us exactly
what happens to these degeneracies. We are also interested in finding the
basis functions for the lower symmetry group G′. For those states where
the degeneracy is unchanged, the basis functions are generally unchanged.
When the degeneracy is reduced, then by proper choice of the form of the
partners, the basis functions for the degenerate state will also be basis
functions for the states in the lower symmetry situation.
An example of going from higher to lower symmetry is the following: If
(x, y, z) are basis functions for a three-dimensional representation in the
cubic group, then lowering the symmetry to tetragonal with z as the main
symmetry direction will give a two-dimensional representation with basis
functions (x, y) and a one-dimensional representation with basis function
z. However, if the symmetry is lowered to tetragonal along a z′ direction
(different from z), then linear combinations of (x, y, z) must be taken to
obtain a vector along z′ and two others that are mutually orthogonal.
The lowering of degeneracy is a very general topic and will enter the
discussion of many applications of group theory (see Chap. 5).

(c) Group theory is helpful in finding the correct linear combination of wave-
functions that is needed to diagonalize the Hamiltonian. This procedure
involves the concept of equivalence which applies to situations where
equivalent atoms sit at symmetrically equivalent sites (see Chap. 7).

Selected Problems

4.1. (a) What are the matrix representations for (2xy, x2 − y2) and (Rx, Ry)
in the point group D3?

(b) Using the results in (a), find the unitary transformation which transforms
the matrices for the representation corresponding to the basis functions
(xy, x2 − y2) into the representation corresponding to the basis functions
(x, y).

(c) Using projection operators, check that xy forms a proper basis function
of the two-dimensional irreducible representation Γ2 in point group D3.
Using the matrix representation found in (a) and projection operators,
find the partner of xy.
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(d) Using the basis functions in the character table for D3h, write a set of
(2 × 2) matrices for the two two-dimensional representations E′ and E′′.
Give some examples of molecular clusters that require D3h symmetry.

4.2. (a) Explain the Hermann–Manguin notation Td(4̄3m).
(b) What are the irreducible representations and partners of the following

basis functions in Td symmetry? (i) ωx2+ω2y2+z2, where ω = exp(2πi/3);
(ii) xyz; and (iii) x2yz.

(c) Using the results of (b) and the basis functions in the character table for
the point group Td, give one set of basis functions for each irreducible
representation of Td.

(d) Using the basis function ωx2 + ω2y2 + z2 and its partner (or partners),
find the matrix for an S4 rotation about the x-axis in this irreducible
representation.

4.3. Consider the cubic group Oh. Find the basis functions for all the sym-
metric combinations of cubic forms (x, y, z) and give their irreducible repre-
sentations for the point group Oh.

4.4. Consider the hypothetical molecule CH4 (Fig. 4.4) where the four H
atoms are at the corners of a square (±a, 0, 0) and (0,±a, 0) while the C
atom is at (0, 0, z), where z < a. What are the symmetry elements?

(a) Identify the appropriate character table.
(b) Using the basis functions in the character table, write down a set of

(2 × 2) matrices which provide a representation for the two-dimensional
irreducible representation of this group.

(c) Find the four linear combinations of the four H orbitals (assume identical
s-functions at each H site) that transform as the irreducible representa-
tions of the group. What are their symmetry types?

(d) What are the basis functions that generate the irreducible representations.
(e) Check that xz forms a proper basis function for the two-dimensional rep-

resentation of this point group and find its partner.
(f) What are the irreducible representations and partners of the following

basis functions in the point group (assuming that the four hydrogens lie
in the xy plane): (i) xyz, (ii) x2y, (iii) x2z, (iv) x+ iy.

(g) What additional symmetry operations result in the limit that all H atoms
are coplanar with atom C? What is now the appropriate group and char-
acter table? (The stereograms in Figure 3.2 may be useful.)

Fig. 4.4. Molecule CH4



74 4 Basis Functions

Fig. 4.5. Molecule AB6

4.5. Consider a molecule AB6 (Fig. 4.5) where the A atom lies in the central
plane and three B atoms indicated by “©” lie in a plane at a distance c above
the central plane and the B atoms indicated by “×” lie in a plane below the
central plane at a distance −c′. When projected onto the central plane, all B
atoms occupy the corners of a hexagon.

(a) Find the symmetry elements and classes.
(b) Construct the character table. To which point group (Chap. 3) does this

molecule correspond? How many irreducible representations are there?
How many are one-dimensional and how many are of higher dimensional-
ity?

(c) Using the basis functions in the character table for this point group, find
a set of matrices for each irreducible representation of the group.

(d) Find the linear combinations of the six s-orbitals of the B atoms that
transform as the irreducible representations of the group.

(e) What additional symmetry operations result in the limit that all B atoms
are coplanar with A? What is now the appropriate group and character
table for this more symmetric molecule?

(f) Indicate which stereograms in Fig. 3.2 are appropriate for the case where
the B atoms are not coplanar with A and the case where they are copla-
nar.

4.6. Consider the linear combinations of atomic orbitals on an equilateral
triangle (Sect. 4.6).

(a) Generate the basis functions |Γ21〉 and |Γ22〉 for the linear combination
of atomic orbitals for the Γ2 irreducible representation obtained by using
the projection operator acting on one of the atomic orbitals P̂ (Γ2)

11 a and
P̂

(Γ2)
22 a.

(b) Show that the resulting basis functions |Γ21〉 and |Γ22〉 lead to matrix
representations that are not unitary.

(c) Show that the |Γ21〉 and |Γ22〉 thus obtained can be expressed in terms of
the basis functions |Γ2α〉 and |Γ2β〉 given in (4.47).

4.7. The aim of this problem is to give the reader experience in going from
a group with higher symmetry to a group with lower symmetry and to give
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Fig. 4.6. Hypothetical XH12 molecule where the atom X is at the center of a regular
dodecahedron

Fig. 4.7. Hypothetical XH12 molecule where the atom X is at the center of a regular
truncated icosahedron

some experience in working with groups with icosahedral and fivefold sym-
metry. Consider the hypothetical XH12 molecule (see Fig. 4.6) which has Ih
icosahedral symmetry, and the X atom is at the center. The lines connecting
the X and H atoms are fivefold axes.

(a) Suppose that we stretch the XH12 molecule along one of the fivefold axes.
What are the resulting symmetry elements of the stretched molecule?

(b) What is the appropriate point group for the stretched molecule?
(c) Consider the Gu and Hg irreducible representations of group Ih as a re-

ducible representation of the lower symmetry group. Find the symmetries
of the lower symmetry group that were contained in a fourfold energy
level that transforms as Gu and in a fivefold level that transforms as Hg

in the Ih group. Assuming the basis functions given in the character table
for the Ih point group, give the corresponding basis functions for each of
the levels in the multiplets for the stretched molecule.

(d) Suppose that the symmetry of the XH12 molecule is described in terms
of hydrogen atoms placed at the center of each pentagon of a regular
dodecahedron (see Fig. 4.7). A regular dodecahedron has 12 regular pen-
tagonal faces, 20 vertices and 30 edges. What are the symmetry classes for
the regular dodecahedron. Suppose that the XH12 molecule is stretched
along one of its fivefold axes as in (a). What are the symmetry elements
of the stretched XH12 molecule when viewed from the point of view of
a distortion from dodecahedral symmetry?
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5

Splitting of Atomic Orbitals

in a Crystal Potential

This is the first of several chapters aimed at presenting some general ap-
plications of group theory while further developing theoretical concepts and
amplifying on those given in the first four chapters. The first application of
group theory is made to the splitting of atomic energy levels when the atom
is placed in a crystal potential, because of the relative simplicity of this appli-
cation and because it provides a good example of going from higher to lower
symmetry, a procedure used very frequently in applications of group theory to
solid state physics. In this chapter we also consider irreducible representations
of the full rotation group.

5.1 Introduction

The study of crystal field theory is relevant for physics and engineering appli-
cations in situations where it is desirable to exploit the sharp, discrete energy
levels that are characteristic of atomic systems together with the larger atomic
densities that are typical of solids. As an example, consider the variety of pow-
erful lasers whose operation is based on the population inversion of impurity
levels of rare earth ions in a transparent host crystal. The energy levels of
an electron moving in the field of an ion embedded in such a solid are ap-
proximately the same as for an electron moving in the field of a free ion.
Thus the interaction between the ion and the host crystal can be treated in
perturbation theory. Group theory plays a major role in finding the degen-
eracy and the symmetry types of the electronic levels in the crystalline field.
The topic of crystal field splittings has found many important applications
such as in the use of erbium-doped silica-based optical glass fiber amplifiers
in optical communications systems. Such applications provide motivation for
understanding the splitting of the energy levels of an impurity ion in a crystal
field.

In this chapter the point group symmetry of an impurity ion in a crystal is
presented. The crystal potential Vxtal determines the point group symmetry.
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Following the discussion on the form of the crystal potential, some properties
of the full rotation group are given, most importantly the characters χ(�)(α)
for rotations through an angle α and χ(�)(i) for inversions. Irreducible repre-
sentations of the full

rotation group are generally found to be reducible representations of a
point group of lower symmetry which is a subgroup of the higher symmetry
group. If the representation is reducible, then crystal field splittings of the
energy levels occur. If, however, the representation is irreducible, then no
crystal field splittings occur. Examples of each type of representation are
presented. We focus explicitly on giving examples of going from higher to
lower symmetry. In so doing, we consider the

(a) Splitting of the energy levels,
(b) Symmetry types of the split levels,
(c) Choice of basis functions to bring the Hamiltonian H into block diag-

onal form. Spherical symmetry results in spherical harmonics Y�m(θ, φ)
for basis functions. Proper linear combinations of the spherical harmon-
ics Y�m(θ, φ) are taken to make appropriate basis functions for the point
group of lower symmetry.

In crystal field theory we write down the Hamiltonian for the impurity ion in
a crystalline solid as

H =
∑

i

⎧⎨
⎩
p2

i

2m
− Ze2

riμ
+
∑

j

e2

rij
+
∑

j

ξij�i · sj + γiμji · Iμ

⎫⎬
⎭+ Vxtal , (5.1)

where the first term is the kinetic energy of the electrons associated with the
ion, the second term represents the Coulomb attraction of the electrons of the
ion to their nucleus, the third term represents the mutual Coulomb repulsion
of the electrons associated with the impurity ion, and the sum on j denotes
a sum on pairs of electrons. These three quantities are denoted by H0 the
electronic Hamiltonian of the free atom without spin–orbit interaction. H0

is the dominant term in the total Hamiltonian H. The remaining terms are
treated in perturbation theory in some order. Here ξij�i · sj is the spin–orbit
interaction of electrons on the impurity ion and γiμji · Iμ is the hyperfine
interaction between the electrons on the ion and the nuclear spin. The per-
turbing crystal potential Vxtal of the host ions acts on the impurity ion and
lowers its spherical symmetry.

Because of the various perturbation terms appearing in (5.1), it is impor-
tant to distinguish the two limiting cases of weak and strong crystal fields.

(a) Weak field case. In this case, the perturbing crystal field Vxtal is considered
to be small compared with the spin–orbit interaction. In this limit, we find
the energy levels of the free impurity ion with spin–orbit interaction and
at this point we consider the crystal field as an additional perturbation.
These approximations are appropriate to rare earth ions in ionic host



5.2 Characters for the Full Rotation Group 81

crystals. We will deal with the group theoretical aspects of this case in
Chap. 14, after we have learned how to deal with the spin on the electron
in the context of group theory.

(b) Strong field case. In this case, the perturbing crystal field Vxtal is strong
compared with the spin–orbit interaction. We now consider Vxtal as the
major perturbation on the energy levels of H0. Examples of the strong
crystal field case are transition metal ions (Fe, Ni, Co, Cr, etc.) in a host
crystal. It is this limit that we will consider first, and is the focus of this
chapter.

We note that the crystal potential Vxtal lowers the full rotational symmetry
of the free atom to cause level splittings relative to those of the free atom.

We now consider in Sect. 5.2 some of the fundamental properties of the
full rotation group. These results are liberally used in later chapters.

5.2 Characters for the Full Rotation Group

The free atom has full rotational symmetry and the number of symmetry
operations which commute with the Hamiltonian is infinite. That is, all Cφ

rotations about any axis are symmetry operations of the full rotation group.
We are not going to discuss infinite or continuous groups in any detail, but
we will adopt results that we use frequently in quantum mechanics without
rigorous proofs.

Let us then recall the form of the spherical harmonics Y�m(θ, φ) which are
the basis functions for the full rotation group:

Y�m(θ, φ) =
[
2�+ 1

4π
(�− |m|)!
(�+ |m|)!

]1/2

Pm
� (cos θ)eimφ , (5.2)

in which
Y�,−m(θ, φ) = (−1)mY�,m(θ, φ)∗ , (5.3)

and the symbol ∗ denotes the complex conjugate. The associated Legendre
polynomial in (5.2) is written as

Pm
� (x) = (1 − x2)1/2|m| d|m|

dx|m|P�(x) , (5.4)

in which x = cos θ, while

P−m
� (x) = [(−1)m(�−m)!/(�+m)!]Pm

� (x) ,

and the Legendre polynomial P�(x) is generated by

1/
√

1 − 2sx+ s2 =
∞∑

�=0

P�(x)s� . (5.5)
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It is shown above that the spherical harmonics (angular momentum eigen-
functions) can be written in the form

Y�,m(θ, φ) = CPm
� (θ) eimφ , (5.6)

where C is a normalization constant and Pm
� (θ) is an associated Legendre

polynomial given explicitly in (5.4). The coordinate system used to define
the polar and azimuthal angles is shown in Fig. 5.1. The Y�,m(θ, φ) spherical
harmonics generate odd-dimensional representations of the rotation group and
these representations are irreducible representations. For � = 0, we have a one-
dimensional representation; � = 1 (m = 1, 0,−1) gives a three-dimensional
irreducible representation; � = 2 (m = 2, 1, 0,−1,−2) gives a five-dimensional
representation, etc. So for each value of the angular momentum, the spherical
harmonics provide us with a representation of the proper 2�+1 dimensionality.

These irreducible representations are found from the so-called addition
theorem for spherical harmonics which tells us that if we change the polar axis
(i.e., the axis of quantization), then the “old” spherical harmonics Y�,m(θ, φ)
and the “new” Y�′,m′(θ′, φ′) are related by a linear transformation of basis
functions when �′ = �:

P̂RY�,m(θ′, φ′) =
∑
m′

D(�)(R)m′mY�,m′(θ, φ) , (5.7)

where P̂R denotes a rotation operator that changes the polar axis, and the ma-
trix D(�)(R)m′m provides an �-dimensional matrix representation of element
R in the full rotation group. Let us assume that the reader has previously

Fig. 5.1. Polar coordinate system defining the polar angle θ and the azimuthal
angle φ
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seen this expansion for spherical harmonics which is a major point in the
development of the irreducible representations of the rotation group. From
the similarity between (5.7) and (4.1), the reader can see the connection be-
tween the group theory mathematical background given in Chap. 4 and the
application discussed here.

In any system with full rotational symmetry, the choice of the z-axis is
arbitrary. We thus choose the z-axis as the axis about which the operator P̂α

makes the rotation α. Because of the form of the spherical harmonics Y�,m(θ, φ)
[see (5.6)] and the choice of the z-axis, the action of P̂α on the Y�m(θ, φ) basis
functions only affects the φ dependence of the spherical harmonic (not the θ
dependence). The effect of this rotation on the function Y�,m(θ, φ) is equivalent
to a rotation of the axes in the opposite sense by the angle −α

P̂αY�,m(θ, φ) = Y�,m(θ, φ− α) = e−imαY�,m(θ, φ) , (5.8)

in which the second equality results from the explicit form of Y�,m(θ, φ). But
(5.8) gives the linear transformation of Y�,m(θ, φ) resulting from the action by
the operator P̂α. Thus by comparing (5.7) and (5.8), we see that the matrix
D(�)(α)m′m is diagonal in m so that we can write D(�)(α)m′m = e−imαδm′m,
where −� ≤ m ≤ �, yielding

D(�)(α) =

⎛
⎜⎜⎜⎝

e−i�α O
e−i(�−1)α

. . .
O ei�α

⎞
⎟⎟⎟⎠ , (5.9)

where O represents all the zero entries in the off-diagonal positions. The char-
acter of the rotations Cα is thus given by the geometric series

χ(�)(α) = trace D(�)(α) = e−i�α + · · · + ei�α

= e−i�α
[
1 + eiα + · · · + e2i�α

]

= e−i�α
2�∑

k=0

(eikα)

= e−i�α

[
ei(2�+1)α − 1

eiα − 1

]

=
ei(�+1/2)α − e−i(�+1/2)α

eiα/2 − e−iα/2
=

sin[(�+ 1
2 )α]

sin[(1
2 )α]

. (5.10)

Thus we show that the character for rotations α about the z-axis is

χ(�)(α) =
sin[(�+ 1

2 )α]
sin[α/2]

. (5.11)
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To obtain the character for the inversion operator i, we have

iY�m(θ, φ) = Y�m(π − θ, π + φ) = (−1)�Y�m(θ, φ) (5.12)

and therefore

χ(�)(i) =
m=�∑

m=−�

(−1)� = (−1)�(2�+ 1) , (5.13)

where Y�m(θ, φ) are the spherical harmonics, while � and m denote the total
and z-component angular momentum quantum numbers, respectively.

The dimensionalities of the representations for � = 0, 1, 2, . . . are 1, 3, 5, . . ..
In dealing with the symmetry operations of the full rotation group, the in-
version operation frequently occurs. This operation also occurs in the lower
symmetry point groups either as a separate operation i or in conjunction with
other compound operations (e.g., S6 = i⊗C−1

3 ). A compound operation (like
an improper rotation or a mirror plane) can be represented as a product of a
proper rotation followed by inversion. The character for the inversion opera-
tion is +(2�+ 1) for even angular momentum states (� = even in Y�,m(θ, φ))
and −(2� + 1) for odd angular momentum states (see (5.13)). This idea of
compound operations will become clearer after we have discussed in Chap. 6
the direct product groups and direct product representations.

We now give a general result for an improper rotation defined by

Sn = Cn ⊗ σh (5.14)

and S3 = C3 ⊗ σh is an example of (5.14) (for an odd integer n). Also Sn can
be written as a product of Cn/2⊗ i, as for example, S6 = C3⊗ i, for n an even
integer, where ⊗ denotes the direct product of the two symmetry operations
appearing at the left and right of the symbol ⊗, which is discussed in Chap. 6.
If we now apply (5.11) and (5.12), we obtain

χ(�)(Sn) = χ(�)(Cn/2 ⊗ i) = (−1)� sin[(�+ 1
2 )α]

sin[α/2]
. (5.15)

In the case of mirror planes, such as σh, σd, or σv we can make use of relations
such as

σh = C2 ⊗ i (5.16)

to obtain the character for mirror planes in the full rotation group.
Now we are going to place our free ion into a crystal field which does not

have full rotational symmetry operations, but rather has the symmetry oper-
ations of a crystal which may include rotations about finite angles, inversions
and a finite number of reflections. The full rotation group contains all these
symmetry operations. Therefore, the representation D(�)(α) given above is a
representation of the crystal point group if α is a symmetry operation in that
point group. But D(�)(α) is, in general, a reducible representation of the lower
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symmetry group. Therefore the (2�+ 1)-fold degeneracy of each level will in
general be partially lifted.

We can find out how the degeneracy of each level is lifted by asking what
are the irreducible representations contained in D(�)(α) in terms of the group
of lower symmetry for the crystal. The actual calculation of the crystal field
splittings depends on setting up a suitable Hamiltonian and solving it, usually
in some approximation scheme. But the energy level degeneracy does not
depend on the detailed Hamiltonian, but only on its symmetry. Thus, the
decomposition of the level degeneracies in a crystal field is a consequence of
the symmetry of the crystal field.

5.3 Cubic Crystal Field Environment
for a Paramagnetic Transition Metal Ion

As an example of a crystal field environment, suppose that we place our
paramagnetic ion (e.g., an iron impurity) in a cubic host crystal. Assume

further that this impurity goes into a substitutional lattice site, and is sur-
rounded by a regular octahedron of negative ions (see Fig. 5.2). A regular
octahedron has Oh symmetry, but since we have not yet discussed the inver-
sion operation and direct product groups (see Chap. 6), we will simplify the
symmetry operations and work with the point group O. The character table
for O is shown in Table 5.1 (see also Table A.30). From all possible rotations
on a sphere, only 24 symmetry operations of the full rotation group remain
in the group O.

Reviewing the notation in Table 5.1, the Γ notations for the irreducible
representations are the usual ones used in solid-state physics and are due to
Bouckaert, Smoluchowski and Wigner [1].

The second column in Table 5.1 follows the notation usually found
in molecular physics and chemistry applications, which are two research
fields that also make lots of use of symmetry and group theory. The key

Fig. 5.2. A regular octahedron inscribed in a cube, illustrating the symmetry op-
erations of group O
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Table 5.1. Character table for O and decomposition of the angular momenta rep-
resentations into the irreducible representations of group O

O E 8C3 3C2 = 3C2
4 6C′

2 6C4

Γ1 A1 1 1 1 1 1

Γ2 A2 1 1 1 −1 −1

Γ12 E 2 −1 2 0 0

Γ15′ T1 3 0 −1 −1 1

Γ25′ T2 3 0 −1 1 −1

Γ�=0 A1 1 1 1 1 1

Γ�=1 T1 3 0 −1 1 −1

Γ�=2 E + T2 5 −1 1 1 −1

Γ�=3 A2 + T1 + T2 7 1 −1 −1 −1

Γ�=4 A1 +E + T1 + T2 9 0 1 1 1

Γ�=5 E + 2T1 + T2 11 −1 −1 −1 1

to the notation is that A denotes one-dimensional representations, E de-
notes two-dimensional representations, and T denotes three-dimensional
representations. Papers on lattice dynamics of solids often use the A,E, T
symmetry notation to make contact with the molecular analog. The sub-
scripts in Table 5.1 refer to the conventional indexing of the representations
of the group O (see Table A.30). The pertinent symmetry operations can
be found from Fig. 5.2, and the classes associated with these symmetry
operations label the various columns where the characters in Table 5.1
appear.

The various types of rotational symmetry operations are listed as

• the 8C3 rotations are about the axes through the triangular face centroids
of the octahedron,

• the 6C4 rotations are about the corners of the octahedron,
• the 3C2 rotations are also about the corners of the octahedron, with

C2 = C2
4 ,

• the 6C′
2 rotations are twofold rotations about a (110) axis passing through

the midpoint of the edges (along the 110 directions of the cube).

To be specific, suppose that we have a magnetic impurity atom with an-
gular momentum � = 2. We first find the characters for all the symmetry
operations which occur in the O group for an irreducible representation of
the full rotation group. The representation of the full rotation group will
be a representation of group O, but in general this representation will be
reducible.

Since the character for a general rotation α in the full rotation group is
found using (5.11), the identity class (or α = 0) yields the characters

χ(�)(0) =
�+ 1

2

1/2
= 2�+ 1 . (5.17)
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Table 5.2. Classes and characters for the group O

class α χ(2)(α)

8C3 2π/3
sin(5/2) · (2π/3)
sin((2π)/(2 · 3)) = (−

√
3/2)/(

√
3/2) = −1

6C4 2π/4
sin(5/2) · (π/2)

sin(π/4)
= (−1/

√
2)/(1/

√
2) = −1

3C2 and 6C2 2π/2
sin(5/2)π

sin(π/2)
= 1

Table 5.3. Characters found in Table 5.2 for the Γ
(2)
rot of the full rotation group

(� = 2)

E 8C3 3C2 6C′
2 6C4

Γ
(2)
rot 5 −1 1 1 −1

For our case � = 2 (χ(2)(E) = 5), and by applying (5.11) to the symmetry
operations in each class we obtain the results summarized in Table 5.2. To
compare with the character table for group O (Table 5.1), we list in Table 5.3
the characters found in Table 5.2 for the Γ (2)

rot of the full rotation group (� =
2) according to the classes listed in the character table for gr oup O (see
Tables 5.1 and A.30).

We note that Γ (2)
rot is a reducible representation of groupO because groupO

has no irreducible representations with dimensions �n > 3. To find the irre-
ducible representations contained in Γ

(2)
rot we use the decomposition formula

for reducible representations (3.20):

aj =
1
h

∑
k

Nkχ
(Γj)(Ck)∗χreducible(Ck) , (5.18)

where we have used (3.16)

χreducible(Ck) =
∑
Γj

ajχ
(Γj)(Ck) , (5.19)

in which χ(Γj) is an irreducible representation and the characters for the re-
ducible representation Γ (2)

rot are written as χreducible(Ck) ≡ χΓ
(2)
rot (Ck). We now

ask how many times is A1 contained in Γ (2)
rot ? Using (5.18) we obtain

aA1 =
1
24

[5 − 8 + 3 + 6 − 6] = 0 , (5.20)
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Fig. 5.3. The splitting of the d-Levels (fivefold) in an octahedral crystal field

which shows that the irreducible representation A1 is not contained in Γ
(2)
rot .

We then apply (5.18) to the other irreducible representations of group O:

A2 : aA2 =
1
24

[5 − 8 + 3 − 6 + 6] = 0

E : aE =
1
24

[10 + 8 + 6 + 0 − 0] = 1

T1 : aT1 =
1
24

[15 + 0 − 3 − 6 − 6] = 0

T2 : aT2 =
1
24

[15 + 0 − 3 + 6 + 6] = 1 ,

so that finally we write

Γ
(2)
rot = E + T2 ,

which means that the reducible representation Γ (2)
rot breaks into the irreducible

representations E and T2 in cubic symmetry. In other words, an atomic d-level
in a cubic O crystal field splits into an E and a T2 level. Similarly, an atomic
d-level in a cubic Oh crystal field splits into an Eg and a T2g level, where
the g denotes evenness under inversion. Group theory does not provide any
information about the ordering of the levels (see Fig. 5.3). For general utility,
we have included in Table 5.1 the characters for the angular momentum states
� = 0, 1, 2, 3, 4, 5 for the full rotation group expressed as reducible represen-
tations of the group O. The splittings of these angular momentum states in
cubic group O symmetry are also included in Table 5.1.

We can now carry out the passage from higher to lower symmetry by going
one step further. Suppose that the presence of the impurity strains the crystal.
Let us further imagine (for the sake of argument) that the new local symmetry
of the impurity site is D4 (see Table 5.4 and Table A.18), which is a proper
subgroup of the full rotation group. Then the levels E and T2 given above may
be split further in D4 (tetragonal) symmetry (for example by stretching the
molecule along the fourfold axis). We now apply the same technique to inves-
tigate this tetragonal field splitting. We start again by writing the character
table for the group D4 which is of order 8. We then consider the represen-
tations E and T2 of the group O as reducible representations of group D4
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Fig. 5.4. d-Level splitting in octahedral and D4 crystal fields

Table 5.4. Character table for D4 and the decomposition of the irreducible repre-
sentations of group O into representations for group D4

character table for D4 E C2 = C2
4 2C4 2C′

2 2C′′
2

Γ1 A1 1 1 1 1 1

Γ1′ A2 1 1 1 −1 −1

Γ2 B1 1 1 −1 1 −1

Γ2′ B2 1 1 −1 −1 1

Γ3 E 2 −2 0 0 0

reducible representations from O group

E 2 2 0 2 0 ≡ A1 +B1

T2 3 −1 −1 −1 1 ≡ E +B2

Table 5.5. Decomposition of the � = 2 angular momentum level into the irreducible
representations of group D4

E C2 2C4 2C′
2 2C′′

2

Γ
(2)
rot 5 1 −1 1 1 A1 +B1 +B2 + E

and write down the characters for the E, C4, C2
4 , C′

2 and C′′
2 operations from

the character table for O given above, noting that the C′′
2 in the group D4

refers to three of the (110) axes 6C′
2 of the cubic group O (Table 5.4). Using

the decomposition theorem, (3.20), we find that E splits into the irreducible
representations A1 + B1 in the group D4 while T2 splits into the irreducible
representations E +B2 in the group D4, as summarized in Fig. 5.4.

We note that the C2 operations in D4 is a π rotation about the z-axis and
the 2C′

2 are π rotations about the x- and y-axes. The C2 and the 2C′
2 come

from the 3C2 = 3C2
4 in group O. The 2C′′

2 are π rotations about (110) axes
and come from the 6C′

2 in group O. To check the decomposition of the � = 2
level in D4 symmetry, we add up the characters for A1 + B1 + B2 + E for
group D4 (see Table 5.5), which are the characters for the spherical harmonics
considered as a reducible representation of groupD4, so that this result checks.
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Fig. 5.5. d-Level splitting in various crystal fields

Suppose now that instead of applying a stress along a (001) direction, we
apply a stress along a (110) direction (see Problem 5.4). You will see that
the crystal field pattern is somewhat altered, so that the crystal field pattern
provides symmetry information about the crystal field. Figure 5.5 shows the
splitting of the � = 2 level in going from full rotational symmetry to various
lower symmetries, including D∞h, Td, Oh, and D2h, showing in agreement
with the above discussion, the lifting of all the degeneracy of the � = 2 level
in D2h symmetry.

5.4 Comments on Basis Functions

Although group theory tells us how the impurity ion energy levels are split
by the crystal field, it does not tell us the ordering of these levels. Often a
simple physical argument can be given to decide which levels ought to lie
lower. Consider the case of a d-electron in a cubic field, where the host ions
are at x = ±a, y = ±a, z = ±a. Assume that the impurity ion enters the
lattice substitutionally, so that it is replacing one of the cations. Then the
nearest neighbor host ions are all anions. The charge distributions for the d-
states are shown in Fig. 5.6. Referring to the basis functions for O, which can
be obtained from Table A.30, we see that for the irreducible representation E
we have basis functions (x2 − y2, 3z2 − r2) and for T2 we have basis functions
(xy, yz, zx). For the basis functions which transform as the T2 representation,
the charge distributions do not point to the host ions and hence the crystal
field interaction is relatively weak.

However, for the d-functions which transform as E, the interaction will be
stronger since the charge distributions now do point to the host ion sites. If,
however, the interaction is repulsive, then the E level will lie higher than the
T2 level. A more quantitative way to determine the ordering of the levels is to
solve the eigenvalue problem explicitly. In carrying out this solution it is con-
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Fig. 5.6. The angular parts of d-wave functions in cubic crystals are shown as
labeled by the basis functions for the partners of their irreducible representations.
(a) xy/r2 ⇒ (T2), (b) yz/r2 ⇒ (T2), (c) (x2−y2)/r2 ⇒ (E), (d) (3z2−r2)/r2 ⇒ (E)

venient to use basis functions that transform as the irreducible representations
of the crystal field group.

We now look at the basis functions which provide irreducible represen-
tations for these cases of lower symmetry. In going from the full rotation
group to the cubic group O, we obtain the irreducible representations E
and T2 shown in Fig. 5.3, which can be expressed in terms of the basis func-
tions for these irreducible representations. The basis functions for the twofold
level are (x2 − y2) and (3z2 − r2), while the basis functions for the three-
fold level are (xy), (yz), and (zx). We note that these basis functions bring
the crystal field potential into block form, but need not completely diago-
nalize the Hamiltonian. There are various forms of the crystal field poten-
tial that have Oh symmetry (e.g., octahedral sites, cubic sites, etc.), and
in each case the appropriate set of basis functions that transform as irre-
ducible representations of the group will bring the secular equation into block
form.

Upon lowering the symmetry further to D4 symmetry, the T2 and E levels
split further according to T2 → E +B2 and E → A1 +B1 (see Fig. 5.4). The
appropriate basis functions for these levels can be identified with the help of
the character table for group D4 in Table A.18:

E

{
yz
zx

, B2{xy , B1{x2 − y2 , A1{z2 . (5.21)

In Sects. 5.3 and 5.4 we consider the spherical harmonics for � = 2 as reducible
representations of the point groups Oh, O, and D4. In this connection, Ta-
ble 5.6 gives the decomposition of the various spherical harmonics for angular
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Table 5.6. Splitting of angular momentum in cubic symmetry Oh

� A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

0 1
1 1
2 1 1
3 1 1 1
4 1 1 1 1
5 1 2 1
6 1 1 1 1 2
7 1 1 2 2
8 1 2 2 2
9 1 1 1 3 2
10 1 1 2 2 3
11 1 2 3 3
12 2 1 2 3 3
13 1 1 2 4 3
14 1 1 3 3 4
15 1 2 2 4 4

momentum � ≤ 15 into irreducible representations of the full cubic group Oh,
which will be further discussed in Chap. 6 when direct product groups are
discussed.

5.5 Comments on the Form of Crystal Fields

Any function (e.g., any arbitrary Vxtal) can be written in terms of a com-
plete set of basis functions, such as the spherical harmonics. In the case of
the crystal field problem, group theory can greatly simplify the search for
the spherical harmonics Y�,m(θ, φ) pertaining to Vxtal. Consider, for example,
Vcubic and Table 5.6. The spherical harmonics in Vxtal must exhibit all the
symmetry operations of the physical system. We note that the lowest angular
momentum state to contain the totally symmetric A1g irreducible represen-
tation of Oh is � = 4, and must, therefore be the lowest angular momentum
state in the crystal field for a cubic crystal Vcubic when written in terms of
spherical harmonics.

We can check the predictions from group theory by obtaining the crystal
field analytically. To construct the crystal field, we consider the electrostatic
interaction of the neighboring host ions at the impurity site. To illustrate how
this is done, consider the highly symmetric case of an impurity ion in a cubic
environment provided by ions at x = ±a, y = ±a, z = ±a. The contribution
from an ion at x = −a at the field point r denoted by (x, y, z) is

Vx=−a =
e

|r| =
e

a
√

(1 + x/a)2 + (y/a)2 + (z/a)2
=

e

a
√

1 + ε
, (5.22)
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where e is the charge on the electron and ε is a small dimensionless quantity
if considering (x, y, z) in the neighborhood of the origin 0. Then using the
binomial expansion:

(1 + ε)−1/2 = 1 − 1
2
ε+

3
8
ε2 − 5

16
ε3 +

35
128

ε4 + · · · , (5.23)

we obtain the contribution to the potential for charges e at x = a and x = −a:

Vx=−a + Vx=a =
2e
a

[
1 − 1

2
(r2/a2) +

3
2
(x2/a2) +

3
8
(r4/a4)

− 15
4

(x2/a2)(r2/a2) +
35
8

(x4/a4) + · · ·
]
. (5.24)

For a cubic field with charges e at x = ±a, y = ±a, z = ±a we get for
Vtotal = Vxtal:

Vtotal =
2e
a

[
3 +

35
8a4

(x4 + y4 + z4) − 21
8

(r4/a4) + · · ·
]
, (5.25)

so that the perturbation that will lift the degeneracy of the free atom is of
the form

Vcubic =
35e
4a5

[
(x4 + y4 + z4) − 3

5
r4
]
. (5.26)

From these expressions it also follows that for a orthorhombic field where the
charges are at x = ±a, y = ±b, z = ±c (and a �= b �= c). The crystal potential
becomes

Vtotal =
2e
a

+
2e
b

+
2e
c

+ ex2

[
2
a3

− 1
b3

− 1
c3

]

+ey2

[
2
b3

− 1
a3

− 1
c3

]
+ ez2

[
2
c3

− 1
a3

− 1
b3

]
, (5.27)

so that the orthorhombic perturbation Vortho that will lift the degeneracy of
the free atom is of the form

Vortho = Ax2 +By2 − (A+B)z2 , (5.28)

where the values for the coefficients A and B can be found from (5.27).
We note that Vcubic contains no terms of order x2, whereas Vortho does. Let

us now express the crystal field potential in terms of spherical harmonics since
the unperturbed states for the free impurity ion are expressed in that way.
Here we make use of the fact that the crystal field potential is generated by a
collection of point sources and in the intervening space we are “outside” the
field sources so that the potential must satisfy the Laplace equation ∇2V = 0.
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Solutions to Laplace’s equation [5] are of the form r�Y�m(θ, φ). From the
definitions for the spherical harmonics (5.2) it is clear that for a cubic field
(5.26), the only spherical harmonics that will enter Vcubic are Y4,0, Y4,4 and
Y4,−4 since (z/4)4 involves only Y4,0 while [(x/4)4 + (y/4)4] involves only Y4,4

and Y4,−4.
The crystal field potential Vxtal can therefore be written in terms of spher-

ical harmonics, the basis functions normally used to describe the potential of
the free ion which has full spherical symmetry. One important role of group
theory in the solution of quantum mechanical problems is to determine the
degeneracy of the eigenvalues and which choice of basis functions yields the
eigenvalues most directly. This information is available without the explicit
diagonalization of the Hamiltonian. In the case of the crystal field problem,
we determine Vxtal for a specific crystal symmetry using the appropriate basis
functions for the relevant point group.

Selected Problems

5.1. Consider the hydrogen atom, described by the Schrödinger equation

HΨn�m =
{
− �

2

2m
∇2

r −
L2

r2
+ V (r)

}
Ψn�m = En�Ψn�m .

(a) Does H commute with any arbitrary rotation about the origin? Explain
your answer.

(b) If the electron is in a d-orbital (� = 2) described by the eigenfunction

Ψn2m(r, θ, φ) = Rn(r)Y2,m(θ, φ) ,

where Y2,m(θ, φ) is a spherical harmonic for � = 2, what is the effect on
Ψn2m(r, θ, φ) of rotating the coordinate system by a polar angle α. Is the
new wave function still an eigenfunction of the Hamiltonian with the same
eigenvalue? Explain.

5.2. Suppose that an iron (Fe) impurity is introduced into a two-dimensional
honeycomb lattice of an insulating host material. A honeycomb lattice is a
hexagonal lattice with atoms at the hexagon corners but not at the center.
Suppose that the Fe impurity is placed first in a substitutional location and
second in an interstitial location at the center of the hexagon.
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(a) What is the difference in crystal potential (include only nearest neighbors)
between the substitutional and interstitial locations?

(b) For the interstitial case, express your result in part (a) in terms of spherical
harmonics for the lowest order terms with angular dependencies.

(c) What is the proper point group symmetry and character table in each
case?

(d) Give the crystal field splitting of the fivefold d-levels of the Fe impurity
in the crystal fields for the two locations of the Fe ion in part (a).

(e) Identify the basis functions associated with each of the levels in part (d).
(f) Since the bonding orbitals lie lower in energy than the antibonding or-

bitals, indicate how the ordering of the levels might indicate whether the
Fe impurity is located substitutionally or interstitially in the honeycomb
lattice.

5.3. Show (by finding the characters of the rotation group) that the d-level
for a transition metal impurity in a metal cluster with Ih point symmetry is
not split by the icosahedral crystal field.

5.4. Suppose that a stress is applied along a (110) axis of a cubic crystal,
thereby lowering its symmetry from O to D2.

(a) What are the symmetry operations of D2? Identify each symmetry axis
of D2 with a particular (xyz) direction of the high symmetry group O.

(b) Considering the irreducible representation Γ (2)
rot for the full rotation group

as a reducible representation of D2, find the irreducible representations of
D2 contained in Γ (2)

rot .
(c) How do the T2 and E levels corresponding to Γ

(2)
rot in the cubic group

split by the application of a force along the (110) direction, giving the
irreducible representations of the group D2 contained in the T2 and E
levels.

(d) What is the physical interpretation of the occurrence of a particular irre-
ducible representation Γj of group D2 more than once when the fivefold
degeneracy of Γ (2)

rot is lifted by applying a force in the (110) direction?

5.5. What is the form of the crystal field of a hexagonal semiconductor like
ZnO? Which are the lowest order Y�,m(θ, φ) spherical harmonics that describe
the crystal field potential?
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Application to Selection Rules

and Direct Products

Our second general application of group theory to physical problems will be to
selection rules. In considering selection rules we always involve some interac-
tion Hamiltonian matrix H′ that couples two states ψα and ψβ . Group theory
is often invoked to decide whether or not these states are indeed coupled
and this is done by testing whether or not the matrix element (ψα,H′ψβ)
vanishes by symmetry. The simplest case to consider is the one where the
perturbation H′ does not destroy the symmetry operations and is invariant
under all the symmetry operations of the group of the Schrödinger equation.
Since these matrix elements transform as scalars (numbers), then (ψα,H′ψβ)
must exhibit the full group symmetry, and must therefore transform as the
fully symmetric representation Γ1. Thus, if (ψα,H′ψβ) does not transform as
a number, it vanishes. To exploit these symmetry properties, we thus choose
the wave functions ψ∗

α and ψβ to be eigenfunctions for the unperturbed Hamil-
tonian, which are basis functions for irreducible representations of the group
of Schrödinger’s equation. Here H′ψβ transforms according to an irreducible
representation of the group of Schrödinger’s equation. This product involves
the direct product of two representations and the theory behind the direct
product of two representations will be given in this chapter. If H′ψβ is or-
thogonal to ψα, then the matrix element (ψα,H′ψβ) vanishes by symmetry;
otherwise the matrix element need not vanish, and a transition between state
ψα and ψβ may occur.

6.1 The Electromagnetic Interaction as a Perturbation

In considering various selection rules that arise in physical problems, we often
have to consider matrix elements of a perturbation Hamiltonian which lowers
the symmetry of the unperturbed problem. For example, the Hamiltonian in
the presence of electromagnetic fields can be written as

H =
1

2m

(
p − e

c
A
)2

+ V . (6.1)
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Then the proper form of the Hamiltonian for an electron in a solid in the
presence of an electromagnetic field is

H =
(p − e/cA)2

2m
+ V (r) =

p2

2m
+ V (r) − e

mc
p · A +

e2A2

2mc2
, (6.2)

in which A is the vector potential due to the electromagnetic fields and V (r)
is the periodic potential. Thus, the one-electron Hamiltonian without electro-
magnetic fields is

H0 =
p2

2m
+ V (r) , (6.3)

and the electromagnetic perturbation terms H′
em are

H′
em = − e

mc
p · A +

e2A2

2mc2
, (6.4)

which is usually approximated by the leading term for the electromagnetic
perturbation Hamiltonian

H′
em

∼= − e

mc
p · A . (6.5)

Such a perturbation Hamiltonian is generally not invariant under the symme-
try operations of the group of Schrödinger’s equation which are determined
by the symmetry of the unperturbed Hamiltonian H0. Therefore, we must
consider the transformation properties of H′ψβ where the eigenfunction ψβ is
chosen to transform as one of the partners ψ(Γi)

j (denoted by |Γij〉 in Chap. 4)
of an irreducible representation Γi of the unperturbed Hamiltonian H0. In gen-
eral, the action of H′ on ψ(Γi)

j will mix all other partners of the representation
Γi since any arbitrary function can be expanded in terms of a complete set
of functions ψ(Γi)

j . In group theory, the transformation properties of H′ψ(Γi)
j

are handled through what is called the direct product. When H′ does not
transform as the totally symmetric representation (e.g., H′

em transforms as
a vector x, y, z), then the matrix element (ψ(Γi)

k ,H′ψ(Γi)
j ) will not in general

vanish.
The discussion of selection rules in this chapter is organized around the

following topics:

(a) summary of important symmetry rules for basis functions,
(b) theory of the Direct Product of Groups and Representations,
(c) the Selection Rule concept in Group Theoretical Terms,
(d) example of Selection Rules for electric dipole transitions in a system with

full cubic point group symmetry.
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6.2 Orthogonality of Basis Functions

The basis functions ψ(i)
α where we here use the superscript i as an abbreviated

notation for the superscript Γi for a given irreducible representation i are
defined by (see (4.1))

P̂Rψ
(i)
α =

�i∑
j=1

D(i)(R)jαψ
(i)
j , (6.6)

where P̂R is the symmetry operator, ψ(i)
α denotes the basis functions for an

li-dimensional irreducible representation (i) andD(i)(R)jα is the matrix repre-
sentation for symmetry element R in irreducible representation (i). To exploit
the symmetry properties of a given problem, we want to find eigenfunctions
which form basis functions for the irreducible representations of the group
of Schrödinger’s equation. We can find such eigenfunctions using the sym-
metry operator and projection operator techniques discussed in Chap. 4. In
this chapter, we will then assume that the eigenfunctions have been chosen to
transform as irreducible representations of the group of Schrödinger’s equa-
tion for H0. The application of group theory to selection rules then depends
on the following orthogonality theorem. This orthogonality theorem can be
considered as the selection rule for the identity operator.

Theorem. Two basis functions which belong either to different irreducible
representations or to different columns (rows) of the same representation are
orthogonal.

Proof. Let φ(i)
α and ψ

(i′)
α′ be two basis functions belonging, respectively, to

irreducible representations (i) and (i′) and corresponding to columns α and
α′ of their respective representations. By definition:

P̂Rφ
(i)
α =

�i∑
j=1

D(i)(R)αjφ
(i)
j ,

P̂Rψ
(i′)
α′ =

�i′∑
j′=1

D(i′)(R)α′j′ψ
(i′)
j′ . (6.7)

Because the scalar product (or the matrix element of unity taken between the
two states) is independent of the coordinate system, we can write the scalar
product as(

φ(i)
α , ψ

(i′)
α′

)
=
(
P̂Rφ

(i)
α , P̂Rψ

(i′)
α′

)

=
∑
j,j′

D(i)(R)∗αjD
(i′)(R)α′j′

(
φ

(i)
j , ψ

(i′)
j′

)

=
1
h

∑
j,j′

∑
R

D(i)(R)∗αjD
(i′)(R)α′j′

(
φ

(i)
j , ψ

(i′)
j′

)
, (6.8)



100 6 Application to Selection Rules and Direct Products

since the left-hand side of (6.8) is independent of R, and h is the order of the
group. Now apply the Wonderful Orthogonality Theorem (Eq. 2.52)

1
h

∑
R

D(i)(R)∗αjD
(i′)(R)α′j′ =

1
�i
δii′δjj′δαα′ (6.9)

to (6.8), which yields:

(
φ(i)

α , ψ
(i′)
α′

)
=

1
�i
δi,i′δα,α′

�i∑
j=1

(
φ

(i)
j , ψ

(i)
j

)
. (6.10)

Thus, according to (6.10), if the basis functions φ(i)
α and ψ

(i′)
α′ correspond to

two different irreducible representations i �= i′ they are orthogonal. If they
correspond to the same representation (i = i′), they are still orthogonal if
they correspond to different columns (or rows) of the matrix – i.e., if they
correspond to different partners of representation i. We further note that the
right-hand side of (6.10) is independent of α so that the scalar product is the
same for all components α, thereby completing the proof of the orthogonality
theorem. �

In the context of selection rules, the orthogonality theorem discussed above
applies directly to the identity operator. Clearly, if a symmetry operator is
invariant under all of the symmetry operations of the group of Schrödinger’s
equation then it transforms like the identity operator. For example, if

H0ψ
(i′)
α′ = E

(i′)
α′ ψ

(i′)
α′ (6.11)

then E(i′)
α′ is a number (or eigenvalues) which is independent of any coordinate

system.
If ψ(i′)

α′ and φ
(i)
α are both eigenfunctions of the Hamiltonian H0 and are

also basis functions for irreducible representations (i′) and (i), then the matrix
element (φ(i)

α ,H0ψ
(i′)
α′ ) vanishes unless i = i′ and α = α′, which is a result

familiar to us from quantum mechanics.
In general, selection rules deal with the matrix elements of an operator

different from the identity operator. In the more general case when we have
a perturbation H′, the perturbation need not have the full symmetry of H0.
In general H′ψ transforms differently from ψ.

6.3 Direct Product of Two Groups

We now define the direct product of two groups. Let GA = E,A2, . . ., Aha and
GB = E,B2, . . . , Bhb

be two groups such that all operators AR commute with
all operators BS . Then the direct product group is
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GA ⊗GB = E,A2, . . . , Aha , B2, A2B2, . . . , AhaB2, . . . , AhaBhb
(6.12)

and has (ha × hb) elements. It is easily shown that if GA and GB are groups,
then the direct product groupGA⊗GB is a group. Examples of direct product
groups that are frequently encountered involve products of groups with the
group of inversions (group Ci(S2) with two elements E, i) and the group of
reflections (group Cσ(C1h) with two elements E, σh). For example, we can
make a direct product group D3d from the group D3 by compounding all the
operations ofD3 with (E, i) (to obtainD3d = D3⊗Ci), where i is the inversion
operation (see Table A.13). An example of the group D3d is a triangle with
finite thickness. In general, we simply write the direct product group

D3d = D3 ⊗ i , (6.13)

when compounding the initial group D3 with the inversion operation or with
the mirror reflection in a horizontal plane (see Table A.14):

D3h = D3 ⊗ σh . (6.14)

Likewise, the full cubic group Oh is a direct product group of O ⊗ i.

6.4 Direct Product of Two Irreducible Representations

In addition to direct product groups we have the direct product of two rep-
resentations which is conveniently defined in terms of the direct product of
two matrices. From algebra, we have the definition of the direct product of
two matrices A ⊗ B = C, whereby every element of A is multiplied by every
element of B. Thus, the direct product matrix C has a double set of indices

AijBk� = Cik,j� . (6.15)

Thus, if A is a (2 × 2) matrix and B is a (3 × 3) matrix, then C is a (6 × 6)
matrix.

Theorem. The direct product of the representations of the groups A and B
forms a representation of the direct product group.

Proof. We need to prove that

D
(a)
ij (Ai)D(b)

pq (Bj) = (D(a⊗b)(AiBj))ip,jq . (6.16)

To prove this theorem we need to show that

D(a⊗b)(AkB�) D(a⊗b)(Ak′B�′) = D(a⊗b)(AiBj) , (6.17)

where
Ai = AkAk′ , Bj = B�B�′ . (6.18)
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Since the elements of groupA commute with those of groupB by the definition
of the direct product group, the multiplication property of elements in the
direct product group is

AkB�Ak′B�′ = AkAk′ B�B�′ = AiBj , (6.19)

where AkB� is a typical element of the direct product group. We must now
show that the representations reproduce this multiplication property. By def-
inition:

D(a⊗b)(AkB�)D(a⊗b)(Ak′B�′)

= [D(a)(Ak) ⊗D(b)(B�)][D(a)(Ak′ ) ⊗D(b)(B�′)] . (6.20)

To proceed with the proof, we write (6.20) in terms of components and carry
out the matrix multiplication:

[
D(a⊗b)(AkB�)D(a⊗b)(Ak′B�′)

]
ip,jq

=
∑
sr

(D(a)(Ak) ⊗D(b)(B�))ip,sr(D(a)(Ak′) ⊗D(b)(B�′))sr,jq

=
∑

s

D
(a)
is (Ak)D(a)

sj (Ak′ )
∑

r

D(b)
pr (B�)D(b)

rq (B�′)

= D
(a)
ij (Ai)D(b)

pq (Bj) = (D(a⊗b)(AiBj))ip,jq . (6.21)

This completes the proof. �

It can be further shown that the direct product of two irreducible representa-
tions of groups GA and GB yields an irreducible representation of the direct
product group so that all irreducible representations of the direct product
group can be generated from the irreducible representations of the original
groups before they are joined. We can also take direct products between two
representations of the same group. Essentially the same proof as given in
this section shows that the direct product of two representations of the same
group is also a representation of that group, though in general, it is a reducible
representation. The proof proceeds by showing

[
D(�1⊗�2)(A)D(�1⊗�2)(B)

]
ip,jq

= D(�1⊗�2)(AB)ip,jq , (6.22)

where we use the short-hand notation �1 and �2 to denote irreducible represen-
tations with the corresponding dimensionalities. The direct product represen-
tationD(�1⊗�2)(R) will in general be reducible even though the representations
�1 and �2 are irreducible.
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6.5 Characters for the Direct Product

In this section we find the characters for the direct product of groups and for
the direct product of representations of the same group.

Theorem. The simplest imaginable formulas are assumed by the characters
in direct product groups or in taking the direct product of two representations:

(a) If the direct product occurs between two groups, then the characters for
the irreducible representations in the direct product group are obtained by
multiplication of the characters of the irreducible representations of the
original groups according to

χ(a⊗b)(AkB�) = χ(a)(Ak) χ(b)(B�) . (6.23)

(b) If the direct product is taken between two representations of the same
group, then the character for the direct product representation is writ-
ten as

χ(�1⊗�2)(R) = χ(�1)(R) χ(�2)(R) . (6.24)

Proof. Consider the diagonal matrix element of an element in the direct prod-
uct group. From the definition of the direct product of two groups, we write

D(a⊗b)(AkB�)ip,jq = D
(a)
ij (Ak)D(b)

pq (B�) . (6.25)

Taking the diagonal matrix elements of (6.25) and summing over these matrix
elements, we obtain

∑
ip

D(a⊗b)(AkB�)ip,ip =
∑

i

D
(a)
ii (Ak)

∑
p

D(b)
pp (B�) , (6.26)

which can be written in terms of the traces:

χ(a⊗b)(AkB�) = χ(a)(Ak)χ(b)(B�) . (6.27)

This completes the proof of the theorem for the direct product of two groups.
�

The result of (6.27) holds equally well for classes (i.e., R → C), and thus can
be used to find the character tables for direct product groups as is explained
below.

Exactly the same proof as given above can be applied to find the character
for the direct product of two representations of the same group

χ(�1⊗�2)(R) = χ(�1)(R)χ(�2)(R) (6.28)

for each symmetry element R. The direct product representation is irreducible
only if χ(�1⊗�2)(R) for all R is identical to the corresponding characters for
one of the irreducible representations of the group �1 ⊗ �2.
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In general, if we take the direct product between two irreducible repre-
sentations of a group, then the resulting direct product representation will be
reducible. If it is reducible, the character for the direct product can then be
written as a linear combination of the characters for irreducible representa-
tions of the group (see Sect. 3.4):

χ(λ)(R)χ(μ)(R) =
∑

ν

aλμνχ
(ν)(R) , (6.29)

where from (3.20) we can write the coefficients aλμν as

aλμν =
1
h

∑
Cα

NCαχ
(ν)(Cα)∗

[
χ(λ)(Cα)χ(μ)(Cα)

]
, (6.30)

where Cα denotes classes and NCα denotes the number of elements in class
Cα. In applications of group theory to selection rules, constant use is made of
(6.29) and (6.30).

Finally, we use the result of (6.27) to show how the character tables for
the original groups GA and GB are used to form the character table for the
direct product group. First, we form the elements and classes of the direct
product group and then we use the character tables of GA and GB to form
the character table for GA ⊗GB. In many important cases, one of the groups
(e.g., GB) has only two elements (such as the group Ci with elements E, i)
and two irreducible representations Γ1 with characters (1,1) and Γ1′ with
characters (1,−1). We illustrate such a case below for the direct product
group C4h = C4 ⊗ i, a table that is not listed explicitly in Chap. 3 or in
Appendix A. In the character table for group C4h (Table 6.1) we use the
notation g to denote representations that are even (German, gerade) under
inversion, and u to denote representations that are odd (German, ungerade)
under inversion.

We note that the upper left-hand quadrant of Table 6.1 contains the char-
acter table for the group C4. The four classes obtained by multiplication of

Table 6.1. Character table for point group C4h

C4h ≡ C4 ⊗ i (4/m)

E C2 C4 C3
4 i iC2 iC4 iC3

4

Ag 1 1 1 1 1 1 1 1
Bg 1 1 −1 −1 1 1 −1 −1 even under

Eg

{
1
1

−1
−1

i
−i

−i
i

1
1

−1
−1

i
−i

−i
i

inversion (g)

Au 1 1 1 1 −1 −1 −1 −1
Bu 1 1 −1 −1 −1 −1 1 1 odd under

Eu

{
1
1

−1
−1

i
−i

−i
i

−1
−1

1
1

−i
i

i
−i inversion (u)
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the classes of C4 by i are listed on top of the upper right columns. The char-
acters in the upper right-hand and lower left-hand quadrants are the same as
in the upper left hand quadrant, while the characters in the lower right-hand
quadrant are all multiplied by (−1) to produce the odd (ungerade) irreducible
representations of group C4h.

6.6 Selection Rule Concept in Group Theoretical Terms

Having considered the background for taking direct products, we are now
ready to consider the selection rules for the matrix element

(ψ(i)
α ,H′φ(i′)

α′ ) . (6.31)

This matrix element can be computed by integrating the indicated scalar
product over all space. Group theory then tells us that when any or all the
symmetry operations of the group are applied, this matrix element must trans-
form as a constant. Conversely, if the matrix element is not invariant under
the symmetry operations which form the group of Schrödinger’s equation,
then the matrix element must vanish. We will now express the same physical
concepts in terms of the direct product formalism.

Let the wave functions φ(i)
α and ψ

(i′)
α′ transform, respectively, as partners

α and α′ of irreducible representations Γi and Γi′ , and let H′ transform as
representation Γj . Then if the direct product Γj ⊗Γi′ is orthogonal to Γi, the
matrix element vanishes, or equivalently if Γi ⊗ Γj ⊗ Γi′ does not contain the
fully symmetrical representation Γ1, the matrix element vanishes. In particu-
lar, if H′ transforms as Γ1 (i.e., the perturbation does not lower the symmetry
of the system), then, because of the orthogonality theorem for basis functions,
either φ(i′)

α and ψ
(i)
α′ must correspond to the same irreducible representation

and to the same partners of that representation or they are orthogonal to one
another.

To illustrate the meaning of these statements for a more general case, we
will apply these selection rule concepts to the case of electric dipole transitions
in Sect. 6.7 below. First, we express the perturbation H′ (in this case due to
the electromagnetic field) in terms of the irreducible representations that H′

contains in the group of Schrödinger’s equation:

H′ =
∑
j,β

f
(j)
β H′(j)

β , (6.32)

where j denotes the irreducible representations Γj of the Hamiltonian H′, and
β denotes the partners of Γj . Then H′φ(i)

α , where (i) denotes irreducible repre-
sentation Γi, transforms as the direct product representation formed by taking
the direct product H′(j)

β ⊗φ(i)
α which in symmetry notation is Γj,β ⊗Γi,α. The

matrix element (ψ(i′)
α′ ,H′φ(i)

α ) vanishes if and only if ψ(i′)
α′ is orthogonal to all
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the basis functions that occur in the decomposition of H′φ(i)
α into irreducible

representations. An equivalent expression of the same concept is obtained by
considering the triple direct product ψ(i′)

α′ ⊗H′(j)
β ⊗ φ

(i)
α . In order for the ma-

trix element in (6.31) to be nonzero, this triple direct product must contain
a term that transforms as a scalar or a constant number, or according to the
irreducible representation Γ1.

6.7 Example of Selection Rules

We now illustrate the group theory of Sect. 6.6 by considering electric dipole
transitions in a system with Oh symmetry. The electromagnetic interaction
giving rise to electric dipole transitions is

H′
em = − e

mc
p · A , (6.33)

in which p is the momentum of the electron and A is the vector potential
of an external electromagnetic field. The momentum operator is part of the
physical electronic “system” under consideration, while the vector A for the
electromagnetic field acts like an external system or like a “bath” or “reser-
voir” in a thermodynamic sense. Thus p acts like an operator with respect to
the group of Schrödinger’s equation but A is invariant and does not trans-
form under the symmetry operations of the group of Schrödinger’s equation.
Therefore, in terms of group theory, H′

em for the electromagnetic interaction
transforms like a vector, just as p transforms as a vector, in the context of
the group of Schrödinger’s equation for the unperturbed system H0ψ = Eψ.
If we have unpolarized radiation, we must then consider all three compo-
nents of the vector p (i.e., px, py, pz). In cubic symmetry, all three compo-
nents of the vector transform as the same irreducible representation. If in-
stead, we had a system which exhibits tetragonal symmetry, then px and
py would transform as one of the two-dimensional irreducible representations
and pz would transform as one of the one-dimensional irreducible representa-
tions.

To find the particular irreducible representations that are involved in cubic
symmetry, we consult the character table for Oh = O⊗ i (see Table A.30). In
the cubic group Oh the vector (x, y, z) transforms according to the irreducible
representation T1u and so does (px, py, pz), because both are radial vectors
and both are odd under inversion. We note that the character table for Oh

(Table A.30) gives the irreducible representation for vectors, and the same
is true for most of the other character tables in Appendix A. To obtain the
character table for the direct product group Oh = O ⊗ i we note that each
symmetry operation in O is also compounded with the symmetry operations
E and i of group Ci = S2 (see Table A.2) to yield 48 symmetry operations
and ten classes.
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Table 6.2. Characters for the direct product of the characters for the T1u and T2g

irreducible representations of group Oh

E 8C3 3C2 6C2 6C4 i 8iC3 3iC2 6iC2 6iC4

9 0 1 −1 −1 –9 0 −1 1 1

For the Oh group there will then be ten irreducible representations, five
of which are even and five are odd. For the even irreducible representations,
the same characters are obtained for class C and class iC. For the odd rep-
resentations, the characters for classes C and iC have opposite signs. Even
representations are denoted by the subscript g (gerade) and odd representa-
tions by the subscript u (ungerade). The radial vector p transforms as an odd
irreducible representation T1u since p goes into −p under inversion.

To find selection rules, we must also specify the initial and final states. For
example, if the system is initially in a state with symmetry T2g then the direct
product H′

em ⊗ ψT2g contains the irreducible representations found by taking
the direct product χT1u ⊗ χT2g . The characters for χT1u ⊗ χT2g are given in
Table 6.2, and the direct product χT1u ⊗ χT2g is a reducible representation of
the group Oh. Then using the decomposition formula (6.30) we obtain:

T1u ⊗ T2g = A2u + Eu + T1u + T2u . (6.34)

Thus we obtain the selection rules that electric dipole transitions from a state
T2g can only be made to states with A2u, Eu, T1u, and T2u symmetry. Fur-
thermore, since H′

em is an odd function, electric dipole transitions will couple
only states with opposite parity. The same arguments as given above can be
used to find selection rules between any initial and final states for the case
of cubic symmetry. For example, from Table A.30, we can write the following
direct products as

Eg ⊗ T1u = T1u + T2u

T1u ⊗ T1u = A1g + Eg + T1g + T2g

}
.

Suppose that we now consider the situation where we lower the symmetry
from Oh to D4h. Referring to the character table for D4 in Tables A.18 and
6.3, we can form the direct product group D4h by taking the direct product
between groupsD4h = D4⊗i where i here refers to group S2 = Ci (Table A.2).

We note here the important result that the vector in D4h = D4 ⊗ i sym-
metry does not transform as a single irreducible representation but rather as
the irreducible representations:

z → A2u

(x, y) → Eu

}
,

so that T1u in Oh symmetry goes into: A2u + Eu in D4h symmetry.
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Table 6.3. Character table for the pint group D4 (422)

D4 (422) E C2 = C2
4 2C4 2C′

2 2C′′
2

x2 + y2, z2 A1 1 1 1 1 1
Rz, z A2 1 1 1 −1 −1

x2 − y2 B1 1 1 −1 1 −1
xy B2 1 1 −1 −1 1

(xz, yz)
(x, y)
(Rx, Ry)

}
E 2 −2 0 0 0

Table 6.4. Initial and final states of groupD4h that are connected by a perturbation
Hamiltonian which transform like z

initial state final state

A1g A2u

A2g A1u

B1g B2u

B2g B1u

Eg Eu

A1u A2g

A2u A1g

B1u B2g

B2u B1g

Eu Eg

Furthermore a state with symmetry T2g in the Oh group goes into states
with Eg+B2g symmetries inD4h (see discussion in Sect. 5.3). Thus for the case
of the D4h group, electric dipole transitions will only couple an A1g state to
states with Eu and A2u symmetries. For a state with Eg symmetry according
to group D4h the direct product with the vector yields

Eg⊗(A2u+Eu) = Eg⊗A2u+Eg⊗Eu = Eu+(A1u+A2u+B1u+B2u) , (6.35)

so that for the D4h group, electric dipole transitions from an Eg state can
be made to any odd parity state. This analysis points out that as we reduce
the amount of symmetry, the selection rules are less restrictive, and more
transitions become allowed.

Polarization effects also are significant when considering selection rules.
For example, if the electromagnetic radiation is polarized along the z-direction
in the case of the D4h group, then the electromagnetic interaction involves
only pz which transforms according to A2u. With the pz polarization, the
states listed in Table 6.4 are coupled by electric dipole radiation (i.e., by
matrix elements of pz).

If, on the other hand, the radiation is polarized in the x-direction, then
the basis function is a single partner x of the Eu representation. Then if the
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initial state has A1g symmetry, the electric dipole transition will be to a state
which transforms as the x partner of the Eu representation. If the initial state
has A2u symmetry (transforms as z), then the general selection rule gives
A2u ⊗ Eu = Eg while polarization considerations indicate that the transition
couples the A2u level with the xz partner of the Eg representation. If the
initial state has Eu symmetry, the general selection rule gives

(Eu ⊗ Eu) = A1g +A2g +B1g +B2g . (6.36)

The polarization x couples the partner Ex
u to Ax2+y2

1g and Bx2−y2

1g while the
partner Ey

u couples to Axy−yx
2g and Bxy

2g . We note that in the character ta-
ble for group D4h the quantity xy–yx transforms as the axial vector Rz or
the irreducible representation A2u and xy transforms as the irreducible rep-
resentation B2g. Thus polarization effects further restrict the states that are
coupled in electric dipole transitions. If the polarization direction is not along
one of the (x, y, z) directions, H′

em will transform as a linear combination of
the irreducible representations A2u + Eu even though the incident radiation
is polarized.

Selection rules can be applied to a variety of perturbations H′ other than
the electric dipole interactions, such as uniaxial stress, hydrostatic pressure
and the magnetic dipole interaction. In these cases, the special symmetry of
H′ in the group of Schrödinger’s equation must be considered.

Selected Problems

6.1. Find the 4 × 4 matrix A that is the direct product A = B ⊗ C of the
(2 × 2) matrices B and C given by

B =
(
b11 b12
b21 b22

)
and C =

(
c11 c12
c21 c22

)
.

6.2. (a) Show that if GA with elements E,A2, . . . , Aha and GB with elements
E,B2, . . . , Bhb

are groups, then the direct product group GA ⊗GB is also
a group. Use the notation BijCkl = (B ⊗ C)ik,jl to label the rows and
columns of the direct product matrix.

(b) In going from higher to lower symmetry, if the inversion operation is pre-
served, show that even representations remain even and odd representa-
tions remain odd.

6.3. (a) Consider electric dipole transitions in full cubic Oh symmetry for
transitions between an initial state with A1g symmetry (s-state in quan-
tum mechanics notation) and a final state with T1u symmetry (p-state
in quantum mechanics notation). [Note that one of these electric dipole
matrix elements is proportional to a term (1|px|x), where |1) denotes the
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s-state and |x) denotes the x partner of the p-state.] Of the nine possi-
ble matrix elements that can be formed, how many are nonvanishing? Of
those that are nonvanishing, how many are equivalent, meaning partners
of the same irreducible representation?

(b) If the initial state has Eg symmetry (rather than A1g symmetry), repeat
part (a). In this case, there are more than nine possible matrix elements.
In solving this problem you will find it convenient to use as basis functions
for the Eg level the two partners x2 + ωy2 + ω2z2 and x2 + ω2y2 + ωz2,
where ω = exp(2πi/3).

(c) Repeat part (a) for the case of electric dipole transitions from an s-state
to a p-state in tetragonal D4h symmetry. Consider the light polarized
first along the z-direction and then in the x–y plane. Note that as the
symmetry is lowered, the selection rules become less stringent.

6.4. (a) Consider the character table for group C4h (see Sect. 6.5). Note that
the irreducible representations for group C4 correspond to the fourth roots
of unity. Note that the two one-dimensional representations labeled E are
complex conjugates of each other. Why must they be considered as one-
dimensional irreducible representations?

(b) Even though the character table of the direct product of the groupsC4⊗Ci

is written out in Sect. 6.5, the notations C4h and (4/m) are used to label
the direct product group. Clarify the meaning of C4h and (4/m).

(c) Relate the elements of the direct product groups C4 ⊗ Ci and C4 ⊗ C1h

(see Table A.3) and use this result to clarify why the notation C4h and
(4/m) is used to denote the group C4⊗i in Sect. 6.5. How do groups C4⊗i
and C4 ⊗ σh differ?

6.5. Suppose that a molecule with full cubic symmetry is initially in a T2g

state and is then exposed to a perturbation H′ inducing a magnetic dipole
transition.

(a) Since H′ in this case transforms as an axial vector (with the same point
symmetry as angular momentum), what are the symmetries of the final
states to which magnetic dipole transitions can be made?

(b) If the molecule is exposed to stress along a (111) direction, what is the
new symmetry group? What is the splitting under (111) stress of the T2g

state in Oh symmetry? Use the irreducible representations of the lower
symmetry group to denote these states. Which final states in the lower
symmetry group would then be reached by magnetic dipole transitions?

(c) What are the polarization effects for polarization along the highest sym-
metry axes in the case of Oh symmetry and for the lower symmetry group?

6.6. Show that the factor group of the invariant subgroup (E, σh) of group
C3h is isomorphic to the group C3. This is an example of how the C3 group
properties can be recovered from the C3h = C3 ⊗ σh group by factoring out
the (E, σh) group.
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Electronic States

of Molecules and Directed Valence

This chapter considers the electronic states of molecules, the formation
of molecular bonds and the simplifications that are introduced through
the use of group theory. We organize our discussion in this chapter in
terms of a general discussion of molecular energy levels; the general con-
cept of equivalence; the concept of directed valence bonding; the appli-
cation of the directed valence bond concept to various molecules, includ-
ing bond strengths in directed valence bonds; and finally σ and π bond-
ing.

7.1 Introduction

The energy levels of molecules are basically more complicated than those of
atoms because there are several centers of positive charge which serve to
attract a given electron, and because these centers are themselves in rel-
ative motion. Since the nuclei are very massive relative to the electrons,
we can utilize the Born–Oppenheimer approximation which separates out
the electronic motion from the nuclear or ionic motion. In this approxima-
tion, the electrons move in a potential generated by the equilibrium po-
sitions of the nuclei. We are thus left with three kinds of molecular mo-
tion, the electronic motion which is most energetic, the vibrational motion
which is less energetic, and the rotational motion which is least energetic.
If these motions are independent they can be decoupled (but this is not
always the case). In this chapter we consider the electronic energy levels
of some typical molecules considering the Born–Oppenheimer approxima-
tion, and in Chap. 8 we consider the vibrational and rotational levels of
molecules.

The effective one-electron potential V (r) for an electron in a molecule
must be invariant under all symmetry operations which leave the molecule
invariant. If we did not exploit the symmetry explicitly through group theory,
we would then solve the Schrödinger equation to find the energy eigenvalues
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and the corresponding eigenfunctions of the molecule taking into account all
the valence electrons for all the atoms in the molecule. This would require
solution of a large secular equation of the form:

|〈ψi|H|ψj〉 − Eδij | = 0 . (7.1)

Utilization of symmetry (as for example using group theoretical methods)
allows us to choose our basis functions wisely, so that many of the matrix
elements in the secular equation vanish through symmetry arguments and the
secular equation breaks up into block diagonal form. Thus by using symmetry,
we have to solve much smaller secular equations, and only those states which
transform according to the same irreducible representations will couple to
each other according to group theory arguments. Group theory is used in yet
another way for solving the electronic problem. Many molecules contain more
than one equivalent atom. Symmetry is used to simplify the secular equation
by forming linear combinations of atomic orbitals that transform according to
the irreducible representations of the group of Schrödinger’s equation. Using
such linear combinations of atomic orbitals, the secular equation can more
readily be brought into block diagonal form. In this chapter we show how
to form linear combinations of atomic orbitals that transform as irreducible
representations of the appropriate symmetry group, and we will show how the
equivalence concept is used in forming these linear combinations.

Fig. 7.1. Electronic wave functions for a diatomic molecule. On the left the free
atomic orbitals are shown for two similar atoms on different sites. On the right,
the formation of bonding and antibonding states is indicated. To find the energy
splitting between the bonding and antibonding states (indicated schematically), the
solution of Schrödinger’s equation is necessary
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In the free atom, the electronic orbitals display the symmetry of a (1/r)
potential, and therefore the free-atom orbitals are eigenfunctions which trans-
form according to irreducible representations of the full rotation group. In
a molecule or in a solid, the electrons tend to spend more time between the
ion cores in the bonding state and the increased probability of finding the elec-
tron between two nuclei (see Fig. 7.1) is called a chemical bond. These bonds
display the known symmetry of the molecule (or the solid). For this reason,
the wavefunctions for the electrons in the molecule (or the solid) transform as
irreducible representations of the appropriate symmetry group, which in gen-
eral will be of lower symmetry than the full rotation group. From elementary
considerations, we know that molecular bonds arise from the exchange inter-
action whose magnitude depends on the extent of the overlap of the charge
clouds between neighboring atoms. Because these orbitals concentrate the
charge along preferred directions, the bonding is called directed valence bond-
ing, and these directed valence bonds exhibit the symmetry of the molecule
(or of the solid). We use the directed valence bonding concepts to identify the
kinds of symmetries needed to make the desired orbitals.

Symmetry enters the electronic problem of molecules in yet another way,
namely through the Pauli principle and the effect of the permutation of the
electrons on the electron wavefunctions. This topic is discussed in Chap. 17
for many-electron states.

7.2 General Concept of Equivalence

Equivalent bonding orbitals for a molecule are required to transform into one
another under all the symmetry operations of the point group with no more
change than a possible change of phase. The equivalence transformation, which
takes one equivalent function into another, generates a representation for the
point group called the equivalence representation. The equivalence representa-
tion will in general be reducible. We denote the representation that generates
the transformation between equivalent atom sites by Γ a.s. and its characters
by χa.s. where a.s. ≡ atomic sites. In this section we present the equivalence
concept, show how to find the irreducible representations contained in the
equivalence representation and then give a few examples.

The matrices Da.s.(R)ji for the equivalence representation Γ a.s. are found
from the general definition in (4.1)

P̂Rψi =
∑

j

Da.s.(R)jiψj (7.2)

or written in matrix form from (4.5)

Da.s.(R)ji = 〈ψj |P̂R|ψi〉 . (7.3)

Explicitly, the Da.s.(R)ji matrices are found by entering unity into the j, i
position in the matrix if P̂ (R) takes site i into an equivalent site j and zero
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otherwise. From this argument we readily see that the characters for the equiv-
alence representation can be found by counting the number of points which
are left unaffected by the symmetry operation, because it is only those points
that will give a contribution to the matrix on diagonal positions and will thus
contribute to the character for that symmetry operator. To obtain the charac-
ters for the equivalence representation χa.s., we take a representative member
of each class and consider the number of points that are left unchanged under
action of the representative symmetry operator.

The representation Γ a.s. is in general reducible. The pertinent symmetry
types for the problem are then found by decomposing Γ a.s. into its irreducible
representations. To illustrate this concept, consider the example of three iden-
tical atoms at the corners of an equilateral triangle as for example the three
hydrogen atoms in the NH3 molecule. The symmetry group is C3v, and the
character table for group C3v is given in Table A.10. Referring to Fig. 4.2,
where the three equivalent sites are labeled by (a, b, c) we obtain Da.s.(R) for
some typical symmetry operators:

D(a.s.)(E) =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (7.4)

D(a.s.)(C3) =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ , (7.5)

D(a.s.)(σv) =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ , (7.6)

in which the rows and columns correspond to the sequence of atoms (a, b, c)
and the symmetry operations selected are E, D, and A following Fig. 4.2.
From these matrices we can compute the characters for each of the classes for
the Γ a.s. representation in group C3v(3m). The character χa.s.(R) is always
the number of sites that are left unchanged by the operation P̂R so that for
each of the three classes χa.s.(E) = 3, χa.s.(C3) = 0, and χa.s.(σv) = 1. These
results are summarized in Table 7.1. From Table A.10 we see immediately
that χa.s. = χΓ1 + χΓ2 for every class, since Γ a.s. = Γ1 + Γ2, in agreement
with results obtained in Sect. 4.6. The orbitals on the nitrogen atom are then
chosen so that they bond to the atomic orbitals of the three hydrogen atoms,
as discussed in Sect. 7.5.1.

Table 7.1. χa.s. for the group C3v

E 2C3 3σv

χa.s. 3 0 1 ⇒ Γ1 + Γ2 = A1 +E
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7.3 Directed Valence Bonding

For diatomic molecules we know immediately, without recourse to group the-
ory, how to make a bonding orbital out of the free atomic orbitals. In this
case, we need simply to take the symmetrical combination (ψa + ψb) to pile
up charge in the directed valence bond (see Fig. 7.1).

For the case of the homopolar diatomic molecule, we thus form an occupied
bonding state (ψa +ψb) and an unoccupied antibonding state of higher energy
(ψa −ψb). Suppose that this diatomic molecule only has two symmetry oper-
ations, the identity E and the mirror plane reflections σh or m. These are the
two symmetry elements of the group C1h (see Table 7.2). (In Sect. 7.4 we will
consider the semi-infinite groups D∞h and C∞v which give the full symmetry
of typical homogeneous and heterogeneous diatomic molecules.) Taking ψa as
an arbitrary function, and noting that P̂mψa = ψb, for the mirror plane opera-
tions, the projection operator for one-dimensional irreducible representations
(see (4.38)) can be written as

P̂ (Γn) =
�n
h

∑
R

χ(Γn)(R)∗P̂R . (7.7)

The basic formula (7.7) for finding linear combinations of atomic orbitals when
acting on the wave function ψa yields (see Table 7.2):

P̂ (Γ1)ψa =
1
2
[(1)P̂Eψa + (1)P̂mψa] =

1
2
[ψa + ψb] bonding

P̂ (Γ ′
1)ψa =

1
2
[(1)P̂Eψa + (−1)P̂mψa] =

1
2
[ψa − ψb] antibonding (7.8)

for the bonding and antibonding states, so that the bonding orbitals will
have Γ1 symmetry and the antibonding orbitals will have Γ ′

1 symmetry. Since
there are only two initial wave functions ψa and ψb, the combinations in (7.8)
are all the independent linear combinations that can be formed, and except
for a normalization factor of

√
2, these functions are proper bonding and

antibonding orbitals.
Our discussion of the use of projection operators (see Sects. 4.5 and 4.6)

illustrates how linear combinations of atomic orbitals could be found such that
the resulting orbitals transform according to irreducible representations of the

Table 7.2. Character table for the group C1h

C1h(m) E σh

x2, y2, z2, xy Rz, x, y A′ (Γ1) 1 1
xz, yz Rx, Ry, z A′′ (Γ ′

1) 1 −1

χa.s. 2 0 ⇒ Γ1 + Γ ′
1 ≡ A′ + A′′
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point group. Here we used the C1h group that has only two one-dimensional
irreducible representations, and we found the two related electronic states.
However, most of the symmetry groups have many irreducible representations
with different dimensionalities. To find the right symmetries for the electronic
states, one would have to apply the projectors to all of them. This process
is largely simplified by using the directed valence representation ΓD.V. which
introduces two kinds of simplifications:

(a) ΓD.V. gives all the irreducible representations for the molecular orbitals
before the molecular orbitals are found explicitly. This saves time because
the projection operator P̂ (Γn) need not then be applied to irrelevant rep-
resentations, but only to those irreducible representations contained in
ΓD.V..

(b) If we are only interested in finding the number of distinct eigenvalues and
their degeneracies, this follows directly from the characters χD.V. of the
representation ΓD.V.. To obtain this kind of information, it is not necessary
to solve Schrödinger’s equation or even to find the linear combination of
molecular orbitals as in Sect. 4.6.

The directed valence representation ΓD.V. uses the equivalence transformation
to determine the characters of Γ a.s.. In Sect. 7.4 we discuss the directed valence
representation for diatomic molecules and in Sect. 7.5, we extend the concept
to multiatomic molecules with more complicated symmetries.

7.4 Diatomic Molecules

In this section we introduce the semi-infinite groups D∞h and C∞v and we
illustrate the use of the equivalence transformation to form symmetrized lin-
ear combinations of atomic orbitals. We then develop the directed valence
representation for the simplest case of diatomic molecules. Both homonuclear
molecules (like H2) and heteronuclear molecules (like CO) are considered.

7.4.1 Homonuclear Diatomic Molecules

The simplest molecules are the homonuclear diatomic molecules. For homonu-
clear molecules (such as H2) the appropriate symmetry group is D∞h and the
character table for D∞h is shown in Table 7.3 (see also Table A.34). We now
summarize the main points about this character table. Cφ denotes an arbi-
trary rotation about the linear molecular axis (z-axis) and C′

2 is a twofold
axis ⊥ to Cφ. In the group D∞h, each of the operations E,Cφ, and C′

2 is also
combined with inversion. We further note that σv is a mirror plane through
the molecular axis, so that σv = iC′

2. The subscripts g and u refer to the
evenness and oddness of functions under the inversion operation, while the
superscripts + and − refer to the evenness and oddness of functions under
reflection in a mirror plane. The characters for σv in the D∞h group are found



7.4 Diatomic Molecules 119

Table 7.3. Character table for the semi-infinite group D∞h (∞/mn)

D∞h (∞/mm) E 2Cφ C′
2 i 2iCφ iC′

2

x2 + y2, z2 A1g(Σ
+
g ) 1 1 1 1 1 1

A1u(Σ−
u ) 1 1 1 −1 −1 −1

Rz A2g(Σ
−
g ) 1 1 −1 1 1 −1

z A2u(Σ+
u ) 1 1 −1 −1 −1 1

(xz, yz) (Rx, Ry) E1g(Πg) 2 2 cosφ 0 2 2 cosφ 0
(x, y) E1u(Πu) 2 2 cosφ 0 −2 −2 cosφ 0

(x2 − y2, xy) E2g(Δg) 2 2 cos 2φ 0 2 2 cos 2φ 0
E2u(Δu) 2 2 cos 2φ 0 −2 −2 cos 2φ 0
...

...
...

...
...

...
...

Table 7.4. χa.s. for the group D∞h

E 2Cφ C′
2 = iσv i 2iCφ iC′2 = σv

χa.s. 2 2 0 0 0 2
⇒ A1g + A2u

⇒ Σ+
g +Σ+

u

most conveniently by considering the effect of the operation σv on the basis
functions which correspond to a given irreducible representation. For example,
the symmetry operation σv changes (x, y) into (−x, y) yielding a transforma-
tion matrix

D(σv) =
(−1 0

0 1

)
(7.9)

and the corresponding character for σv is χ(σv) = 0 which from the character
table is associated with the E1u irreducible representation.

For a homogeneous diatomic molecule (such as H2) use of the equivalence
transformation on the two sites of the homogeneous diatomic molecule, as
shown in Table 7.4 yields the characters for the equivalence transformation.
When forming a linear combination of atomic orbitals (LCAOs) from s func-
tions on the two equivalent atomic sites (see Sect. 7.3), the normalized bonding
orbital ψS = (ψa + ψb)/

√
2 is symmetric and has Σ+

g or A1g symmetry and
the normalized antibonding orbital ψA = (ψa −ψb)/

√
2 is antisymmetric and

has Σ+
u or A2u symmetry. These two LCAOs correspond to directed valence

orbitals because they result in a rearrangement of the charge on the individual
atomic sites. The bonding LCAO is a directed valence orbital corresponding
to a pile up of charge between the two atoms to produce a lower energy state.
By using the equivalence concept in Sect. 7.2, we have constructed a linear
combination of atomic orbitals which transform as irreducible representations
of the group of Schrödinger’s equation. Thus ψS and ψA form such basis func-
tions and the Hamiltonian for the homogeneous diatomic molecule will not
couple states ψS and ψA to each other. This follows from the argument that
the product (HψS) transforms as A1g, since H transforms as A1g and so does
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ψS. Also ψA transforms as A2u. The selection rules thus tell us that the matrix
element (ψA|H|ψS) must vanish. Thus to bring the secular equation into block
diagonal form, we have to make a unitary transformation on the atomic basis
functions (ψa, ψb) to bring them into the form (ψS, ψA):

(
ψS

ψA

)
= U︸︷︷︸

unitary matrix

(
ψa

ψb

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)(
ψa

ψb

)
. (7.10)

Applying the unitary transformation UHU † to the original matrix (written
in terms of the original ψa and ψb) will bring the secular matrix into block
diagonal form. Bringing the secular equation into block diagonal form greatly
simplifies the solution of the secular equation. In this simple case, the equiva-
lence transformation and group theoretical arguments took a coupled (2 × 2)
secular equation and decomposed it into two decoupled (1 × 1) secular equa-
tions. The bonding or directed valence state will be the state of lowest energy.

As an example of homonuclear diatomic molecule we discuss the hydrogen
molecule H2. In this case we can put each electron in a (σg1s) orbital and
construct bonding and antibonding orbitals. For H2, the bonding orbital σg

is occupied with electrons having opposite spin states and the antibonding σu

orbital is unoccupied. The (σg1s) state is symmetric under both inversion i
and reflection σv. Hence the symmetry for each of the separated atoms is Σ+

g

so that the symmetry for the molecule is Σ+
g ⊗ Σ+

g = Σ+
g . We write this

state as 1Σ+
g where the superscript 1 denotes a singlet (s = 0) with a total

spin degeneracy of (2s+ 1) = 1. By making spatial bonding orbitals that are
symmetric under exchange of the electrons, the Pauli principle tells us that
the spin state for the directed valence bonding orbital must be antisymmetric:

1√
2

[α(1)β(2) − α(2)β(1)] , (7.11)

where (α, β) give the spin state (up, down), and 1,2 number the electrons
(group theory aspects for spin are treated in Chaps. 14 and 15). In Problem 7.1
we extend the concepts of Sect. 7.4.1 to the hypothetical He2 molecule and
the H−

2 ion.

7.4.2 Heterogeneous Diatomic Molecules

We next illustrate the case of a linear heterogeneous diatomic molecule with
the CO molecule. Since the electronic wave functions on each site are not
equivalent (see Fig. 7.2), there is no inversion symmetry. The appropriate
symmetry group for CO is C∞v which has the Character Table 7.5 (see also
Table A.33). The symmetry operations of C∞v have already been covered
when discussing the symmetry operations of D∞h (see Sect. 7.4.1). Using the
equivalence operation on the carbon and oxygen atoms in CO, we have the
result Γ a.s. = 2A1 (see also χa.s.(E, 2Cφ, σv) for H2 with D∞h symmetry in
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Fig. 7.2. The wave functions for a heteropolar diatomic molecule and their for-
mation of bonding and antibonding states. If 2V3 is the energy separation between
the anion and cation for large interatomic distance, the splitting resulting from an
interaction energy 2V2 is shown

Table 7.5. Character Table for Group C∞v

C ∞v (∞m) E 2Cφ σv

(x2 + y2, z2) z A1(Σ
+) 1 1 1

Rz A2(Σ
−) 1 1 −1

(xz, yz)
(x, y)

(Rx, Ry)

}
E1(Π) 2 2 cosφ 0

(x2 − y2, xy) E2(Δ) 2 2 cos 2φ 0
...

...
...

...

Sect. 7.4.1). Now the C atom in CO has the electronic configuration 2s22p2

while O has the configuration 2s22p4. We will then make bonding and anti-
bonding molecular orbitals from 2s, 2pz, and 2px,y atomic orbitals. From the
basis functions given in the character table for group C∞v we see that the
irreducible representations for these atomic orbitals are

2s → A1

2pz → A1

2px,y → E1 .

To find the direct products using the character table for C∞v we note that

cos2 φ =
(

1
2

)
(1 + cos 2φ) ,
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which allows us to evaluate the direct product E1 ⊗ E1 to obtain

E1 ⊗ E1 = A1 +A2 + E2 .

state is symmetric, the spin state is antisymmetric by the Pauli principle
(a singlet spin configuration). However, an antisymmetric spatial state (such
as the A2 state) is accompanied by a symmetric spin state (a triplet spin
configuration) and therefore would have a molecular orbital notation 3Σ−

(see character table for D∞h in Sect. 7.4.1). The secular equation implied by
the interactions in Fig. 7.2 (see caption) is

∣∣∣∣∣∣
V3 − E V2

V2 −V3 − E

∣∣∣∣∣∣ = 0 , (7.12)

whose solution gives the splitting between the bonding and antibonding states
of heteropolar diatomic molecules

E = ±
√
V 2

2 + V 2
3 (7.13)

as shown in Fig. 7.2.
Referring to Fig. 7.3 the number of electrons which form bonds in CO

are four from carbon and six from oxygen to give a total of ten electrons.
We note from Fig. 7.3 that the occupied levels include the 2s A1 bonding

Fig. 7.3. Bonding and antibonding molecular levels for the CO molecule
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and antibonding orbitals and the 2p A1 and E1 bonding orbitals. The 2p A1

and E1 antibonding orbitals will remain unoccupied. Since the pz orbitals are
directed along the molecular axis, the bonding–antibonding interaction (and
level splitting) will be largest for the pz orbitals, as shown in Fig. 7.3.

The symmetry of the s-function orbitals for a diatomic molecule are found
directly from the transformation properties of χa.s.. However, since p electrons
have angular momentum l = 1, they transform like the vector (basis functions
x, y, z), so that for p-function orbitals we must take the direct product of
the transformation of the equivalent sites with the transformation proper-
ties of a vector at each site written as χa.s. ⊗ χvector. For the case of the
heterogeneous CO molecule with C∞v symmetry χa.s. = 2A1 = 2Σ+ and
χvector = A1 + E1 = Σ+ +Π . With regard to the pz orbital, both the bond-
ing and antibonding orbitals (see Fig. 7.3) have A1 or Σ+ symmetry. For the
bonding pz orbital, there is a maximum of the charge accumulation between
the C and O atoms which results in the large separation in energy between
the bonding and antibonding orbitals. For the (px, py) orbitals, the bonding
and antibonding levels both have E1 or Π symmetry. The character table for
group C∞v (Table 7.5) relates the notation for the irreducible representations

Fig. 7.4. Schematic diagram of the block structure of the matrix Hamiltonian for
molecular orbitals for the CO molecule arising from the symmetry of the orbitals
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with angular momenta states. The directed valence bonding is along the z-axis
and involves only bonding levels.

The symmetry types of each of the molecular orbitals determines the form
of the secular equation, as shown in Fig. 7.4. The minimum basis for describing
the bonding states is eight, including the 2s, 2px, 2py, and 2pz orbitals for each
atom, since the 1s level is too low in energy to be of importance. The terms on
the diagonals represent the self energy of the electronic orbitals, and the terms
in the off-diagonal positions are the coupling terms. Only electronic states
belonging to the same irreducible representation can couple, and the block
structure of the matrix Hamiltonian of the secular equation then assumes the
form shown in Fig. 7.4.

7.5 Electronic Orbitals for Multiatomic Molecules

In this section, we consider the electronic levels for several multiatomic
molecules, each selected for particular pedagogic purposes.

7.5.1 The NH3 Molecule

To bond to the H atoms, the N atom must make orbitals directed to the three
hydrogens (see Fig. 7.5). We refer to this as the directed valence bonds of
the nitrogen atoms. The directed valence bonds ΓD.V. for the nitrogen must
therefore exhibit the same symmetry as does the LCAO (linear combination of
atomic orbitals) for the hydrogens which transform as Γ a.s.. We have already
seen in Sect. 4.6 how to construct LCAOs for the three equivalent atoms at the

Fig. 7.5. Schematic diagram of the symmetry operations for an NH3 molecule
(group C3v) where the three hydrogen atoms are at the corners of an equilateral
triangle and the N atom is along the normal through the midpoint of this triangle
but not coplanar with the hydrogens
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corners of an equilateral triangle (e.g., the hydrogen atoms in NH3). In this
case we use group C3v (see Fig. 7.5) and obtain the irreducible representations
A1 + E for the linear combination of atomic orbitals for the three hydrogen
atoms discussed in Sects. 4.6 and 7.2. To bond to the nitrogen atom, it is
necessary for the directed valence representation ΓD.V. for the nitrogen atom
to have the same symmetries as Γ a.s. so that ΓD.V. = Γ1 + Γ2 = A1 + E.

We now explore the orbitals that can be made at the nitrogen site. Nitrogen
has the electronic configuration 1s22s22p3. The 1s and 2s electrons will lie low
in energy, and bonding orbitals to the hydrogens will be made with the three
2p electrons [40]. The p electrons transform like the vectors (x, y, z) and the
character table for C3v shows that the px and py functions will transform
as E(Γ2) and the pz as A1(Γ1). The nitrogen atom thus bonds to the linear
combination of atomic orbitals of the three hydrogen atoms with the same
symmetries A1 + E that comes from Γ a.s.. Thus the nitrogen has three p
electrons for bonding and the H3 likewise has three electrons for bonding. The
A1 bonding states will hold two electrons and the E bonding state will hold
four electrons. These bonding states can then accommodate all six valence
electrons, with three coming from the hydrogen atoms and three from the
nitrogen atom. All the antibonding states will be unoccupied. See reference
[40] for a detailed analysis of the molecular orbitals of NH3 and other molecules
discussed in this chapter from a group theory standpoint.

7.5.2 The CH4 Molecule

In this example we consider generally how carbon atoms can form tetrahedral
bonds. One example of such tetrahedral bonds for carbon is in the diamond
structure. The tetrahedral carbon bonds in diamond have the same point
group symmetry as the directed valence bond of carbon in the CH4 methane
molecule. The methane molecule forms a regular tetrahedron (see Fig. 3.3),
where the carbon atom is at the center of the tetrahedron, and the four H
atoms are at the tetrahedral vertices; this structure has Td point symmetry
(see Table A.32).

The bonding of the CH4 molecule is produced by a directed valence bond
from the carbon atom to the four hydrogen atoms at the corners of a tetra-
hedron. The ground state of the carbon atom is 1s22s22p2. We will see below
that the carbon atom must be promoted to a 1s22s12p3 configuration to make
the directed valence bonds. The four equivalent hydrogen atoms form LCAOs
to make the bonds from the four points labeled a, b, c, d in Fig. 3.3 (where the
four hydrogens are located) to the center of the tetrahedron where the carbon
atom is located.

Let us start with the symmetry of the linear combination of atomic orbitals
of the four hydrogen atoms at the corner of a regular tetrahedron which has
Td symmetry (see Table A.32 and Table 7.6). The 24 symmetry operations of
Td are described in Sect. 3.11 and in Fig. 3.3. If we now consider each of the
symmetry operations the group Td acting on the points a, b, c, d (see Fig. 3.3)
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Table 7.6. Character Table for group Td(43m)

Td(43m) E 8C3 3C2 6σd 6S4

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0

(Rx, Ry, Rz) T1 3 0 −1 −1 1
(x, y, z) T2 3 0 −1 1 −1

Γ a.s. 4 1 0 2 0 ⇒ A1 + T2

where the four hydrogens are located, we obtain the equivalence representa-
tion for the hydrogen orbitals Γ a.s.. Some typical matrices for the symmetry
operations of Td in the equivalence representation Γ a.s. for the four hydrogen
atoms are

Da.s.(E) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (7.14)

Da.s.(C3) =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ , (7.15)

etc., where the rows and columns relate to the array (a b c d) of Fig. 3.3.
To find the characters for each class we use the equivalence transformation
principle to find how many sites go into themselves under the symmetry op-
erations of each class of Td. The results for the characters of the equivalence
representation Γ a.s. formed from transforming the atom sites (a.s.) according
to the symmetry operations of group Td are summarized just under the char-
acter table for Td (see Table 7.6). Using the decomposition theorem (3.20)
we then find the irreducible representations of Td that are contained in Γ a.s.

(see Table 7.6). Thus Γ a.s. gives the symmetries for the LCAOs for the equiv-
alence transformation showing that these orbitals are made of an s-function
transforming as A1 and a p-function transforming as T2.

The linear combination of the atomic orbitals of the four hydrogen atoms
transforming as A1 is clearly the symmetric sum of the atomic orbitals.

ψ(A1) =
1
2
(ψa + ψb + ψc + ψd) (7.16)

and the three degenerate partners of the T2 representation are
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Table 7.7. Characters and symmetries for the angular momentum states in Td

symmetry

E 8C3 3C2 6σd 6S4

χ�=0 1 1 1 1 1 A1 A1 → s state

χ�=1 3 0 −1 1 −1 T2 T2 → p state

χ�=2 5 −1 1 1 −1 E + T2

ψ1(T2) =
1
2
(ψa + ψb − ψc − ψd)

ψ2(T2) =
1
2
(ψa − ψb + ψc − ψd)

ψ3(T2) =
1
2
(ψa − ψb − ψc + ψd) . (7.17)

The T2 orbitals must be orthogonal to the A1 orbitals and to each other and
must transform as irreducible representation T2 under symmetry operations
of the group (see Problem 7.6).

The symmetries for the directed valence orbitals for the carbon atom can
be related conveniently to angular momentum states using the full rotation
group and the characters for rotations and inversions (see (5.11) and (5.13)).
To make a directed valence bond from the central carbon atom to the four
hydrogen atoms at locations a, b, c, d in Fig. 3.3, the carbon atom must have
wave functions with the same symmetries for its four valence electrons as the
four LCAOs for the hydrogen atoms (see (7.16) and (7.17)). This tells us that
the electronic states for the carbon directed valence state must have a 2s12p3

configuration and A1 + T2 symmetries for the carbon valence electrons. The
symmetries for the angular momentum states are found from

χ(α) =
sin[(�+ 1

2 )α]
sin(α/2)

for pure rotations

χ(iα) = (−1)� sin[(�+ 1
2 )α]

sin(α/2)
for improper rotations .

We thus obtain the characters for the angular momentum states in the Td

group and list them in Table 7.7, where we have made use of the fact that
{
σd = iC′

2

S4 = iC4 ,

in which the C′
2 is a (110) twofold axis. We note that the C′

2 operation to-
gether with the inversion operation take one of the a, b, c, d vertices in Fig. 3.3
into a vertex occupied by a hydrogen atom. The joint operation iC4 = S4

transforms the a, b, c, d vertices another themselves.
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Table 7.8. Relation between angular momentum states and basis functions for
group Td

basis functions

� = 0 s-state 1

� = 1 p-state (x, y, z)

� = 2 d-state (xy, yz, zx︸ ︷︷ ︸
T2

, x2 − y2, 3z2 − r2)︸ ︷︷ ︸
E

The results in Table 7.7 could equally well have been obtained by look-
ing at the character table for group Td (see Table A.32) and making the
identifications as displayed in Table 7.8, and by associating the various basis
functions of the angular momentum states with the appropriate irreducible
representations for the Td group.

If we now apply this discussion to the CH4 molecule we see that the di-
rected valence orbitals for the carbon contain one 2s (A1) state and three 2p
(T2) states to bond to the four hydrogen atoms. These A1 and T2 states can
accommodate all eight valence electrons for the CH4 molecule. A linear com-
bination of s and px, py, pz functions which transforms at A1 and T2 for the
directed valence orbitals of the carbon atom along the four diagonal directions
of the cube (see Fig. 3.3) is

Ψ(1, 1, 1) =
1
2
(ψs + ψpx + ψpy + ψpz)

Ψ(1,−1,−1) =
1
2
(ψs + ψpx − ψpy − ψpz)

Ψ(−1, 1,−1) =
1
2
(ψs − ψpx + ψpy − ψpz)

Ψ(−1,−1, 1) =
1
2
(ψs − ψpx − ψpy + ψpz) . (7.18)

The linear combination with all “+” signs Ψ(1, 1, 1) transforms as the
A1 irreducible representation. The other three functions with two “+”
and two “−” signs transform as the three partners of the T2 irreducible
representation as can be seen by applying the symmetry operations of
group Td to these directed valence wave functions. Thus (7.18) gives
a set of orthonormal wave functions for the four electrons of the carbon
atom.

Bonding states are made between the A1 carbon orbital and the A1 or-
bital of the four hydrogens and between the corresponding T2 carbon and
hydrogen orbitals following the same type of block diagonal form as is shown
in Fig. 7.4 for the CO molecule. Although the carbon electrons must be pro-
moted to the excited sp3 configuration to satisfy the bonding orbitals in the
molecule, the attractive bonding energy due to the CH4 bonds more than
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compensates for the electronic excitation to form the sp3 excited state for
the carbon atom. It is of interest that the orbitals in (7.18) also represent
normalized functions for tetrahedral bonding orbitals in common semicon-
ductors.

Finally we consider the bond strengths along a directed valence orbital
to show that the bond strength is a maximum along the directed valence
orbital. To illustrate bond strengths, consider the (1, 1, 1) directed valence
bond 1

2 (ψs + ψpx + ψpy + ψpz ) with A1 symmetry for CH4 (see (7.18)). We
express each of the terms of this equation in terms of spherical harmonics,
using polar coordinates. For angular momentum � = 0 and � = 1 the spherical
harmonics yield

ψs = 1 , ψpy =
√

3 sin θ sinφ ,

ψpx =
√

3 sin θ cosφ , ψpz =
√

3 cos θ . (7.19)

We can thus write the angular dependence of the directed valence bond along
(111) as

Ψ(1, 1, 1)|(θ,φ) =
f(r)

2

[
1 +

√
3 sin θ(cosφ+ sinφ) +

√
3 cos θ

]
. (7.20)

Differentiation with respect to θ and φ determines the values of θ and φ
which give a maximum bond strength. It is found that this wavefunction
is a maximum along the (111) direction, but not along another one of the
diagonal axes (see Problem 7.6).

7.5.3 The Hypothetical SH6 Molecule

As another illustrative example, consider a hypothetical molecule SH6 where
the six identical H atoms are arranged on a regular hexagon (e.g., the ben-
zene ring has this basic symmetry) and the sulfur is at the center. For the
hydrogens, we have six distinct atomic orbitals. To simplify the secular equa-
tion we use group theory to make appropriate linear combinations of atomic
orbitals: ⎛

⎜⎜⎜⎜⎜⎜⎝

ψa

ψb

ψc

ψd

ψe

ψf

⎞
⎟⎟⎟⎟⎟⎟⎠
, (7.21)

so that the transformed linear combinations are proper basis functions for
irreducible representations of the point symmetry group D6h which applies to
this problem. We see that the largest dimension for an irreducible representa-
tion in D6h is n = 2. We show below that the use of symmetry will result in
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Fig. 7.6. Geometry of the hypothetical SH6 planar molecule with six hydrogens at
the corners of a hexagon and the sulfur atom at the center (D6h symmetry)

a secular equation with block diagonal form, having blocks with dimensions
no greater than (2 × 2).

To find the proper linear combination of atomic orbitals, we find the char-
acters for the equivalence transformation Γ a.s.(R) for the six hydrogen atoms
in D6h symmetry (see Fig. 7.6) by considering how many atom sites go into
each other under the various symmetry operations of the group. The results
for Γ a.s. for each class are given at the bottom of the Character Table 7.9 for
D6 where D6h = D6⊗ i. We now set up the appropriate linear combinations of
atomic orbitals for the six hydrogen atoms. This can be done most easily by
utilizing the correspondence of this problem with the sixth roots of unity. We
will denote the sixth roots of unity by 1, Ω, ω,−1, ω2, Ω5, where ω = e2πi/3

and Ω = e2πi/6. For simplicity we will denote the atomic orbitals at a site
α by ψα and use the abbreviated notation α. In terms of the site notation
(a, b, c, d, e, f), the sixth orthogonal linear combinations formed by taking the
sixth roots of unity are

ψ1 a+ b+ c+ d+ e+ f transforms as Γ1 ,

ψ2 a+Ωb+ ωc− d+ ω2e+Ω5f ,

ψ3 a+ ωb+ ω2c+ d+ ωe+ ω2f ,

ψ4 a− b+ c− d+ e− f transforms as Γ3 ,

ψ5 a+ ω2b+ ωc+ d+ ω2e+ ωf ,

ψ6 a+Ω5b+ ω2c− d+ ωe+Ωf .

To obtain the symmetries of the functions ψ1, . . . , ψ6 we examine P̂Rψi

where P̂R is a symmetry operation in group D6. Clearly ψ2 and ψ6 are part-
ners since ψ∗

2 = ψ6, and similarly ψ3 and ψ5 are partners since ψ∗
3 = ψ5,

so these provide good candidates for representing the Γ5 and Γ6 irreducible
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Table 7.9. Character table for point group D6

D6 E C2 2C3 2C6 3C′
2 3C′′

2

x2 + y2, z2 Γ1(A1) 1 1 1 1 1 1
z Γ2(A2) 1 1 1 1 −1 −1

Γ3(B1) 1 −1 1 −1 1 −1
Γ4(B2) 1 −1 1 −1 −1 1

(x2 − y2, xy) Γ5(E2) 2 2 −1 −1 0 0
(xz, yz), (x, y) Γ6(E1) 2 −2 −1 1 0 0

Γ a.s. 6 0 0 0 2 0 ⇒ Γ1 + Γ3 + Γ5 + Γ6

Fig. 7.7. Schematic of the secular equation for six hydrogen orbitals at the corners
of a regular hexagon. Outside of the block structure, all entries are zeros. The Γ1

and Γ3 are one-dimensional representations and the Γ5 and Γ6 are two-dimensional
representations

representations. By inspection, ψ1 is invariant under all the symmetry oper-
ations of the group and thus ψ1 transforms as Γ1. As for ψ4, application of
C6(ψ4) = −ψ4, and C3ψ4 = ψ4, etc. verifies that ψ4 transforms as Γ3. In-
spection of the character table shows differences between Γ5 and Γ6 under the
operations in classes C2 and 2C6. It is clear that the basis formed by ψ2 and
ψ6 transforms under C6 as

C6(ψ2, ψ6) =
(
Ω5 0
0 Ω

)(
ψ2

ψ6

)
(7.22)

since a→ b, b→ c, c→ d, etc. Thus the trace of the matrix is

Ω +Ω5 = e2πi/6 + e−2πi/6 = 2 cos
2π
6

= 1 , (7.23)
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which is the proper character for Γ6. As a check, we see that C2(ψ2, ψ6)
results in a trace = Ω3 +Ω15 = Ω3 +Ω3 = 2 cosπ = −2, and this also checks.
Similarly we see that the transformation matrix for

C6(ψ3, ψ5) = DΓ5(C6)
(
ψ3

ψ5

)

again sends a → b, b → c, c → d, etc. and yields a trace of ω + ω2 = −1
while C2(ψ3, ψ5) yields a trace of ω3 +ω6 = 2. The unitary transformation U
which takes the original basis a, b, c, d, e, f into a basis that exhibits D6

symmetry

U

⎛
⎜⎜⎜⎜⎜⎜⎝

a
b
c
d
e
f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ4

ψ2

ψ6

ψ3

ψ5

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.24)

brings the one-electron molecular secular matrix into the block diagonal form
shown in Fig. 7.7, and zeros in all the off-diagonal positions coupling these
blocks.

Just as we used some intuition to write down the appropriate basis func-
tions, we can use physical arguments to suggest the ordering of the energy
levels. The fully symmetric state yields a maximum charge density between the
atom sites and therefore results in maximum bonding. On the other hand, the
totally antisymmetric state yields a minimum bonding and therefore should be
the highest energy state. The doubly degenerate levels have an intermediate
amount of wave function overlap.

The six symmetric orbitals that we make can be populated by 12 electrons.
But we only have six electrons at our disposal and these will go into the lowest
energy states. Figure 7.8 shows a schematic view of the pile up of charge for

Fig. 7.8. Energies of the LCAOs formed by six hydrogen atoms at the corners of
a hexagon. Also shown is a schematic summary of the wave functions for the various
orbitals
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the states of various symmetry. The Γ1 state has the strongest bonding and
the Γ6 state has the next strongest binding, and therefore we can expect
the six electrons to populate these states preferentially. For this reason, the
molecular bonding produces a lower energy state than the free atoms.

Let us now consider making directed valence orbitals from the S atom
at the center of the hexagon to the six hydrogens. An isolated S atom is in
a 1s22s22p63s23p4 configuration. Thus to bond to the hydrogen atoms in the
six LCAOs, given by ψ1, . . . , ψ6, would require all the bonding states and
all the antibonding states to be occupied. This implies that the sulfur atom
would have to be promoted to a high energy state to bond in a planar config-
uration (see Problem 7.3). The sulfur atom in the ground state configuration
would only bond to the Γ1 and Γ6 blocks of the secular equation for SH6 in
Fig. 7.7.

7.5.4 The Octahedral SF6 Molecule

We next give an example of SF6 with a molecular configuration that involves
octahedral bonding (see Fig. 7.9). The octahedral configuration is very com-
mon in solid state physics.

If we now use the symmetry operations of Oh (Table A.30) we get the
characters for the equivalence representation Γ a.s. for the six atoms which sit
at the corners of the octahedron (see Fig. 7.9 and Table 7.10). The decomposi-
tion of the reducible representation Γ a.s. for the six equivalent fluorine atoms
gives

Γ a.s. = A1g + Eg + T1u . (7.25)

If we (hypothetically) were to put s-functions on each of the six fluorine sites,
then Γ a.s. given by (7.25) would be appropriate to make the linear com-
bination of atomic orbitals for the six fluorine atoms. However, if we put

Fig. 7.9. Schematic diagram of the SF6 molecule which exhibits octahedral bonding
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p-functions on each fluorine site then the appropriate equivalence transfor-
mation for p-electrons would be Γ a.s. ⊗ Γ (T1u), where we note that for Oh

symmetry the vector transforms as T1u. This general concept of taking the
direct product of the transformation of the atom sites with the symmetry of
the orbital on each site is frequently used in applications of the equivalence
principle.

Let us now look at the orbitals for electrons on the sulfur site to make the
directed valence bonds as shown in Fig. 7.9. Bonding orbitals are found by
setting the directed valence representation equal to the symmetries found from
the equivalence transformation for the fluorine electrons bonding to the sulfur.
For simplicity let us assume that Γ a.s. = ΓD.V. to fully exploit the bonding of
the cation and anions. We then need to identify the irreducible representations
contained in χD.V. with angular momentum states. The characters for the
angular momentum states in Oh symmetry are then found from

χ(α) =
sin(�+ 1

2 )α
sin(α/2)

(7.26)

and using the character table for Oh (see Table A.30). The results for the
angular momentum states are tabulated in Table 7.11. As an example, let us
suppose for simplicity that we have s functions on each of the six fluorine sites.
Then to produce ΓD.V. = A1g + Eg + T1u as in (7.25) we can use an s state
� = 0 for the A1g symmetry, a p state (� = 1) for the T1u symmetry, and a d
state (� = 2) for the Eg symmetry in (7.25). Thus sp3d2 orbitals are required
for the directed valence of the sulfur ion, which ordinarily has an atomic
ground state configuration 3s23p4. Thus to make the necessary bonding, we
must promote the S atom to an excited state, namely to a 3s13p33d2 state.
This type of excitation is called configuration mixing. In Problem 7.2, a more
realistic version of the octahedral SF6 molecule is considered, with p-function
wave functions for each of the six fluorine sites.

7.6 σ- and π-Bonds

We now discuss the difference between σ- and π-bonds which are defined in
the diagram in Fig. 7.10. The situation which we have considered until now is
bonding by s-functions or by p-functions in the direction of the bond and this is
denoted by σ-bonding, as shown in Fig. 7.10. Because of their asymmetry, the

Table 7.10. Characters for the 6 atoms sitting at the corners of an octahedron,
e.g., for the F sites of the SF6 molecule

E 8C3 3C2 6C′
2 6C4 i 8iC3 3iC2 6iC′

2 6iC4

Γ a.s. 6 0 2 0 2 0 0 4 2 0
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Table 7.11. Characters for angular momentum states and their irreducible repre-
sentations in Oh symmetry

E 8C3 3C2 6C′
2 6C4 i 8iC3 3iC2 6iC′

2 6iC4

� = 0 1 1 1 1 1 1 1 1 1 1 ⇒ A1g

� = 1 3 0 −1 −1 1 −3 0 1 1 −1 ⇒ T1u

� = 2 5 −1 1 1 −1 5 −1 1 1 −1 ⇒ Eg + T2g

� = 3 7 1 −1 −1 −1 −7 −1 1 1 1 ⇒ A2u + T1u + T2u

� = 4 9 0 1 1 1 −9 0 −1 −1 −1 ⇒ A1g + Eg + T1g + T2g

σ bonds with p-functions (Vppσ in Fig. 7.10) play an important role in making
directed valence bonding orbitals. We can also obtain some degree of bonding
by directing our p-functions ⊥ to the bond direction, as also shown in Fig. 7.10,
and this is called π-bonding. We note that there are two equivalent mutually
perpendicular directions that are involved in π-bonding. From considerations
of overlapping wavefunctions, we would expect π-bonding to be much weaker
than σ-bonding.

Just as group theory tells us which LCAOs are needed to form σ-bonds,
group theory also provides the corresponding information about the linear
combination of atomic orbitals that form π-bonds. We now describe in this
section a procedure for finding the symmetry for both σ-bonds and π-bonds.

Let us first review the situation for the σ-bonds. To find a σ-bond, we con-
sider the atomic wave function at each equivalent site to be degenerate with
the corresponding wave functions on the other sites and we find the transfor-
mation matrices that transform equivalent sites into one another according to
the symmetry operations of the group. To find out if an entry in this matrix is
1 or 0 we ask the question whether or not a site goes into itself under a partic-
ular symmetry operation. If it goes into itself we produce a 1 on the diagonal,
otherwise a 0. Therefore by asking how many sites go into themselves, we
obtain the character for each symmetry operation. This is the procedure we
have used throughout the chapter to find Γ a.s. which denotes the equivalence
transformation. This gives the symmetry designations for Vssσ bonds.

To find the characters for a π-bond, we have to consider how many vectors
normal to the bond direction remain invariant under the symmetry operations
of the group. The simplest way to obtain the characters for the σ-bonds and
π-bonds is to consider the transformation as the product of two operations:
the transformation of one equivalent site into another, followed by the trans-
formation of the vector on a site. Thus we write

Γ (a.s.) ⊗ Γgeneral vector = Γ (a.s.) ⊗ Γvector⊥ to σ−bonds

+Γ (a.s.) ⊗ Γvector ‖ to σ−bonds . (7.27)

But

ΓD.V. σ-bonds ≡ Γ (a.s.) ⊗ Γ(vector ‖ to σ-bonds) .
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Fig. 7.10. Schematic diagram of: σ-bonding (Vssσ) by s-functions and (Vppσ) by lon-
gitudinally oriented p-functions. Directed valence Vspσ are also indicated. π-bonding
(Vppπ) with transverse p-functions shown for two orientations

Thus
ΓD.V. π-bonds = Γ (a.s.) ⊗ Γgeneral vector − ΓD.V. σ-bonds , (7.28)

and we thus obtain the desired result

ΓD.V.π-bonds = Γ (a.s.) ⊗ Γvector ⊥ to σ-bonds . (7.29)

As an example of σ-bonds and π-bonds let us consider the problem of trigonal
bonding of a hypothetical C4 cluster, where one carbon atom is at the center
of an equilateral triangle and the other three carbon atoms are at the corners
of the triangle, as shown in Fig. 7.11. The pertinent character table is D3h

which is given in Table 7.12. For this group σh denotes an x–y reflection
plane and σv denotes a reflection plane containing the threefold axis and one
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of the twofold axes. Consider the linear combination of atomic orbitals made
out of the three carbon atoms at the corners of the equilateral triangle. From
the equivalence transformation for these three carbons, we obtain Γ (a.s.) (see
Table 7.13). Clearly if each of the orbitals at the corners of the equilateral
triangle were s-functions, then the appropriate linear combination of atomic
orbitals would transform as A′

1 + E′

A′
1 : ψ1 + ψ2 + ψ3 , (7.30)

E′ :

{
ψ1 + ωψ2 + ω2ψ3

ψ1 + ω2ψ2 + ωψ3

, (7.31)

where

ω = exp
(

2πi
3

)
. (7.32)

In transforming wavefunctions corresponding to higher angular momentum
states, we must include the transformation of a tensor (vector) on each of
the equivalent sites. This is done formally by considering the direct product
of Γ (a.s.) with Γtensor, where Γtensor gives the transformation properties of
the orbital: a scalar for s-functions, a vector for p-functions, a tensor for d-
functions, etc.

We now illustrate the construction of LCAOs from s- and p-functions,
noting that from the character table for the group D3h, s-functions transform

Fig. 7.11. Schematic diagram of a carbon atom forming bonds to three other carbon
atoms at the corners of an equilateral triangle

Table 7.12. Character Table for Group D3h(6m2)

D3h(6m2) ≡ D3 ⊗ σh E σh 2C3 2S3 3C′
2 3σv

x2 + y2, z2 A′
1 1 1 1 1 1 1

Rz A′
2 1 1 1 1 −1 −1

A′′
1 1 −1 1 −1 1 −1

z A′′
2 1 −1 1 −1 −1 1

(x2 − y2, xy) (x, y) E′ 2 2 −1 −1 0 0

(xz, yz) (Rx, Ry) E′′ 2 –2 −1 1 0 0
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Fig. 7.12. Schematic diagram for the σ-bonds and the in-plane π-bonds for car-
bon atoms at the corners of a triangle to a carbon atom at the center of the
triangle

as A′
1, pz functions as A′′

2 and (px, py) functions as E′. We thus obtain for
the transformation properties of the three s-functions at the corners of an
equilateral triangle as

Γ a.s. ⊗ Γs = (A′
1 + E′) ⊗A′

1 = A′
1 + E′ . (7.33)

For the pz functions which transform as A′′
2 we have for the direct product:

Γ a.s. ⊗ Γpz = (A′
1 + E′) ⊗A′′

2 = A′′
2 + E′′ . (7.34)

Finally for the px,y functions which transform as E′ we obtain

Γ a.s. ⊗ Γpx,py = (A′
1 + E′) ⊗ E′ = A′

1 +A′
2 + 2E′ . (7.35)

We will see below that the A′
1 + E′ symmetries correspond to σ-bonds and

the remaining (A′
2 + E′) + (A′′

2 + E′′) correspond to π-bonds, as shown in
Fig. 7.12.

For the carbon atom at the center of the equilateral triangle (see Fig. 7.11)
we make directed valence orbitals to the carbon atoms at sites (1), (2), and (3)
from states with A′

1 and E′ symmetry (see Sect. 7.5.1), which in accordance
with the character table for D3h, transform as the ψs and ψpx , ψpy wave
functions. The directed orbitals from the central carbon atom are thus

Table 7.13. Characters for the Γ a.s. representation of three carbon atoms sitting
at the corners of an equilateral triangle (D3h symmetry)

E σh 2C3 2S3 3C′
2 3σv

Γ (a.s.) 3 3 0 0 1 1 ⇒ A′
1 + E′
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ψ1 = αψs + βψpx

ψ2 = αψs + β

[
−1

2
ψpx +

√
3

2
ψpy

]

ψ3 = αψs + β

[
−1

2
ψpx −

√
3

2
ψpy

]
. (7.36)

The orthonormality condition on the three waves functions in (7.36), gives

α2 + β2 = 1 , β2 = 2α2 , (7.37)

or

α =
1√
3
, β =

√
2
3
, (7.38)

so that

ψ1 =

√
1
3
ψs +

√
2
3
ψpx

ψ2 =

√
1
3
ψs −

√
1
6
ψpx +

√
1
2
ψpy

ψ3 =

√
1
3
ψs −

√
1
6
ψpx −

√
1
2
ψpy . (7.39)

Using the basis functions in the character table for D3h and the classification
of angular momentum states in Table 7.14, we can make σ-bonding orbitals
with the following orbitals for the central carbon atom, neglecting for the
moment the energetic constraints on the problem:

2s2p2 s+ (px, py)

2s3d2 s+ (dxy, dx2−y2)

3d2p2 d3z2−r2 + (px, py)

3d3 d3z2−r2 + (dxy, dx2−y2) .

It is clear from Table 7.14 that the lowest energy σ-bond is made with the
2s2p2 configuration. The carbon atom has four valence electrons, three of
which make the in-plane trigonal σ-bonds. The fourth electron is free to bond
in the z-direction. This electron is involved in π-bonds, frequently discussed
in organic chemistry.

To obtain π-bonds from the central carbon atom to the atoms at the
corners of the triangle, we look at the character table to see how the vector
(x, y, z) transforms:

Γvector = E′ +A′′
2 . (7.40)
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Table 7.14. Characters for the angular momentum states and their irreducible
representations for the group D3h

(a)

E σh 2C3 2S3 3C′
2 3σv

� = 0 1 1 1 1 1 1 A′
1

� = 1 3 1 0 −2 −1 1 A′′
2 +E′

� = 2 5 1 −1 1 1 1 A′
1 +E′ +E′′

� = 3 7 1 1 1 −1 1 A′
1 +A′

2 +A′′
2 +E′ +E′′

(a)In this character table, the characters for the various entries are found using the
relations σh = iC2, 2S3 = 2iC6 and 3σv = 3iC2

We then take the direct product:

Γ a.s. ⊗ Γvector =

Γ a.s.︷ ︸︸ ︷
(A′

1 + E′)⊗ (E′ +A′′
2)︸ ︷︷ ︸

χvector

= (A′
1 ⊗ E′) + (A′

1 ⊗A′′
2 ) + (E′ ⊗ E′) + (E′ ⊗A′′

2)

= (E′) + (A′′
2 ) + (E′ +A′

1 + A′
2) + (E′′)

= (A′
1 + E′) + (E′ +A′′

2 +A′
2 + E′′) . (7.41)

Since the irreducible representations for the σ-bonds are A′
1 and E′, we have

the desired result that the irreducible representations for the π-bonds are

E′ +A′′
2 +A′

2 + E′′ .

We can now go one step further by considering the polarization of the π-bonds
in terms of the irreducible representations that are even and odd under the
horizontal mirror plane operation σh:

χD.V. π-bonds =

Even under σh︷ ︸︸ ︷
A′

2 + E′ + A′′
2 + E′′︸ ︷︷ ︸

Odd under σh

. (7.42)

This polarization analysis identifies the bonds in (7.33)–(7.35).
To find the irreducible representations contained in the directed valence

π-bonds, we have to go to rather high angular momentum states: � = 2 for
an E′′ state and � = 3 for an A′

2 state. Such high angular momentum states
correspond to much higher energy. Therefore π-bonding will be much weaker
than σ-bonding. The irreducible representations A′′

2 + E′′ correspond to π-
bonding in the z-direction while the A′

2 + E′ representations correspond to
π-bonding in the plane of the triangle, but ⊥ to the σ-bonding directions.
We further note that the symmetries A′′

2 + E′′ correspond to pz and dxz, dyz

orbitals for angular momentum 1 and 2, respectively. On the other hand, the
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symmetries A′
2 + E′ require � = 3 states, and therefore correspond to higher

energies than the A′′
2 + E′′ orbitals. A diagram showing the orbitals for the

σ-bonds and π-bonds for the various carbon atoms is given in Fig. 7.12.

7.7 Jahn–Teller Effect

The Jahn–Teller (JT) effect was discovered in 1937 [42] and it represents one of
the earliest applications of group theory to solid-state physics [9]. The Jahn–
Teller Theorem states that “any nonlinear molecular system in a degenerate
electronic state will be unstable and will undergo a distortion to form a system
of lower symmetry and lower energy, thereby removing the degeneracy.” The
spontaneous geometrical distortion in an electronically excited state results in
a lowering of the symmetry and a splitting of energy levels.

Both static and dynamic JT effects must be considered. In the static JT
effect, a structural distortion lowers the symmetry of the system and lifts
the degeneracy of the state. For a partially filled band, such a distortion
thus leads to a lowering of the total energy of the system as the lower en-
ergy states of the multiplet are occupied and the higher-lying states remain
empty.

The dynamic JT effect [44] can occur when there is more than one possible
distortion that could lead to a lowering of the symmetry (and consequently
also the lowering of the energy) of the system. If the potential minima of
the adiabatic potential are degenerate for some symmetry-lowered states of
a molecule, the electrons will jump from one potential minimum to another,
utilizing their vibrational energy, and if this hopping occurs on the same
time scale as atomic or molecular vibrations, then no static distortion will
be observed by most experimental probes. Those vibrational modes which
induce the dynamic JT effect contribute strongly to the electron–phonon cou-
pling.

The Jahn–Teller effect applies to some simple polyatomic molecules, such
as H3, and to complex organic molecules including carbon nanotubes as well
as defect centers. The effect has also been discussed for different symmetry
structures, such as cubic, tetrahedral, tetragonal, trigonal [60], and even icosa-
hedral systems, such as C60 [32].

For nonlinear molecules in a geometry described by a point symmetry
group possessing degenerate irreducible representations there always exists
at least one nontotally symmetric vibration that makes such electronically
degenerate states unstable. Under this symmetry-lowering vibration, the nu-
clei are displaced to new equilibrium positions of lower symmetry causing
a splitting of the originally degenerate state. The Jahn–Teller effect describes
the geometrical distortion of the electron cloud in the nonlinear molecule un-
der certain situations. Consider a molecule that is in a degenerate state ΨΓi

μ ,
belonging to the irreducible representation Γi, with partners μ. Then the com-
plex conjugate wave function KΨΓi

ν is necessarily a state with the same energy
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where K is the complex conjugation operator (see Chapter 16). If the nuclear
coordinates are displaced from the high-symmetry configuration by a normal
mode vibration QΓj

r , the electronic potential deviates from its equilibrium sit-
uation. The electronic potential can, therefore, be expanded in terms of the
vibrational symmetry coordinates:

V (r, Q) = V0 +
∑
Γj ,r

V Γj
r QΓj

r +
∑

Γjk,r,s

V ΓjΓk
rs QΓj

r QΓk
s + · · · . (7.43)

For small displacements only the first sum can be considered, and we have
the “linear” Jahn–Teller effect. A first-order perturbation approach to the
electronic levels involves the matrix elements:

M = 〈ΨΓi
μ |V (r, Q)|ΨΓi

ν 〉 . (7.44)

The argument of Jahn and Teller is that, since M reverses its sign if Q is
replaced by −Q, each perturbation ΔE of an electronic energy level should
also reverse its sign. Consequently, if M �= 0 due to any term related to a QΓi

belonging to Γi �= Γ1, i.e., the lattice mode vibration does not belong to the
totally symmetric representation, the symmetry of the unperturbed molecular
configuration also becomes unstable.

An interesting and instructive example of the Jahn–Teller effect occurs in
the C60 molecule which has 60 carbon atoms at the 60 vertices of a truncated
regular icosahedron. Although each carbon atom is in an equivalent site to
every other carbon atom on the icosahedron, two of the nearest neighbor C–C
bonds are single bonds while one is a double bond to satisfy the valence
requirements of the carbon atom which is in column IV of the periodic table.
Since the length of the double bond (0.140 nm) is shorter that that of the single
bond (0.146 nm), the icosahedron becomes slightly distorted. This distortion
does not affect the energy of the neutral atom in the ground state (HOMO),
but does affect the filling of the excited states as charge is added to the
fullerene [32]. The Jahn–Teller effect often involves spins and time reversal
symmetry (see Chap. 16), as illustrated in Fig. 16.5 and the associated text.

We also comment on the Renner–Teller effect, that is a splitting on the
vibrational levels of molecules due to even terms in the vibronic perturbation
expansion (7.43). This effect is usually smaller than the linear Jahn–Teller
effect, which is due to the odd terms in the expansion in (7.43), but it becomes
important for linear diatomic molecules where the Jahn–Teller effect is absent.
More details about the Jahn–Teller effect can be found in the literature, for
example in [60].

Selected Problems

7.1. This problem is on diatomic molecules and considers the helium molecule
He2 and the hydrogen molecular ion with an extra electron H−

2 .
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(a) Suppose that we could make a bound diatomic molecule containing four
electrons out of two helium atoms. What would you expect the ground
state electronic configuration to be, what would its symmetry state be,
and what would be its total electronic spin? Since the He2 molecule is not
formed under ordinary circumstances we know that the antibonding state
lies too high in energy to form a bound state.

(b) H−
2 however involves occupation of an antibonding state and does indeed

form a bound state. What is the symmetry configuration of the three
electrons in H−

2 ? Why is it possible for H−
2 to form a stable bound state

but not for He2? Group Theory gives us the symmetry designation for each
molecular electronic state, but does not by itself give definitive information
as to whether or not a bound state is formed.

7.2. Consider a hypothetical SF6 molecule with octahedral symmetry (see
Sect. 7.5.4 and Fig. 7.9).

(a) Using Γ a.s., construct the linear combination of atomic orbitals for the
six holes on the six fluorine atoms which transform according to the three
irreducible representations A1g + Eg + T1u contained in Γ a.s., assuming
that wave functions with p symmetry (� = 1) are used to describe the
valence states for the fluorine wave functions. Note that it is easier to
consider a single hole rather than all the electrons in the nearly filled shell
of the fluorine atom.

(b) What are the angular momentum states required to bond the sulfur to
the six fluorine atoms in p states.

(c) What are the irreducible representations corresponding to σ-bonds and
π-bonds for the central sulfur atom to the six fluorine atoms? Sketch the
orientation of these bonding orbitals.

7.3. Why would the octahedral configuration of Fig. 7.9 be more stable for
a hypothetical SH6 molecule than the planar configuration in Fig. 7.6? Con-
sider the angular momentum states required for the S atom to make the
appropriate directed valence bonds to the six hydrogens in the planar SH6

hypothetical molecule.

7.4. C2H4 (ethylene) is a planar molecule which has the configuration shown
in Fig. 7.13.

Fig. 7.13. Symmetry of the ethylene C2H4 molecule
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Fig. 7.14. Symmetry of the B12H12 icosahedral molecule

(a) Identify the appropriate point group for C2H4.
(b) Find the equivalence representation Γ a.s. for the two carbon atoms and

for the four hydrogen atoms in the C2H4 molecule.
(c) Considering the directed valence orbitals, how do the carbon atoms satisfy

their bonding requirements? Which angular momentum states are needed
to form bonding orbitals from each carbon atom?

(d) Give the block diagonal structure for the secular equation for the electronic
energy levels of ethylene.

7.5. Consider the B12H12 molecule shown in Fig. 7.14 where the 12 hydrogen
atoms (small balls) and the 12 boron atoms (large balls) are at vertices of
a regular icosahedron.

(a) What are the symmetry operations associated with the ten classes of the
full icosahedral group Ih (see Table A.28).

(b) What are the symmetries and degeneracies of the 12 linear combinations
of atomic orbitals (LCAOs) associated with the 12 equivalent hydrogen
atoms?

(c) Write the linear combinations of the 12 atomic orbitals (LCAOs) for the
12 hydrogen atoms in B12H12 in Ih symmetry.

(d) What are the angular momentum states involved with each of the directed
valence σ orbitals from a boron atom to a hydrogen atom?

7.6. This problem further develops the symmetry properties of the CH4

molecule introduced in Sect. 7.5.2.

(a) Using one symmetry operation from each class of the point group Td, show
that the linear combination of atomic orbitals ψ1(T2) in (7.17) transforms
as one of the partners of the irreducible representation T2.

(b) Using the symmetrized linear combination of atomic orbitals for the four
hydrogen atoms in (7.16) and (7.17) and the wave functions for the four
valence electrons for the carbon atom, construct the matrix Hamiltonian
for the secular equation for the CH4 molecule in block form showing the
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nonzero entries and their symmetries, analogous to the corresponding ma-
trix Hamiltonian for finding the electronic states for the CO molecule in
Fig. 7.4.

(c) Show that the directed valence bond wave function for CH4 given by (7.20)
has its maximum value along the (111) direction. What is the value of this
bond along a (1̄1̄1̄) direction? Along what direction does this bond have
its minimum value?

(d) What are the symmetries for the two lowest energy antibonding levels
for the four hydrogen atoms and the four electrons on the carbon atom
yielding the antibonding excited states of the CH4 molecule? Why do you
expect these excited states to have higher energies than the bonding states
discussed in Sect. 7.5.2?



8

Molecular Vibrations, Infrared,

and Raman Activity

In this chapter we review molecular vibrations and present the use of
group theory to identify the symmetry and degeneracy of the normal
modes. Selection rules for infrared and Raman activity are also dis-
cussed and are illustrated for a variety of molecules selected for pedagogic
purposes.

8.1 Molecular Vibrations: Background

In this section we briefly indicate how group theory helps to simplify
the solution of the dynamical matrix for molecular vibrations to ob-
tain the symmetries and degeneracies of the normal modes and their
characteristic displacements more quickly and directly. A molecule hav-
ing its atoms at their equilibrium sites is in an energy minimum. If the
atoms are displaced from their equilibrium positions, a restoring force
will be exerted which will tend to bring the atoms back to equilibrium.
If the displacement is small, the restoring forces and molecular motion
will be harmonic. The harmonic nature of the force implies that the
system can be in a quantum mechanical eigenstate, or normal mode of
vibration.

Suppose that a molecule contains N atoms (depending on whether
a net charge can be assigned to a specific atomic site) and suppose
further that the potential function describing the forces, such as bond
bending and bond stretching forces, can be expressed in terms of the
3N coordinates for the N atoms, as V (R1, . . . ,RN ). We are particu-
larly interested in V (R1, . . . ,RN ) about its equilibrium coordinates at
R◦

1, . . . ,R
◦
N , and we expand V about these equilibrium coordinates, uti-

lizing the fact that a minimum in energy implies the vanishing of the
first derivative of the potential. We can then conveniently take our
zero of energy at the potential minimum and obtain a Hamiltonian for
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molecular vibrations in terms of the small displacements from equilib-
rium:

H =
∑

k

1
2
mk ξ̇

2
k

︸ ︷︷ ︸
kinetic energy

+
∑
k,�

1
2
∂2V

∂ξk∂ξ�
ξkξ�

︸ ︷︷ ︸
potential energy

, (8.1)

where mk denotes the mass of the kth ion, ξk denotes its displacement
coordinate, and the potential energy depends on the second derivative
of V (R1, . . . ,RN). The Hamiltonian in (8.1) gives rise to a (3N × 3N)
secular equation. The roots of this secular equation are the eigen-
frequencies ω2

K and the eigenvectors denote the normal modes of the sys-
tem.

The usual procedure for finding the normal modes involves two transfor-
mations, the first being used to eliminate the mass term in the kinetic energy:

qk =
√
mk ξk , (8.2)

and a second transformation is used to express qk in terms of the normal mode
coordinates QK :

qk =
∑
K

akKQK , (8.3)

where akK denotes the amplitude of each normal mode QK that is contained
in qk.

Thus, by a proper choice of the akK amplitudes, we can use (8.2) and (8.3)
to reduce the potential energy V to a sum of squares of the form ω2

KQ
2
K/2.

These transformations yield for the potential function in (8.1):

V =
1
2

∑
k, �
K,L

(
∂2V

∂qk∂q�

)
akKa�LQKQL =

1
2

∑
K

ω2
KQ

2
K , (8.4)

where the coefficients akK are chosen to form a unitary matrix satisfying (8.4).
Thus we obtain the relations a†Kk = a−1

Kk = akK if the matrix elements of akK

are real. The akK coefficients are thus chosen to solve the eigenvalue problem
defined in (8.4). To achieve the diagonalization of the Vk� matrix implied by
(8.4) we must solve the secular equation

∑
k,�

a−1
Kk

(
∂2V

∂qk∂q�

)
a�L = ω2

KδKL . (8.5)

Solution of the secular equation (8.5) yields the eigenvalues or normal mode
frequencies ω2

K and the eigenfunctions or normal mode amplitudes akK for
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Table 8.1. Correspondence between important quantities in the electronic problem
(see Sect. 7.1) and the molecular vibration problem

quantity electronic molecular vibration

matrix element Hk�
∂2V

∂qk∂q�
= Vk�

eigenvalue En ω2
K

eigenfunctiona ψn(r) akK

For the molecular vibration problem, it is the normal mode amplitude akK which
describes the physical nature of the small amplitude vibrations and is analogous
to the wave function ψn(r) for the electronic problem. The eigenvalues and eigen-
functions are found by diagonalizing Hk� (electronic problem) or Vk� (vibrational
problem)

K = 1, . . . , 3N . From the form of the secular equation we can immediately
see the correspondence between the electronic problem and the molecular
vibration problem shown in Table 8.1.

The transformation defined by (8.2)–(8.5) leads to a simpler form for the
Hamiltonian

H =
∑
K

P 2
K/2mK + ω2

KQ
2
K/2 , (8.6)

which is a sum of harmonic oscillators, where Q2
K is the normal coordinate.

The Hamiltonian in (8.6) can become quite complicated, but group theory
can greatly simplify the required work by finding the normal modes that
directly put H into block diagonal form. As an example, one can compare
the analytical solution for the “oscillator formed by three equal masses at
the corners of an equilateral triangle”, as developed by Nussbaum [56], with
the group theory analysis of this same pedagogic molecule to be developed in
Problem 8.1.

8.2 Application of Group Theory
to Molecular Vibrations

In an actual solution to a molecular vibration problem, group theory helps
us to diagonalize the Vk� matrix, to classify the normal modes and to find
out which modes are coupled when electromagnetic radiation interacts with
the molecule, either through electric dipole transitions (infrared activity) or
in inelastic light scattering (the Raman effect). We discuss all of these issues
in this chapter.

We make use of the symmetry of the molecule by noting that the molecule
remains invariant under a symmetry operation of the group of the Schrödinger
equation. Therefore, application of a symmetry operation P̂R to an eigenfunc-
tion of a normal mode fK just produces a linear combination of other normal
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modes of the same frequency ωK . That is, fK forms a basis for a representation
for the symmetry operators P̂R of the molecule

P̂Rf
(i,α)
K =

∑
K′

D(i)(R)K′Kf
(i,α)
K′ , (8.7)

where D(i)(R)K′K denotes the matrix elements of the matrix representation
for symmetry operator R, and i denotes the irreducible representation which
labels both the matrix and the basis function (normal mode coordinate in
this case) and α denotes the partner of the basis function in representation
i. Since the basis functions for different irreducible representations do not
couple to each other, group theory helps to bring the normal mode matrix Vk�

into block diagonal form, with each eigenvalue and its corresponding normal
mode labeled by an appropriate irreducible representation. This is similar
in concept to the solution of the electronic eigenvalue problem discussed in
Chap. 7, except that for the vibrational problem every atom (or ion) in the
molecule has three degrees of freedom, and a vector must be assigned to
each atomic site. Thus the molecular vibration problem is analogous to the
electronic problem for p-functions, where the p-functions also transform as
a vector.

Therefore, to find the normal modes for the vibration problem, we carry
out the following steps:

(a) Identify the symmetry operations that define the point group G of the
molecule in its equilibrium configuration.

(b) Find the characters for the equivalence representation, Γequivalence = Γ a.s.

(a.s. stands for atom site). These characters represent the number of
atoms that are invariant under the symmetry operations of the group.
Since Γ a.s. is, in general, a reducible representation of the group G, we
must decompose Γ a.s. into its irreducible representations.

(c) We next use the concept that a molecular vibration involves the transfor-
mation properties of a vector. In group theoretical terms, this means that
the molecular vibrations are found by taking the direct product of Γ a.s.

with the irreducible representations for a radial vector [such as (x, y, z)].
The representation for the molecular vibrations Γmol.vib. are thus found
according to the relation

Γmol.vib. = (Γ a.s. ⊗ Γvec) − Γtrans − Γrot , (8.8)

where Γtrans and Γrot denote the representations for the simple transla-
tions and rotations of the molecule about its center of mass. The charac-
ters found from (8.8), in general, correspond to a reducible representation
of group G. We therefore express Γmol.vib. in terms of the irreducible rep-
resentations of group G to obtain the normal modes. Each eigen-mode is
labeled by one of these irreducible representations, and the degeneracy
of each eigen-frequency is the dimensionality of the corresponding irre-
ducible representation. The characters for Γtrans are found by identifying
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the irreducible representations of the group G corresponding to the ba-
sis functions (x, y, z) for the radial vector r. The characters for Γrot are
found by identifying the irreducible representations corresponding to the
basis functions (Rx, Ry, Rz) for the axial vector (e.g., angular momen-
tum which for example corresponds to r × p). Since the radial vector r
(x, y, z) and the axial vector r× p denoted symbolically by (Rx, Ry, Rz)
transform differently under the symmetry operations of group G, every
standard point group character table (see Appendix A) normally lists
the irreducible representations for the six basis functions for (x, y, z) and
(Rx, Ry, Rz).

(d) From the characters for the irreducible representations for the molecular
vibrations, we find the normal modes, as discussed in the next section.
The normal modes for a molecule as defined by (8.8) are constrained to
contain only internal degrees of freedom, and no translations or rotations
of the full molecule. Furthermore, the normal modes must be orthogonal
to each other.

(e) We use the techniques for selection rules (see Sect. 6.6 in Chap. 6) to find
out whether or not each of the normal modes is infrared active (can be
excited by electromagnetic radiation, see Sect. 8.6) or Raman-active (see
Sect. 8.7).

It is important to recall that Γvec(R) is obtained by summing the irreducible
representations to which the x, y, and z basis functions belong. If (x, y, z)
are the partners of a three-dimensional irreducible representation T , then
Γvec(R) = Γ T (R). If, instead, x, y, and z belong to the same one-dimensional
irreducible representation A, then Γvec(R) = 3ΓA(R). If the x, y, and z basis
functions are not given in the character table, Γvec(R) can be found directly
from the trace of the matrix representation for each rotation R. All the point
group operations are rotations or combination of rotations with inversion. For
proper rotations, χvec(R) = 1 + 2 cos θ, so that the trace for the rotation
matrix can be always be found directly from⎛

⎜⎝
cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎞
⎟⎠ . (8.9)

Improper rotations consist of a rotation followed by a reflection in a horizon-
tal plane resulting in the character −1 + 2 cos θ where the +1 for the proper
rotation goes into −1 for an improper rotation, since z goes into −z upon
reflection. Table 8.2 shows characters for Γvec for several selected point group
operations. For C5, we need to consider cos 72◦ = 0.30901 . . . and the corre-
sponding character becomes χvec(C5) = 1.61803 . . ..

To illustrate the procedure for finding molecular vibrations, we consider
in the next sections the molecular vibrations of several different molecules
to illustrate the methods discussed above and to provide more practice in
using the various point groups. However, before going to specific molecules,
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Table 8.2. Characters χvec for the vector for selected point group operations

E C2 C3 C4 C6 i σ S6 S4 S3

3 −1 0 1 2 −3 1 0 −1 −2

we present the general procedure used to find the eigenvectors for the normal
modes associated with a specific irreducible representation of a group.

8.3 Finding the Vibrational Normal Modes

In searching for the vectors which describe the normal mode displacements,
we identify the point group of the molecule, thus providing us with the sym-
metry operations and the character table. Therefore, to find the normal mode
eigenvector associated with an irreducible representation, we apply the pro-
jection operator algebra (see Chap. 4) to a chosen elementary motion of the
atoms in the molecule (see (4.38))

P̂ (Γn) =
�n
h

∑
R

χ(Γn)(R)∗P̂R . (8.10)

This operation, however, projects out a function transforming as Γn but not
a specific partner of Γn. While this is not a problem in dealing with 1D
irreducible representations, for the case of multidimensional irreducible rep-
resentations, physical insights are usually needed for finding physically mean-
ingful partners of Γn quickly. The projection operators can also be used to
check if the normal modes that are found are a combination of partners
or not, and to find the other partners orthogonal to the first partner (see
Chap. 4). Furthermore, a given set of partners is not unique, but the part-
ners can be transformed among each other to get another orthonormal set.
As an example, we can find the eigenfunction (normal mode) for a tetra-
hedral molecule (e.g., CH4, point group Td) belonging, for example, to the
totally symmetric A1 irreducible representation. Since the four H atoms in
CH4 are equivalent (can be brought one into another by any of the sym-
metry operations of the group), the initial mode displacements of the atoms
(denoted by ψ0) can be chosen so that only one of the H atoms and the C
atom are moving in an arbitrary direction, as shown in Fig. 8.1a. The iden-
tity operator applied to ψ0 keeps it unchanged. The operation (E + C2)ψ0

gives the result shown in Fig. 8.1b, where the chosen axis for C2 is dis-
played. By applying the complete set P̂ (A1)ψ0 and summing up all the vec-
tors, we find the A1 mode, as shown in Fig. 8.1c, where the C atom does not
move.

Through this example, we show how physical insight helps to find the
eigenvectors. The mode in Fig. 8.1c is the stretching of the C–H bonds (the
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(a) (b) (c)

C2

Fig. 8.1. Schematic for obtaining the totally symmetric normal mode of a tetrahe-
dral (Td point group) molecule. (a) The initial chosen arbitrary motion ψ0 of two
nonequivalent atoms; (b) the result of applying the operations E and C2 on ψ0; and
(c) the normal mode displacements for the A1 symmetry mode of CH4 obtained
from the projection operator P̂ (A1)ψ0 after summing up all the vectors

so-called breathing mode) that keeps the tetrahedral symmetry unchanged,
as it should, since it belongs to the totally symmetric A1 irreducible repre-
sentation. Therefore, this normal mode could be visualized without doing
any of the procedures shown in Fig. 8.1a,b. In other cases, the final nor-
mal mode vector may not be so obvious, but still the use of physical in-
sights are useful. For example, for finding the normal modes belonging to
other irreducible representations of the tetrahedron, it is interesting to start
with atomic motions that are not the ones found for the A1 eigenvector, so
that you increase the likelihood of finding displacements that may be or-
thogonal to the partners belonging to the normal modes that you already
have. More about the normal modes of the tetrahedron will be discussed in
Sect. 8.8.3.

Finding the normal vibrational modes is not a difficult procedure, but
it gets more and more complicated as the number of atoms in the molecule
increases. For dealing with a large molecule composed of N atoms, we can
calculate

QΓn = P̂ (Γn) ⊗ ζ . (8.11)

Here ζ is a vector of dimensions 3N with the coordinates of an arbitrary initial
motion of the atoms, and P̂ (Γn) is a 3N × 3N matrix having all the atomic
coordinates for the N atoms in their equilibrium positions, and describing the
symmetry operations of the molecule. The QΓn is another 3N -dimensional
vector giving the normal mode belonging to Γn, or a combination of normal
modes if Γn is not a one-dimensional irreducible representation. In this way
the partners can be found by using a less arbitrary initial vector ζ.

In the next sections we start to illustrate the procedure for finding molec-
ular vibrations for specific and simple molecules. In doing so, we can better
illustrate the physical insights for finding the normal modes, rather than using
the formal procedure discussed above. We start by considering the molecular
vibrations of an isolated H2O molecule to illustrate finding the normal modes.
Then we introduce additional theoretical issues associated with the observa-
tion of combination modes as well as infrared active and Raman active modes
before returning to additional examples of molecular vibrations, for which we
also include a discussion of their infrared and Raman activity.
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8.4 Molecular Vibrations in H2O

We start by considering the vibrations of an isolated H2O molecule. This
molecule is chosen because it is a simple molecule, has two different chem-
ical species and involves a point group C2v(2mm) (Table A.5) we have not
discussed previously. The four symmetry operations for the H2O molecule
(see Fig. 8.2) include E the identity operation, a 180◦ rotation C2 around the
z-axis, a reflection plane σv in the plane of molecule and a σ′

v reflection per-
pendicular to the plane of the molecule. The σv plane is a vertical reflection
plane since the xz plane contains the highest symmetry axis C2. The reflection
plane σv′ which goes through C2 is ⊥ to the plane of the molecule. In labeling
the axes, the plane of the H2O molecule is denoted by xz, with the x-axis
parallel to a line going through the two hydrogens, and the perpendicular
y-axis goes through the oxygen atom. The appropriate point group for the
H2O molecule is the group C2v and the character table is given in Table 8.3
and Table A.5.

Next we find Γ a.s.. For H2O we have to consider the transformation of
three atoms under the symmetry operations of the group. In writing down
Γ a.s., we recall that for each site that is invariant under a symmetry operation,

Fig. 8.2. Normal modes for the H2O molecule with three vibrational degrees of
freedom. (a) The breathing mode with symmetry A1, which changes only bond
lengths. (b) The symmetric stretch mode of H2O with A1 symmetry, which changes
bond angles. (c) The antisymmetric stretch mode with B1 symmetry
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a contribution of +1 is made to the character of that operation; otherwise the
contribution is zero. Thus, we obtain for the characters for χa.s.(H2O) for all
three atoms in the H2O molecule as given in Table 8.4.

From the character table for group C2v(2mm) we see that the radial or
polar vector transforms as

Γvec = A1 +B1 +B2 ,

where z, x, y, respectively, transform as A1, B1 and B2. Likewise the irre-
ducible representations for the rotations Γrot. are A2 +B1+B2, corresponding
to the rotationsRz, Ry, andRx, respectively. We then calculate the irreducible
representations Γmol.vib. contained in the molecular vibrations:

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtranslations − Γrot

= (2A1+B1) ⊗ (A1+B1+B2) − (A1+B1+B2) − (A2+B1+B2)

= [3A1 + 3B1 + 2B2 +A2] − (A1 +B1 +B2) − (A2 +B1 +B2)

Γmol.vib. = 2A1 +B1 . (8.12)

The three modes in Γmol.vib. are all one-dimensional irreducible represen-
tations and therefore have nondegenerate or distinct vibrational frequen-
cies.

We must now find the normal modes corresponding to each eigen-
frequency. It is easy to use physical insights in such a simple symmetry.
The two normal modes with A1 symmetry must leave the symmetry undis-
turbed and this can be accomplished by the stretching of bonds and flexing
of bond angles. These modes are the breathing and symmetric stretch modes
(see Fig. 8.2). All molecules have a “breathing” mode which leaves the sym-
metry unchanged. To get the eigenvectors for the breathing mode of the
H2O molecule, assume that one of the hydrogen atoms is displaced in some
way. With A1 symmetry, this implies (under operation C2) that the other H

Table 8.3. Character Table for Group C2v(2mm)

C2v(2mm) E C2 σv σ′
v

x2, y2, z2 z A1 1 1 1 1
xy Rz A2 1 1 −1 −1
xz Ry , x B1 1 −1 1 −1
yz Rx, y B2 1 −1 −1 1

Table 8.4. Characters for the Atomic Site Transformation for H2O

E C2 σv σ′
v

Γ a.s.(H2O) 3 1 3 1 ⇒ 2A1 +B1
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atom must be correspondingly displaced (see Fig. 8.2(a)). To prevent trans-
lations and rotations of the molecule, O must be displaced as shown in
Fig. 8.2(a). (The actual vibration amplitude for each atom is constrained to
avoid translation and rotation of the molecule.)

The same arguments can be applied to obtain the A1 symmetric stretch
mode shown in Fig. 8.2(b). Application of the symmetry operations of group
C2v(2mm) (Table A.5) confirms that this mode has A1 symmetry. The H atom
motion is taken so that the two A1 modes are orthogonal. Since the breathing
mode and symmetric stretch mode have the same symmetry they can mix (or
couple to each other) and for this reason the directions of the H atom motion
for each of the modes in Fig. 8.2(a), (b) are not uniquely specified.

To obtain the normal mode for B1 symmetry, we observe that the character
for the C2 operation is −1, so that the two hydrogen atoms must move in
opposite directions relative to the O atom. Likewise, the motion of the O atom
must be odd under C2. These arguments determine the normalB1 mode shown
in Fig. 8.2(c).

As mentioned above, all molecules have a breathing mode which transforms
as A1 and preserves the molecular symmetry. As a practical matter in checking
whether or not the calculated normal modes are proper normal modes, it is
useful to verify that the normal mode motion does not involve motion of the
center of mass or rotation about the center of mass, and that all normal modes
are orthogonal to each other.

8.5 Overtones and Combination Modes

In addition to the first-order molecular vibrations discussed above, harmon-
ics (or multiples of the fundamental mode frequency such as 2ω, 3ω, etc.)
and combination modes (which refer to the sum and differences of the mode
frequencies, such as ω1 ± ω2) are observed. The observation of these modes
usually involves a perturbation to excite these modes, but this perturba-
tion will also perturb their frequencies somewhat. We consider in this sec-
tion the group theory of harmonics and combination modes in the limit of
small perturbations so that the perturbation to the mode frequencies is min-
imal.

Since the two phonon state is a product of the normal modes, the mode
frequency for the lowest overtone mode (or second harmonic) is at ∼ 2ωΓi

and the symmetry of the harmonic is given by the direct product Γi ⊗Γi and
the irreducible representations combined therein. Similarly, the combination
modes are at frequencies � (ωΓi +ωΓj ) in the limit of a very weak perturbation
and have symmetries given by Γi ⊗ Γj . In Sect. 8.8.3 where we consider the
overtones (harmonics) and combination modes of the methane molecule, we
can see which modes are activated in the infrared and Raman spectra for a real
molecule and we can see the frequency shifts produced by the perturbation
exciting these higher order molecular vibrations. Some of these modes for the
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Table 8.5. Observed vibrational frequencies for the methane moleculea

assignment symmetry mode frequency (cm−1)

ν1(A1) A1 fundamental 2914.2

ν2(E) E fundamental 1526

ν3(T2) T2 fundamental 3020.3

ν4(T2) T2 fundamental 1306.2

2ν2 A1 + A2 +E overtoneb 3067.0

2ν3 (A1 + E) + T1 + T2 overtoneb 6006

3ν3 (A1 + T1) + 2T2 overtonec 9047

2ν4 (A1 + E) + T1 + T2 overtoneb 2600

ν4 − ν3 (A1 + E) + T1 + T2 combination 1720

ν2 + ν4 T1 + T2 combination 2823

aHerzberg, “Infrared and Raman Spectra of Polyatomic Molecules”, “Molecu-
lar Spectra and Molecular Structure II”, 1949, “Van Nostrand Reinhold”, “New
York” [40]
bFor overtones, only the symmetric combinations of basis functions are Raman al-
lowed
cFor 3ν3 the symmetric combinations correspond to the angular momentum states
L = 1 which transforms as T2 and L = 3 which transforms as A1 + T1 + T2

methane molecule CH4 are given in Table 8.5 and are further discussed in
Sect. 8.8.3.

8.6 Infrared Activity

If electromagnetic radiation is incident on a molecule in its ground state, then
the radiation will excite those vibrational modes which give rise to a dipole
moment. In the ground state, the molecule is in a zero phonon state and there-
fore has A1 symmetry. We can use group theory to decide whether or not an
electromagnetic transition will occur, i.e., if a given excited mode can be con-
nected by the electromagnetic wave to the ground state A1 (or more generally
to the initial state of a highly excited molecule). The perturbation Hamilto-
nian for the interaction of the molecule with the electromagnetic (infrared)
interaction is

H′
infrared = −E · u , (8.13)

where E is the incident oscillating electric field and u is the induced dipole
moment arising from atomic displacements. In this interaction, u transforms
like a vector. To find out whether the incident photon will excite a particular
vibrational mode, we must examine the selection rules for the process. This
means that we must see whether or not the matrix element for the excita-
tion (ψf |u|ψi) vanishes, where ψf denotes the normal mode which we are
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trying to excite and u is the vector giving the transformation properties of
H′

infrared, while ψi denotes the initial state of the molecule, which for most
cases is the ground state. The ground state has no vibrations and is repre-
sented by the totally symmetric state A1 of the unperturbed molecule, while
H′

infrared transforms like a vector, since the applied field is external to the
molecule.

To determine whether or not a molecule is infrared active, we use the usual
methods for finding out whether or not a matrix element vanishes. That is,
we ask whether the direct product Γvec⊗Γi contains the representation Γf ; if
(Γvec⊗Γi) does not contain Γf , or equivalently if Γf⊗Γvec⊗Γi does not contain
A1, then the matrix element ≡ 0. Since molecular vibrations are typically
excited at infrared frequencies, we say that a molecule is infrared active if
any molecular vibrations can be excited by the absorption of electromagnetic
radiation. The particular modes that are excited are called infrared-active
modes. Correspondingly, the modes that cannot be optically excited are called
infrared inactive. Considering infrared excitation from the vibrational ground
state (no phonon), we write Γvec ⊗A1 = Γvec. The infrared active modes thus
transform as the irreducible representations for the basis vector x, y, and z
(usually given in the character tables), and the specific basis vector indicates
the polarization of the light needed to excite that specific mode.

As applied to the H2O molecule (see Sect. 8.4) we have the following iden-
tification of terms in the electromagnetic matrix element. Suppose that the
initial state has A1 symmetry for the unexcited molecule and that the vector u
transforms as

u → A1 +B1 +B2

corresponding to the transformation properties of z, x, y, respectively. The
case of the H2O molecule shows that the components of the vector may trans-
form according to different irreducible representations of the point group for
the molecule. Thus, we obtain for the direct product between the vector and
the initial state:

(A1 +B1 +B2) ⊗ (A1) = A1 +B1 +B2 (8.14)

showing the irreducible representations that are infrared active.
Therefore the two A1 modes and the B1 mode of water are all infrared-

active. Each of the three vibrations corresponds to an oscillating dipole mo-
ment. As far as polarization selection rules are concerned, we can excite either
of the two A1 modes with an optical electric field in the z-direction, the twofold
axis of the molecule. To excite the B1 mode, the optical electric field must
be along the x-direction, the direction of a line connecting the two hydro-
gen atoms. An electric field in the y direction (perpendicular to the plane
of the molecule) does not excite any vibrational modes. Since all vibrational
modes of the water molecule can be excited by an arbitrarily directed E
field, all the vibrational modes of the water molecule are infrared-active. It
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is not always the case that all vibrational modes of a molecule are infrared-
active. It can also happen that for some molecules only a few of the modes
are infrared-active. This situation occurs in molecules having a great deal of
symmetry.

To observe infrared activity in the second-order infrared spectra, we re-
quire that the combination of two vibrational modes be infrared-active. From
a group theoretical standpoint, the symmetry of the combination mode aris-
ing from constituent modes of symmetries Γi and Γj is given by the direct
product Γi ⊗ Γj . Since groups containing inversion symmetry have only odd
parity infrared-active modes, such symmetry groups have no overtones in the
second-order infrared spectrum.

8.7 Raman Effect

In the Raman effect the inelastically scattered light from a system is detected.
The induced dipole moment is

u =
↔
α ·Ei cosωt , (8.15)

where
↔
α is the Raman polarizability tensor, a second rank symmetric tensor.

Because the inelastic scattering of the incident light Ei can excite molecular
vibrations, the polarizability tensor has frequency dependent contributions at
the molecular vibration frequencies ωv

↔
α=

↔
α0 +Δ

↔
α cosωvt , (8.16)

so that

u =
(↔
α0 +Δ

↔
α cosωvt

)
· Ei cosωt (8.17)

=
↔
α0 ·Ei cosωt+

Δ
↔
α

2
[cos(ω − ωv)t+ cos(ω + ωv)t] · Ei ,

where the first term in (8.16 and 8.17) is the Rayleigh component at incident
frequency ω, the second term is the Stokes component at frequency (ω−ωv),
and the third term is the anti-Stokes component at frequency (ω + ωv). In
observing the first-order Raman effect,1 the scattered light is examined for
the presence of Stokes components at frequencies (ω−ωv) and of anti-Stokes
components at frequencies (ω+ωv). Not all normal modes of the molecule will
yield scattered light at (ω±ωv), although if the Stokes component is excited,
symmetry requires the anti-Stokes component to be present also, though its
intensity may be small.

1The first-order Raman process is the interaction of light with one vibrational
mode. The second-, third-, . . .nth-order Raman effect is related to combination or
overtones involving two, three, . . .nth vibrational modes.
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To find whether or not a vibrational mode is Raman active, we ask whether
or not the matrix element for the Raman perturbation vanishes. The Raman
perturbation is of the −u · E form and using (8.15), H′

Raman is written as

H′
Raman = −Δ

↔
α

2
EiEs cos(ω ± ωv)t . (8.18)

The transformation properties of H′
Raman are those of a second rank symmetric

tensor Δαij (where i, j = x, y, z). The vectors Ei and Es for the incident
and scattered light are external to the molecular system and it is only the
symmetry of the polarizability tensor Δαij that pertains to the molecule. To
find out whether a particular normal mode is Raman-active we need only
consider the matrix element:

(ψf |H′
Raman|ψi) , (8.19)

where ψf is the final state corresponding to a normal mode we are trying
to excite, H′

Raman is the Raman perturbation which has the transformation
properties of a symmetric second rank tensor, and ψi is the initial state gen-
erally taken as the ground state which has the full symmetry of the group
of Schrödinger’s equation. A vibrational mode is Raman active if the direct
product (Γi⊗ΓH′Raman , where H′

Raman transforms as a second rank symmetric
tensor) contains the irreducible representation for the final state Γf . This is
the basic selection rule for Raman activity. The group theory associated with
tensors is discussed in more detail in Chap. 18.

Since the Raman process is a second-order process, it involves an interme-
diate state. The process involves an electron–photon interaction to produce
an excited state where an electron–phonon scattering event occurs creating
(Stokes process) or absorbing (anti-Stokes process) a phonon, and finally the
scattered photon is emitted in an electron–photon interaction. In terms of
the spectroscopy of molecular systems with inversion symmetry, the Raman
effect is especially important because it is a complementary technique to in-
frared spectroscopy. Since the infrared excitation is a first-order process and
the dipole operator transforms as a vector, selection rules for a vector in-
teraction couple states with opposite parity. On the other hand, the Raman
process, being a symmetric second-order process, is characterized by an in-
teraction H′

Raman which transforms as a tensor that is even under inversion
and therefore couples an initial and final state of similar parity. Thus for
molecules with inversion symmetry infrared spectroscopy probes molecular
vibrations with odd parity, while Raman spectroscopy probes modes with
even parity.

If the molecule does not have inversion symmetry, some vibrational modes
are both Raman and infrared active, and others can be neither Raman nor
infrared-active. The latter symmetry modes are called silent modes.

The use of polarized light plays a major role in the assignment of ex-
perimentally observed Raman lines to specific Raman-active modes. In Ra-
man experiments with polarized light, it is customary to use the notation:
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ki(EiEs)ks to denote the incident propagation direction ki, the incident and
scattered polarization directions (EiEs) and the scattered propagation direc-
tion ks. From (8.18) we see that the Raman tensor H′

Raman depends on both
Ei and Es and on the change in the polarizability tensor Δ

↔
α , where Ei and

Es are, respectively, the incident and the scattered electric fields. It is custom-
ary to designate the scattered light as having diagonal Raman components
(Ei ‖ Es), or off-diagonal Raman components (Ei⊥Es).

To find the selection rules for the Raman effect, we observe that the po-
larizability Δ

↔
α in (8.15) is a second rank symmetric tensor (see Chap. 18)

and has the same transformation properties as a general quadratic form (e.g.,
x2, y2, z2, xy, yz, zx). The transformation properties of these basis functions
are usually found in the table of characters for the point groups, indicating
the irreducible representations to which the Raman-active vibrational modes
belong. The polarization selection rules for specific modes according to their
incident and scattered polarization is also obtained from the basis functions.
We note here that the symmetric off-diagonal components correspond to com-
binations (xy + yx)/2 and the corresponding terms for yz and zx. The anti-
symmetric terms for a second rank tensor correspond to (xy − yx)/2 and its
partners, which transform as the axial vectors (Rx, Ry, Rz), and are so listed
in the character tables. In a second-order Raman spectrum, a combination
mode or overtone will be observable if Γi ⊗Γj contains irreducible representa-
tions that are themselves Raman-active, since the H′

Raman matrix element in
this case will couple a no-phonon ground state to a combination mode excited
state (see (8.19)). Since x2 +y2 +z2 transforms as the identity transformation
and the direct product Γi ⊗Γi always contains the identity representation, all
second harmonics at 2ωi are Raman-active modes. Thus, some silent modes
that cannot be found in the first-order spectrum can thus be observed in the
second-order spectrum.

In the following subsections we discuss molecular vibrations for specific
molecules, and in so doing, we will also include comments about the infrared
and the Raman activity of these molecules.

8.8 Vibrations for Specific Molecules

In this section we consider molecular vibrations for specific molecules, start-
ing with linear molecules in Sect. 8.8.1 and then going to more complex
multiatomic molecules. We also discuss the infrared (Sect. 8.6) and Raman
(Sect. 8.7) activity of the normal modes for each of the molecules that are
considered.

8.8.1 The Linear Molecules

The procedure for dealing with the molecular vibrations of linear molecules
such as CO or H2 is special and is slightly different from what has been de-
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scribed in Sect. 8.2. We now present a method for handling the linear molecules
and give some examples. For a linear molecule, the irreducible representations
for the rotations just involves the rotationsRx andRy, assuming the molecular
axis to be along ẑ. Thus for the linear molecule, only two degrees of freedom
are removed by Γrot, since rotations along the axis of the molecule correspond
to the identity operation, considering the atoms as homogeneous balls with-
out any internal degrees of freedom. First we consider the heterogeneous CO
linear molecule (group C∞v in Table A.33) followed by the homogeneous H2

linear molecule (group D∞h in Table A.34). With these simple molecules, we
illustrate both molecular vibrations of linear molecules and the use of the
semi-infinite point groups C∞v and D∞v in this context.

The appropriate symmetry group for CO is C∞v (see Sect. 7.4.2). The
symmetry operations 2Cφ denote rotations about the ẑ axis in clockwise and
counter-clockwise senses by an arbitrary angle φ. Thus Cφ is a class with
an ∞ number of symmetry operations. The symmetry plane σv is a vertical
plane through the molecular axis at an angle φ with respect to an arbitrary
direction denoted by φ = 0. Since the 2Cφ and σv classes are of infinite order,
the number of irreducible representations is also infinite.

The first step in finding Γmol.vib. for a linear molecule is to compute
Γ a.s.. For the CO molecule shown in Fig. 8.3, the equivalence transfor-
mation yields Γ a.s. (see Table 8.6), from which we find the irreducible
representations for the molecular vibrations of CO, remembering that
Γrot only contains rotations in the xy plane normal to the rotation axis
of the molecule, and therefore Γrot transform as E1 while Γvec transform
as A1 + E1:

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot ,

Γmol.vib. = (2A1) ⊗ (A1 + E1) − (A1 + E1) − E1 = A1 .

Fig. 8.3. CO molecule only has an A1 breathing mode. The lighter mass of the C
atom results in a larger displacement to maintain the center of mass

Table 8.6. Characters for the Atomic Site Transformation for the CO molecule

E 2Cφ σv

Γ a.s. 2 2 2 ⇒ 2A1
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The A1 mode is the breathing mode for the CO molecule (see Fig. 8.3).
Since the C and the O atoms are distinct, this molecule has a dipole mo-
ment along the z direction so that CO is infrared active. From the char-
acter table for C∞v we see that the components of the Raman tensor
(x2 + y2) and z2 transform as A1, so we conclude that CO is also Raman
active.

If we now consider the O2 molecule (see Fig. 8.4), we have a homo-nuclear
molecule following the symmetry group D∞h (see Character Table A.34).
Here the displacements are now fully symmetric unlike the situation for the
CO molecule where the center of mass of the molecule must be conserved so
that the lighter atom has a larger vibrational amplitude. In the case of the O2

molecule the characters for Γ a.s. are listed in Table 8.7. Thus the irreducible
representations for the molecular vibrations of O2 become:

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = (A1g +A2u) ⊗ (A2u + E1u) − (A2u + E1u) − E1g (8.20)
= A1g ,

where Γrot = E1g for the rotations Rx, Ry. Because of the inversion symmetry
of the O2 molecule, all the normal modes have either even (gerade) or odd
(ungerade) symmetries. Thus for O2 the breathing mode (see Fig. 8.4) has
A1g symmetry and is infrared-inactive. From simple physical considerations
the breathing mode for O2 has no oscillating dipole moment nor can a dipole
moment be induced. Hence O2 does not couple to an electromagnetic field
through an electric dipole interaction, in agreement with our group theoreti-
cal result, so O2 is not infrared active. The A1g mode of the O2 molecule is
however Raman active, as is also the CO molecular vibrational mode men-
tioned above.

Fig. 8.4. The O2 molecule only has an A1g breathing mode with symmetric dis-
placements of the atoms in the normal mode vibration

Table 8.7. Characters for the Atomic Site Transformation for the O2 molecule

E 2Cφ C′
2 i 2iCφ iC′

2

Γ a.s. 2 2 0 0 0 2 ⇒ A1g + A2u
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Table 8.8. Characters for the Atomic Site Transformation for the CO2 molecule

E 2Cφ C′
2 i 2iCφ iC′

2

Γ a.s. 3 3 1 1 1 3

Fig. 8.5. The three vibrational normal modes of CO2: (a) the breathing mode with
A1g symmetry, (b) the antisymmetric stretch mode with A2u symmetry, and (c) the
doubly degenerate E1u mode where the mode displacements for the two partners
are orthogonal (i.e., ‖ and ⊥ to the page)

The CO2 molecule is chosen for discussion to show the various types of
modes that can be expected for linear molecules involving three or more atoms.
Below we consider another molecule (C2H2) described by the same symmetry
group D∞h but having slightly more complexity.

For the case of CO2 (see Fig. 8.5), we again have a linear molecule with
D∞h symmetry and now Γ a.s. corresponds to a three-dimensional representa-
tion (see Table 8.8), so that Γ a.s. = 2A1g +A2u.

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = (2A1g +A2u) ⊗ (A2u + E1u) − (A2u + E1u) − E1g (8.21)

= A1g + A2u + E1u .

The normal modes for CO2 are easily found with the help of the character
table, and are shown in Fig. 8.5. The A1g mode is the breathing mode, the
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Fig. 8.6. Schematic diagram of the normal modes of the linear C2H2 molecule: (a)
two breathing modes of A1g symmetry, (b) an antisymmetric stretch mode of A2u

symmetry, and (c) and (d) two doubly-degenerate bending modes of E1g and E1u

symmetries

A2u mode is the antisymmetric stretch mode and the E1u mode is a doubly
degenerate bending mode where the displacements of the carbon and the two
oxygens are normal to the molecular axis for each partner of the E1u bending
mode. Of these modes only the A1g mode is Raman active. In this case, the A2u

and E1u modes are infrared-active while the symmetric A1g mode is infrared-
inactive as can be seen from the character table for D∞h (Table A.34).

For the case of the linear C2H2 molecule, H–C≡C–H, also following group
D∞h symmetry, we obtain

Γ a.s. = 2A1g + 2A2u (8.22)

using the result for O2. Thus Γmol.vib. for the C2H2 molecule becomes

Γmol.vib. = (2A1g + 2A2u) ⊗ (A2u + E1u) − (A2u + E1u) − E1g

Γmol.vib. = 2A1g +A2u + E1u + E1g .

The five normal modes for the molecular vibrations of C2H2 are shown in
Fig. 8.6, again illustrating the breathing, antisymmetric stretch and bending
modes corresponding to five different vibrational frequencies. These concepts
can of course be generalized to give normal modes for more complex linear
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molecules. For the C2H2 molecule, the two A1g modes correspond to basis
functions (z2 and x2+y2) while the E1g modes correspond to the (zx, zy) basis
functions. These two different symmetry modes can be distinguished using
optical polarization experiments whereby the A1g modes will be observable
when the incident and scattered light are polarized parallel to each other, but
the E1g mode will be observed when the polarization of the incident beam
is along the molecular axis but the scattered beam is perpendicular to the
molecular axis.

In Problem 8.3 it is shown that Γmol.vib. and the normal modes of the
C2H2 linear molecule can be easily found by considering the C2H2 molecule
as being composed of two C–H blocks or of the two hydrogen atoms and
the two carbon atoms as two other blocks, each with internal degrees of
freedom vibrating against each other. Such considerations help in provid-
ing intuition about obtaining the internal vibrational modes of complex
molecules.

We now illustrate how symmetry is used to assist in the solution of molec-
ular vibration problems for several 3D molecules of pedagogic interest.

8.8.2 Vibrations of the NH3 Molecule

The NH3 molecule is one of two molecules selected for illustrating normal
mode properties of three-dimensional molecular vibrations. To illustrate some
features of degenerate normal modes, let us consider the NH3 molecule (see
Fig. 8.7). The hydrogen atoms in NH3 are at the corners of an equilateral
triangle and the nitrogen atom is either above or below the center of the
triangle. If the molecule were planar, it would haveD3h symmetry, but because
the N atom is not coplanar with the three hydrogen atoms, the appropriate
symmetry group is C3v (see Table A.10). We note that Γ a.s. for the three
hydrogen atoms at the corners of a triangle transforms as A1 + E and we
further note that Γ a.s. for the nitrogen atom transforms as A1 under all the
symmetry operations of the group. The results are written in Table 8.9 first
for all four atoms. We can also consider the three hydrogen atoms separately
and build up Γmol.vib. from the N atom plus the three hydrogen LCAOs as
two building blocks (see Problem 8.1).

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = (2A1 + E) ⊗ (A1 + E) − (A1 + E) − (A2 + E)

= 2A1 + 2E . (8.23)

Table 8.9. Characters for the Atomic Site Transformation for the NH3 molecule

E 2C3 3σv

Γ a.s.
total 4 1 2 ⇒ 2A1 +E

Γ a.s.
H 3 0 1 ⇒ A1 + E
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• One mode of the NH3 molecule with A1 symmetry is the breathing mode,
where the nitrogen atom is at rest and the equilateral triangle expands
and contracts (see Fig. 8.7(a)).

• For the A1 out-of-plane breathing mode, the H atoms move in the +z direc-
tion while the N atom moves in the −z direction, such that no translation
of the center of mass occurs (see Fig. 8.7(b)).

• One of the E modes is a doubly-degenerate in-plane mode. One eigenvector
is made from the linear combination of hydrogen atom motions (H1 +
ωH2 + ω2H3) where the motion of each H atom bears a phase relation
of ω = e2πi/3 relative to the next H atom. The second eigenvector is

(a) (b)

(c)

Fig. 8.7. Normal modes for the NH3 molecule: (a) the in-plane breathing mode, (b)
the out-of-plane (z-axis) breathing mode for which + and − refer to above and below
the plane, respectively, and (c) the two partners of the in-plane mode of E symmetry
which are complex conjugates of each other. The phase factor ω is exp(2π/3). There
is also another doubly-degenerate E mode for z-axis (out-of-plane) motion that is
not shown
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H1 + ω2H2 + ωH3 which is orthogonal to the first. The nitrogen atom
moves in the xy plane in such a way as to prevent translation of the center
of mass and rotation of the molecule (see Fig. 8.7(c)).

• For the second doubly degenerate E mode, the hydrogen atoms move in the
out-of-plane direction with a phase difference between adjacent hydrogen
atoms. For one partner, the three hydrogen atoms have phase factors of 1,
ω and ω2 while the second partner has motions with phases for its three
hydrogen atoms that are the complex conjugates of the phases of the first
partner ω = e2πi/3 for one partner and ω2 = e4πi/3 for the other partner.
The nitrogen atom again moves in such a way as to prevent translations
or rotations of the molecule (not shown in Fig. 8.7(c)).

The molecular vibrations for the NH3 molecule illustrate the concept of phase
relations between the motions of various atoms in executing a normal mode.
Though it should be emphasized that in the case of degenerate modes, the nor-
mal mode (basis function) picture is not unique, and therefore linear combina-
tions of modes of the same symmetry are also possible. Since the normal modes
for the NH3 molecules have A1 and E symmetries and since Γvec = A1 + E,
all the vibrational modes for NH3 are infrared-active, with one of the two
A1 modes excited by polarization E ‖ ẑ, the other being excited by polar-
ization E⊥ẑ. The same is true for the two E modes. The connection of the
normal modes of NH3 to the normal modes of three atoms at the vertices
of a triangle is considered in Problem 8.1. For the case of the NH3 molecule
which has C3v symmetry, the two Raman-active modes with A1 symmetries
have normal mode displacements x2 + y2 and z2 and the two modes with
E symmetries have normal mode displacements (x2 − y2, xy) and (xz, yz),
so that all the normal modes for the NH3 molecule (2A1 + 2E) are Raman-
active. Polarization selection rules imply that the A1 modes are diagonal (i.e.,
scattering occurs when the incident and scattered polarizations are parallel
Ei ‖ Es), while the E modes are off-diagonal (i.e., scattering occurs when
Ei ⊥ Es).

8.8.3 Vibrations of the CH4 Molecule

The CH4 molecule is chosen to illustrate the vibrational modes of a five atom
molecule with high symmetry and to give more practice with the Td point
group symmetry (Table A.32) because of the importance of this point group
symmetry to semiconductor physics.

The equivalence transformation for the four hydrogen atoms of the CH4

molecule yields Γ a.s.
4H = A1 + T2 (see Sect. 7.5.2) while for the carbon atom

Γ a.s.
C = A1 since the carbon atom is at the center of the regular tetrahedron.

Thus for the whole CH4 molecule with Td symmetry we have Γ a.s. = 2A1 + T2.
In Td symmetry, the radial vector transforms as T2 while the angular momen-
tum (or axial vector for rotations) transforms as T1. We thus get the following
result for Γmol.vib. for the CH4 molecule.
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For the symmetry types in the molecular vibrations Γmol.vib. (see Fig. 8.8):

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = [(2A1 + T2) ⊗ (T2)] − T2︸︷︷︸
translations

−
rot︷︸︸︷
T1

= 2T2 + (T1 + T2 + E +A1) − T2 − T1

= A1 + E + 2T2 .

For many molecules of interest, the normal modes are given in [40]. We give in
Fig. 8.8 the normal modes adapted from this reference. For the CH4 molecule
only the modes with T2 symmetry are infrared active. The modes with A1, E,
and T2 symmetries are Raman active, where (xy, yz, zx) transforms as T2 and

Fig. 8.8. Normal vibrations of a tetrahedral CH4 molecule [40]. The three twofold
axes (dot-dash lines) are chosen as the x-, y-, and z-axes. The exact directions of
the H atom displacements depend on the nature of the C–H bond strength and the
masses of H and C. Although CH4 and CCl4 have, of course, the same symmetry
modes, the H and Cl atom displacement directions will differ. This issue was also
discussed in Sect. 8.4 for the modes of H2O (see Fig. 8.2)
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the basis functions x2 − y2, and 3z2 − r2 transform as E, while r2 transforms
as A1 (see Table A.32).

We now give an example of harmonics and combination modes that
can be observed in the second-order Raman and infrared spectra in terms
of the CH4 molecule. In Table 8.5 the frequencies of the four fundamen-
tal modes in the Raman spectra are given along with some of the over-
tones and combination modes. The symmetries of the overtones (harmon-
ics) and combination modes are found by taking the direct product Γi ⊗ Γj

between these modes. We see that the mode frequencies can deviate sig-
nificantly from ωi ± ωj and the reason for this is that the perturbation
which excites the harmonics and combination modes also perturbs the har-
monic oscillator potential for the molecule with some combination mode fre-
quencies being increased and others being decreased. We note that the T2

modes are observed in the first-order infrared spectrum for CH4. Some of
the direct products of importance in interpreting the second-order spectra
are

E ⊗ E = A1 +A2 + E

and

T2 ⊗ T2 = A1 + E + T1 + T2 .

8.9 Rotational Energy Levels

In practice all molecules have rotational levels (labeled by quantum num-
ber j). In the approximation that we can discuss the rotational motion as dis-
tinct from the vibrational motion, the rotational motion of molecules should
be much lower in frequency than the vibrational motion, and of course very
much lower in frequency than the electronic motion. Typical rotational ener-
gies are of the order of ∼ 1 meV and occur at far-infrared frequencies. The
vibrational modes are observed in the mid-IR range, typically in the range
20–200meV.

In Sect. 8.9.1 we discuss rotational energy levels of a molecule in terms
of the rigid rotator as a simple example. Then in Sect. 8.9.2 we state
the Wigner–Eckart theorem which gives in succinct form the selection
rules for IR and Raman activity for rotational energy levels. Finally in
Sect. 8.9.3 we introduce the coupling between the vibrational and rotational
levels, giving some examples of rotational energy levels for a few simple
molecules.

8.9.1 The Rigid Rotator

To illustrate molecular vibrations, we consider the simple case of the rigid
rotator neglecting the effect of the molecular vibrations. The Hamiltonian for
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Fig. 8.9. (a) Rotational levels of a diatomic molecule. (b) Energy separation
between sequential rotational levels. (c) The rotational absorption spectrum for
gaseous HCl

rotational motion is written as

Hrot =
J2

x

2Ix
+
J2

y

2Iy
+
J2

z

2Iz
, (8.24)

where Ix, Iy, Iz are the principal moments of inertia and Jx, Jy, Jz are the
angular momentum operators. The coordinates x, y, z are chosen so that the
z axis is along the main symmetry axis of the molecule. If we have a diatomic
molecule, one principal moment of inertia vanishes Iz = 0, while the other
two become equal Ix = Iy. In this case the Hamiltonian is simply

Hrot =
J2

2I
, (8.25)

and has eigenvalues

Ej = �
2j(j + 1)/2I .

Unlike the vibrational energy levels which are all equally spaced with a level
separation �ωv, the rotational energy levels are unequally spaced:

Ej+1 − Ej = C[(j + 1)(j + 2) − j(j + 1)] = 2C(j + 1) (8.26)

with C = �
2/2I and the level spacing depends on the quantum number j

(see Fig. 8.9(a)). If the molecule contains a permanent electric dipole mo-
ment, then it is possible to excite the molecule into higher rotational en-
ergy states by electric dipole transitions. The selection rules for transitions
between rotational energy levels follow from the Wigner–Eckart theorem
(Sect. 8.9.2).

According to this theorem, for light polarized along the principal axis of
rotation of the HCl molecule, the selection rule for electric dipole transitions
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is Δj = 0 while for light polarized in the plane ⊥ to this axis, the selection
rule is Δj = ±1. If there is no vibrational–rotational interaction, Δj = 0 does
not give rise to optical absorption.

Thus, the first rotational transition will require a photon energy 2C, the
second 4C, the third 6C, etc. This pattern is indicated in Fig. 8.9(a) for the HCl
molecule and in Fig. 8.9(b) we see that (Ej + 1 − Ej) increases proportional
to (j1) with a constant coefficient of 2C. The actual spectrum for HCl is
shown in Fig 8.9(c). It is clear that diatomic molecules like H2 have a center
of inversion and hence no permanent dipole moment. Thus, molecules of this
type do not exhibit any pure rotational infrared spectra. On the other hand,
heterogeneous diatomic molecules like CO and HCl can exhibit rotational
infrared spectra.

8.9.2 Wigner–Eckart Theorem

The Wigner–Eckart theorem, based on the full rotation group, gives the se-
lection rules for transitions between rotational levels observed for molecules
in IR and Raman spectroscopy and their polarization effects.

For proof of the Wigner–Eckart theorem, see Tinkham, p. 131–132 [70].
This theorem deals with the matrix elements of a tensor Tω

μ where ω is
the rank of the tensor and μ is a component index, to be discussed fur-
ther below. The theorem is discussed for angular momentum states which
correspond (through the group of Schrödinger’s equation) to the full rotation
group.

The full rotation group has only odd-dimensional representations:

One-dimensional � = 0 s-states
Three-dimensional � = 1 p-states

Five-dimensional � = 2 d-states .

Thus, a scalar (� = 0) corresponds to a tensor with ω = 0 and μ = 0. A vector
corresponds to a tensor with ω = 1, � = 1, and μ = ±1, 0, which denote the
three m� values for � = 1. A general second rank tensor can be considered as
the direct product

Γ �=1 ⊗ Γ �=1 = Γ �=0 + Γ �=1 + Γ �=2 (8.27)

having dimensions 3 × 3 = 1 + 3 + 5 = 9. Thus the second rank tensor
will have a part which transforms as ω = 0 and μ = 0, another part which
transforms as ω = 1, μ = ±1, 0 and a third part which transforms as ω = 2,
μ = ±2, 1, 0, thereby accounting for all nine components of the second rank
tensor. The parts that transform as ω = 0 and ω = 2 constitute the symmetric
components and correspond to the Raman tensor. The parts that transform
as ω = 1 constitute the antisymmetric components of a second rank tensor
and correspond to the angular momentum components.
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Because of the form of the Wigner–Eckart Theorem given by(
N ′j′m′ ∣∣Tω

μ

∣∣Nj) = Ajωj′
mμ δm′,m+μ (Nj′||Tω||Nj) , (8.28)

the selection rules for a tensor operator Tω
μ between states having full rota-

tional symmetry can be obtained quickly. Here j′ lies in the range

|j − ω| ≤ j′ ≤ (j + ω) , (8.29)

which is related to the properties of the addition of angular momentum vec-
tors. In (8.28), N and N ′ are principal quantum numbers, j and j′ are quan-
tum numbers for the total angular momentum, while m and m′ are quantum
numbers for the z component of the angular momentum. The coefficients Ajωj′

mμ

are called Wigner coefficients [2] and are tabulated in group theory texts (see
for example, Tinkham) [70]. The reduced matrix element (Nj′||Tω||Nj) in
(8.28) is independent of μ,m, and m′ and can therefore be found for the
simplest case μ = m′ = m = 0. This generality makes the Wigner–Eckart
theorem so powerful. The selection rules on both j and m are obtained by
rewriting the restrictions implied by (8.28) and (8.29), yielding

|Δj| = |j − j′| ≤ ω

|Δm| = |m′ −m| = μ ≤ ω . (8.30)

We now write down some special cases of (8.30).
For electric dipole transitions, we have ω = 1 and the selection rules

Δj = 0,±1

Δm = 0 for E ‖ ẑ
Δm = ±1 for E ⊥ ẑ , (8.31)

where E ‖ ẑ refers to linear polarization along the quantization axis and
E ⊥ ẑ refers to circular polarization about the quantization axis.

For Raman transitions (where H′
Raman transforms as a second rank sym-

metric tensor), we have either ω = 0 or ω = 2 and the corresponding selection
rules

ω = 0 : Δj = 0 , Δm = 0 ,

ω = 2 : Δj = 0,±1,±2 , Δm = 0,±1,±2 . (8.32)

In specific geometries, not all of these transitions are possible.
In applying the Wigner–Eckart theorem to the rotational selection rules for

a linear diatomic molecule, we know that the dipole moment must be along the
molecular z-axis, so that only μ = 0 applies. In this case the Wigner–Eckart
Theorem gives the selection rules

Δj = 0,±1 ; Δm = 0 for I.R. activity

Δj = 0,±2 ; Δm = 0 for Raman activity . (8.33)
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8.9.3 Vibrational–Rotational Interaction

Since the nuclei of a molecule are actually in vibrational motion, there is
consequently an interaction between the vibrational and rotational motions.
These interactions become important when the energy of a rotational energy
level becomes comparable to a vibrational energy level. Let us illustrate this
coupling in terms of a diatomic molecule, where we write for the Hamilto-
nian

H =
p2

2μ
+

J2

2μR2
+ a2ξ

2 + a3ξ
3 , (8.34)

in which the first term is the kinetic energy (and μ is the reduced mass of the
molecule). The second term denotes the rotational energy of the molecule,
while a2ξ

2 is the harmonic restoring force for the vibrational energy, and
a3ξ

3 is an anharmonic restoring term arising in the vibrational problem. The
distance between the nuclei is now modified by the vibrational displacements
from equilibrium

R−Req

Req
= ξ where R = Req(1 + ξ) . (8.35)

We therefore write

1
R2

=
1

R2
eq(1 + ξ)2

=
1
R2

eq

[
1 − 2ξ + 3ξ2 + · · · ] (8.36)

so that we can express the Hamiltonian in terms of an unperturbed term H0

and a perturbation term H′:

H = H0 + H′ , (8.37)

where

H0 =
p2

2μ
+BeqJ

2 + a2ξ
2 (8.38)

and
Beq =

1
2μR2

eq

. (8.39)

The first term in (8.38) denotes the kinetic energy and the second term defines
the rotational energy when the molecule is in its equilibrium configuration,
while the third term denotes the vibrational potential energy for the harmonic
restoring forces. Thus H0 gives the energies for the vibrational and rotational
motion in the limit where the vibrational and rotational motions are decou-
pled. For the H0 limit the selection rules are the same as if the vibrations
and rotations occurred independently. The perturbation Hamiltonian then
becomes

H′ = a3ξ
3 − 2BeqξJ

2 + 3Beqξ
2J2 , (8.40)
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where the first term is an anharmonic term that gives rise to overtones and
combination modes in the vibrational spectrum. The second and third terms
in (8.40) are associated with coupling between rotational and vibrational levels
and give corrections to the rotational levels. The term in ξJ2 makes a con-
tribution in second-order perturbation theory, while the term in ξ2J2 makes
a contribution in first-order perturbation theory which is proportional to(

n+
1
2

)
�ωvj(j + 1) .

Thus, the application of perturbation theory results in energy levels for the
vibrational–rotational problem:

En,j = �ωv

(
n+

1
2

)
︸ ︷︷ ︸
pure vibrational

+ A1j(j + 1)︸ ︷︷ ︸
pure rotational

+A2 �ωv

(
n+

1
2

)
j(j + 1) + · · ·

︸ ︷︷ ︸
interaction terms

(8.41)

in which A1 and A2 are constants. For the diatomic molecule A1 = (�/2I) in
accordance with (8.25). From a group theoretical point of view, the interac-
tion terms modify the selection rules and new features in the IR and Raman
spectra can be seen. In general, the symmetry of an interacting vibrational
and rotational level is given by the direct product Γvib ⊗ Γrot.

In making rotational transitions on absorption between different vibra-
tional levels, we not only can have Δj = 1 (the R-branch) but we also can
have Δj = −1 (the P-branch). This is illustrated in the vibrational–rotational
spectrum shown in Fig. 8.10 for the HCl molecule. We note here that the
spectral lines in the R-branch (upshifted in frequency) are not symmetrically
spaced with respect to the down-shifted P-branch. The Q-branch (Δj = 0)
occurs very close to the central frequency ν0, and would in fact be coincident
with ν0 if the moment of inertia would be independent of the vibrational state.
Study of the Q-branch requires high resolution laser spectroscopy.

If there were no vibrational–rotational interaction, the spacing of all spec-
tral lines (shown in the top portion of Fig. 8.10) would be the same for all
vibrational levels n. For the case of diatomic molecules and for the polariza-
tion where E is along the molecular axis, then the selection rules Δn = +1
and Δj = 0 determine the vibrational–rotational spectrum, while for E per-
pendicular to the main symmetry axis of the molecule, the selection rules are
Δn = 0 and Δj = +1.

Rotational Raman Spectra are also observed. Here the transitions with
Δj = 2 are excited for the pure rotational transitions, Δn = 0 (see Figs. 8.9
and 8.10). This series is called the S-branch. When vibrational–rotational Ra-
man spectra are excited, transitions with Δj = 0 and Δj = −2 are also pos-
sible and these are called the O-branches. Because of the anharmonic terms
in the Hamiltonian, there are vibrational–rotational spectra which occur be-
tween vibrational states separated by Δn = 2, 3, . . ., etc. These anharmonic
transitions would be expected to have lower intensity.
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Fig. 8.10. P (Δj = −1), R (Δj = +1) and Q (Δj = 0) branches of the
rotational structure of the HCl vibrational–rotational band near 2,885 cm−1 shown
schematically

The above discussion focused on the vibrational degrees of freedom. There
are in addition the electronic levels which generally are separated by much
greater energies than are the vibrational and rotational levels. There is how-
ever some interaction also between the vibrational and rotational states and
the electronic levels. Interactions between the electronic and rotational levels
give rise to “Λ-doubling” of the rotational levels, and coupling between the
electronic and vibrational levels gives rise to vibronic levels.

Selected Problems

8.1. This problem relates to the interrelation of fundamental group the-
ory concepts from small molecular clusters to the molecular vibrations of
actual molecules of interest. We illustrate this approach using the normal
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modes for three equal masses at the corners of an equilibrium triangular (see
Sect. 8.1).

(a) Find the normal modes for a triangular cluster containing three hydrogen
atoms at the corners of an equilateral triangle. Indicate which modes are
IR active and which are Raman active.

(b) Find the normal modes for a hypothetical planar NH3 molecule where
the N atom is at the centroid of the triangle and coplanar with the three
hydrogens. Which point group describes this molecule? Which modes are
infrared active and which are Raman active?

(c) Relate the results in (a) and (b) to the normal modes, and to the IR and
Raman activity for the NH3 molecule with C3v group symmetry.

(d) Relate the normal modes of the water molecule (Sect. 8.4) to the normal
modes of the triangular cluster in (a). Account for the similarities and
differences between the two cases.

8.2. Both CO2 and N2O are linear molecules, but have different equilibrium
arrangements giving rise to different symmetry groups (see Fig. 8.11).

(a) What are the appropriate point groups for CO2 and N2O?
(b) What symmetries are involved for the bonding and antibonding electronic

orbitals for these molecules?
(c) What are the differences in the symmetries of the normal modes for these

two molecules?
(d) Show schematically the atomic displacements for the normal modes of

each molecule.
(e) What are the expected differences in their IR spectra? Raman spectra?
(f) What are the expected differences in the rotational spectra of these two

molecules?
(g) Which of these rotational modes can be excited by infrared or Raman

spectroscopy?

8.3. Consider the linear C2H2 molecule (H–C=C–H) as being composed of
either two C–H blocks or of another configuration with the two hydrogen
atoms vibrating against the two carbon atoms as another block, each with
internal degrees of freedom. Such block grouping approaches help in providing
intuition about the internal vibrations of complex molecules.

Fig. 8.11. Configurations for the linear molecules CO2 and N2O
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(a) Show that the same results for Γmol.vib. are obtained for C2H2 by taking
the direct product of the Γmol.vib. for the constituent C–H blocks consid-
ered above.

(b) By applying appropriate symmetry operations on the basis functions, show
that the bending and stretching modes as given in Fig. 8.6 belong to the
E1g and E1u irreducible representations.

8.4. C2H4 (ethylene) is a planar molecule which has the configuration shown
on Fig. 8.12.

(a) Using the point group and Γ a.s. found in Problem 7.4, find the symmetries
of the allowed molecular vibrations for the C2H4 molecule.

(b) Sketch the normal mode displacements for each of the allowed molecular
vibrations in (a).

(c) Which modes are infrared-active? Which are Raman-active? What are the
polarization selection rules?

8.5. This problem is designed to show that group theory becomes increasingly
important for treating molecular vibrations for high symmetry molecules

(a) Find the molecular vibrations for the hypothetical molecule XH12 where
the 12 hydrogen atoms are at the vertices of a regular icosahedron and
the atom X is at the center of the icosahedron. Find Γ a.s. for XH12 for
the icosahedral group Ih.

(b) What are the symmetries for the normal modes? Which are infrared-
active? Raman active?

(c) What are the polarization selection rules for observing the infrared modes?
for the Raman modes?

8.6. Consider the methane molecule CH4.

(a) What is the group symmetry and to which irreducible representations do
the Rx, Ry, and Rz basis functions belong (see Sect. 7.5.2 and Sect. 8.8.3)?

(b) Describe the symmetries and eigenvectors for the rotational levels.
(c) What are the symmetries for the vibrational–rotational interactions?
(d) Describe the infrared and Raman spectra of methane including rotational,

vibrational modes, and the interaction between them. Consider also the
combination modes (see Table A.32).

(e) What are the expected polarization effects in these spectra?

Fig. 8.12. Configurations of the C2H4 ethylene molecule
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Space Groups in Real Space

According to the one-electron Hamiltonian for the electronic energy band
structure for solids, we write Schrödinger’s equation as

Hψ(r) =
[
− �

2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) , (9.1)

where V (r) is a periodic potential. The symmetry group of the one-electron
Hamiltonian and of the periodic potential in (9.1) is the space group of
the crystal lattice, which consists of both translational symmetry opera-
tions and point group symmetry operations. Both the translational and
point group symmetry operations leave the Hamiltonian invariant, and con-
sequently all these symmetry operators will commute with the Hamiltonian,
and provide quantum numbers for labeling the energy eigenvalues and eigen-
functions.

In this chapter we introduce the basic background for space group opera-
tions (Sect. 9.1) and show how these operations form space groups (Sect. 9.2).
In addition to the point group and translation operations, we consider the
compound symmetry operations of glide planes and screw axes (Sect. 9.1.2)
and the nonsymmorphic space groups associated with these compound sym-
metry operations (Sect. 9.2.3). An introduction to a few kinds of 3D space
groups is given in Sect. 9.2. However, for pedagogic purposes we discuss all
17 two-dimensional (2D) space groups in some detail in Sect. 9.3 to famil-
iarize the reader with the notation and the symmetry operations occurring
in both symmorphic and nonsymmorphic 2D-space groups. A brief introduc-
tion to line groups, describing the properties of systems exhibiting trans-
lational properties in one dimension, is given in Sect. 9.4. Finally we dis-
cuss the determination of the crystal structure and space groups in Sect. 9.5,
and the use of standard reference texts, [58, 76] such as the Crystal Struc-
tures, by R.W.G. Wyckoff, and the International Tables for X-Ray Crystal-
lography.
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9.1 Mathematical Background for Space Groups

9.1.1 Space Groups Symmetry Operations

Definition 18. The point group and translation symmetry operations which
carry the crystal into itself form a group called the space group.

A common notation for space group operators is

{Rα|τ} , (9.2)

where Rα denotes point group operations such as rotations, reflections,
improper rotations and inversions, while τ denotes translation operations.
Pure rotations and pure translations are special cases of space group opera-
tions:

{ε|0} = identity

{α|0} = pure rotations or more generally point group operations

{ε|τ} = pure translations by vector τ .

We can relate the operator {α|τ} for the space group to a coordinate trans-
formation

{α|τ}r = r′ =
↔
α ·r + τ , (9.3)

where
↔
α denotes the transformation matrix for rotations and τ denotes

a translational transformation.

Definition 19. The result for the multiplication of two space group opera-
tors is

{β|τ ′} {α|τ} = {βα|βτ + τ ′} , (9.4)

where {α|τ} is the first space group operator and {β|τ ′} is the second.

Proof. Multiplication of two space group operators proceeds from this identi-
fication:

{β|τ ′}{α|τ} =
↔
β ·

[↔
α ·r + τ

]
+ τ ′

=
↔
β · ↔

α ·r+
↔
β ·τ + τ ′

= {βα|βτ + τ ′} .

Using the results of this definition of the multiplication of two space group
operations we can write

{α|τ} {β|τ ′} =
↔
α ·

↔
β ·r+

↔
α ·τ ′ + τ (9.5)
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so that commutation of these two space group operators requires that

↔
α ·

↔
β=

↔
β · ↔

α and
↔
β ·τ + τ ′ =

↔
α ·τ ′ + τ (9.6)

which is not generally valid. Thus we conclude that although simple transla-
tions commute with each other, general space group operations do not com-
mute. �

Definition 20. The inverse of {α|τ} is given by

{α|τ}−1 = {α−1| − α−1τ} . (9.7)

Proof. Using the proposed definition of {α|τ}−1 we carry out the following
multiplication of two space group symmetry elements to obtain

{α|τ}{α|τ}−1 = {αα−1|α(−α−1τ) + τ} = {ε|0} (9.8)

which verifies the definition for {α|τ}−1. �

Having specified the identity operation {ε|0}, the rules for multiplication, and
the rules for specifying the inverse operation, and noting that the associative
law applies, we see that the elements {α|τ} form a space group.

Definition 21. The matrix representation for the space group operator is

{α|τ} =
(

1 0
τ

↔
α

)
, (9.9)

where 1 is a number, 0 denotes a row of three zeros, τ is a column vector,
and

↔
α is a (3 × 3) rotation matrix. Introducing the basis

(
1
r

)
,

where 1 is a number and r is a column vector consisting for example of⎛
⎝x
y
z

⎞
⎠ ,

the action of the space group operation on the coordinate system then is writ-
ten as (

1 0
τ

↔
α

)(
1
r

)
=
(

1
τ+

↔
α ·r

)
=
(

1
r′

)
. (9.10)

Theorem. The matrix (
1 0
τ

↔
α

)

forms a representation for the space group operator {α|τ}.
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Proof. To prove that the matrix of (9.9) is a representation for the space group
operator {α|τ}, we write down the multiplication and inverse transformations.
Multiplication of two matrices yields

(
1 0

τ ′ ↔
β

)(
1 0
τ

↔
α

)
=

(
1 0

τ ′+
↔
β ·τ

↔
β · ↔α

)
, (9.11)

which yields another symmetry operation of the space group

{β|τ ′}{α|τ} = {βα|βτ + τ ′} . (9.12)

Using (9.11) we can write the product of the matrix representation of {α|τ}
with that of its inverse operator {α|τ}−1 to obtain

(
1 0

− ↔
α

−1 ·τ ↔
α

−1

)(
1 0
τ

↔
α

)
=
(

1 0
0 ε

)
, (9.13)

thereby showing that
{α|τ}−1{α|τ} = {ε|0} . (9.14)

�

9.1.2 Compound Space Group Operations

In space groups we may find instead of simple translation operations, com-
pound symmetry operations that combine translations and point group oper-
ations. The two types of compound symmetry operations are the glide planes
and the screw axes.

Fig. 9.1. (a) The glide plane operation that takes A into A′. (b) Right- and left-
hand screw axes (belong to closely related but different space groups)
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A glide plane consists of a translation parallel to a given plane followed
by a reflection in that plane (see Fig. 9.1(a)). There are in fact three different
types of glide planes that are identified: the axial glide along a symmetry
axis (a, b, or c), the diagonal glide or n-glide in two or three directions (e.g.,
(a + b)/2 or (a + b + c)/2) and finally the diamond glide corresponding to
(a + b)/4 or (a + b + c)/4).

A screw axis is a translation along an axis about which a rotation is si-
multaneously occurring. In Fig. 9.1(b) we show a threefold screw axis, where
a is the lattice constant. The tellurium and selenium structures have threefold
screw axes similar to those shown in Fig. 9.1b. A summary of the various pos-
sible screw axes and the crystallographic notation for each is given in Fig. 9.2.
The screw axes shown in Fig. 9.2 are from top to bottom: the first row shows
twofold screw axes, followed by a row of threefold and fourfold screw axes and
the last two rows show sixfold screw axes. An n-fold screw axis has a trans-

Fig. 9.2. A summary of all possible screw axes, including twofold, threefold, fourfold
and sixfold screw axes (see text)
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lation of pτ0/n where τ0 is a unit cell translation of the translation group,
p is an integer p = 1, . . . , n, and the rotation that goes with the translation
is 2πp/n. Thus for the threefold row, the first entry is a 2π or zero rotation
every time there is a translation of τ0/3, while the second entry has a rotation
of 2π/3, for each τ0/3 translation and the last entry has a rotation of 4π/3 or
(−2π/3), for each τ0/3 translation.

9.1.3 Translation Subgroup

Theorem. All the elements of the space group G that are of the form {ε|τ}
constitute the translation group T . Here T is a subgroup of G and defines the
Bravais lattice.

Proof. Symmetry elements of the group T are defined by the translation vec-
tors Rn which leave the Bravais lattice invariant Rn = Σniai, and ai is the
primitive vector of the Bravais lattice. The translation group is a self-conjugate
or invariant or normal subgroup of G since

{Rα|τ}{ε|t}{Rα|τ}−1 = {Rα|τ}{ε|t}{R−1
α | −R−1

α τ}
= {Rα|τ}{R−1

α | −R−1
α τ + t}

= {ε| −RαR
−1
α τ +Rαt+ τ}

= {ε|Rαt} . (9.15)

But Rαt is just another translation vector in group T and therefore the oper-
ation {ε|Rαt} is a symmetry operation of group T , and we have shown that
{ε|τ} forms the translation subgroup of G. �
Although the translation group T is an invariant subgroup of G, we cannot
generally say that the space group G is a direct product of a translation group
with a point group, as discussed in Sect. 9.1.4. It should be noted that since
the individual elements {ε|τ ′} and {Rα|τ} do not commute, as we show below:

{ε|τ ′}{Rα|τ} = {Rα|τ ′ + τ}
{Rα|τ}{ε|τ ′} = {Rα|Rατ

′ + τ} . (9.16)

However, since the translation group is an invariant subgroup of G, it is of
interest to study the cosets of the factor group which it defines. A right coset
of the translation group considered as a subgroup of G is then

Cα = [{ε|τ ′}{Rα|τ}] = [{Rα|τ ′′}] , (9.17)

where the bracket in (9.17) denotes all the terms in the coset that can be
formed using all possible values of τ ′. Although each element {Rα|τ} does
not commute with {ε|τ ′} as seen in (9.16), all {Rα|τ ′′} are contained in the
right coset. Using the same argument as used above for the right coset, we
can show that Cα is also a left coset of the translation group from which we
conclude that T is a self-conjugate (or normal) subgroup of G.
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Theorem. The cosets Cα form a factor group of the space group G.

Proof. Consider the multiplication rule for the cosets:

CαCβ = [{Rα|τ1}{Rβ|τ2}] = [{RαRβ |Rατ2 + τ1}] = [{Rγ |τ3}] = Cγ , (9.18)

where RαRβ = Rγ defines the group property in the point group and τ 3 =
Rατ 2+τ 1 is a translation of the lattice. Since τ 1 and τ 2 range over all possible
translation vectors, the vector τ 3 also spans all possible translations, and Cγ

satisfies the multiplication rule. �

The factor group G/T will be very important in applications of group theory
to space groups, since it factors out the pure translational properties of the
space groups, being isomorphic with the point group which makes up the
rotational parts of the operators of the space groups. For a summary of cosets
and factor group properties, see Sect. 1.5–1.7.

9.1.4 Symmorphic and Nonsymmorphic Space Groups

The space groupG consists of all operations {Rα|τ} which leave a given lattice
invariant. We can write the space group operations in the form

{Rα|τ} = {Rα|Rn + τα} = {ε|Rn}{Rα|τα} , (9.19)

whereRn is a general vector of the Bravais lattice and the vector τα (associated
with each of the point group operators Rα) is either zero or a translation that
is not a primitive translation of the Bravais lattice. The {Rα|τα} for which
Rn = 0 are either simple point group operations, when τα = 0, or one of the
compound operations (glide plane or screw axis discussed in Sect 9.1.2) when
τα �= 0.

Definition 22. If, with a suitable choice of origin in the direct lattice, we find
that all the elements of G are in the form {Rα|τ} = {Rα|Rn} = {ε|Rn}{Rα|0}
(τα = 0 for all symmetry operations), then the space group G is called a simple
or symmorphic group. If, with any suitable choice of origin in the direct lattice,
τα �= 0 for at least one {Rα|τα} operation, then G is called a nonsymmorphic
group.

Symmorphic space groups, therefore, contain an entire point group as a sub-
group. The point group g is obtained from the space group G by placing
τ = Rn = 0 for all {Rα|τ} elements in G. The space group is said to be
a semi-direct product of the translation and point groups, where semi is used
since a direct product would give {Rα|Rn} ⊗ {ε|Rn′} = {Rα|Rn + Rn′}. We
will see in the next chapters that, once the wavevector k of the wavefunctions
under study is chosen, we can work the space group problem by considering
the rotational aspects, which reduce the work to a point group gk problem.
We then have h symmetry elements rather than Nh, where N ∼ 1023.
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For nonsymmorphic groups, τα is not zero for at least one Rα. By multi-
plying two space group elements of the type {Rα|τα} (Rn = 0) we get

{Rα|τ α}{Rβ|τβ} = {Rγ |τ γ +Rn} (9.20)

and Rn may or may not be zero. Therefore, the entire set of space group
elements {Rα|τα} may fail to form a group if the lattice vector Rn �= 0.
Furthermore, the entire point group g of the crystal, obtained by setting all
translations (including the nonprimitive ones) in G equal to zero is a sub-
group of its Bravais lattice point group (called the holohedral group, which
is defined as the group of the Bravais lattice), but it is not a subgroup of
G. In this case, to work with the rotational aspects of the nonsymmorphic
space group, a procedure to remove the translational effect is needed. Two
alternative procedures are available: (1) One approach is to form the factor
group G/T of G with respect to the translation group T (Sect. 9.1.3). The
G/T factor group will be isomorphic with the point group which makes up
the rotational parts of the operators in the space group. (2) The G/T fac-
tor group representation can be obtained by means of the multiplier algebra,
where all members of a given coset are represented by a single element, and we
work with the multiplier groups or multiplier representation. These concepts
will be discussed briefly in Sect. 10.4.

To fully describe a space group G, it is sufficient to list the elements
{Rα|τα} representing the cosets of G/T and the ai primitive vectors of the
Bravais lattice. It is clear that the applications of group theory to symmor-
phic space groups are simpler when compared to applications to nonsym-
morphic space groups. The operations Rα apply to the translation vectors in
accordance with the definition of the space group operations, and the sym-
metry operations of the factor group G/T for symmorphic space groups are
isomorphic with the point group g. Thus irreducible representations of the
factor group G/T are also irreducible representations of g and are likewise
irreducible representations of G. It can be shown that all irreducible rep-
resentations of G can be compounded from irreducible representations of
g and T , even though G is not a direct product group of g and T [47].
The development of representations for the space groups will be discussed
in Chap. 10.

9.2 Bravais Lattices and Space Groups

Now that we have introduced the mathematical background for working with
space groups, we can introduce the 14 Bravais lattices which denote the
possible crystallographic lattices that can form three-dimensional structures,
and the 230 space groups (73 symmorphic and 157 nonsymmorphic) that
can be formed by placing different atomic structures in the Bravais lattice
sites.
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Fig. 9.3. The fourteen Bravais space lattices illustrated by a unit cell of each: (1) tri-
clinic, simple; (2) monoclinic, simple; (3) monoclinic, base centered; (4) orthorhom-
bic, simple; (5) orthorhombic, base centered; (6) orthorhombic, body centered; (7)
orthorhombic, face centered; (8) hexagonal; (9) rhombohedral; (10) tetragonal, sim-
ple; (11) tetragonal, body centered; (12) cubic, simple; (13) cubic, body centered;
and (14) cubic, face centered

The requirements of translational symmetry limit the possible rotation an-
gles of a Bravais lattice and in particular restrict the possible rotation axes to
onefold, twofold, threefold, fourfold and sixfold. Fivefold axes or axes greater
than six do not occur in crystalline materials because these axes are not
compatible with translational symmetry [7]1 as shown in Problem 9.5. When
rotational symmetry does occur in crystals, then severe restrictions on the
rotation angle are imposed by the simultaneous occurrence of the repetition
of the unit cells through rotations and translations. The 14 Bravais lattices

1See [47], pp. 14 and 178.
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which form 3D space groups are shown in Fig. 9.3. They are also discussed in
solid state physics texts [45] and in crystallography texts [58, 68].

9.2.1 Examples of Symmorphic Space Groups

If all the operations of the space group are simply point group operations
on to which we add translation operations from the Bravais lattice, we have
a simple or symmorphic space group. The 73 symmorphic space groups are
listed in Table 9.1, and they can be found in the “International Crystallo-
graphic Tables”. Symbols that are used for 3D space groups (see Table 9.1)
include A or B for monoclinic groups, and C, A or B, I, F for orthorhombic
groups, and these are defined in Table 9.1. In the case of rectangular lattices,

Table 9.1. The 73 symmorphic space groups

crystal system Bravais lattice space group

triclinic P P1, P 1̄

monoclinic P P2, Pm, P2/m

B or A B2, Bm, B2/m

orthorhombic P P222, Pmm2, Pmmm

C, A, or B C222, Cmm2, Amm2a, Cmmm

I I222, Imm2, Immm

F F222, Fmm2, Fmmm

tetragonal P P4, P 4̄, P4/m, P422, P4mm

P42m, P 4̄m2a, P4/mmm

I I4, I 4̄, I4/m, I422, I4mm

I 4̄2m, I 4̄m2a, I4/mmm

cubic P P23, Pm3, P432, P 4̄3m, Pm3m

I I23, Im3, I432, I 4̄3m, Im3m

F F23, Fm3, F432, F 4̄3m, Fm3m

trigonal P b P3, P 3̄, P312, P321a, P3m1

P31ma, P 3̄1m, P 3̄m1a

(rhombohedral) R R3, R3̄, R32, R3m, R3̄m

hexagonal P b P6, P 6̄, P6/m, P622, P6mm

P 6̄m2, P 6̄m2a, P6/mmm

[P , I , F (A, B or C) and R, respectively, denote primitive, body centered, face
centered, base centered (along the a, b or c crystallographic axis) and rhombohedral
Bravais lattices (see Fig. 9.3)]
a The seven additional space groups that are generated when the orientations of the
point group operations are taken into account with respect to the Bravais unit cell
b Primitive hexagonal and trigonal crystal systems have the same hexagonal Bravais
lattice
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the inequivalent axes are parallel to the sides of the conventional rectangu-
lar unit cell. In the case of square lattices, the first set of axes is parallel to
the sides and the second set is along the diagonals. In the case of hexagonal
lattices, one axis is 30◦ away from a translation vector.

We now illustrate the idea of symmorphic space groups using an example
based on the D2d point group (see character Table A.8) embedded in a tetrag-
onal Bravais lattice (no. 11 in Fig. 9.3). Suppose that we have a molecule
with atoms arranged in a D2d point group configuration as shown in Fig. 9.4.
We see that the D2d point group has classes E, C2 rotations about the z-
axis, 2S4 improper rotations about the z-axis, 2σd passing through the z axis
and through the center of each of the dumbbell axes, and 2C′

2 axes in (110)
directions in the median plane. The top view of this molecule is shown in
Fig. 9.4(b).

We could put such X4 molecules into a solid in many ways and still retain
the point group symmetry of the molecule. To illustrate how different space

z

C2′ C2′

Fig. 9.4. (a) Schematic diagram of an X4 molecule with point group D2d (42m)
symmetry. (b) Top view of a molecule X4 with D2d symmetry. The symmetry axes
are indicated
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Fig. 9.5. Tetragonal Bravais lattice with two possible orientations of a molecule
with D2d symmetry resulting in two different three-dimensional space groups. The
maximum symmetry that the tetragonal Bravais lattice can support is D4h = D4⊗ i
(4/mmm)

groups can be produced with a single molecular configuration, we will put the
X4 molecule with D2d symmetry into two different symmorphic space groups,
as shown in Fig. 9.5.

We note that with either of the placements of the molecule in Fig. 9.5,
all the point group operations of the molecule are also operations of the space
lattice. However, if the symmetry axes of the molecule do not coincide with the
symmetry axes of the lattice in which they are embedded, the combined space
group symmetry is lowered. Particular point group operations are appropriate
to specific Bravais lattices, but the connection is homomorphic rather than
isomorphic. For example, the point group operations T , Td, Th, O and Oh

leave each of the simple cubic, face-centered cubic and body-centered cubic
Bravais lattices invariant. Even though a given Bravais lattice is capable of
supporting a high symmetry point group (e.g., the FCC structure), if we have
a lower symmetry structure at each of the lattice sites (e.g., the structure in
Fig. 9.4), then the point symmetry is lowered to correspond to that structure.
On the other hand, the highest point group symmetry that is possible in
a crystal lattice is that which has all the symmetry operations of the Bravais
lattice, so that the group Oh will be the appropriate point group for an FCC
structure with spherical balls at each lattice site (see Problem 9.1).

9.2.2 Cubic Space Groups and the Equivalence Transformation

We now introduce the cubic groups that will be frequently discussed for il-
lustrative purposes in subsequent chapters. The use of the equivalence trans-
formation to obtain the characters χa.s. for this transformation is also dis-
cussed. Figure 9.6 illustrates several different kinds of cubic space groups com-
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Fig. 9.6. Example of cubic lattices. Here (a), (b), (c) pertain to space group #225;
(d) pertains to #221 and (e) to #229; while (f) and (g) are for #227; and (h) is
for #223

monly occurring in solid state physics, including FCC, BCC, diamond and
zinc blende structures. The diamond structure is nonsymmorphic and will be
discussed in Sect. 9.2.3. First we show that a given space can support sev-
eral different crystal structures. We illustrate this with Fig. 9.7 which shows
three different crystal structures all having the same space group symmetry
operations of O1

h(Pm3m). This space group will support full Oh point symme-
try. The different crystal structures are obtained by occupying different sites
as listed in the “International Crystallographic Tables” (see Table C.2). The
space group is specified in terms of an origin at the center which has the full
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Fig. 9.7. Example of three cubic lattices with the space group #221 O1
h (Pm3m)

(see Table C.2). (a) Simple cubic (SC), (b) body centered cubic (BCC), and (c)
perovskite structure

symmetry of the Bravais lattice (P4/m(3̄)2/m). Inspection of space group
221 yields the structure shown in Fig. 9.7(a) where only site b is occupied,
while Fig. 9.7(b) has site occupation of both sites a and b, each having site
symmetry m3m (see Table C.2). For the perovskite structure in Fig. 9.7(c)
we have occupation of Ba atoms on b sites, Ti atoms on a sites and three
oxygens on c sites. We note in Table C.2 that the site symmetry 4/mmm is
different on the c sites than for the a or b sites which have m3m site symme-
tries.

Important for many applications of group theory is the number of atoms
within the primitive cell (for example for calculation of χa.s.). For example,
in Fig. 9.7(a) there is one atom per unit cell. This can be obtained from
Fig. 9.7(a) by considering that only one eighth of each of the eight atoms shown
in the figure is inside the cubic primitive cell. In Fig. 9.7(b) there are two dis-
tinct atoms per unit cell but for each Γ a.s. = Γ1 to give a total Γ a.s. = 2Γ1.
In Fig. 9.7(c), there are one Ti, six half O, and eight 1/8 parts of Ba inside
the primitive cell, giving altogether five atoms, i.e., one unit of BaTiO3 per
unit cell. Here Γ a.s. for each of the Ba and Ti sublattices we have Γ a.s. = Γ1

but for the three oxygens Γ a.s. = Γ1 + Γ12 to give a total of Γ a.s. = 3Γ1 +Γ12

for the whole BaTiO3 molecule (see Sect. 11.3.2).
Concerning more general cubic groups, the structures for Fig. 9.6(a–c) are

all group #225 based on a FCC Bravais lattice, while (d) has the CsCl struc-
ture (group #221) as in Fig. 9.7(b) which has two atoms per unit cell. The
structure for iron (group #229) is based on the full BCC Bravais lattice where
the central atom and the corner atoms are the same. Figures 9.6(f) and (g)
are for the nonsymmorphic diamond lattice, discussed in detail in Sect. 9.2.3,
which has two atoms/unit cell. The zinc blende structure shown in Fig. 9.6(h)
is similar to that of Fig. 9.6(f) except that the atoms on the two sublattices
are of a different species and therefore the zinc blende structure has a different
symmetry group #203, and this group is a symmorphic group.

9.2.3 Examples of Nonsymmorphic Space Groups

A familiar example of a non-symmorphic space group is the diamond struc-
ture shown in Fig. 9.6(f), where we note that there are two atoms per unit cell
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Fig. 9.8. Examples of space groups with screw axes. The three examples are (a)
P41 (C2

4 ) #76, (b) P42 (C3
4 ) #77 and (c) P43 (C4

4 ) #78. See Sect. 9.1.2 and Fig. 9.2
for notation
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Fig. 9.9. Example of a space group with a screw axis in the plane of the figure:
P421m (D3

2d) (#113)

(the atoms on the cube corner positions and those in the centered positions).
The symmetry operations of Td represent all the point group operations that
take one type of atom into another. In addition, each of the operations of
Td can be compounded with a translation along (a/4)(111) which takes one
inequivalent atom into another. Because of these additional symmetry oper-
ations, which are not point group operations of Td, the diamond structure is
not a Bravais lattice and is nonsymmorphic. The screw axis pertinent to the
diamond structure is shown in Fig. 9.6(g).

Another example of space groups with screw axes is given in Fig. 9.8 for
space groups P41 (C2

4 ) #76, P42 (C3
4 ) #77 and P43 (C4

4 ) #78. The space
group P4 #75 is a symmorphic space group with a similar arrangement of
the four atom cluster but without a screw axis. The group numbers #75
to #78 come from the International Tables of X-ray Crystallography [58]
(see Appendix C for a few examples of such tables). Each space group in
Fig. 9.8 has point group C4 symmetry, but has a different fourfold screw axis
(41, 42, 43). The atom locations are given in the left hand diagrams and the
symmetry operations which include screw axes are shown in the right hand
diagrams. Some twofold screw axes are also present.

Screw axes may also occur normal to the c-axis, as is shown in Fig. 9.9 for
space group P421m (D3

2d) #113. Diamond glide planes along 〈110〉 directions
also occur for this space group. The D2d operations result in the occurrence
of equivalent sites (x, y, z), (−y, x,−z), (−x,−y, z) and (y,−x,−z).

Three-dimensional space groups will be discussed further in the next chap-
ters. The reader is referred to texts such as Burns and Glazer [16] who give
a detailed treatment of space group symmetries. In the next section we dis-
cuss the 2D space groups in more depth, first because they are simpler, and
because they provide an instructive pedagogic introduction to space groups.

9.3 Two-Dimensional Space Groups

In this section we use the 17 two-dimensional space groups to illustrate in some
detail the concepts introduced in this chapter from a pedagogic standpoint.
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Table 9.2. Summary of the 17 two-dimensional space groups, their properties and
notations

point lattice type internationala notation type notation

group table number full short

1 oblique 1 p1 symmorphic p1

2 a �= b, φ �= 90◦ 2 p211 symmorphic p2

m rectangular 3 p1m1 symmorphic pm

(p or c) 4 p1g1 nonsymmorphic pg

a �= b, φ = 90◦ 5 c1m1 symmorphic cm

2mm rectangular 6 p2mm symmorphic pmm

a �= b, φ = 90◦ 7 p2mg nonsymmorphic pmg

8 p2gg nonsymmorphic pgg

9 c2mm symmorphic cmm

4 square p 10 p4 symmorphic p4

4mm a = b, φ = 90◦ 11 p4mm symmorphic p4m

12 p4gm nonsymmorphic p4g

3 hexagonal 13 p3 symmorphic p3

3m a = b, φ = 120◦ 14 p3m1 symmorphic p3m1

15 p31m symmorphic p31m

6 16 p6 symmorphic p6

6mm 17 p6mm symmorphic p6m

a International Tables for X-Ray Crystallography, published by the International
Union of Crystallography, Kynoch Press, [58] Birmingham, England (1952). See also
G. Burns and A.M. Glazer, [16] “Space Groups for Solid State Scientists”, Academic
Press, Inc., 2nd Edition 1978

There are five distinct Bravais lattices in two-dimensions. If we consider
a, b to be the two primitive translation vectors and φ to be the angle between
a and b, then the five lattice types are summarized in Table 9.2, where the
17 two-dimensional space groups are listed.

If we add two-dimensional objects, e.g., a set of atoms, to each cell of
a Bravais lattice, we can change the symmetry of the lattice. If the object,
sometimes called a motif, lowers the symmetry to that of another group, then
the resulting symmetry space group for the structure is identified with the
lower symmetry space group.

We give in this table the symmetries of each of these space groups, classified
in terms of the five Bravais lattices in two dimensions. Listings from the
“International Tables for X-Ray Crystallography” are given in TablesB.2–
B.17 of Appendix B [58].

The notation used to designate the two-dimensional space groups is illus-
trated by the example p4gm (see Table 9.2). The initial symbol (“p” in this
example) indicates that the unit cell is either a primitive (p) unit cell or a cen-
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Fig. 9.10. Space group symbols used at lattice points for twofold (an American
football), threefold (a triangle), fourfold (a square), and sixfold (a hexagon) rotations
(x = n to denote an n-fold rotation)

tered (c) unit cell. The next symbol “4” indicates rotational symmetry about
an axis perpendicular to the plane of the two-dimensional crystal. The possible
n-fold rotations for a space group are 1, 2, 3, 4, and 6, and the symbols used
to denote such axes are shown in Fig. 9.10. The last two symbols in p4gm,
when present, indicate either additional symmetries for the two inequivalent
in-plane axes, or they refer to a glide plane (denoted by “g”) through the
primary axis, or to a mirror plane denoted by “m” through the primary axis,
and “1” indicates that there is no additional symmetry.

In the following sections we discuss the space groups associated with each
of the five 2D Bravais lattices.

9.3.1 2D Oblique Space Groups

The symmetries of the two 2 oblique space groups are shown in TablesB.1
and B.2 of Appendix B. The lowest symmetry two-dimensional space group
(#1) only has translational symmetry (p1) and no additional point group
operations. We use the lower case notation p1 to denote 2D space groups
and P1 with a capital letter to denote the corresponding 3D space groups.
The diagram for p1 shows only one general point (x, y) with translations by
lattice vectors (1,0), (0,1), and (1,1). Open circles on the left hand diagram
in Table B.1 are used to denote the three open circles obtained from the first
open circle by these three translations.

However, by placing a motif with twofold rotational symmetry normal
to the plane, the p211 space group (#2) is obtained, as shown in the
symmetry diagram from the International Tables for X-Ray Crystallogra-
phy. The twofold axis through the center of the rhombus (indicated by an
American-football-shaped symbol on the right of Table B.2) denotes the
symmetry operation that takes a general point (x, y) into (−x,−y), shown
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as point symmetry type e on the crystallographic table for space group
#2(p211). Points obtained by rotations are indicated by open circles in Ta-
ble B.2. For the four special points (1/2, 1/2), (1/2, 0), (0, 1/2), (0, 0), la-
beled d, c, b, a, respectively, the twofold rotation takes the point into itself
or into an equivalent point separated by a lattice vector. The site symme-
try for these four special points is listed in the table for group p2 as having
a twofold axis. A general point (such as e) under the action of the twofold
axis and translation by (1,0), (0,1), and (1,1) yields the eight open points
in the figure for group p2, two of which are within the unit cell shown in
Table B.2.

These special points d, c, b, a are examples of what is generally called Wyck-
off positions [76]. The concept of Wyckoff positions and their site symmetries
is fundamental for the determination and description of crystal structures,
since it is important to establish the reference point for the symmetry op-
erations of an overall consistent coordinate system. The group of all sym-
metry operations that leaves a point P invariant is called the site-symmetry
group. A point P is called the point of special position with respect to the
space group G if there is at least one symmetry operation of G, in addi-
tion to the identity, that leaves P invariant (otherwise, P is called a point of
general position). A Wyckoff position consists of all points P for which the
site-symmetry groups are conjugate subgroups of G, and each Wyckoff posi-
tion of a space group is labeled by a letter which is called the Wyckoff letter,
and the site symmetries are indicated in the International Crystallography
Tables [58].

9.3.2 2D Rectangular Space Groups

Primitive lattices. Of the seven rectangular 2D space groups, five are primitive
and two are centered (see Table 9.2). We consider these together as is done in
the International Tables for X-Ray Crystallography [58]. Of the five primitive
rectangular space groups only two are symmorphic, and three are nonsymmor-
phic. In general, the full rectangular point symmetry is 2mm (C2v). The point
group 2mm has elements E, C2z , σx, σy : the identity; a twofold axis C2z per-
pendicular to the plane; and mirror planes parallel to the x and y axes through
C2z . The corresponding space group listed as space group #6 is p2mm (see
Table B.6). When introducing a lower symmetry motif, the resulting group
must be a subgroup of the original group. The lower symmetry rectangular
space group p1m1 has point group operations (E, σx) and is listed as space
group #3 (see Table B.4). We note that (E, σy) is equivalent to (E, σx) by an
interchange of axes and each corresponds to point group m (C1h).

The symbol ©, containing a comma inside the circle provides a sense of ori-
entation that is preserved under translations. Under a mirror plane operation
(see Table B.4), the symbols ©, and © are interchanged; the mirror plane is
represented on the right by a solid horizontal line. The three kinds of Wyckoff
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positions [76] and site symmetries (the general point c and the points a and b
on the mirror planes) are also listed in Table B.4 for space group #3.

So far we have dealt with space groups where the point group operations
are separable from the translation group operations. Such groups are sym-
morphic space groups.

In the case of the rectangular primitive lattice, mirror operations can be
replaced by glide reflections. The glide planes are denoted by dashed lines (see
diagram for space group #4 (p1g1) in Table B.4). No distinct screw opera-
tions are possible in two-dimensions. A glide reflection symmetry operation
is a compound operation consisting of a reflection combined with a fractional
unit cell translation, not a primitive unit cell translation. The resulting space
group is nonsymmorphic because of the glide plane operation. Replacing m by
g in p1m1 (space group #3) gives p1g1 (space group #4) where the transla-
tion τ 1/2 is compounded with the reflection operation; this translation can be
followed by comparing the ©, symbols for space groups #3 and #4 (Tables B.3
and B.4).

For the case of space group #6 (p2mm), replacing one of the mirror planes
by a glide plane gives the nonsymmorphic group p2mg (#7) as shown in Ta-
ble B.7. When both mirror planes of space group #6 are replaced by glide
planes, we get space group #8 (p2gg) which has the fractional translation
(1/2)τ1 + (1/2)τ2, but a mirror plane reflection σx or σy as shown in Ta-
ble B.8. The compound mirror plane translation operations can be denoted
by {σx|(1/2)τ1 + (1/2)τ 2}, {σy|(1/2)τ 1 + (1/2)τ 2}.
Centered Rectangular Lattices. The centered rectangular lattice with the full
centered rectangular symmetry (see Table B.9) is the space group c2mm (#9)
which is a centering of space group #6 (p2mm). The lower symmetry centered
rectangular subgroup, related to space group #3 (p1m1) is space group #5
(c1m1) (shown in Table B.5). We note that the centering is equivalent to
introducing a (1/2)τ 1 + (1/2)τ2 translation as indicated in Table B.5 for
space group c1m1 (#5). All the centered rectangular lattices are considered
to be symmorphic even though they have the translation (1/2)τ 1 + (1/2)τ2

to do the centering operation. As a more interesting example of a centered
rectangular space group, let us look at space group #9 which is denoted
by c2mm (Table B.9). This space group has two equivalent positions (0,0)
and (1/2, 1/2). The symmetry operations include a twofold axis along the
z-direction and two sets of intersecting mirror planes. Four of the symme-
try operations shown in Table B.9 are connected with the 2mm operations,
and the other four symmetry operations are related to compounding these
point group operations with the simple translation (1/2)τ1 + (1/2)τ 2 tak-
ing (0, 0) to (1/2, 1/2). The table shows that c2mm can be realized through
six different kinds of Wyckoff positions and their corresponding site sym-
metries. It should be noted that the various 2D space group tables pro-
vide special relations for the crystallographic h and k Miller indices that
are used to distinguish diffraction patterns associated with each of the space
groups.
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9.3.3 2D Square Space Group

There are three 2D square space groups. The square lattice space with the
full 4mm point group symmetry is p4mm (space group #11), which is shown
in Table B.11. The point group symmetry elements are E, C+

4z, C
−
4z , C2z , σy ,

σx, σda, σdb corresponding to C4v. The only distinct subgroup of C4v is C4

which has symmetry elements E, C+
4z, C

−
4z, C2z . In this case, the space group

is p4 (space group #10 in International Tables for X-Ray Crystallography).
The fourfold axis is clearly seen on the left hand diagram in Table B.10. The
©, points in space group #11 are obtained by adding mirror planes to space
group #10. In the diagram on the right we see lattice locations with fourfold
and with twofold axes, a feature found in all three 2D square lattices (see
Tables B.10–B.12).

By combining the translation (1/2)τ 1 + (1/2)τ2, where 1/2τ1 and
(1/2)τ 2 are translation vectors, with the mirror planes σx, σy, σda, σdb we
obtain the glide reflections {σx|(1/2)τ1 + (1/2)τ2}, {σy|(1/2)τ1 + (1/2)τ 2},
{σda|(1/2)τ1 + (1/2)τ2}, {σdb|(1/2)τ 1 + (1/2)τ 2}. These glide reflections
are used to form the nonsymmorphic square lattice of space group #12
(p4gm). We note there are mirror planes along the square diagonals and
also mirror planes through the x- and y-axes. Space group #12 (p4gm) is
obtained from space group #11 (p4mm) by translation of the comma points
by (1/2)τ1 + (1/2)τ2, taking the open points into comma points.

9.3.4 2D Hexagonal Space Groups

There are five 2D hexagonal space groups, and all are symmorphic. The
—)hexagonal space group #17 with the full hexagonal point group sym-

metry is p6mm. The point group symmetry elements are E, C+
6 , C−

6 , C+
3 ,

C−
3 , C2, σd1, σd2, σd3, σv1, σv2, σv3. The diagram for p6mm (#17) is shown in

Table B.17.
The four subgroups of C6v are C6, C3v, C3d, C3, giving rise, respectively,

to space groups p6 (#16), p3m1 (#14), p31m (#15), and p3 (#13), as sum-
marized in Table 9.3. The symmetry diagrams for the five 2D hexagonal space
groups are shown in Tables B.13–B.17.

Table 9.3. Summary of the symmetry operations of two-dimensional hexagonal
space groups that are subgroups of #17 (p6mm)

space group point group elements

p3 E, C+
3 , C−

3

p3m1 E, C+
3 , C−

3 , σv1, σv2, σv3

p31m E, C+
3 , C−

3 , σd1, σd2, σd3

p6 E, C+
6 , C−

6 , C+
3 , C−

3 , C2
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9.4 Line Groups

Line groups describe the symmetry of systems exhibiting translational pe-
riodicity in one dimension [71]. Examples of quasi-one-dimensional systems,
are stereoregular polymers and carbon nanotubes. In addition, some three-
dimensional crystals can be highly anisotropic, as for example chain-type crys-
tals which have line groups as subgroups of their space group. Whenever only
one direction is relevant for some physical properties of a three-dimensional
system, one can expect to derive useful information by applying suitable line
group approaches. The advantage of using line groups is their simplicity.

Generally, quasi-1D systems exhibit, besides translational symmetry, point
group and compound operations. As explained further below, line groups gen-
erally involve a generalized translation group Z and an axial point group P
giving the internal symmetries [22]. By a generalized translation group we
mean that Z denotes an infinite cyclic group composed of general translational
operations along the line axis, that may include screw axes or glide planes.
The line group symmetry elements are represented by {Cr

n|α}, where Cr
n is

a rotation of 2πr/n, and n and r are non-negative integers and where r < n,
and 0 < α < 1 represent a translation along the line axis by αa, where a is the
translational period of the system. For a given choice for r, any multiple of
q/n, where q is a divisor of n, may be added to r with no effect on the resulting
line group L, so that the minimum value of r is used to avoid nonuniqueness.
There are three different types of generalized translation groups:

• Those formed by simple translations, T = {E|α} and the translational
period is αa;

• Those with the occurrence of a screw axis, T r
n = {Cr

n|α} and in this case
the translational period is nαa;

• Those with the occurrence of a glide plane, Tc = {σv|α} and in this case
the translational period is 2αa.

The axial point groups P are: Cn, S2n, Cnh, Cnv, Dn, Dnh and Dnd, where
n = 1, 2, 3, . . . is the order of the principal rotational axis.

The line groups are formed by taking the weak direct product L = Z · P .
The product between Z and P must be a weak direct product2 (indicated
here by “·”) because all elements of Z, except for the identity, have a nonzero
translational part, while no point group element on P has translations. The
intersection between groups Z and P is, therefore, only the identity operation.
However, the product Z · P forms a group only if Z and P commute (this is

2The general concept of a weak direct product is defined in the following way:
A Group G is said to be the weak direct product of its subgroups H and K when
(i) the identity element is the only intersection of H and K and (ii) each element of
G is the product of one element in H with one element in K. Semi-direct and direct
products are special cases of the weak-direct product. When H and K are invariant
subgroups, the result is a direct product. When only H is an invariant subgroup,
the result is a semidirect product.
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Fig. 9.11. Schematic theoretical model for the three different types of single-wall
carbon nanotubes: (a) the “armchair” nanotube, (b) the “zigzag” nanotube, and
(c) the “chiral” nanotube [63]

always the case only for Z = T ). Furthermore, some products with different
factors are identical. There are an infinite number of line groups, and they
are classified into 13 families [22]. In Problem 9.7 we use carbon nanotubes to
exemplify the use of line groups.

Carbon nanotubes can be viewed as a graphene sheet (a single layer
from a 3D graphite crystal) rolled up into a cylinder, one atomic layer in
thickness. Their physical properties depend on how the graphene sheet is
rolled up, and from a symmetry point of view, two types of tubes can
be formed, namely the achiral tubes, as shown in Fig. 9.11(a) and (b), or
the chiral tubes, illustrated in Fig. 9.11(c). Because of the small diame-
ter of a carbon nanotube (∼10 Å) and the large length-to-diameter ra-
tio (> 104), a carbon nanotube from a symmetry standpoint is a one-
dimensional crystal with a translation vector T along the cylinder axis
and a small number of carbon hexagons associated with the circumferen-
tial direction. For this reason, this structure is a very appropriate system
to study line groups. The relation between carbon atoms on a carbon nan-
otube and the symmetry operations on the respective line groups is one-to-
one, and nanotubes are, therefore, a prototype system for illustrating line
groups [23, 24].

9.5 The Determination of Crystal Structure
and Space Group

In many research situations, the researcher must first identify the crystal
structure and the space group, as summarized below.
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9.5.1 Determination of the Crystal Structure

The standard determinations of crystal structures are carried out using diffrac-
tion techniques, either X-ray or neutron diffraction. The elastically scattered
beams give rise to a series of diffraction peaks which can be indexed according
to the points in reciprocal lattice. The results of many such structural determi-
nations for specific materials are listed in the series of books by Wyckoff [76].

We illustrate the use of Wyckoff’s books to find the crystal structure of
a particular material in Problem 9.6. The information to be extracted from
Wyckoff’s book concerns the number of allotropic structures of a given chem-
ical species, the Wyckoff positions of the atoms within the unit cell, the site
symmetries of the atoms in each of the structures and the space group des-
ignations. Such information is also available from websites [58]. Appendix C
shows some illustrative crystal structures.

9.5.2 Determination of the Space Group

The International Tables for X-Ray Crystallography [58] helps with the de-
termination of the space group and the symmetry operations of the space
group3 [58]. These volumes deal with space groups in general but do not refer
to specific materials, which is the central theme of Wyckoff’s books. In some
cases Wyckoff’s books give the space group designation, and then the listing
of the Wyckoff positions needs to match up with the proper Wyckoff positions
in the International Tables for X-Ray Crystallography under the appropriate
space group. If the space group is not given explicitly in Wyckoff’s books [76],
then the space group must be found from the Crystallographic information
and the Wyckoff positions. The procedure that is used to find the space group
is to first find the Wyckoff positions and site symmetries as illustrated in
Problems 9.4 and 9.6. Information about space groups is also available from
websites [54, 58, 76].

Selected Problems

9.1. (a) For the crystal structure shown in Fig. 9.5(a) list the symmetry ele-
ments and identify the space group and give the space group number and
symmetry designations for this symmorphic space group (see Table 9.1).

(b) Find the Wyckoff positions for the four atoms per unit cell and find the
site symmetries for the structure shown in Fig. 9.5(a).

(c) Find χequiv for the space group in Fig. 9.5(a) and find the irreducible
representations contained in Γ equiv.

(d) Repeat (a), (b) and (c) for the space group in Fig. 9.5(b).

3International Tables for X-ray Crystallography.
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Fig. 9.12. Translation–rotation symmetry for a fourfold axis (a), and a threefold
axis (b)

9.2. (a) List the real space symmetry operations of the nonsymmorphic two-
dimensional square space group p4gm (#12).

(b) Explain all the open and filled points, and the solid and dashed lines
in the diagram for the 2D space group p4gm (#12). Explain the point
symmetry entries for each of the site symmetries a, b, c, d on the table for
space group #12 (p4gm) in Table B.12 in Appendix B which was taken
from the International Crystallography Tables.

(c) Explain the differences in the symmetry operations between the 2D space
group #12 and the 2D space group #11. Why does the figure for group
#11 have dashed lines? Why is group #12 not classified as a centered
space group? Why are there no centered square 2D space groups?

9.3. Show that in the diamond structure, the product of two symmetry opera-
tions involving translations τ yields a symmetry element with no translations

{α|τ}{β|τ} = {γ|0},

where τ = (1, 1, 1)a/4. What is the physical significance of this result?

9.4. Consulting Wyckoff’s book “Crystal Structures” 2nd edn., Krieger (1981)
for the crystal structure of Nb3Sn, a prototype superconductor with the A–15
(or β–W) structure used for high field superconducting magnet applications:

(a) List the site locations of each atom within the unit cell of Nb3Sn as ob-
tained from Wyckoff’s book or from another source.

(b) Identify the proper space group for Nb3Sn and give the Wyckoff positions
for each atom and its site symmetry.

9.5. To understand why fivefold symmetry does not form a Bravais lattice,
consider the interplay of a fourfold or threefold axes and their translations,
shown in Fig. 9.12. In general, the only acceptable values of α are those that
cause BB′ in Fig. 9.12 to be an integer multiple of the original translation, τ
(that is we require BB′ = mτ , where m is an integer).

(a) By relating BB′ to τ and α, show that the only values of α satisfying the
restriction BB′ = mτ are 0, π/3, π/2, 2π/3 and π.
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(b) Show schematically that in the case of fivefold symmetry, BB′ gives rise
to a new translation τ ′ in the same direction as τ , but inconsistent with
the original lattice vectors coming from A. This inconsistency can also be
expressed by stating that BB′ violates the initial hypothesis that τ is the
shortest translation in the direction BB′.

9.6. This problem provides experience with finding the Wyckoff positions for
3D graphite in the hexagonal crystal structure (see Fig. C.1 in Appendix C)
and in the rhombohedral crystal structure (see Fig. C.2)

(a) From the crystal structure model, find the coordinates for the four distinct
atoms per unit cell in 3D graphite and give their site symmetries.

(b) Using space group #194 (Table C.3 in Appendix C) find the Wyckoff
positions and their symmetries.

(c) Explain the diagrams appearing at the top of Table C.3, especially the
notation. Why are space groups #191, #192, and #193 not appropriate
for describing the structure for 3D graphite (Fig. C.1)?

(d) Repeat (a) for rhombohedral graphite (Table C.4) with 6 atoms/unit cell
in the hexagonal system and two atoms/unit cell in the rhombohedral
system (space group #166).

9.7. Consider single wall carbon nanotubes, as presented in Sect. 9.4 and dis-
cussed in Appendix E.

(a) Find the space groups with the appropriate symmetries for the semicon-
ducting (6,5) and the metallic (6,6) carbon nanotubes.

(b) The physical properties of carbon nanotubes can be obtained from those–
of a graphene sheet by the zone-folding procedure. Using the linear-helical
construction (see Appendix E), show how the allowed k vectors of a car-
bon nanotube can be mapped into the Brillouin zone of two-dimensional
graphite, and discuss the conservation of the linear and helical quantum
numbers. The diagram on the cover to this book can be very helpful for
solving this problem.

(c) Find the appropriate line groups for chiral and achiral carbon nanotubes.
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Space Groups in Reciprocal Space

and Representations

When moving from molecules to crystals, the physical properties will be de-
scribed by dispersion relations in reciprocal space, rather than by energy lev-
els. One of the most important applications of group theory to solid state
physics relates to the symmetries and degeneracies of the dispersion relations,
especially at high symmetry points in the Brillouin zone. As discussed for the
Bravais lattices in Sect. 9.2, the number of possible types of Brillouin zones is
limited. The reciprocal space for Bravais lattices is discussed in Sect. 10.1 and
this topic is also discussed in solid state physics courses [6, 45].

The classification of the symmetry properties in reciprocal space involves
the group of the wave vector, which is the subject of this chapter. The group
of the wave vector is important because it is the way in which both the
point group symmetry and the translational symmetry of the crystal lattice
are incorporated into the formalism that describes the dispersion relations of
elementary excitations in a solid. Suppose that we have a symmetry operator
P̂{Rα|τ} based on the space group element {Rα|τ} that leaves the periodic
potential V (r) invariant,

P̂{Rα|τ}V (r) = V (r) . (10.1)

The invariance relation of (10.1) has important implications on the form of the
wave function ψ(r). In particular if we consider only the translation operator
P̂{ε|τ} based on the translation group elements {ε|τ}, we have the result

P̂{ε|τ}ψ(r) = ψ(r + τ ) . (10.2)

Within this framework, we can prove Bloch’s theorem in Sect. 10.2.2, and then
we go on in Sect. 10.3 to determine the symmetry of the wave vector. We then
discuss representations for symmorphic and nonsymmorphic space groups and
illustrate the group of the wave vector. In Sect. 10.6 we consider the group of
the wave vector in some detail for the simple cubic lattice and then we make
a few comments to extend these results for the simple cubic lattice to the
face centered and body centered cubic structures. The compatibility relations
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leading to the formation of branches in the dispersion relations are discussed
(Sect. 10.7), illustrated by the same three cubic space groups as in Sect. 10.6.
Finally, the group of the wave vector is considered for the nonsymmorphic
diamond lattice in Sect. 10.8.

10.1 Reciprocal Space

Definition 23. The set of all wave vectors Km that yield plane waves with
the periodicity of a given Bravais lattice defines its reciprocal lattice, and the
Km are called reciprocal lattice vectors.

The relation
eiKm·(r+Rn) = eiKm·r (10.3)

holds for any r, and for all Rn and Km defining the Bravais lattice in real
space and reciprocal space, respectively, where the reciprocal lattice is charac-
terized by the set of wavevectors Km satisfying

eiKm·Rn = 1 . (10.4)

Considering Rn =
∑
niai and Km =

∑
mjbj (i, j = 1, 2, 3), where ai and bj

are, respectively, the primitive translation vector and the primitive reciprocal
lattice vector for the unit cells of a space lattice, then

bj · ai = 2πδij (10.5)

defines the orthonormality relation satisfying (10.4).
The more general ortho-normality relation for a general lattice vector Rn

and a general reciprocal lattice vector Km will be given by

Rn · Km = 2πNnm = 2πN1 , (10.6)

where Nnm = N1 is an integer depending on n,m.

Table 10.1. Summary of the real and reciprocal lattice vectors for the five two-
dimensional Bravais lattices (see Sect. 9.3)

translation vectors reciprocal lattice vectors

type a1 a2 b1 b2

oblique, p (a1, 0) a2(cos θ, sin θ) (2π/a1)(1,− cot θ) (2π/a2)(0, csc θ)

rectangular, p (a1, 0) (0, a2) (2π/a1)(1, 0) (2π/a2)(0, 1)

rectangular, c (a1/2, a2/2) (−a1/2, a2/2) 2π(1/a1, 1/a2) 2π(−1/a1, 1/a2)

square, p (a, 0) (0, a) (2π/a)(1, 0) (2π/a)(0, 1)

hexagonal, p (0,−a) a(
√

3/2, 1/2) (2π/a)(1/
√

3,−1) (2π/a)(2/
√

3, 0)
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To illustrate the primitive translation vectors of the unit cells in real and
reciprocal space for the Bravais lattices, we list in Table 10.1 the primitive
translation vectors and the corresponding reciprocal lattice vectors for the
five two-dimensional Bravais lattices based on (10.5). The vectors a1 and a2

for these 2D lattices are expressed in terms of unit vectors along appropriate
directions of the five Bravais lattices, and a and b are lattice constants. For
three-dimensional space groups, there are three unit vectors ai, and three unit
vectors bj in k-space, using the space group notation. The Brillouin zones for
several three-dimensional space groups can be found in Appendix C and in
the literature [50].

10.2 Translation Subgroup

For the translation subgroup T which is a subgroup of the space group G, con-
sider the translation operator P̂{ε|τ} based on the translation group elements
{ε|τ}, yielding the result

P̂{ε|τ}ψ(r) = ψ(r + τ ) , (10.7)

but since the translation operations all commute with one another, the trans-
lations form an Abelian group.

Definition 24. Since the translation operation τ can be written in terms of
translations over the unit vectors ai

τ =
3∑

i=1

niai ,

we can think of the translation operators in each of the ai directions as com-
muting operators:

{ε|τ} = {ε|τ1}{ε|τ2}{ε|τ3} , (10.8)

where τ i = niai. The real space lattice vectors produced by the translation
operator are denoted in Sect. 10.1 by Rn.

10.2.1 Representations for the Translation Group

The commutativity of the {ε|τ i} operations in (10.8) gives three commuting
subgroups. It is convenient to use periodic boundary conditions and to relate
the periodic boundary conditions to cyclic subgroups (see Sect. 1.3), so that
{ε|τ 1}N1 = {ε|τ 2}N2 = {ε|τ 3}N3 = {ε|0}, and Ni is the number of unit
cells along τ i. In a cyclic subgroup, all symmetry elements commute with one
another, and therefore the subgroup is Abelian and has only one-dimensional
irreducible matrix representations. Furthermore, the number of irreducible
representations of the cyclic subgroup is equal to the number of elements h
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in the group, and each element is in a class by itself. Since {ε|τ i}Ni = {ε|0},
the irreducible representation for the cyclic group can be written as a set of
matrices which are phase factors or characters of the form exp(ikiniai), and
are the Ni roots of unity. Here ki = 2πmi/Li (where mi is an integer and Li is
the length of the crystal in direction ai) defines the irreducible representation,
and there are N1N2N3 ∼ 1023 of such irreducible representations. In this
context, the wave vector k serves as a quantum number for the translation
operator.

10.2.2 Bloch’s Theorem and the Basis Functions
of the Translational Group

Theorem. If an eigenfunction ψk transforms under the translation group ac-
cording to the irreducible representation labeled by k, then ψk(r) obeys the
relation

P̂{ε|τ}ψk(r) = ψk(r + τ ) = eik·τψk(r) (10.9)

and ψk(r) can be written in the form

ψk(r) = eik·ruk(r) , (10.10)

where uk(r + τ ) = uk(r) has the full translational symmetry of the crystal.

Proof. Since the translation group is Abelian, all the elements of the group
commute and all the irreducible representations are one-dimensional. The re-
quirement of the periodic boundary condition can be written as

{ε|τ 1 +NL1} = {ε|τ 1} , (10.11)

where N is an integer and L1 is the length of the crystal along basis vector a1.
This results in the one-dimensional matrix representation for the translation
operator τ i = niai

Dk1(n1a1) = eik1n1a1 = eik1τ 1 (10.12)

since
P̂Rψk(r) = Dk(R)ψk(r) , (10.13)

where R denotes a symmetry element k1 = 2πm1/L1 corresponds to the m1th
irreducible representation and m1 = 1, 2, . . . , (L1/a1). For each m1, there is
a unique k1, so that each irreducible representation is labeled by either m1 or
k1, as indicated above.

We now extend these arguments to three dimensions. For a general trans-
lation

τ =
3∑

i=1

niai , (10.14)

the matrix representation or character for the (m1m2m3)th irreducible repre-
sentation is
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Dk1(n1a1)Dk2(n2a2)Dk3(n3a3) = eik1n1a1eik2n2a2eik3n3a3 = eik·τ , (10.15)

since
{ε|τ} = {ε|τ1}{ε|τ2}{ε|τ3} . (10.16)

Thus our basic formula P̂Rψj =
∑

α ψαD(R)αj yields

P̂{ε|τ}ψ(r) = ψ(r)eik·τ = eik·τψ(r) = ψ(r + τ ) , (10.17)

since the representations are all one-dimensional. This result is Bloch’s the-
orem where we often write τ = Rn in terms of the lattice vector Rn. This
derivation shows that the phase factor eik·τ is the eigenvalue of the translation
operator P̂{ε|τ}. �
Because of Bloch’s theorem, the wave function ψ(r) can be written in the
form

ψk(r) = eik·ruk(r) , (10.18)

where uk(r) exhibits the full translational symmetry of the crystal. This result
follows from:

ψk(r + Rn) = eik·(r+Rn)uk(r + Rn) = eik·Rn
[
eik·ruk(r)

]
, (10.19)

where the first equality in (10.19) is obtained simply by substitution in (10.18)
and the second equality follows from Bloch’s theorem. In these terms, Bloch’s
theorem is simply a statement of the translational symmetry of a crystal.

The Bloch functions are the basis functions for the translation group T .
The wave vector k has a special significance as the quantum number of transla-
tion and provides a label for the irreducible representations of the translation
group. If the crystal has a length Li on a side so that n0 different lattice
translations can be made for each direction ai, then the number of k vectors
must be limited to

kx, ky, kz = 0,± 2π
n0a

,± 4π
n0a

, . . . ,±π
a

(10.20)

in order to insure that the number of irreducible representations is equal to the
number of classes. Since the translation group is Abelian, every group element
is in a class by itself, so that the number of irreducible representations must
equal the number of possible translations. Since the number of translation
operators for bulk crystals is very large (∼ 1023), the quantum numbers for
translations are discrete, but very closely spaced, and form a quasi-continuum
of points in reciprocal space. For nanostructures, the number of translation
operations can be quite small (less than 100) and some unusual quantum size
effects can then be observed.

We note that all of these k-vectors are contained within the first Brillouin
zone. Thus, if we consider a vector in the extended Brillouin zone k + Km,
where Km is a reciprocal lattice vector, the appropriate phase factor in Bloch’s
theorem is

ei(k+Km)·Rn = eik·Rn , (10.21)

since Km · Rn = 2πN where N is an integer.
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10.3 Symmetry of k Vectors
and the Group of the Wave Vector

When we choose a given eigenstate ψk(r) of the crystal potential, except for
eigenstates at the Γ point (k = 0), the basis function will exhibit a modulation
described by the wavevector k, and this modulation will decrease the crystal
symmetry. In this case, we work with the group of the wave vector, that is
a subgroup of the space group G. To introduce this concept, we consider
in Sect. 10.3.1 the action of a point group symmetry operator on a lattice
vector and on a reciprocal lattice vector. Next we discuss the group of the
wave vector and the star of a wave vector, including an example of these
concepts in terms of the two-dimensional square lattice (Sect. 10.3.2). Finally
in Sect. 10.3.3 we consider the effect of translations and point group operations
on Bloch functions, thereby clarifying the degeneracies introduced by the point
group symmetries of crystal lattices.

10.3.1 Point Group Operation in r-space and k-space

The effect of a symmetry operator P̂α on a lattice vector Rn and on a recipro-
cal lattice vector Km subject to the orthogonality relation (10.6) is considered
in this section.

Let P̂α denote a symmetry operator of the point group of the crystal, then
P̂αRn leaves the crystal invariant. If Rn is a translation operator, then P̂αRn

is also a translation operator (lattice vector), since the full symmetry of the
lattice is preserved. Likewise P̂αKm is a translation operator in reciprocal
space. Since P̂αRn is a lattice vector, we can write

(P̂αRn) · Km = 2πN2 , (10.22)

where N2 is an integer, not necessarily the same integer as N1 in (10.6). Since
α−1 is also a symmetry operator of the group, we have

(P̂−1
α Rn) · Km = 2πN3 , (10.23)

and againN3 is not necessarily the same integer asN1 orN2. Furthermore, any
scalar product (being a constant) must be invariant under any point symmetry
operator. Thus if we perform the same symmetry operation on each member
of the scalar product in (10.23), then the scalar product remains invariant

P̂α(P̂−1
α Rn) · (P̂αKm) = 2πN3 = Rn · (P̂αKm) . (10.24)

Equations (10.22)–(10.24) lead to several results: If P̂α is a symmetry oper-
ator of a point group of a crystal, and Rn and Km are, respectively, lattice
and reciprocal lattice vectors, then P̂−1

α Rn and P̂αKm also are, respectively,
a lattice vector and a reciprocal lattice vector. Thus the effect of an operator
P̂α on a direct lattice vector Rn is equivalent to the effect of operator P̂−1

α on
the corresponding reciprocal lattice vector Km.
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10.3.2 The Group of the Wave Vector Gk and the Star of k

Definition 25. The group of the wave vector is formed by the set of space
group operations which transform k into itself, or into an equivalent k =
k + Km vector, where Km is a vector of the reciprocal lattice.

The addition of Km does not change the energy of the system since eik·Rn =
ei(k+Km)·Rn , i.e., both k and (k+Km) belong to the same translational irre-
ducible representation (see Sect. 10.2.2). Clearly, all the symmetry operations
of the space group take the point k = 0 into itself so that the space group
itself forms the group of the wave vector at k = 0. Furthermore, the group of
the wave vector for nonzone center k-vectors (k �= 0) remains a subgroup of
the space group for k = 0.

Let us now consider the action of the point group operations on a general
vector k in reciprocal space, not necessarily a reciprocal lattice vector. The
set of wave vectors k′ which are obtained by carrying out all the point group
operations on k is called the star of k. If k is a general point in the Brillouin
zone, there will be only one symmetry element, namely the identity, which
takes k into itself and in this case the wave functions describing electron
states only see the translational symmetry {ε|τ} of the space group. On the
other hand, if the k-vector under consideration lies on a symmetry axis or
is at a high symmetry point in the Brillouin zone, then perhaps several of
the point group operations will transform k into itself or into an equivalent
k-vector k + Km.

An informative example for the formation of the group of the wave vector
for various k-vectors is provided by the two-dimensional square lattice. Here
the point group is D4 and the symmetry operations are E, C2 = 2C2

4 , 2C4,
2C′

2, 2C′′
2 (diagonals). The various k-vectors in the star of k are indicated in

the diagrams in Fig. 10.1 for the two-dimensional square lattice. The group
elements for the group of the wave vector in each case are indicated within the
parenthesis. The top three diagrams are for k-vectors to interior points within
the first Brillouin zone and the lower set of three diagrams are for k-vectors to
the Brillouin zone boundary. Thus the star of k shown in Fig. 10.1 is formed
by consideration of P̂αk for all operators P̂α for the point group. The group of
the wave vector is formed by those P̂α for which P̂αk = k + Km, where Km

is a reciprocal lattice vector (including Km = 0). The concepts presented in
Fig. 10.1, are reinforced in Problem10.2 for the hexagonal lattice with point
group D6.

10.3.3 Effect of Translations and Point Group Operations
on Bloch Functions

We will now consider the effect of the symmetry operations on k with re-
gard to the eigenfunctions of Schrödinger’s equation. We already know from
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Bloch’s theorem that the action of any pure translation operator P̂{ε|τ} on
wave function ψk(r) (where τ = Rn) yields a wave function eik·Rnψk(r)

P̂{ε|τ}ψk(r) = eik·τψk(r) . (10.25)

There will be as many wave functions of this functional form as there are trans-
lation vectors, each corresponding to the energy E(k). These Bloch functions
provide basis functions for irreducible representations for the group of the
wave vector. If k is a general point in the Brillouin zone, then the star of k
contains wave vectors which are all equivalent to k from a physical standpoint.
The space group for a general wave vector k will however contain only the
symmetry elements {ε|Rn}, since in this case all the k-vectors are distinct.
For a wave vector with higher symmetry, where the operations P̂βk = k+Km

transform k into an equivalent wave vector, the space group of the wave vector
contains the symmetry element {β|Rn} and the energy at equivalent k points
must be equal. If the point group of the wave vector contains irreducible rep-
resentations that have more than one dimension, then a degeneracy in the
energy bands will occur. Thus bands tend to “stick together” along high sym-
metry axes and at high symmetry points.

The effect of a point group operation on this eigenfunction is

P̂{Rα|0}ψk(r) = P̂{Rα|0}eik·ruk(r) , (10.26)

in which we have written the eigenfunction in the Bloch form. Since the effect
of a point group operation on a function is equivalent to preserving the form
of the function and rotating the coordinate system in the opposite sense, to
maintain invariance of scalar products we require

k · R−1
α r = Rαk · r . (10.27)

If we now define uRαk(r) ≡ uk(R−1
α r) for the periodic part of the Bloch

function and denote the transformed wave vector by k′ ≡ Rαk, then we have

P̂{Rα|0}ψk(r) = eiRαk·ruRαk(r) ≡ ψRαk(r) , (10.28)

which we will now show to be of the Bloch form by operating with the trans-
lation operator on ψRαk(r)

P̂{ε|τ}ψRαk(r) = P̂{ε|τ}[eiRαk·ruk(R−1
α r)]

= eiRαk·(r+τ )uk(R−1
α r +R−1

α τ ) . (10.29)

Because of the periodicity of uk(r) we have

uRαk(r + τ ) = uk(R−1
α r +R−1

α τ ) = uk(R−1
α r) ≡ uRαk(r) , (10.30)
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Fig. 10.1. Illustration of the star of k for various wave vectors in the Brillouin zone
of a simple 2D square lattice. The top three diagrams are for k-vectors to an interior
point in the Brillouin zone, while the bottom three diagrams are for wave vectors
extending to the Brillouin zone boundary. In each case the point group elements for
the group of the wave vector are given in parentheses

and noting the orthonormality relation (10.6) for the plane wave factor, we get

P̂{ε|τ}ψRαk(r) = eiRαk·τψRαk(r) , (10.31)

where uRαk(r) is periodic in the direct lattice. The eigenfunctions ψRαk(r)
thus forms basis functions for the Rαkth irreducible representation of the
translation group T . As we saw in Sect. 10.3.2, the set of distinct wave vectors
in k-space which can be generated by operating on one k vector by all the
symmetry elements of the point group g is called the “star of k” (see Fig. 10.1).

Considering the above arguments on symmorphic groups for simplicity,
where the point group g is isomorphic to G/T and {Rα|τ} = {ε|τ}P̂{Rα|0},
we have

P̂{Rα|τ}ψk(r) = P̂{ε|τ}P̂{Rα|0}ψk(r)

= P̂{ε|τ}ψRαk(r)

= eiRαk·τψRαk(r) . (10.32)
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Fig. 10.2. The shaded triangle ΓΛRSXΔΓ which constitutes 1/8 of the Brillouin
zone for the 2D square lattice and contains the basic wave vectors and high symmetry
points

Similarly we obtain

P̂{Rβ |τ ′}ψRαk(r) = eiRβRαk·τ ′
ψRβRαk(r) . (10.33)

Thus the set of eigenfunctions {ψRαk(r)} obtained by taking the star of k
spans the invariant subspace of the point group g since the product operation
RβRα is contained in g. If h is the order of the group g, there are h functions
in the set {ψRαk(r)}. All of these representations are completely specified by
k, but they are equally well specified by any of the k vectors in the star of k.
Although all the functions in the set {ψRαk(r)} correspond to the same energy,
we do not say that the functions ψk(r) and ψRαk(r) are degenerate. Instead
we write {ψk(r)} for all the functions in the set {ψRαk(r)} and consider the
extra point group symmetry to yield the relation E(k) = E(Rαk) for all
Rα. In this way, we guarantee that the energy E(k) will show the full point
group symmetry of the reciprocal lattice. Thus for the two-dimensional square
lattice, it is only necessary to calculate E(k) explicitly for k points in 1/8 of
the Brillouin zone contained within the sector ΓΛRSXΔΓ (see Fig. 10.2).
These statements are generally valid for nonsymmorphic groups as well.

We use the term “degeneracy” to describe states with exactly the same
energy and the same wave vector. Such degeneracies do in fact occur because
of symmetry restrictions at special high symmetry points in the Brillouin
zone and such degeneracies are called “essential” degeneracies. “Essential”
degeneracies occur only at high symmetry or special k points, while acciden-
tal (“nonessential”) degeneracies occur at arbitrary k points. “Special” high
symmetry points in the Brillouin zone are those for which

Rαk = k + Km , (10.34)

where Km is the reciprocal lattice vector including Km = 0. In the cases
where the symmetry operation yields Rαk = k+Km, then the eigenfunctions
have essential degeneracies because we now can have degenerate eigenfunc-
tions with the same energy eigenvalue at the same k vector. These essential
band degeneracies are lifted as we move away from the high symmetry points
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to a general point in the Brillouin zone. The rules governing the lifting of
these degeneracies are called compatibility relations, discussed in Sect. 10.7.

10.4 Space Group Representations

We start by saying that tables for the group of the wave vector for each unique
k vector for each of the 230 space groups have been established and are avail-
able in different references, as reviewed in Sect. 10.9. For each wavevector k,
the spacial group representations are constructed from the analysis of the
group of wavevector and of the star of k, and the use of the multiplier alge-
bra, that we briefly discuss below. The representations will be square matrices
with dimension (�q) × (�q), i.e., �× � blocks of q × q matrices, where � is the
number of k vectors in the star, and q is defined by the representations in the
group of the wavevector. Each line (or column) in the matrix will have only
one q × q nonzero entry and the remaining entries are filled with null q × q
matrices. The �× � block arrangement describes the symmetries relating the
different vectors in the star of k, and the nonzero q × q matrix describes the
symmetry with respect to the specific k and its group of the wavevector.

The rotational aspects of the group of the wave vector are described by the
q× q matrices related to the factor group Gk/Tk. The Tk group can be repre-
sented by a linear combination of the three lattice vectors, and the symmetry
elements usually shown in the character tables are related to a {Rα|τα}/Tk

coset. The subgroups of the group of the wave vector k occurring at points in
the Brillouin zone with fewer symmetry operations are called the small rep-
resentations, in contrast to the full point group symmetry for k = 0 which is
called the large representation. The Bloch functions with wavevectors k form
the basis, and each symmetry element is a coset formed by several elements,
but is represented by a typical element, a “representative coset.”

10.4.1 Symmorphic Group Representations

The representation theory for symmorphic groups is relatively simple. Since
there are no compound operations, the factor group Gk/Tk is symmorphic to
the point group gk.

Small Representation. The small representations for the group of the wave
vector of k are given by

DΓi

k ({Rα|Rn}) = eik·RnDΓi(Rα) , (10.35)

where {Rα|Rn} belongs to Gk, and eik·Rn comes from T , with Rn being a lat-
tice vector or a primitive translation, and Γi is an irreducible representation
coming from one of the 32 crystallographic point groups (see Chap. 3), whose
character tables are given in Appendix A. Here DΓi(Rα) refers only to the
point group.
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Characters for Small Representation. The characters for the irreducible rep-
resentations are given by

χΓi

k ({Rα|Rn}) = eik·RnχΓi(Rα) . (10.36)

where χΓi(Rα) only refers to the point group.

Large Representation. For the Γ point we have k = 0 and eik·Rn = 1. Also,
if we consider the factor group of Gk with respect to the translations, then
also Rn = 0 and again eik·Rn = 1. In both cases, both representations and
characters are identical to those from the point groups.

10.4.2 Nonsymmorphic Group Representations
and the Multiplier Algebra

As for the symmorphic groups, we denote the group of the wave vector k by
Gk. For symmetry operations {R|τ} that involve translations τ smaller than
the smallest Bravais lattice vector, the translations introduce a phase factor
exp[ik · τ ]. However, as discussed in Sect. 9.1.4, the entire set of space group
elements {Rα|τα} may fail to form a group, and the point group g of the crys-
tal is not a subgroup of G. In this case, to work with the rotational aspects
of the nonsymmorphic space group, procedures to remove the translational
effect are needed. Furthermore, the factor group Gk/Tk contain cosets formed
only by pure translations, giving rise to irrelevant representations. The rel-
evant representations, describing the rotational aspects of the group of the
wavevector, can be directly obtained by using the multiplier algebra.

Multiplier Groups. If the representations are written in terms of a Bloch wave
basis, the translational group is diagonalized and the multiplier groups are
defined by

{Rα|τα}{Rβ|τ β} = e−ik·[τα+Rατβ−ταβ ]{RαRβ |ταβ} , (10.37)

where the [τα +Rατ β − τ αβ ] represents a lattice vector translation resulting
from the product of the elements in the group of the wave vector. Any element
{Rγ |τ γ +Rn} thus generated can be represented by a single element

M(γ) = e−ik·[τγ+Rn]{Rγ |τ γ +Rn} (10.38)

in the multiplier group, obeying the algebra

M(α)M(α′) = eiKα·τα′M(αα′) , (10.39)

the exponential factor being 1 except for points at the Brillouin zone boundary,
where Rαk = k + Kα, and Kα is a reciprocal lattice translation. The factor
group Gk/Tk will, therefore, be isomorphic to a point group from which the
rotational aspects of the group of the wave vector can be treated.
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Small and Large Representations. In general the representations are obtained
from the irreducible representations of the multiplier group. From (10.38)
and (10.39) it can be shown that the small representations are obtained from
ordinary point group representations when the point group operation leaves k
invariant, since in that case Kα = 0 in (10.39). The same applies to the large
representation, where Kα = 0 always. Note that the multiplier algebra also
applies to symmorphic groups. In this case τα = τ α′ = τ β = 0 in (10.38) and
(10.39), and the representations are also obtained from ordinary point group
representations, as discussed above.

Characters for Small and Large Representations. At the zone center, the char-
acters for the group of the wave vector are the same as the isomorphic point
group, because the phase factor exp[ik · τ ] reduces to unity when k = 0. For
each symmetry axis leading away from k = 0, the character tables for those
k points can be obtained by selecting the

appropriate point group character table and by multiplying the character
for the symmetry operations that contain a translation τ by a phase factor
exp[ik · τ ].

More detailed discussions of the space group representations and multiplier
groups are available elsewhere [50, 53].

10.5 Characters for the Equivalence Representation

We now discuss the computation of the characters χequiv. for the equivalence
representation in space groups, and its decomposition into the irreducible
representations of the group. For a specific wavevector k, the general formu-
lation for χequiv.

k related to a specific class of symmetry space group operators
{Rα|Rn + τα} is given by

χequiv.({Rα|Rn + τα}) = eik·(Rn+τα)
∑

j

δ{Rα|Rn+τα}rj ,rj
eiKm·rj , (10.40)

where the first exponential factor is related to the phase factor for translation
Rn + τα. The delta function basically gives 1 for atoms remaining in their
position under the space group symmetry operation {Rα|Rn + τα} or is 0
otherwise. For space groups, however, equivalent atoms on different unit cells
must be considered as equivalent. Here rj is the position in the jth atom
with respect to the origin of the point group, and δ{Rα|Rn+τ α}rj ,rj

= 1 if
{Rα|Rn + τα}rj and rj refer to equivalent atomic positions, occurring when
(Rαrj = rj + Rn). It is clear that the delta function is always zero when
τ α �= 0.

The decomposition of the equivalence transformation into the irreducible
representations of the space group is made by using the procedure discussed in
Sect. 3.4. The first exponential factor in (10.40) turns out not to be important
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for this decomposition process, since χequiv. will then be multiplied by [χ(Γi)]∗

(see (3.20)), which carries the complex conjugate of the exponential factor.
Equation (10.40) gives the general rule for the equivalence transformation

in crystalline structures. The last exponential term in (10.40) appears for
specific k points at the zone boundary, for which R−1

α k = k + Km where
Km is a reciprocal lattice vector. At most of the k points, including the Γ
point, R−1

α k = k and Km = 0 so that eiKm·rj = 1, and we just work with
the general concept of χa.s. = 0 or 1.

10.6 Common Cubic Lattices: Symmorphic Space
Groups

In this section we limit our discussion to symmorphic space groups, where
the group of the wave vector for arbitrary k is a subgroup of the group of the
wave vector k = 0, which displays the full point group symmetry of the crystal
(see Sect. 10.4.1). This situation applies to all crystal lattices, whether they
are cubic, hexagonal, etc. We discuss here the group of the wave vector for
the three-dimensional simple cubic lattice Pm3m (O1

h) #221 (see Fig. 10.3) in

Fig. 10.3. The Brillouin zone for the simple cubic lattice (space group #221) show-
ing the high symmetry points and axes

Fig. 10.4. Brillouin zones for the (a) face-centered (space group #225) and (b)
body-centered (space group #229) cubic lattices showing the points and lines of
high symmetry in (a). The point Z on the line between X and W is also called V
in the literature and point Q is between L and W
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some detail, and we refer also to the group of the wave vector for the B.C.C.
(space group Im3m (O9

h) #229) and for the F.C.C. (space group Fm3m (O5
h)

#225) structures (see Fig. 10.4).
Figure 10.3 shows the Brillouin zone for the simple cubic lattice. The high

symmetry points and axes in these figures are labeled using the standard
notation found in the crystallography literature, the group theory literature,
and in the solid state physics literature.

10.6.1 The Γ Point

The symmetry operations of the group of the wave vector at the Γ point
(k = 0) are the symmetry operations of the Oh group indicated in Fig. 3.4
compounded with full inversion symmetry, Oh = O ⊗ i. The character table
for Oh along with the basis functions for all the irreducible representations
is given in Table 10.2. The form of the basis functions is helpful in identify-
ing s (Γ1), p (Γ15) and d (Γ12, Γ

′
25) electronic states of the Oh cubic crystal

where the symmetries of the corresponding irreducible representations are
shown.

The notation used in Table 10.2 is that traditionally used in the solid state
physics literature [1] and dates back to the 1930s. Here Γ1 and Γ2 denote

Table 10.2. Character table for the cubic group Oh corresponding to the group of
the wave vector at k = 0 for the three cubic space groups #221 (SC), #225 (FCC),
and #229 (BCC)†

repr. basis functions E 3C2
4 6C4 6C′

2 8C3 i 3iC2
4 6iC4 6iC′

2 8iC3

Γ1(Γ+
1 ) 1 1 1 1 1 1 1 1 1 1 1

Γ2 (Γ+
2 )

⎧⎨
⎩
x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)

1 1 −1 −1 1 1 1 −1 −1 1

Γ12 (Γ+
12)

{
x2 − y2

2z2 − x2 − y2 2 2 0 0 −1 2 2 0 0 −1

Γ15(Γ−
15) x, y, z 3 −1 1 −1 0 −3 1 −1 1 0

Γ25(Γ−
25) z(x2 − y2) . . . 3 −1 −1 1 0 −3 1 1 −1 0

Γ ′
1 (Γ−

1 )

⎧⎨
⎩
xyz[x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)]

1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′
2(Γ−

2 ) xyz 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′
12 (Γ−

12) xyz(x
2 − y2) . . . 2 2 0 0 −1 −2 −2 0 0 1

Γ ′
15 (Γ+

15) xy(x
2 − y2) . . . 3 −1 1 −1 0 3 −1 1 −1 0

Γ ′
25 (Γ+

25) xy, yz, zx 3 −1 −1 1 0 3 −1 −1 1 0

† The basis functions for Γ−
25 are z(x2 − y2), x(y2 − z2), y(z2 − x2), for Γ−

12 are
xyz(x2 − y2), xyz(3z2 − r2) and for Γ+

15 are xy(x2 − y2), yz(y2 − z2), zx(z2 − x2)
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Table 10.3. Character table C4v for the group of the wave vector at a Δ pointa

representation basis functions E C2
4 2C4 2iC2

4 2iC′
2

Δ1 1, x, 2x2 − y2 − z2 1 1 1 1 1

Δ2 y2 − z2 1 1 −1 1 −1

Δ′
2 yz 1 1 −1 −1 1

Δ′
1 yz(y2 − z2) 1 1 1 −1 −1

Δ5 y, z;xy, xz 2 −2 0 0 0

a Δ = 2π
a

(x, 0, 0) (SC, FCC, BCC); T = 2π
a

(1, 1, z) (SC)

1D irreducible representations, Γ12 denotes the 2D irreducible representation,
while Γ15 and Γ25 denote the two 3D irreducible representations and the
notations used are historical.1 In this notation, Γ15 and Γ25 are odd while
Γ ′

15 and Γ ′
25 are even under inversion (as can be seen from the basis functions

in Table 10.2). To get around this apparent nonuniformity of notation with
regard to even and odd functions, we often use Γ±

i (e.g., Γ±
15) to emphasize

the parity (even or odd property) of a wavefunction for the cubic groups. We
notice that to obtain basis functions for all the irreducible representations of
the group Oh in Table 10.2 we need to include up to sixth-order polynomials.

10.6.2 Points with k �= 0

In Table C.6 in Appendix C we see that the special point R in Fig. 10.3 for
the simple cubic lattice that also has full Oh symmetry. Special care must be
given to operations taking k into k + Km, since they also add exponential
factors to the computation of χequiv, for example, as discussed in Sect. 10.5.

We next consider the group of the wave vector at lower symmetry points.
First we consider the group of the wave vector for a point along the Δ axis (see
Fig. 10.3) which has fewer symmetry operations than the group of the wave
vector at k = 0. The group of the wave vector at Δ is an example of a small
representation. The symmetry operations for a point along the Δ axis for the
simple cubic lattice are those of a square, rather than those of a cube and are
the symmetry operations of point group C4v. Group C4v is a subgroup of the
full cubic group Oh. The multiplication table for the elements of the point
group C4v which is appropriate for a reciprocal lattice point Δ along the x̂
axis is given in Table C.9. Multiplication tables like this can be compiled for
all the groups of the wave vectors for all high symmetry points in the Brillouin
zone for all the space groups.

The character table (including basis functions) for the group of the wave
vector for Δ, where Δ = (Δ, 0, 0) is along x̂, is given in Table 10.3 and Ta-
ble C.8. Since the Δ point occurs in space groups #221 (SC), #225 (FCC)

1The numbers contained in the subscripts denote how the Γ point levels split in
the Δ axis direction, as discussed in Sect. 10.7.
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Table 10.4. Character table for the group of the wave vector Λ

character table for the Λ axis

Λ = C3v E 2C3 3iC2

Λ1 1 1 1

Λ2 1 1 −1

Λ3 2 −1 0

and #229 (BCC), the character table and basis functions in Table 10.3 are
applicable for all these space groups. In Table 10.3 for the Δ point, the C4

rotation operation is along x̂, the 2iC2
4 are along ŷ, ẑ, and the 2iC′

2 are along
{011}. The basis functions in the character table can be found from inspec-
tion by taking linear combinations of (x�, ym, zn) following the discussion in
Chap. 4. The process of going from higher to the lower symmetry defines the
compatibility relations (Sect. 10.7) between irreducible representations of Oh

and those of C4v showing the path from the higher group Oh to the lower
symmetry C4v. The basis functions for the lower symmetry groups (such as
the group of Δ) are related to those of Oh by considering the basis functions
of the point group Oh as reducible representations of the subgroup Δ, and
decomposing these reducible representations into irreducible representations
of the group Δ. For example Γ ′

25 (or using Γ+
25 to show its parity) of point

group Oh is a reducible representation of C4v, and reduction of Γ ′
25 (or Γ+

25)
into irreducible representations of C4v yields the compatibility relation (see
Sect. 10.7)

[Γ ′
25]Oh

≡ [
Γ+

25

]
Oh

→ [Δ2′ +Δ5]C4v
,

showing the origin of the Γ ′
25 notation. We note that yz is the longitudinal

partner for Δ = (Δ, 0, 0) and corresponds to the irreducible representation
Δ′

2, while xy, xz are the transverse partners corresponding to Δ5. What is
different here from the discussion in Sect. 5.3 is that the dispersion relations
also go from lower to higher symmetry. For example, the Δ point goes into
the X point for space groups # 221 and # 225 and into the H point for
# 229 (BCC) all having more symmetry operations than at the Δ point. We
also note that the group of the wave vector for point T for the simple cubic
lattice (see Fig. 10.3) also has C4v symmetry (see Tables C.6 and C.8). In
considering the group of the wave vector for point T , remember that any
reciprocal lattice point separated by a reciprocal lattice vector from T is an
equally good T point. The character Table 10.3 also serves for the T -point, but
the symmetry operations and basis functions would need proper modification.
Character tables for all the high symmetry points for k vectors in the simple
cubic lattice are discussed in this section. For example, the symmetry group
for a wave vector along the (111) axis or Λ axis is C3v (see Fig. 10.3), which
is given in Table 10.4. For a Λ point along the (111) direction, the 2C3 are
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along {111}, and the 3iC2 are along (11̄0), (101̄), and (01̄1) directions. For
the Λ point we can do threefold rotations in both ± senses about ΓR for
group #221, about ΓL for #225 and about ΓP for #229 (see Fig. 10.4).
Whereas the Λ point follows the same point group C3v, the end points R,
L, and P for the three space groups have different point group symmetries.
We can also do 180◦ rotations about twofold axes ΓM followed by inversion
(see Fig. 10.3). By ΓM ′ we mean the wave vector to the center of an adjacent
cube edge, and we here note that a rotation by π about ΓM ′ in group #221
followed by inversion does not leave Λ invariant. Only three of the “ΓM ′”
axes are symmetry operations of the group; the other three such axes (like
ΓM in the diagram) are not symmetry operations. Therefore instead of the
symmetry operations 6iC2 which hold for the Γ and R points, the class 3iC2

for the group of the Λ point only has three symmetry elements. Table C.10
in Appendix C gives the basis functions for each irreducible representation
of the group of the wave vector at a Λ point and shows that point F for
the BCC structure also has C3v symmetry, but the symmetry operations and
basis functions need to be appropriately modified.

The final high symmetry point along one of the three main symmetry axes
is the Σ point along the {110} axes. The group of the wave vector for the Σ
point is C2v and the character table is shown in Table C.11 in Appendix C.
This character table applies to the Σ point for the simple cubic, FCC and BCC
lattices (see Fig. 10.4). All the irreducible representations are one-dimensional.
Table C.6 identifies high symmetry points in other space groups which have
high symmetry points with C2v symmetry. Table C.11 in Appendix C also
shows that the group of the wave vector for high symmetry points Z and
S for the simple cubic lattice, points U , Z, and K for the FCC lattice, and
points G and D for the BCC lattice all belong to group C2v.

Table 10.5. Character tables for the group of the wave vector (group D4h) for
points M and X for space group #221

M E 2C2
4 C2

4⊥ 2C4⊥ 2C2 i 2iC2
4 iC2

4⊥ 2iC4⊥ 2iC2

X E 2C2
4⊥ C2

4‖ 2C4‖ 2C2 i 2iC2
4⊥ iC2

4‖ 2iC4‖ 2iC2

M1,X1 1 1 1 1 1 1 1 1 1 1

M2,X2 1 1 1 −1 −1 1 1 1 −1 −1

M3,X3 1 −1 1 −1 1 1 −1 1 −1 1

M4,X4 1 −1 1 1 −1 1 −1 1 1 −1

M ′
1,X

′
1 1 1 1 1 1 −1 −1 −1 −1 −1

M ′
2,X

′
2 1 1 1 −1 −1 −1 −1 −1 1 1

M ′
3,X

′
3 1 −1 1 −1 1 −1 1 −1 1 −1

M ′
4,X

′
4 1 −1 1 1 −1 −1 1 −1 −1 1

M5,X5 2 0 −2 0 0 2 0 −2 0 0

M ′
5,X

′
5 2 0 −2 0 0 −2 0 2 0 0
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It can also happen that two high symmetry points such asM andX for the
simple cubic lattice belong to the same point group D4h, but the symmetry
operations for the two groups of the wave vector can refer to different axes
of rotation, as shown in Table 10.5. The notation C2

4‖ in Table 10.5 refers
to a twofold axis ΓX , while 2C2

4⊥ refers to the two twofold axes ⊥ to ΓX .
These are in different classes because in one case X is left invariant, while in
the other case X goes into an equivalent X point separated by a reciprocal
lattice vector. To put it in more physical terms, if the X point would not
exactly be on the zone boundary but were instead at a Δ point arbitrarily
close, the C2

4‖ operation would still hold, while the 2C2
4⊥ operations would not.

When we list multiple high symmetry points with a given character table in
Appendix C, we do not generally distinguish between the symmetry operations
for the individual classes (compare for example Table 10.5 and Table C.15).
Character tables for all the high symmetry points in the Brillouin zone for the
simple cubic lattice (#221) (see Fig. 10.3) and for the FCC and BCC lattices
(see Fig. 10.4) are given in Appendix C, since we use these groups frequently
for illustrative purposes in this book.

10.7 Compatibility Relations

As stated above, compatibility relations relate the basis functions (wave func-
tions) in going from one wave vector to another belonging to a different sym-
metry group. Such a situation, for example, occurs when going from k = 0 (Γ
point with full Oh symmetry) to an interior k point such as a Δ point with
C4v symmetry and then in going from the Δ point to the X point with D4h

symmetry.
To study these compatibility relations, let us follow some particular energy

band around the Brillouin zone and see how its symmetry type and hence how
its degeneracy changes. The problem of connectivity (connecting energy bands
as we move from one k point to a neighboring k point with a different group
of the wave vector) is exactly the same type of problem as that occurring in
crystal field splittings (Sect. 5.3) as we go from a high symmetry crystal field
to a perturbed crystal field of lower symmetry.

As an illustration of compatibility relations, consider a simple cubic lattice
as we move along a (111) direction from Γ → Λ → R from the center of the
Brillouin zone to the zone corner (see Fig. 10.3). At the Γ point (k = 0) we
have the full point group symmetry Oh. As we now go from a higher point
group symmetry Oh at Γ to a k vector along Λ, we go to a point group
of lower symmetry C3v. Since there are no three-dimensional representations
in C3v, we know that the degeneracy of the threefold degenerate levels in
Oh symmetry, i.e., Γ−

15, Γ
−
25, Γ

+
15, Γ

+
25 levels, will be at least partially lifted. We

proceed as before to write down the character table for the Λ point, and below
it we will write down the representations of the Γ point group, which we now
treat as reducible representations of the Λ point group. We then reduce out
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Table 10.6. Compatibility relations along Λ in the simple cubic BZ

irreducible

Λ E 2C3 3iC2 representations

Λ1 1 1 1

Λ2 1 1 −1

Λ3 2 −1 0

Γ1 (Γ+
1 ) 1 1 1 Λ1

Γ2 (Γ+
2 ) 1 1 −1 Λ2

Γ12 (Γ+
12) 2 −1 0 Λ3

Γ ′
15 (Γ+

15) 3 0 −1 Λ2 + Λ3

Γ ′
25 (Γ+

25) 3 0 1 Λ1 + Λ3

Γ ′
1 (Γ−

1 ) 1 1 −1 Λ2

Γ ′
2 (Γ−

2 ) 1 1 1 Λ1

Γ ′
12 (Γ−

12) 2 −1 0 Λ3

Γ15 (Γ−
15) 3 0 1 Λ1 + Λ3

Γ25 (Γ−
25) 3 0 −1 Λ2 + Λ3

the irreducible representations of the Λ point symmetry group. This process is
indicated in Table 10.6, below where we list the ten irreducible representations
of Oh and indicate the irreducible representations of C3v therein contained.
This procedure gives a set of compatibility conditions. In a similar way, the
compatibility relations for a simple cubic lattice along the Δ and Σ axes
follow the progression from Γ to Δ to X and also from Γ to Σ to M as can
be seen from Fig. 10.3. In going fromΔ→ X we go from C4v symmetry to D4h

symmetry, since at the Brillouin zone boundary, translation by a reciprocal
lattice vector introduces additional symmetries associated with a mirror plane.
Similarly, in going from Σ → M we get four equivalent M points so that the
symmetry group goes from C2v to D4h. Compatibility relations for the simple
cubic lattice are summarized in Table 10.7 for illustrative purposes.

Tables of compatibility relations for all space groups are compiled in the
literature, e.g. Miller and Love’s book [54] (see Sect. 10.9).

As an example of using these compatibility relations, let us consider what
happens as we move away from the Γ point k = 0 on a threefold level, such as
Γ ′

25 (or Γ+
25) in Table 10.7. There are many possibilities, as indicated below:

Γ ′
25 → Δ2′ +Δ5 → X3 +X5 , (10.41)

Γ ′
25 → Λ1 + Λ3 → R15 , (10.42)

Γ ′
25 → Σ1 +Σ2 +Σ3 →M1 +M5 . (10.43)

Suppose that we want to find a set of compatible symmetries in going around
a circuit using the Brillouin zone shown in Fig. 10.3.

Γ → Σ →M → Z → X → Δ→ Γ . (10.44)
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Table 10.7. Compatibility relations for the high symmetry points in the simple
cubic lattice

compatibility relations between Γ and Δ,Λ,Σ

Γ+
1 Γ+

2 Γ+
12 Γ−

15 Γ+
25 Γ−

1 Γ−
2 Γ−

12 Γ+
15 Γ−

25

(100) Δ1 Δ2 Δ1Δ2 Δ1Δ5 Δ2′Δ5 Δ1′ Δ2′ Δ1′Δ2′ Δ1′Δ5 Δ2Δ5

(111) Λ1 Λ2 Λ3 Λ1Λ3 Λ1Λ3 Λ2 Λ1 Λ3 Λ2Λ3 Λ2Λ3

(110) Σ1 Σ4 Σ1Σ4 Σ1Σ3Σ4 Σ1Σ2Σ3 Σ2 Σ3 Σ2Σ3 Σ2Σ3Σ4 Σ1Σ2Σ4

compatibility relations between Xand Δ,Z, S

X1 X2 X3 X4 X5 X1′ X2′ X3′ X4′ X5′

Δ1 Δ2 Δ2′ Δ1′ Δ5 Δ1′ Δ2′ Δ2 Δ1 Δ5

Z1 Z1 Z4 Z4 Z3Z2 Z2 Z2 Z3 Z3 Z1Z4

S1 S4 S1 S4 S2S3 S2 S3 S2 S3 S1S4

compatibility relations between M and Σ,Z, T

M1 M2 M3 M4 M1′ M2′ M3′ M4′ M5 M5′

Σ1 Σ4 Σ1 Σ4 Σ2 Σ3 Σ2 Σ3 Σ2Σ3 Σ1Σ4

Z1 Z1 Z3 Z3 Z2 Z2 Z4 Z4 Z2Z4 Z1Z3

T1 T2 T2′ T1′ T1′ T2′ T2 T1 T5 T5

Then we must verify that when we arrive back at Γ we have the same symme-
try type as we started with. A set of such compatible symmetries designates
a whole band.

To go around one of these circuits, basis functions prove very useful and
the tight binding wave functions are often used to keep track of the symme-
try. We know that s-functions transform like the identity representation so
that a possible circuit would be Γ1 → Λ1 → R1 → S1 → X1 → Δ1 → Γ1

(see Fig. 10.3). If we have p-functions, the basis functions are (x, y, z) and we
can join up representations corresponding to these basis functions. Likewise
for the five d-functions in cubic symmetry, we have three that transform as
(xy, xz, yz) with Γ+

25 symmetry and two that transform as (x2 + ωy2 + ω2z2)
and (x2 +ω2y2 +ωz2) corresponding to Γ+

12 symmetry, where ω = exp(2πi/3).
As an example of how compatibility relations are used in the labeling of

energy bands, we show the energy dispersion relation E(k) in Fig. 10.5 for the
high symmetry directions k100 and k111 for the simple cubic structure. For the
band with lower energy, we have the compatibility relations Γ1 → Δ1 → X1

and Γ1 → Λ1 → R1. For the upper band, we see a splitting of a p-band as we
move away from k = 0, and a consistent set of compatibility relations is

Γ+
25 → Δ2′ +Δ5 , Δ2′ → X2 and Δ5 → X5

Γ+
25 → Λ1 + Λ3 , Λ1 → R+

1 and Λ3 → R+
12 .

In applying the compatibility relations as we approach the R point from the
Λ direction, we note that the R point has the same group of the wave vector
as k = 0 and the same subscript notation can be used to label the R point,
namely R1, R2, R12, R15 and R25.
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Fig. 10.5. Schematic diagram of energy bands illustrating compatibility relations.
The diagrams below show both level crossings between bands of the same symmetries
and level anticrossings between bands of different symmetries where interactions
occur

When levels of different symmetry approach one another, they can simply
cross as indicated in Fig. 10.5 for the Δ1 and Δ′

2 levels, and this is simply
referred to as a level crossing, where the two bands retain their original sym-
metry after the crossing. However, when two levels of the same symmetry
approach one another, there is an interaction between them and this case is
also illustrated in Fig. 10.5 for two energy levels of Δ1 symmetry. The effect
in this case is called level anticrossing because the levels do not actual cross
in this case, though their wave functions become admixed in an appropriate
linear combination.

10.8 The Diamond Structure:
Nonsymmorphic Space Group

In this section we extend our discussion to nonsymmorphic space groups,
where the symmetry operations can be a combination of point group and
translation operations. In this case, to work with the rotational aspects of the
nonsymmorphic space group, procedures to remove the translational effect are
needed, and they are discussed in Sect. 10.4.

To illustrate the symmetry of a nonsymmorphic space group we use the di-
amond lattice (space group #227, O7

h) which is shown in Fig. 10.6 as a specific
example. Not only C, but also Si and Ge crystallize in the diamond structure,
that is described by a nonsymmorphic space group with two atoms/primitive
unit cell. Figure 10.6 is equivalent to Fig. 9.6(f), except that Fig. 10.6 explic-
itly shows the two distinct atoms per unit cell, indicated as light atoms and
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Fig. 10.6. The zinc blende structure with Td symmetry illustrating the two dis-
similar lattice sites. With identical atoms at the two sites, the diamond structure
results. The space group for the diamond lattice is Fd3m or #227 (O7

h). The space
group for the zinc blende structure is #216 [F 4̄3m]

dark atoms. We will take the “primitive unit cell” for the diamond structure
to be the FCC primitive unit cell formed by the four dark atoms in Fig. 10.6
surrounding one light atom (see Fig. 9.6(b) for the NaCl structure which con-
sists of inter-penetrating FCC structures for Na and for Cl). The dark atoms
in Fig. 10.6 are on sites for one FCC lattice, and the light inequivalent atoms
of the same species are on another FCC lattice displaced from the first FCC
lattice by a(1/4, 1/4, 1/4), as shown in Fig. 10.6. A screw axis indicated in
Fig. 9.6(g) takes the dark atoms on the first sublattice in Fig. 10.6 into the
light atoms on the second sublattice and vice versa.

10.8.1 Factor Group and the Γ Point

The factor group G/T for diamond is isomorphic to the point group Oh. The
set of operations P̂R that are relevant for the diamond structure are, therefore,
the 48 operations of the Oh point group. Each of the 24 symmetry operators
P̂R of group Td will leave each distinct atom on the same sublattice. However,
the operations in Oh that are not in Td when combined with a translation
τ d = a/4(111) for the diamond structure take each atom on one sublattice
into the other sublattice. This space group is nonsymmorphic because half of
the symmetry operations of the group of the wave vector at k = 0 contain
translations τ d = a/4(111). The 48 symmetry operations and ten classes for
the diamond structure at k = 0 are given in Table 10.8, showing 24 operations
of the form {Rα|ε} and 24 operations of the form {Rα′ |τ d}. At the Γ point
k = 0, we have exp[ik · τ ] = 1 so that the phase factor does not matter, and
the group of the wave vector is given by the Oh group, compare Tables 10.2
and C.17.

In computing the characters χequiv for the equivalence transformation
Γ equiv, we take into account the two kinds of lattice sites, one on each of
the two FCC sublattices. Thus an atom is considered “to go into itself” if it
remains on its own sublattice and “not to go into itself” if it switches sub-
lattices under a symmetry operation P̂R. Using this criterion, the results for
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Table 10.8. Classes and characters for the equivalence transformation for the dia-
mond lattice

{E|0} 8{C3|0} 3{C2|0} 6{C′
2|τ d} 6{C4|τ d}

Γ equiv 2 2 2 0 0

{i|τ d} 8{iC3|τ d} 3{iC2|τ d} 6{iC′
2|0} 6{iC4|0}

Γ equiv 0 0 0 2 2

χequiv for the diamond structure are given in Table 10.8. Note that, although
we can count eight C atoms inside the full cubic unit cell, χequiv(E) = 2 for
the identity operation. One must keep in mind that the primitive unit cell
has only 2 atoms/cell while the full cubic unit cell is four times larger. We
emphasize that χequiv must be computed on the basis of the number of atoms
in the primitive unit cell.

Decomposition of Γ equiv in Table 10.8 into irreducible representations of
Oh (see Table 10.2) leads to Γ equiv = Γ1 + Γ ′

2 or Γ+
1 + Γ−

2 . Here Γ+
1 is

even under inversion and Γ−
2 is odd under inversion, using the usual notation

for irreducible representations for solids. We also note that the operation
{i|τd} interchanges sublattices 1 ↔ 2. We make use of this result for Γ equiv

in subsequent chapters in discussing the electronic energy band structure and
phonon dispersion relations of solids crystallizing in the diamond structure.
The character table for the group of the wave vector for the Γ point for
the diamond structure is given in Table C.17, utilizing the classes given in
Table 10.8 and utilizing the character table for the Oh group in Table 10.2.

10.8.2 Points with k �= 0

We next consider the group of the wave vector for the high symmetry points
with k �= 0 in the Brillouin zone for the diamond structure, and we use the
FCC Brillouin zone in Fig. 10.4(a) to delineate those high symmetry points.

At the Δ point, which is an interior point in the Brillouin zone, the five
classes for group C4v for the Δ point for the symmorphic FCC group in
Table 10.3, go into {E|0}, {C2

4 |0}, 2{C4|τ d}, 2{iC2
4 |τ d}, {2iC′

2|0} for the
diamond lattice. The characters for the classes with a translation τ d will
include phase factors TΔ = exp[ik · τ d] for all k points along the Δ axis
where k · τ d = (2π/a)(κ, 0, 0) · (a/4)(1, 1, 1) = πκ/2, and where κ → 0
as k → 0, and κ → 1 as k approaches the X point. Thus κ denotes the
fractional length of the k vector along the Δ axis. The corresponding char-
acter table then is derived from Table 10.3 by multiplying the characters
in classes 2{C4|τ d} and 2{iC2

4 |τ d} by the phase factor TΔ to yield Ta-
ble 10.9.

For interior k points along the Σ direction, the phase factor exp[ik · τ d]
enters in a similar way and here the classes and characters for the irreducible
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Table 10.9. Character table C4v for the group of the wave-vector at a Δ point for
the nonsymmorphic diamond structurea

representation {E|0} {C2
4 |0} 2{C4|τ d} 2{iC2

4 |τ d} 2{iC′
2|0}

Δ1 1 1 1 · TΔ 1 · TΔ 1

Δ2 1 1 −1 · TΔ 1 · TΔ −1

Δ2′ 1 1 −1 · TΔ −1 · TΔ 1

Δ1′ 1 1 1 · TΔ −1 · TΔ −1

Δ5 2 −2 0 0 0

a Δ = 2π/a(κ, 0, 0) (diamond). Phase factor TΔ = exp[iπ
2
κ]

Table 10.10. Character table C2v for the group of the wave-vector at a Σ point
for the nonsymmorphic diamond latticea

representation {E|0} {C2′ |τ d} 2{iC2
4 |τ d} {iC′

2|0}
Σ1 1 1 · TΣ 1 · TΣ 1

Σ2 1 1 · TΣ −1 · TΣ −1

Σ3 1 −1 · TΣ −1 · TΣ 1

Σ4 1 −1 · TΣ 1 · TΣ −1

a Σ = 2π/a(κ, κ, 0)(diamond). Phase factor TΣ = exp[iπκ]

Table 10.11. Character table C3v for the group of the wave-vector at a Λ point for
the nonsymmorphic diamond structurea

representation {E|0} 2{C3|0} 3{iC′
2|0}

Λ1 1 1 1

Λ2 1 1 −1

Λ3 2 −1 0

a Λ = 2π/a (κ, κ, κ) (diamond)

representations for the group of the wave vector are given in Table 10.10,
where the phase factor TΣ is exp[iπκ]. As κ → 0 the Σ point approaches the
Γ point (group Oh) and as κ→ 3/4 the K point (see Fig. 10.4(a)) is reached.
The corresponding compatibility relations are found by relating Table 10.10
to Table C.17 in the limit κ→ 0 and to a modified form of Table 10.10 in the
limit κ→ 3/4.

Along the Λ direction the symmetry operations do not involve the trans-
lation τ d and therefore no phase factors appear in the character table for the
group of the wave vector along the Λ axis (Table 10.11), nor do phase fac-
tors enter the character table for the end points of the Λ axis either at the
Γ point (0,0,0) or at the L point (π/a)(1, 1, 1) which has symmetry D3d (see
Table C.18).
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Table 10.12. Character table for the group of the wave-vector at a X point for the
nonsymmorphic diamond structurea

representation {E|0} {C2′ |0} 2{C2|τ d} 2{iC2′ |0}
X1 2 2 0 2

X2 2 2 0 −2

X3 2 −2 −2 0

X4 2 −2 2 0

aX = (2π/a)(1, 0, 0)

The point X at k = (2π/a)(1, 0, 0) is a special point. The primitive trans-
lations can be written as

a1 = (a/2)(1, 1, 0) , a2 = (a/2)(0, 1, 1) , a3 = (a/2)(1, 0, 1) . (10.45)

The translation group Tk is formed by elements {ε|Rn}, where Rn = n1a1 +
n2a2 + n3a3, and where n1, n2, n2 are integers. Using the Bloch wave func-
tions as a basis, the phase factors are represented by eiKX ·Rn = (−1)(n2+n3)

considering the X point at the zone boundary along the Δ-axis.
The factor group GX/TX has 14 classes. However, Table 10.12 shows only

four classes and four relevant irreducible representations. Six of the 14 classes
corresponding to translations have only 0 entries for all the characters, and
the remaining four classes can be obtained from Table 10.12 by adding a τd
translation and multiplying the characters by −1. Because of the irrelevant
representations, the compatibility relations between high symmetry points in
nonsymmorphic groups are sometimes not evident. For example, Δ1 +Δ′

2 go
into X1 and Δ5 goes into X4. This is easily seen for the first {E|0}, second
{C2

4 |0} and fifth {2iC′
2|0} classes in Table 10.9, while the two remaining classes

in the Δ group, namely {2C4|τd} and {2iC2
4 |τd}, go into two classes of the X

point that are not listed in Table 10.12 and have all entries for their characters
equals zero.

In summary, for some of the high symmetry points of the diamond struc-
ture, the group of the wave vector is found in a similar way as for a symmorphic
FCC structure, while for other high symmetry points (e.g., along the Δ and
Σ axes) the group of the wave vector behaves differently. The high symmetry
points where phase factors are introduced are Δ,Σ,W, S(Z) and those with-
out phase factors are Γ,Λ, L,Q. The point X is a special point at which the
structure factor vanishes and there is no Bragg reflection, nor are there phase
factors, but the behavior of the X point in the diamond structure is different
from that of the X point in the FCC structure which is a true Bragg reflec-
tion point. The group of the wave vector for all the high symmetry points
on the square face, for example W and S(Z), of the Brillouin zone for the
diamond structure are also twofold degenerate. This degeneracy reflects the
fact that the structure factor for the Bragg reflection for that whole face is
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identically zero and hence there is no physical reason for the electronic or
phonon dispersion curves to be split by that particular wave vector.

10.9 Finding Character Tables for all Groups
of the Wave Vectors

Fortunately, tables for the group of the wave vector for each unique k vector
for each of the 230 space groups have been established and are available
in various references [49, 54]. These listings contain character tables for all
groups of the wave vectors for every space group. These references do not
refer to specific materials – they only refer to the space group which describes
specific materials.

Appendix C gives the character tables for the group of the wave vector for
all the high symmetry points for the simple cubic lattice space group #221.
Familiarity with the use of character tables for the group of the wave vector
can be gained through the problems at the end of this chapter (Sect. 10.9).

Selected Problems

10.1. Sketch the primitive translation vectors for the unit cells in r-space and
k-space for the five 2D Bravais lattices given in Table 10.1. What is the angle
between b1 and b2?

10.2. (a) Construct the star and group of the wave vector for a simple 2D
hexagonal space group (#17), as discussed in Sect. 10.3.2. Show how the
group of the wave vector for k = b2/2 is a subgroup of the group of the
wavevector at k = 0.

(b) Now construct the star and group of the wave vector for the 2D hexagonal
space group #14 and contrast your results with those in (a).

10.3. The Brillouin zone and the high symmetry points of the tetragonal
structure shown in Fig. 10.7 on the right applies to the space group of the
structure shown on the left. See Problem 9.1 for the real space symmetry of
this 3D structure.

(a) Find the star of the wave vector for this space group.
(b) Find the group of the wave vector for the Γ point (k = 0).
(c) Now find the group of the wave vector along the Δ, Λ and Σ directions

and give the compatibility relations relating the irreducible representa-
tions at k = 0 to those along these high symmetry axes when we move
away from the Γ point.
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Fig. 10.7. (a) 3D crystal structure composed of a tetragonal Bravais lattice with
a molecule with D2d symmetry. (b) The tetragonal Brillouin zone with the high
symmetry points

10.4. (a) Show that for the diamond structure (Sect. 10.8) the product of two
symmetry operations involving translations τ yields a symmetry element
with no translations

{α|τ}{β|τ} = {γ|0} ,
where τ = (1, 1, 1)a/4. What is the physical significance of this result?

(b) What is the result of the product of the two symmetry elements
{α|τ}{β|0}? Is this product the same as {β|0}{α|τ}? If not what is
the difference?

(c) What are the symmetry operations and the group of the wave vector for
the diamond structure at the L point? at the K point? at the W point?

(d) Find the characters χequiv for one symmetry operation in each class of the
diamond structure, space group #227.

10.5. (a) List the real space symmetry operations of the nonsymmorphic two-
dimensional square space group p4gm (#12).

(b) Explain the symmetry diagrams and the point symmetry notations for
space group #12 (p4gm) in Table B.12 (Appendix B) which was taken
from the International Crystallography Tables.

(c) Find the group of the wave vector for the high symmetry points in the
space group p4gm and compare your results with those for the symmorphic
group p4mm [Table B.11 (Appendix B)].

(d) What is the difference between the 2D space group #11 (p4mm) and the
3D group P4mm? What would be the difference in the equivalence trans-
formation Γ equiv for the two cases (you can instead give the characters
χequiv for this transformation)?
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10.6. The electronic energy band structure of graphite near the Fermi level
has become especially interesting after the discovery of single wall carbon
nanotubes in 1993. (The crystal structure of 3D graphite is shown in Fig.C.1
in Appendix C and problem9.6 relates to the space group crystal structures.)

(a) Find Γ equiv at the Γ -point for the four atoms in the unit cell of graphite
(see Fig. C.1 in Appendix C). Give the Γ point irreducible representations
contained in Γ equiv.

(b) Explain the symmetry operations for the group of the wave vector at k = 0
for group #194 that combine point group operations with translations.
Compare your results to Table C.24 in Appendix C.

10.7. This problem makes use of carbon nanotubes (see Problem 9.7) to dis-
cuss space groups and line groups. Appendix E provides information of use to
solve this problem (see also reference [8]).

(a) Find the lattice vectors in reciprocal space and describe the one-
dimensional Brillouin zone of carbon nanotubes. Compare your results to
Appendix E.

(b) Find the factor groups Gk/T for the group of the wave vectors at the Γ
point (k = 0) for chiral and achiral carbon nanotubes, and the character
tables for the isomorphic point groups. Then apply your result explicitly
to a metallic (6,6) and a semiconducting (6,5) nanotube.

(c) Find the line groups for chiral and achiral carbon nanotubes and their
respective character tables. By factoring out the effect of translations from
line groups, find the resulting point groups (called isogonal point groups),
with the same order of the principal rotation axis, where rotations include
a screw-axis. Also give explicit results for the (6,6) and (6,5) nanotubes.

(d) Repeat (a), (b) and (c) for k �= 0.
(e) Discuss the different dimensionalities for the irreducible representations

in space groups compared with line groups, for both k = 0 and k �= 0.

10.8. Consider the carbon nanotubes presented in Sect. 9.4 and discussed in
Appendix E.

(a) Show that the Γ equiv for zigzag SWNTs at k = 0 is

Γ equiv
zigzag = A1g +B2g +A2u +B1u +

n−1∑
j=1

(Ejg + Eju) , (10.46)

(b) Find the compatibility relations along the one-dimensional Brillouin zone
for both chiral and achiral carbon nanotubes.
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Applications to Lattice Vibrations

Our first application of the space groups to excitations in periodic solids is
in the area of lattice modes. Group theoretical techniques are important for
lattice dynamics in formulating the normal mode secular determinant in block
diagonal form, and symmetry is also important in determining the selection
rules for optical processes involving lattice modes such as infrared and Ra-
man activity. Transitions to lower symmetry through either phase transitions
or strain-induced effects may lead to mode splittings. These mode splittings
can be predicted using group theoretical techniques and the changes in the
infrared and Raman spectra can be predicted. Another aim of this chapter is
to consolidate some of the space group concepts of Chap. 9 on r space and
Chap. 10 on k space with additional developments on both the fundamentals
and applications of space groups.

11.1 Introduction

The atoms in a solid are in constant motion and give rise to lattice vibrations
which are very similar to the molecular vibrations which we have discussed
in Chap. 8. We discuss in this section and in Sect. 11.2 the similarities and
differences between lattice modes and molecular vibrations.

Suppose that we have a solid with N atoms which crystallize into a sim-
ple Bravais lattice with 1 atom/unit cell. For this system there are 3N de-
grees of freedom corresponding to three degrees of freedom/atom for the
molecular system or three degrees of freedom/primitive unit cell for sim-
ple crystalline solids. There are N allowed wave vector states in the Bril-
louin zone which implies that there are three branches for the phonon dis-
persion curves of a simple monatomic solid, each branch containing solu-
tions for N k-vectors. For the case of molecules, we subtract three de-
grees of freedom corresponding to the uniform translation of the molecule.
In the crystalline solid, these uniform translational modes correspond to
the acoustic modes at k = 0, which are subject to the constraint that
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Fig. 11.1. Phonon dispersion curves for a one-dimensional line of atoms with (a)
a single mass and (b) two different masses m and M

ω2
acoustic ≡ 0 as k → 0. The three modes corresponding to the rota-

tions of the solid about the center of mass are not specifically considered
here.

We have found in Chap. 10 that the translational symmetry of a crystal
is conveniently handled by labeling the N irreducible representations of the
translation group by the N k vectors which are accommodated in the 1st
Brillouin zone. So if we have a primitive unit cell with 1 atom/unit cell,
there are three vibrational modes for each k value and together these three
modes constitute the acoustic branches. In particular, there are three acoustic
vibrational modes for the k = 0 wave vector, which exhibits the full point
group symmetry of the crystal; these three acoustic modes correspond to the
pure translational modes which have zero frequency and zero restoring force.

We review here the phonon dispersion relations in a one-dimensional crys-
tal with 1 atom/unit cell (see Fig. 11.1(a)) and with 2 atoms/unit cell (see
Fig. 11.1(b)) having masses m and M where m < M , and a is the distance be-
tween adjacent atoms. For the acoustic branch at k = 0, all atoms vibrate in
phase with identical displacements u along the direction of the atomic chain,
thus corresponding to a pure translation of the chain. The wave vector k dis-
tinguishes each normal mode of the system by introducing a phase factor eika

between the displacements on adjacent sites. For the case of one atom/unit
cell, the lattice mode at the zone boundary corresponds to atoms moving 90◦

out of phase with respect to their neighbors. For the case of 2 atoms/unit
cell, the size of the unit cell is twice as large, so that the size of the corre-
sponding Brillouin zone (B.Z.) is reduced by a factor of 2. The dispersion
relations and lattice modes in this case relate to those for one atom/unit cell
by a zone folding of the dispersion relation shown in Fig. 11.1(a), thus leading
to Fig. 11.1(b). Thus the optical mode at k = 0 has neighboring atoms moving
out of phase with respect to each other. The normal mode at the new B.Z.
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Fig. 11.2. Phonon dispersion curves for Ge along certain high symmetry axes in the
Brillouin zone. The data at the Γ point are from Raman scattering measurements
and the data elsewhere in the zone are from neutron scattering experiments [28]

boundary k = π/2a thus corresponds to a mode where one atom is at rest,
while its neighbor is in motion.

In three-dimensions, the phonon dispersion relations for Ge with the di-
amond structure (with 2 atoms/unit cell) are plotted along high symmetry
directions in Fig. 11.2 and the dispersion relations are labeled by the appropri-
ate irreducible representations by giving the symmetry of the corresponding
normal mode (see Chap. 10 for the notation used in Fig. 11.2). The phonon
dispersion relations for germanium are determined from inelastic neutron scat-
tering measurements and are plotted as points in Fig. 11.2. At a general point k
in the B.Z. for the diamond structure, there are three acoustic branches and
three optical branches. However, at certain high symmetry points and along
certain high symmetry directions, mode degeneracies occur as, for example,
along ΓL and ΓX . Group theory allows us to identify the high symmetry
points in the B.Z. where degeneracies occur, which branches stick together,
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which branches show simple mode crossings, and which modes show anticross-
ings, [12–14,28, 30] (see Fig. 10.5), to be discussed further in this chapter.

The symmetry aspects of the lattice mode problem at k = 0 for simple
structures with 1 atom/unit cell are simply the uniform translation of the
solid. However, group theory is needed to deal with lattice modes away from
k = 0. Furthermore, the lattice modes that are of interest in the current
literature often involve complicated crystal structures with many atoms/unit
cell or systems with reduced dimensionality; for such problems, group theory
is a powerful tool for lattice mode classification and for the determination of
selection rules for infrared and Raman spectroscopy and for phonon-assisted
optical transitions more generally.

The general outline for procedures that utilize group theory to solve for
the lattice modes in solids is as follows:

1. Find the symmetry operations for the group of the wave vector k = 0, the
appropriate character table and irreducible representations.

2. Find the irreducible representations using Γlat. mod. = Γ equiv. ⊗ Γvector.
The meaning of this relation is discussed below (item (c) in Sect. 11.2).
We will use Γlat.mod. to denote Γlattice modes.

3. Find the irreducible representations of Γlat.mod.. The characters for the
lattice mode representation express the symmetry types and degeneracies
of the lattice modes.

4. Find the normal mode patterns.
5. Which modes are IR-active? Which modes are Raman-active? Are there

any polarization effects?
6. Repeat items 1–4 for other points in the Brillouin zone and find the lattice

for k �= 0.
7. Using the compatibility relations, connect up the lattice modes at neigh-

boring k points to form a phonon branch.

11.2 Lattice Modes and Molecular Vibrations

There are several aspects of the lattice mode problem in the crystalline phase
that differ from simple molecular vibrations (see Sect. 8.2):

(a) The eigenvectors and normal modes. In the lattice mode problem, we con-
sider normal modes for the atoms in a unit cell rather than for a molecule,
and in either case the lattice mode is one form of a basis vector or eigen-
vector (see Chap. 4). Since the symmetry is different for the various types
of k-vectors in the Brillouin zone, we must solve the lattice mode problem
for each distinct type of k-vector. On the other hand, for many experi-
mental studies of the lattice modes, we use light as our probe. Usually the
main interest is in lattice modes at or near k = 0 (the Γ point) because the
wavelength of light is long (λ ≈ 500nm) compared to lattice constants a,
and the magnitude of the corresponding k wavevector (k = 2π/λ) is very
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small compared with Brillouin zone dimensions (2π/a, a ∼ 0.1–1.0nm).
Most of our simple examples, therefore emphasize the lattice modes for
k = 0.

(b) Equivalence. To find the equivalence transformation Γ equiv. for molecules,
we consider the action of a symmetry operator P̂R on an atomic site and
examine the transformation matrix to see whether or not the site is trans-
formed into itself under the point symmetry operation P̂Rα. In the case of
a crystal, however, we consider all points separated by a lattice vector Rn

as identical when considering Γ point (k = 0) phonons. Thus r → r + Rn

is an identity transformation for all Rn. and therefore we denote the equiv-
alence transformation in crystalline solids by Γ equiv. and the correspond-
ing characters of this representation by χequiv.. Compound operations in
nonsymmorphic groups always give χequiv. = 0 since the translation τα

is not a lattice vector. When considering lattice modes away from the Γ
point, we must consider the group of the wavevector Gk and phase factors
related to translations. Modes away from k = 0 are discussed in Sect. 11.4.

(c) Degrees of freedom and phonon branches. For the case of molecular vibra-
tions, we have

Γmol. vib. = Γ equiv. ⊗ Γvec − Γtrans − Γrot , (11.1)

whereas for lattice modes (lat. mod.), we simply write

Γlat. mod. = Γ equiv. ⊗ Γvec . (11.2)

That is, we do not subtract Γtrans. and Γrot. in (11.2) for the lattice modes
for the following reasons. Each atom/unit cell has three degrees of freedom,
yielding a normal mode for each wave vector k in the Brillouin zone. The
collection of normal modes for a given degree of freedom for all k vectors
forms a phonon branch. Thus for a structure with one atom/unit cell there
are three phonon branches, the acoustic branches. If there is more than 1
atom/unit cell, then

no. of branches = (no. of atoms/unit cell) × 3 (11.3)

of which three are acoustic branches and the remainder are optical
branches. The translational degrees of freedom correspond to the triv-
ial k = 0 solution for the three acoustic branches which occur at ω = 0
and are smoothly connected with nontrivial solutions as we move away
from the Γ point. Since the atoms in the solid are fixed in space, there
are no rotational degrees of freedom to be subtracted.

We will now illustrate the application of group theory to the solution of the
lattice mode problem for several illustrative structures. First we consider sim-
ple symmorphic structures in Sect. 11.3. Then we consider some simple non-
symmorphic structures (see Sect. 11.3.3). Our initial examples will be for the
k = 0 modes. This will be followed by a discussion of modes elsewhere in the
Brillouin zone.
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11.3 Zone Center Phonon Modes

In this section we consider the symmetries of zone center phonon modes for
some illustrative cases. The examples selected in this section are chosen to
demonstrate some important aspect of the lattice mode problem and to gain
some experience in using simple space groups.

11.3.1 The NaCl Structure

The NaCl structure is shown in Fig. 9.6(b). This very simple example is se-
lected to illustrate how the symmetries of the lattice modes are found. We
take our “basic unit cell” to be the primitive rhombohedral unit cell of either
one of the inter-penetrating FCC structures (space group #225 (Fm3m) O5

h),
so that each primitive unit cell will contain an Na atom and a Cl atom. The
larger cubic unit cell (Fig. 9.6(b)) contains four primitive unit cells with four
Na and four Cl atoms (ions). The space group O5

h for the NaCl structure is
a symmorphic structure, and the group of the wave vector at k = 0 for the
NaCl structure is Oh. Since the details of the translations do not enter into
the considerations of phonons at k = 0 for symmorphic space groups, we need
to consider only point group operations for Oh as given in Table 10.2. Under
all symmetry operations of Oh each Na and Cl atom site is transformed either
into itself or into an equivalent atom site separated by a lattice vector Rm.
Thus,

Γ equiv. = 2Γ1 . (11.4)

For Oh symmetry, Γvec. = Γ15, so that at k = 0

Γlat. mod. = 2Γ1 ⊗ Γ15 = 2Γ15 , (11.5)

where the basis functions for Γ15 are (x, y, z). Thus both the acoustic branch
and the optic branch at k = 0 have Γ15 (or Γ−

15) symmetry. The normal
modes for the acoustic branches of the NaCl structure have both the Na and
Cl atoms moving in phase in the x, y, and z directions, while for normal

Fig. 11.3. In-phase (acoustic) and out-of-phase (optic) normal modes at k = 0 for
NaCl



11.3 Zone Center Phonon Modes 247

modes in the optic branches, the two atoms move out of phase in the x, y,
and z directions (see Fig. 11.3). Since the electromagnetic interaction trans-
forms as the vector (Γ15), the optic branch is infrared-active. The acoustic
branch is not optically excited because ω = 0 at k = 0. Since the optic
branch for the NaCl structure has odd parity, it is not Raman-active. As
we move away from the Γ point (k = 0), the appropriate symmetries can
be found by compatibility relations. For example along the (100) directions
Γ15 → Δ1 + Δ5 in which Δ1 is the symmetry of the longitudinal mode and
Δ5 is that for the doubly degenerate transverse modes. We will now give
several other examples of zone center modes in other structures and then re-
turn in Sect. 11.4 to the discussion of nonzone-center modes for simple struc-
tures.

11.3.2 The Perovskite Structure

Let us now consider lattice modes in BaTiO3 (see Fig. 9.7(c)), an example of
a cubic crystal structure with slightly more complexity, but still correspond-
ing to a symmorphic space group. The focus of this section is to illustrate
the identification of the normal modes. For the perovskite structure shown in
Fig. 9.7(c), there are 5 atoms/unit cell and therefore there are 15 degrees of
freedom, giving rise to three acoustic branches and twelve optical branches.
The point group of symmetry at k = 0 is Oh. Consider the unit cell shown
in Fig. 11.4. The Ba2+ ions at the cube corners are shared by eight neigh-
boring unit cells, so that one Ba2+ ion is considered to be associated with
the unit cell shown. Likewise the O2− ions in the face centers are shared by
two unit cells, so that 3O2− ions are treated in the unit cell shown. The Ti4+

ion at the cube center is of course fully contained in the unit cell shown in
Fig. 11.4.

Using the diagram in Fig. 11.4, we thus obtain Character Table 11.1
for Γ equiv.. From the character table for Oh (see Table A.31) we see that

Γ equiv. = 3Γ+
1 + Γ+

12 . (11.6)

We note that the Ba2+ and Ti4+ ions each transform as Γ+
1 with the three

oxygens transforming as Γ1 + Γ12. In Oh symmetry

Γvec. = Γ−
15 , (11.7)

so that

Γlat.mod. = (3Γ+
1 + Γ+

12) ⊗ Γ−
15 = 3Γ−

15 + (Γ+
12 ⊗ Γ−

15) (11.8)

= 4Γ−
15 + Γ−

25 = 4Γ−
15 + Γ−

25 . (11.9)
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Table 11.1. Characters for Γequiv for perovskite. The atoms that remain unchanged
under each symmetry operation are indicated

E 8C3 3C2
4 6C′

2 6C4 i 8iC3 3iC2
4 6iC′

2 6iC4

Γ equiv. 5 2 5 3 3 5 2 5 3 3

all Ba,Ti all Ba,Ti Ba,Ti all Ba,Ti all Ba,Ti Ba,Ti

one O one O one O one O

Fig. 11.4. Schematic diagram of the z-component lattice modes at k = 0 for the
BaTiO3 perovskite structure. (a) Γ15 acoustic mode; (b) Γ25 mode where only two
of the three distinct oxygens move; (c) Γ15 mode with the Ti4+ and Ba2+ vibrating
against the oxygens. (d) Γ15 mode with the Ti4+ vibrating against the Ba2+ and
(e) Γ15 breathing mode of the transverse oxygens vibrating against the longitudinal
oxygens, while the Ti4+ and Ba2+ are at rest

where we note that both Γ−
15 and Γ−

25 have odd parity. Thus at k = 0
there are five distinct normal mode frequencies, including the acoustic branch
with Γ−

15 symmetry and ω = 0. Since the atom sites for the Ba2+ and
Ti4+ ions transform as Γ+

1 , we know that the Γ25 mode requires motion of
the oxygens. In the following we illustrate how the normal mode patterns
shown in Fig. 11.4 are obtained. Note the numbers assigned to the oxygens in
Fig. 11.4(b).

The search for the eigenvectors at the Γ point is similar to the procedure
used for finding the normal modes of molecular vibration (see Sect. 8.3). Since
k = 0, the phase factors for the translational symmetries are all eik·τ = 1.
One just needs to consider the unit cell as the “molecule”, find the normal
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modes, and the eigenvectors will be a repetition of the normal modes in all
the unit cells in the lattice.

From the character table for Oh we note that the characters for Cz
4 are

different for the Γ15 and Γ25 modes, and for this reason Cz
4 is a useful symme-

try operation for finding the normal mode displacements. First we consider
the effect of Cz

4 on each of the three inequivalent oxygen sites and on each of
the three components of the vector; this consideration is independent of the
symmetry of the vibrational mode:

Cz
4

⎛
⎝ 1

2
3

⎞
⎠ =

⎛
⎝2

1
3

⎞
⎠ , Cz

4

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ y

−x
z

⎞
⎠ . (11.10)

Finding the normal mode for the acoustic translational branch is trivial (see
Fig. 11.4a). The operations of (11.10) are now applied to find the normal
modes in Fig. 11.4b and e. For the Γ25 displacements, Fig. 11.4b shows the
motions for the z component of the mode. The partners are found by cyclic
operations on (x, y, z) and atom sites (1, 2, 3), as given in (11.11). Then
operation by Cz

4 yields

Cz
4

⎛
⎝−x2 + x3

y1 − y3
−z1 + z2

⎞
⎠ =

⎛
⎝−y1 + y3

−x2 + x3

−z2 + z1

⎞
⎠ =

⎛
⎝0 −1 0

1 0 0
0 0 −1

⎞
⎠
⎛
⎝−x2 + x3

y1 − y3
−z1 + z2

⎞
⎠ (11.11)

giving a character of −1 for Cz
4 in the Γ25 representation. Performing repre-

sentative operations on this normal mode will show that it provides a proper
basis function for the Γ25 irreducible representation in the point group Oh.

Now consider the Γ15 normal mode given in Fig. 11.4e. The displacements
shown in the diagram are for the z component of the mode. To achieve no
motion of the center of mass, the actual displacements must be −z1−z2 +2z3
for the three oxygens at positions 1, 2 and 3. Using cyclic permutations we
obtain the three components of the mode given in (11.12). Then action of Cz

4

yields

Cz
4

⎛
⎝ 2x1 − x2 − x3

−y1 + 2y2 − y3
−z1 − z2 + 2z3

⎞
⎠ =

⎛
⎝ 2y2 − y1 − y3
x2 − 2x1 + x3

−z2 − z1 + 2z3

⎞
⎠

=

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠
⎛
⎝ 2x1 − x2 − x3

−y1 + 2y2 − y3
−z1 − z2 + 2z3

⎞
⎠ , (11.12)

so that the character for this Γ15 mode is +1, in agreement with the character
for the Cz

4 operation in the Γ15,z irreducible representation (see the character
table for Oh). Operation with typical elements in each class shows this mode
provides a proper basis function for Γ15.

Clearly all the modes shown in Fig. 11.4 have partners x,y and z, so that
collectively they are all the normal modes for BaTiO3. Since all modes for
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BaTiO3 at k = 0 have odd parity, none are Raman-active, noting that for
the Oh point group, Raman-active modes have Ag, Eg and T2g (or Γ1, Γ12 and
Γ25′) symmetries. However, the 3Γ15 or 3Γ−

15 modes are infrared-active, and
can be excited when the E vector for the light is polarized in the direction of
the oscillating dipole moment, as indicated in Fig. 11.4.

11.3.3 Phonons in the Nonsymmorphic Diamond Structure

We now illustrate the mode symmetries at the Γ point for a nonsymmorphic
space group with 2 atoms/unit cell (specifically we illustrate the lattice modes
of Ge or Si, which both crystallize in the diamond structure). Most of the sym-
metry properties, including the calculation of χequiv. and the decomposition
of Γ equiv. into irreducible representations of Oh (Γ equiv. = Γ1 +Γ2′), were dis-
cussed in Sect. 10.8. We now make use of this result for Γ equiv. in discussing
the Γ point phonons.

To get the characters for the lattice vibrations, we then take Γvec. = Γ15

which is odd under the inversion operation:

Γlat. mod. = Γ equiv. ⊗ Γvec. = (Γ1 + Γ2′) ⊗ Γ15 = Γ15 + Γ25′ , (11.13)

where Γ25′ and Γ2′ are respectively, even and odd under the inversion opera-
tion.

For each k value, there are six vibrational degrees of freedom with 2
atoms/unit cell. These break up into two triply degenerate modes at k = 0,
one of which is even, the other odd under inversion. The odd mode Γ15 is the
acoustic mode, which at k = 0 is the pure translational mode. The other mode
is a Γ25′ mode, which is symmetric under inversion and represents a breath-
ing or optic mode. The optic mode is Raman-active but not infrared-active.
Furthermore, the Raman-active mode is observed only with off-diagonal po-
larization Ei⊥Es for the incident and scattered light.

Let us now illustrate a screw axis operation in the diamond structure (see
Fig. 9.6(g)) and see how this operation is used in finding the normal modes in
a nonsymmorphic crystal. Denoting the dark atoms in Fig. 10.6 by 1 and the

light atoms by 2, consider the effect of {Cz
4 |τ} on atom sites

(
1
2

)
and on the

vector

⎛
⎝x
y
z

⎞
⎠

{Cz
4 |τ}

(
1
2

)
=
(

2
1

)
, {Cz

4 |τ}
⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ y

−x
z

⎞
⎠ . (11.14)

Using these results we can then obtain the characters for the displacements
(R1 + R2) which has Γ15 symmetry and is identified with the basic vibration
of an FCC sublattice:
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Fig. 11.5. Lattice modes along the Δ-axis for the diamond structure, showing the
compatibility relations as we move away from the center of the cubic Brillouin zone

{Cz
4 |τ}

⎛
⎝x1 + x2

y1 + y2
z1 + z2

⎞
⎠ =

⎛
⎜⎝

y2 + y1

−x2 − x1

z2 + z1

⎞
⎟⎠ =

⎛
⎜⎝

0 1 0
−1 0 0

0 0 1

⎞
⎟⎠
⎛
⎜⎝
x1 + x2

y1 + y2

z1 + z2

⎞
⎟⎠ (11.15)

yielding a character of +1 for {Cz
4 |τ}, in agreement with the character for

{Cz
4 |τ} in the Γ15 irreducible representation for the acoustic mode transla-

tional branches of point group Oh. If all the symmetry operations are then
carried out, it is verified that R1 + R2 provides basis functions for the Γ15

irreducible representation of Oh.
When the two FCC sublattices vibrate out of phase, their parity is reversed

and a mode with even parity (the Γ25′ mode) is obtained

{Cz
4 |τ}

⎛
⎜⎝
x1 − x2

y1 − y2

z1 − z2

⎞
⎟⎠ =

⎛
⎜⎝

y2 − y1

−x2 + x1

z2 − z1

⎞
⎟⎠ =

⎛
⎜⎝

0 −1 0
1 0 0
0 0 −1

⎞
⎟⎠
⎛
⎜⎝
x1 − x2

y1 − y2

z1 − z2

⎞
⎟⎠ (11.16)

yielding a character of −1. This checks with the character for {Cz
4 |τ} in the

irreducible representation Γ25′ for the point group Oh.
As we move away from k = 0 along the Δ axis or the Λ axis, the triply

degenerate modes break up into longitudinal and transverse branches. The
symmetries for these branches can be found from the compatibility relations
(see Sect. 10.7). For example, as we move away from k = 0 along the Δ axis
toward the X point (see Fig. 11.5), we have the compatibility relations

Γ15 → Δ1 +Δ5

Γ25′ → Δ2′ +Δ5 . (11.17)

Group theory gives no information on the relative frequencies of the Γ15 and
Γ25′ modes.
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We finally note that in general the Raman tensor has modes which
transform as a second rank symmetric tensor (see Table 10.2). The Raman-
active modes would include modes for the Oh group of the wave vector with
symmetries Γ1 + Γ12 + Γ25′ . Since the optic mode for the diamond struc-
ture at k = 0 has Γ25′ symmetry, this mode is Raman-active. Table 10.2
also tells us that the Γ25′ symmetry mode has basis functions of the form
xy, yz, zx, indicating that the Raman tensor for the diamond structure is of
the functional form Ei

xE
s
y ; αxy(Γ25′) plus cyclic permutations of x, y, z. Thus,

observation of this Raman-active mode requires the use of cross-polarized
light or (‖,⊥) settings of the incident and scattered polarizations, respec-
tively.

11.3.4 Phonons in the Zinc Blende Structure

Closely related to the diamond structure is the zinc blende structure (space
group F43m #216, T 3

d ) where the two FCC sublattices in Fig. 10.6 are chem-
ically distinct. This space group is symmorphic. This is the crystal struc-
ture for III–V semiconductor compounds, such as GaAs. For this case, the
Ga atoms (ions) would be on one FCC sublattice and the As ions on the
other FCC sublattice. If it happens that a Ga atom is on the wrong lat-
tice, this is called an antisite location, and is considered a defect in the lat-
tice.

Since the sublattices are chemically distinct, the group of the k-vector at
k = 0 for the zinc blende structure has only the 24 operations of the point
group Td. It is a symmorphic structure and the factor group Gk/Tk is there-
fore isomorphic to its point group Td (Sect. 9.1.4). In calculating Γlat.mod.,
we note that the vector in group Td transforms as the irreducible representa-
tion Γ15. Thus from the irreducible representations contained in Γ equiv., we
obtain

Γ equiv. = 2A1 = 2Γ1 ,

so that when we take the direct product of Γ equiv. with Γvec. we obtain

Γlat.mod. = 2A1 ⊗ T2 = 2T2 = 2Γ15 . (11.18)

For the zinc blende structure, the optic mode is both infrared-active and
Raman-active since the irreducible representation Γ15 for point group Td

corresponds to both Γ15 and Γ25′ of the point group Oh. This correspon-
dence is apparent from comparing the character tables for Td and Oh (see
Table 10.2).

The well known LO–TO splitting of the optic phonon in ionic crystals
is associated with an anticrossing of the optic phonon level and the photon
propagation dispersion relation which occurs very close to the B.Z. center (see
discussion in Sect. 10.7). Appropriate linear combinations of wave functions
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will lead to two distinct levels that do not cross, each represented by the
movement of one sublattice. Since GaAs is a polar crystal, in this case, the
LO and TO modes will be split. The more polar the crystal, the larger the
LO–TO splitting.

11.4 Lattice Modes Away from k = 0

Modes at k �= 0 can be observed by optical spectroscopy when superlattice
effects are present, giving rise to zone folding, or when defects are present,
breaking down translational symmetry. Nonzone center modes can also be ob-
served in second-order Raman spectra (comprising phonons with wave vectors
+k and −k). Lattice modes at k �= 0 are routinely observed by neutron, X-ray
and electron inelastic scattering techniques.

To construct phonon branches for the entire range of k vectors within
the first Brillouin zone, we must consider the general procedure for finding
the lattice modes at other high symmetry points in the B.Z., and we make
use of compatibility relations to relate these solutions to related solutions at
neighboring k-points.

The procedure for finding lattice modes at k �= 0 is outlined below:

(a) Find the appropriate group of the wave vector at point k.
(b) Find Γ equiv. and Γvec. for this group of the wave vector. When considering

lattice modes away from the Γ point, care must be taken with special k
points at the Brillouin zone boundary where R−1

α k = k + Km (Km is
a reciprocal lattice vector). One should not simply use χequiv. = 1 or
0, as for the case of molecules, because the lattice vector translation for
k �= 0 will add a phase factor (see Sect. 10.5). In this case we use for the
characters for the equivalence transformation

χequiv. =
∑

j

δRαrj ,rj e
iKm·rj , (11.19)

where rj is the position of the jth atom with respect to the origin of the
point group, and δRαrj ,rj = 1 if Rαrj and rj refer to equivalent atomic
positions (Rαrj = rj +Rn).

(c) Within a unit cell
Γlat.mod. = Γ equiv. ⊗ Γvec. (11.20)

find the symmetry types and mode degeneracies of Γlat.mod..
(d) Introduce a phase factor relating unit cells with translation by τ :

P{ε|τ}Ψk(r) = eik·τΨk(r) Bloch theorem . (11.21)

(e) Find lattice modes (including phase factor).

We illustrate these issues in terms of the NaCl structure which was previously
considered with regard to its normal modes at k = 0 (see Sect. 11.3.1).
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11.4.1 Phonons in NaCl at the X Point k = (π/a)(100)

The group of the wave vector at the point X is given in the Table C.15 in
Appendix C. We first identify the symmetry operations of point group D4h

and we then obtain Γ equiv. for these symmetry operations.
We first review the situation for the Γ point (Oh), see Table 11.2. Thus,

we have Γ equiv. for the Na and Cl ions, and for Γvec. at k = 0

Γ equiv.
Na = Γ1

Γ equiv.
Cl = Γ1

Γvec. = Γ15 ,

so that for k = 0 we have

Γlat.mod. = 2Γ1 ⊗ Γ15 = 2Γ15 .

Similarly for the X point, we first find Γ equiv. for each type of atom (see
Table 11.3). Thus, we obtain Γ equiv., Γvec., and Γlat.mod. at the X point:

Γ equiv.
Na = X1

Γ equiv.
Cl = X1

Γvec. = X ′
4 +X ′

5 ,

where X ′
4 corresponds to x, and X ′

5 corresponds to (y, z). We thus obtain

Γlat.mod. = 2X1 ⊗ (X ′
4 +X ′

5) = 2X ′
4 + 2X ′

5 .

Compatibility relations give Γ15 → Δ1+Δ5 → X ′
4+X ′

5 for the phonon branch
connecting Γ to X .

The action of the translation operator on a basis function (normal mode)
yields

P̂{ε|τ}u(r) = eik·τu(r) , (11.22)

Table 11.2. Characters for Γ equiv. for NaCl at the Γ point

Γ point E 8C3 3C2
4 6C′

2 6C4 i 8iC3 3iC2
4 6iC′

2 6iC4

Γ equiv.
Na 1 1 1 1 1 1 1 1 1 1

Γ equiv.
Cl 1 1 1 1 1 1 1 1 1 1

Table 11.3. Characters for Γ equiv. for NaCl at the X point

X point E 2C2
4⊥ C2

4‖ 2C4‖ 2C2 i 2iC2
4⊥ iC2

4‖ 2iC4‖ 2iC2

Γ equiv.
Na 1 1 1 1 1 1 1 1 1 1

Γ equiv.
Cl 1 1 1 1 1 1 1 1 1 1
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where k = (π/a)x̂ at the X point under consideration. For Rn = ax̂ we
obtain eik·τ = eiπ = −1 so that there is a π phase difference between unit
cells along x̂. However, for Rn = aŷ or aẑ, we have eik·τ = ei(0) = 1, and
there is effectively no phase factor along ŷ and ẑ.

The phase factor of (11.22) refers to the relative phase in the vibration
between atoms in adjacent unit cells. The relative motion between atoms
within a unit cell was considered in Sect. 11.2. Thus the NaCl structure (space
group #225) has a set of three acoustic branches and three optical branches
each having X ′

4 and X ′
5 symmetries at the X point, where

X ′
4 → x ,

X ′
5 → y, z .

The normal modes for the three acoustic branches are shown in Fig. 11.6 in
terms of the symmetry classificationsX ′

4 andX ′
5 (twofold) for the longitudinal

and transverse branches, respectively. The corresponding normal modes for
the three optical branches are shown in Fig. 11.7.

For rows of atoms in unit cells along the y and z directions, even consider-
ing that the crystal is strictly not infinite, there will be essentially zero phase
difference (eiδa, with δ = π/N , where N ≈ 107) between molecules vibrating

Fig. 11.6. Acoustic vibrational modes of NaCl showing longitudinal and transverse
normal mode displacements at the X point (kx = π/a) in the Brillouin zone for the
X ′

4 and X ′
5 normal modes

Fig. 11.7. Optic vibrational modes of NaCl showing longitudinal and transverse
normal mode displacements at the X point (kx = π/a) in the Brillouin zone for the
X ′

4 and X ′
5 normal modes
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in the acoustic mode as we move in the y and z directions. This is also true
for the optical branches shown in Fig. 11.7.

11.4.2 Phonons in BaTiO3 at the X Point

The modes in the case of BaTiO3 (see Fig. 9.7(c)) involve more than one atom
of the same species within the unit cell so that a few new aspects enter the
lattice mode problem in this case. The character table for the group of the
wave vector at the X point for BaTiO3 is the same as for NaCl (Table C.15).
At the X point, we compute Γ equiv. (see Table 11.4) using the symmetry
operators for the group of the wave vector at the X point making use of the
notation in Fig. 11.8.

Γ equiv.
Ba = X1

Γ equiv.
Ti = X1

Γ equiv.
O3

= 2X1 +X2

Γvec. = X ′
4 +X ′

5 , (11.23)

where X ′
4 corresponds to x, and X ′

5 to (y, z). The symmetries of the normal
modes are found by taking the direct product of Γ equiv. ⊗ Γvec.

ΓBa
lat.mod. = X1 ⊗ (X ′

4 +X ′
5) = X ′

4 +X ′
5

ΓTi
lat.mod. = X1 ⊗ (X ′

4 +X ′
5) = X ′

4 +X ′
5 .

The Ba and Ti atoms form normal modes similar to NaCl with the Ba moving
along x (X ′

4 symmetry) or along y or z (X ′
5 symmetry) with the Ti and O3 at

rest, and likewise for the Ti atoms moving along the x direction. The phase
relations for atomic vibrations in adjacent unit cells in the x direction have
a phase factor eπi = −1, while rows of similar atoms in the y and z direction
have no phase shift. For the oxygens,

ΓO3
lat.mod. = (2X1 +X2) ⊗ (X ′

4 +X ′
5) = 2X ′

4 +X ′
3 + 3X ′

5 . (11.24)

The mode patterns and basis functions at the X point for BaTiO3 are given
in Fig. 11.8 and Table 11.5.

Table 11.4. Characters for the equivalence transformation for the Ba, Ti and three
oxygen ions in BaTiO3 with Oh symmetry

X point E 2C2
4⊥ C2

4‖ 2C4‖ 2C2 i 2iC2
4⊥ iC2

4‖ 2iC4‖ 2iC2

Γ equiv.
Ba 1 1 1 1 1 1 1 1 1 1

Γ equiv.
Ti 1 1 1 1 1 1 1 1 1 1

Γ equiv.
O3

3 3 3 1 1 3 3 3 1 1
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The mode symmetry and the normal mode displacements are verified by
the following considerations. Perusal of the X-point character table shows
that the symmetry types are uniquely specified by the operations C4‖, C2

and i. The effect of these operations on the coordinates (x, y, z) and on the
site locations are

C4‖

⎛
⎝1

2
3

⎞
⎠ =

⎛
⎝1

3
2

⎞
⎠ , C4‖

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ x

−z
y

⎞
⎠ ,

C2

⎛
⎝1

2
3

⎞
⎠ =

⎛
⎝1

3
2

⎞
⎠ , C2

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝−x

z
y

⎞
⎠ ,

i

⎛
⎝1

2
3

⎞
⎠ =

⎛
⎝1

2
3

⎞
⎠ , i

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝−x

−y
−z

⎞
⎠ .

By carrying out the symmetry operations on the basis functions, we verify
that the matrix representations for each of the symmetry operations have the
correct characters for the X ′

4 irreducible representation:

C4‖(x1 + x2 + x3) = (x1 + x3 + x2) , so that χ(C4‖) = +1 ,

C2(x1 + x2 + x3) = −(x1 + x3 + x2) , so that χ(C2) = −1 ,

i(x1 + x2 + x3) = −(x1 + x2 + x3) , so that χ(i) = −1 .

Applying the same approach to the normal mode displacements with X ′
5 sym-

metry we have

C4‖

(
y1 + y2 + y3

z1 + z2 + z3

)
=

(
−z1 − z3 − z2

y1 + y3 + y2

)
=

(
0 −1
1 0

)(
y1 + y2 + y3

z1 + z2 + z3

)

i

(
y1 + y2 + y3

z1 + z2 + z3

)
=

(
−1 0

0 −1

)(
y1 + y2 + y3

z1 + z2 + z3

)
,

so that χ(C4‖) = 0, and χ(i) = −2, which are the correct characters for the
X ′

5 irreducible representation. Finally for the X ′
3 modes

C4‖(−x2 + x3) = (−x3 + x2) = −(−x2 + x3) → χ(C4‖) = −1

C2(−x2 + x3) = x3 − x2 = (−x2 + x3) → χ(C2) = +1

i(−x2 + x3) = −(−x2 + x3) → χ(i) = −1 .

These same calculations can be applied to the basis functions in Fig. 11.8 and
their irreducible representations and the results are listed in Table 11.5.

The phase factors for oxygens separated by a lattice vector ax̂ are eπi = −1
while the oxygens separated by a lattice vector aŷ or aẑ have no phase differ-
ence (i.e., phase factor ≡ 1).
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Fig. 11.8. Mode pattern models for the X point modes in BaTiO3. The basis
functions for each normal mode are indicated

Table 11.5. Basis functions for the various irreducible representations entering the
lattice modes in BaTiO3

basis functions irreducible representation

x3 − x2 X ′
3

y1 − y3

−z1 + z2

}
X ′

5

2x1 − x2 − x3 X ′
4

−y1 + 2y2 − y3

−z1 − z2 + 2z3

}
X ′

5

x1 + x2 + x3 X ′
4

y1 + y2 + y3

z1 + z2 + z3

}
X ′

5

11.4.3 Phonons at the K Point in Two-Dimensional Graphite

Two-dimensional graphite, called a graphene sheet, belongs to the symmor-
phic hexagonal space group #191 of the International Tables of Crystallogra-
phy [58] and has the symmetry designations D1

6h in accord with the Schoen-
flies notation, and P6/mmm in the Hermann–Mauguin notation. Three-
dimensional graphite is described by the nonsymmorphic space group #194
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and symmetry designation D4
6h as is discussed further in Problem 11.1. Al-

though a single graphene sheet is two-dimensional, we need to consider a three-
dimensional space group to account for the out-of-plane phonons. The rota-
tional aspects for real space and for the group of the wave vector at k = 0
in reciprocal space are described by the point group D6h (see Fig. 11.9) and
Table A.21. The direct lattice vectors are given by

a1 =
a

2

(√
3x̂+ ŷ

)

a2 =
a

2

(
−√

3x̂+ ŷ
)
, (11.25)

where a = 2.456 Å is the lattice parameter denoting the nearest neighbor
distance between crystallographically equivalent atoms. The dotted line in
Fig. 11.9a defines the rhombus for the real space unit cell containing two
inequivalent carbon atoms, labeled 1 and 2. The associated Wyckoff positions
for atoms 1 and 2 are

1 = (2/3, 1/3)

2 = (1/3, 2/3) . (11.26)

Figure 11.9b shows the hexagonal Brillouin zone of 2D graphite. The reciprocal
lattice vectors are given by

b1 =
2π
a

(√
3

3
k̂x + k̂y

)

b2 =
2π
a

(
−
√

3
3
k̂x + k̂y

)
. (11.27)

The letters Γ , M and K are the high symmetry points while Σ, T , and λ
denote arbitrary points along high symmetry lines, and u represents a general
point inside the two-dimensional Brillouin zone. The K point is a special
symmetry point where the electronic valence and conduction bands cross in
a single point through which the Fermi level passes. Before developing the
group theory for the K point phonons, however, it is interesting to point
out that, for the hexagonal Bravais lattice, the real and reciprocal lattice are
rotated by 90◦ with respect to each other (see Fig. 11.9), and this is reflected
in the definition of the symmetry axes (Fig. 11.10).

The appropriate group of the wave vector at the K point is the D3h (see
Table A.14). The Γvec. transforms as A

′′
2 for light polarized along the z-axis,

and as E′ for light polarized in the (x, y) plane. The χequiv. and Γ equiv. are
given in Table 11.6. The characters for χequiv. in Table 11.6 are given by the
number of atoms in the unit cell that remain unchanged under a symmetry
operation for each class, except for χequiv.(C3), since the C3 operation takes
the k = K vector into an equivalent point, i.e., C−1

3 K = K + Km, where
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Fig. 11.9. Real (a) and reciprocal (b) lattices for a two-dimensional graphene
sheet. The lattice vectors for real and reciprocal space are indicated and the two
nonequivalent atoms with the real space unit cell are indicated in (a)

Fig. 11.10. (a) Directions of some symmetry operations of 2D graphite in the direct
space. (b) Directions of some symmetry operations of 2D graphite in the reciprocal
space

Table 11.6. Γ equiv. for the K point in graphite (D3h)

D3h E 2C3 3C2 σh 2S3 3σv

χequiv.
K 2 −1 0 2 −1 0 Γ equiv.

K = E′
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Fig. 11.11. A single graphene sheet. The solid and open dots indicate the A and B
sublattices, respectively. The arrows show directions of the atomic displacements for
the six stationary phonon modes of the graphene sheet at the K point. The labels
of the phonon modes are identified in the text. The dotted and crossed points in
(c) and (f) represent the vectors pointing in and out of the image plane. The large
and small points indicate the magnitudes of the vectors equal to

√
2 and 1/

√
2,

respectively

Km is a reciprocal lattice vector. The equivalence transformation is therefore
given by (11.19), where j = 1, 2, and r1 = (a/2)[(

√
3/3)x̂ + ŷ] and r2 =

(a/2)[(−√
3/3)x̂ + ŷ]. Considering the K point at K = (b1 + b2)/3), and

considering C−1
3 K = K − b1 and from (11.19) we have for the equivalence

representation (see Sect. 11.4)

χequiv.(C3) = eib1·r1 +eib2·r2 = e−i4π/3 +e−i2π/3 = 2 cos 2π/3 = −1 , (11.28)

as shown in Table 11.6 and a similar result follows for S−1
3 K. Finally,

Γlat.mod. = Γ equiv. ⊗ Γvec. = E′ ⊗ (A
′′
2 + E′) = A

′
1 +A

′
2 + E′ + E′′ . (11.29)

There are four eigenvalues at the K point; two are nondegenerate and two are
doubly degenerate.
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The eigenvectors can be found from the projector algebra (see Sect. 4.3)
by introducing a phase factor relating unit cells with translations by Rn =
n1a1 + n2a2, according to (11.21).

Figure 11.11 shows the normal mode displacements in the graphene sheet
at the K point. When considering the D3h symmetry and introducing the K
point phase factor, the K point wavefunction periodicity is described by a
supercell of six carbon atoms, as shown in gray in Fig. 11.11 (the lattice dis-
tortions caused by the K point phonon mode is incommensurate with the two-
atom unit cell). The A′

1 and A′
2 phonon modes shown in Figs. 11.11 (b) and (e)

obey C6 symmetry, while the E′ and E′′ phonon modes in Figs. 11.11 (a), (d),
and (f) have the C2 rotation axes perpendicular to the hexagonal plane. In
contrast, the point group D3h contains the C3 rotation axis, but neither the
C6 nor C2 rotation axes. This contradiction is resolved by considering that
the complex travelling phonon modes at the K (K′) point only have the C3

rotation axes. Time-reversal symmetry mixes the complex travelling phonon
modes at the K and K′ points into real stationary phonon modes that obey
D6h symmetry. The stationary phonon modes shown in Figs. 11.11 thus pre-
serve the C6 and C2 rotation axes.

11.5 Phonons in Te
and α-Quartz Nonsymmorphic Structures

In this section we discuss phonon modes for tellurium (with 3 atoms/unit
cell). We then show how the lattice modes for this nonsymmorphic structure
can be used to obtain the lattice modes for α-quartz (with 9 atoms/unit cell)
which has the same space group as Te.

11.5.1 Phonons in Tellurium

The structure for Te (space groups P3121′, #152; P3221′, #154) is a spi-
ral nonsymmorphic space group as shown in Fig. 11.12. There are three Te
atoms/unit cell and these Te atoms are at levels 0, c/3 and 2c/3. The struc-
ture for right-handed Te shows a right-handed screw when viewed along +ẑ.
When the atoms are arranged with the opposite screw orientation, we have

Table 11.7. Character Table for the D3 Point Group

D3 (32) E 2C3 3C′
2

x2 + y2, z2 A1 1 1 1

Rz, z A2 1 1 −1

(xz, yz)

(x2 − y2, xy)

}
(x, y)

(Rx, Ry)

}
E 2 −1 0
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Fig. 11.12. (a) Model for the Te crystal structure showing the overall structure,
(b) the structure of one chain from the side view, and (c) the top view of three
adjacent chains Fix labels a, b, c on figure
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Table 11.8. Characters for the Equivalence Transformation for the Group of the
Wave Vector at k = 0 for Tellurium

{E|0} 2{C3|τ} 3{C2′ |0}
χequiv. 3 0 1 Γ equiv. = A1 + E

left-handed Te. For this structure threefold rotations about the c axis must
be combined with a translation τ = (c/3)(001) to leave the crystal invariant.
The three twofold symmetry axes normal to the threefold axis do not require
translations. The appropriate point group at k = 0 is D3 and the charac-
ter table is given in Table 11.7. Note that mirror planes are not symmetry
operations.

Following the same procedure as was used for the nonsymmorphic diamond
structure (see Sect. 11.3.3), we find Γ equiv. by considering the number of sites
within the unit cell that remain invariant (or transform into the identical site
in a neighboring unit cell, see Table 11.8). To find the lattice vibrations, we
note that the vector transforms as A2 + E. This allows us to separate out
the lattice modes in the z-direction from those in the x − y plane. For the
z-direction

Γ equiv. ⊗ Γvec. z = (A1 + E) ⊗A2 = A2 + E , (11.30)

where the A2 mode corresponds to pure translations in the z direction at
k = 0. The phonon dispersion curves for tellurium have been measured [61]
by inelastic neutron scattering and the results along the high symmetry axes
are shown in Fig. 11.13.

We show the normal modes with A2 and E symmetry in Fig. 11.14. For
the in-plane motion, the symmetries are obtained by computing:

Γ equiv. ⊗ Γvec. (x,y) = (A1 + E) ⊗ E = E + (A1 +A2 + E) . (11.31)

The translational mode in the x, y directions transforms as E. The in-plane
modes at k = 0 are shown in Fig. 11.15. The A2 and E modes are IR active,
and the A1 and E modes are Raman-active.

Since the Te structure has a screw axis, right and left circularly polarized
light are of importance for optical experiments. For linear polarization, we
consider the E vector for the light in terms of x, y, z components. For circular
polarization we take the linear combinations (x + iy) and (x − iy). From the
character table, we note that (x+ iy)(x− iy) = x2 + y2 transforms as A1 and
the dipole moment u is related to the polarizability tensor

↔
α by

⎛
⎜⎝

(ux + iuy)/
√

2

(ux − iuy)/
√

2
uz

⎞
⎟⎠ =

⎛
⎜⎝
α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞
⎟⎠
⎛
⎜⎝

(Ex + iEy)/
√

2

(Ex − iEy)/
√

2
Ez

⎞
⎟⎠ , (11.32)
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Fig. 11.13. Phonon modes for Te shown on the left along several high symmetry
directions as indicated on the right (A.S. Pine and G. Dresselhaus, PRB Vol 4, p
356 (1971))

Fig. 11.14. Normal modes for Te for z-axis vibrations. The A2 mode (a) is a pure
translational mode along the z-axis. The E mode has displacements along z which
have phase differences of ω = exp(2πi/3) with respect to one another. One partner
of the E mode is shown explicitly in (b). For the other partner, the displacements
correspond to the interchange of ω ↔ ω2, yielding the complex conjugate (c.c.) of
the mode that is shown
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Fig. 11.15. In-plane normal modes for Te. The A1 normal mode (a) is a breathing
mode, while the A2 mode (b) is a rocking mode corresponding to rotations of the
three tellurium atoms for each half cycle of the vibration. The two E modes (c, d) can
be described as a breathing and a rocking mode with phase relations ω = exp(2πi/3)
between each of the atoms as indicated (with the complex conjugate partner in each
case obtained by the interchange of ω ↔ ω2)

so that the polarizability tensor for A1 modes will have the form

↔
αA′

1
=

⎛
⎜⎝
a 0 0
0 a 0
0 0 0

⎞
⎟⎠

for in-plane motion with the Raman tensor having components (Ei
+E

s− +
Ei

−E
s
+)α(A1). The polarizability tensor for the z-axis motion is

↔
αA′′

1
=

⎛
⎜⎝

0 0 0
0 0 0
0 0 b

⎞
⎟⎠

and has A1 symmetry with the Raman tensor having components Ei
zE

s
zα(A1).

Finally for general A1 motion, the polarizability tensor is written as
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↔
αA1 =

⎛
⎜⎝
a 0 0
0 a 0
0 0 b

⎞
⎟⎠ . (11.33)

To find the energy for aligning the dipole moment in an electric field, we need
to take the dot product of the dipole moment with the electric field

E∗ · u =
(
[Ex − iEy] /

√
2, (Ex + iEy) /

√
2, Ez

)
·

⎛
⎜⎝

(ux + iuy)/
√

2

(ux − iuy)/
√

2
uz

⎞
⎟⎠ ,

so that

E∗ · u = (E−, E+, Ez) ·
⎛
⎝u+

u−
uz

⎞
⎠

= E−u+ + E+u− + Ezuz = Exux + Eyuy + Ezuz = real quantity .

For the electromagnetic (infrared) interaction, the pertinent symmetries are
E+u−(E) + E−u+(E) for in-plane motion and Ezuz(A2) for z-axis motion.

In considering the Raman effect, we find the energy of the Raman in-
teraction in terms of E∗· ↔

α ·E which, when properly symmetrized becomes
1/2

[
E∗· ↔α ·E + E· ↔α∗ ·E∗

]
. Thus for the Raman mode with A1 symmetry,

the induced dipole u+ has the same sense of polarization as the incident
electric field. However, the energy involves E∗

i and Es or alternatively E∗
s

and Ei to yield the combination (1/2)(Ei
+E

s
− + Ei

−E
s
+) which transforms as

(x+ iy)(x− iy) = x2 + y2, as desired for a basis function with A1 symmetry.
For Raman modes with E symmetry we can have a dipole moment

uz induced by E+, leading to the combination of electric fields E∗
zE+.

To have a symmetric polarizability tensor, we must also include the term
(E∗

zE+)∗ = E−Ez since the energy must be unchanged upon interchange of
electric fields E ↔ E∗. Thus the polarizability and Raman tensors must be
of the form

↔
αE,1 =

⎛
⎜⎝

0 0 0
0 0 r∗

r 0 0

⎞
⎟⎠ , and

{
Ei

+E
s
zα−(E) + Ei

−E
s
zα+(E)

or Ei
zE

s
+α−(E) + Ei

zE
s
−α+(E) .

(11.34)

The partner of this polarizability tensor with E symmetry will produce the
displacement uz from an electric field displacement E− yielding

↔
αE,2 =

⎛
⎜⎝

0 0 r

0 0 0
0 r∗ 0

⎞
⎟⎠ . (11.35)
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The other lattice mode for Te with E symmetry (denoted here by E′) pro-
duces a dipole moment u+ from an electric field E−. This however involves
E−(E+)∗ = E2− for the incident and scattered electric fields so that the
polarizability tensor in this case is

↔
αE′,1 =

⎛
⎜⎝

0 s 0
0 0 0
0 0 0

⎞
⎟⎠ ; basis function x2

− (11.36)

and the corresponding partner is

↔
αE′,2 =

⎛
⎜⎝

0 0 0
s∗ 0 0
0 0 0

⎞
⎟⎠ ; basis function x2

+ . (11.37)

The Raman tensor for the E′ mode has the form Ei
+E

s
+α+(E)+Ei

−E
s
−α−(E).

We can relate these partners of the E′ modes to the basis functions of the
character table for D3 by considering the basis functions for the partners

Partner #1:
1
2
(x− iy)2 = x2

−

Partner #2:
1
2
(x+ iy)2 = x2

+ . (11.38)

By taking the sums and differences of these partners we obtain

x2
+ + x2

− =
1
2
(x+ iy)2 +

1
2
(x− iy)2 = (x2 − y2)

x2
+ − x2

− =
1
2
(x+ iy)2 − 1

2
(x− iy)2 = 2xy , (11.39)

which form a set of partners listed in the character table for D3.

11.5.2 Phonons in the α-Quartz Structure

We will now examine the lattice modes of α-quartz (space group D4
3, #152,

P3121 for the right-hand crystal orD5
3, #153, P3212 for the left-hand crystal).

We will use this example as a means for showing how lattice modes for crystals
with several atoms per unit cell (such as α-quartz) can be built up from
simpler units, in this case the tellurium structure discussed in Sect. 11.5.1.
In Sect. 11.6 we discuss the effect of an applied axial compressive force upon
lattice vibrations in α-quartz.

The spiral structure of α-quartz about the z-axis is shown in Fig. 11.16(a)
where each solid ball represents a SiO2 unit, and the diagram on the left
is identical to that for tellurium (see Fig. 11.12(a)). The projection of the
nine atoms in SiO2 onto the basal plane is shown in Fig. 11.16(b). The Si
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atoms (1, 4 and 7) occupy positions at levels 0, c/3, 2c/3, respectively (as for
tellurium). The oxygen atoms (9, 5, 3, 8, 6 and 2) occupy positions at levels
c/9, 2c/9, 4c/9, 5c/9, 7c/9 and 8c/9, respectively (these sites are of course
not occupied in tellurium). Thus both Te and α-quartz are described by the
same space group, but have different site symmetries. Figure 11.16 shows the
right-handed tellurium structure.

There are three molecular SiO2 units per unit cell giving rise to nine atoms
per unit cell or 27 lattice branches of which 24 are optic modes. By examining
the atom locations in Fig. 11.16(b), we can determine the point group symme-
try of α-quartz. The z-axis is a threefold axis of rotation when combined with
the translation τ = (c/3)(001). In addition there is a twofold axis from the
center to each of the silicon atoms. The symmetry elements are the same as
for tellurium discussed in Sect. 11.5.1. In order to determine the normal modes
of vibration, we first find the characters for the transformation of the atomic
sites. It is convenient to make use of the results for tellurium, noting that the
silicon atoms in quartz occupy the same sites as in tellurium. In Table 11.9
we obtain the lattice modes in α-quartz at k = 0.

The lattice modes for the silicon are identical with those found previously
for Te, so that part of the problem is already finished. For the six oxygens we
have

Γlat.mod., z = (A1 +A2 + 2E) ⊗A2 ; for z motion

Γlat.mod., x,y = (A1 +A2 + 2E) ⊗ E ; for x, y motion .

(a) (b)

Fig. 11.16. Structure of (a) right-handed α-quartz and (b) the projection of the
atoms on the basal plane of α-quartz. Atoms #1, 4, 7 denote Si and the other
numbers denote oxygen atoms
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Table 11.9. Characters for the Equivalence Transformation for α-quartz

{E|0} 2{C3|τ } 3{C′
2|0}

Γ equiv.
Si 3 0 1 = A1 + E

Γ equiv.
oxygen 6 0 0 = A1 + A2 + 2E

Fig. 11.17. Normal modes along the z-direction for the six oxygens in the α-quartz
crystal. The A2 mode is a uniform translation while the A1 mode is a rocking of
the oxygens around the Si. The E modes are related to the A2 and A1 modes by
combining the 1, ω, ω2 phases with the translational and rocking motions

Carrying out the direct products we obtain

Γlat.mod., z = A2 +A1 + 2E ; for z motion

Γlat.mod., x,y = 2A1 + 2A2 + 4E ; for x, y motion , (11.40)

where we note that for the D3 point group E ⊗ E = A1 +A2 + E.
The corresponding z-axis normal modes A2, A1, E and E′ for the six

oxygens are shown in Fig. 11.17. The normal mode A2 is clearly a uniform
translation of the six oxygens, while the A1 mode is a rocking of the two
oxygens on either side of a silicon atom (one going up, while the other goes
down). The twofold E mode is derived from A2 by introducing phases 1, ω, ω2

for each of the pairs of oxygens around a silicon atom; the complex conjugateE
mode is obtained from the one that is illustrated by the substitution ω ↔ ω2.
Finally the E′ mode is obtained from the A1 mode in a similar way as the
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Fig. 11.18. Normal modes along the z-direction for the three SiO2 groups in α-
quartz. Here the motions of the Si atoms are combined with those of the oxygens

Fig. 11.19. Normal modes in the x–y plane for the six oxygens in the α quartz
crystal. In addition, the A1 tangential breathing mode, the A2 radial breathing
breathing mode, and the A2 rocking mode have corresponding E modes, with phases
1, ω, ω2 for the three SiO2 units, each having two partners related by ω ↔ ω2. In the
crystal, all modes with the same symmetry are coupled, so that the actual normal
mode is an admixture of the modes pictured here
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E mode is obtained from the A2 mode. In identifying the symmetry type for
these normal modes, we note the effect of symmetry operation C′

2.
We now combine the z motion for the silicons (symmetries A2+E) with the

z motion for the oxygens (symmetries A1 +A2 +2E) to obtain A1 +2A2 +3E
for SiO2. The resulting normal mode patterns are shown in Fig. 11.18. The
z-axis translational mode for the six oxygens combine either in-phase or out of
phase to form the two normal modes with A2 symmetry. For the mode with A1

symmetry, the silicon atoms remain stationary. Introducing the phases 1, ω,
ω2 for each SiO2 group gives the three E normal modes along the z-direction
in α-quartz.

For the xy motion, the six oxygens form lattice modes with symmetries
2A1 + 2A2 + 4E and the normal mode patterns are shown in Fig. 11.19.

The next step is to combine the motion of the silicon (A1 +A2 +2E) with
that of the two oxygens (2A1 + 2A2 + 4E) for the in-plane modes, and this
step is the focus of Problem11.2.

11.6 Effect of Axial Stress on Phonons

In general, an external perturbation, when applied to a crystal, reduces the
symmetry of the crystal. The fundamental principle used to deduce this lower
symmetry is called the Curie principle which states that only those symmetry
operations are allowed which are common to both the unperturbed system and
to the perturbation itself. This condition restricts the new symmetry group
to a subgroup common to the original group.

Fig. 11.20. The symmetry of the Polarizability Tensors for Raman Active Modes
of α-quartz, for stress applied along the threefold axis, and along a twofold axis
perpendicular to the threefold axis



11.6 Effect of Axial Stress on Phonons 273

When a homogeneous axial compression is applied to a crystal, the re-
sulting strain is described by a symmetric tensor of the second rank. The
strain tensor can be represented by an ellipsoid which has at least D2h point
group symmetry; if two of its major axes are equal, the ellipsoid acquires rota-
tional symmetry about the third axis, and the point group symmetry is D∞h,
whereas, if all three axes are equal it becomes a sphere with three-dimensional
continuous rotation and reflection symmetry. In order to determine the sym-
metry operations of the strained crystal it is necessary to know the orientation
of the strain ellipsoid relative to the crystallographic axes. An alternative pro-
cedure is to treat the stress itself as the imposed condition and to find the
symmetry elements common to the unstrained crystal and to the symmetry
of the stress tensor.

Using the symmetry properties of the stress tensor is particularly simple
when the external perturbation is an axial compression. In this case the stress
ellipsoid has D∞h point group symmetry and can be conveniently represented
by a right circular cylinder with its center coinciding with the center of the
crystal and its axis of revolution along the direction of the force. The symmetry
operations common to the unstrained crystal and to the cylinder representing
the stress can then be easily determined by inspection.

As an illustrative case, consider the point group D3, the point group of
α-quartz (Sect. 11.5.2). The symmetry operations of D3 are a threefold axis of
rotation along the z-axis and three twofold axes perpendicular to the z-axis,
one of which is taken to be the x-axis. If the force, F , is applied along the
z-direction, all of the operations of the group are common to the symmetry of
the stress and hence the symmetry remainsD3. If, however, the force is applied
along the x direction, the only remaining symmetry operation is C2. Similarly,
if the force is applied along the y-axis, the only remaining symmetry operation
is again the twofold axis of rotation along the x-axis and the symmetry is
reduced to the point group C2. If the force is in a direction other than along z
or parallel or perpendicular to a two-fold axis, the crystal symmetry is reduced
to C1.

Table 11.10. Character table for group C2 pertinent to uniaxial deformation ap-
plied to D3 symmetry group. The compatibility relations among their irreducible
representations are also given

C2 (2) E C2

x2, y2, z2, xy Rz, z A 1 1

xz, yz
x, y

Rx, Ry

}
B 1 −1

representations of D3 A1 1 1 A

A2 1 −1 B

E 2 0 A+B
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Once the reduced symmetry of the crystal in the presence of the external
perturbation is determined, the correlation between the irreducible representa-
tions of the two groups can be obtained. From such a correlation, the removal
of the degeneracy of a particular energy level can be immediately deduced as
illustrated below for the force applied along the twofold axis.

This group theoretical analysis thus predicts that the Raman lines of
E symmetry should split and the Raman inactive A2 mode in D3 symme-
try should become Raman-active in C2 symmetry. We note that the basis
functions that are used for C2 are x, y, z while for D3, the combinations
(x + iy, x − iy, z) are used. The form of the polarizability tensors for the
Raman-active modes in D3 and C2 point group symmetries are given in
Fig. 11.20, and are further considered in Problem 11.2.

Selected Problems

11.1. This problem involves the lattice modes of a three-dimensional graphite
crystal (see Fig. C.1).

(a) What are the symmetry operations for 3D crystalline graphite, and how
do they differ from those for 2D graphite (see Sect. 11.4.3)?

(b) Why is the space group #194 appropriate for 3D hexagonal graphite,
rather than #191, or #192, or #193?

(c) Find the number of lattice modes for 3D graphite at k = 0. What are
their symmetries and what are their mode degeneracies?

(d) What are the normal mode displacements for each of these lattice modes
at k = 0?

(e) Find the mode symmetries and compatibility relations for the modes in
the Γ − T − K direction (see Fig. 11.13). Be aware that the K point is
a special point where the relation Rαk = k+Km occurs (see Table C.27).

(f) Which modes in (e) are IR active, Raman active? What are the polariza-
tions of the Raman active modes?

(g) Find the eigenvectors at the K point for 3D graphite.
(h) Compare the results for two-dimensional and three-dimensional graphite

and discuss the difference in behavior in terms of the connection between
symmorphic and nonsymmorphic groups.

11.2. Use the results given in Sect. 11.5.2 for the lattice modes of crystalline
SiO2 to do this problem.

(a) Find the normal modes for the in-plane vibrations of crystalline SiO2

obtained by combining the lattice modes for the three Si atoms and for
the six oxygen atoms given in Sect. 11.5.2. How many have A1, A2 and E
symmetry? On the basis of your results explain the normal mode patterns
given in Fig. 11.21 for the modes with A1 and A2 symmetry, and discuss
the normal mode patterns for the E symmetry modes.



11.6 Effect of Axial Stress on Phonons 275

Fig. 11.21. The in-plane normal modes for α-quartz obtained by superposition of
the normal modes for the oxygens and the silicons. Corresponding to each of the one-
dimensional modes shown here are two-dimensional E modes with phases 1, ω, ω2

for the three SiO2 units, with the two partners related by ω ↔ ω2

(b) Suppose that a stress is applied along the c-axis, what is the effect on
the normal mode patterns? Now suppose that a stress is applied along
a twofold axis going through a Si atom, what is the effect on the normal
mode patterns?

11.3. Consider the crystal structure in the diagram for Nb3Sn, a prototype
superconductor with the A–15 (or β–W) structure used for high field super-
conducting magnet applications [54, 76].

(a) How many lattice modes are there at k = 0, what are their symmetries
and what are their degeneracies?

(b) What are the normal mode displacements for each of these lattice modes?
(c) Which modes are IR active, Raman active? What are the polarizations of

the Raman-active modes?

11.4. Tin oxide (SnO2 with space group #136) is an important electronic
material [54, 76].

(a) Find the Wyckoff positions from the site positions of the Sn and O atoms
in the unit cell. Find Γ equiv. for the SnO2 structure.

(b) Find the lattice modes at k = 0, their symmetries, degeneracies and the
normal mode patterns.

(c) Indicate the IR-activity and Raman activity of these modes.
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11.5. Bromine forms a molecular crystal [54, 76].

(a) What is the appropriate space group? What are the Wyckoff positions for
each of the distinct bromine atoms within the unit cell.

(b) Find the lattice modes at k = 0, their symmetries, degeneracies and the
normal mode patterns.

(c) Indicate the IR-activity and Raman activity of these modes.

11.6. Carbon nanotubes are an interesting system where first-order Raman
activity can be based on selection rules for the electron–phonon interaction [8].
The electronic states usually belong to two-dimensional irreducible represen-
tations (Eμ) and five types of allowed first-order resonance Raman scattering
processes between E(v)

μ and E(c)
μ′ can be obtained

(I)E(v)
μ

Z−→ E(c)
μ

A−→ E(c)
μ

Z−→ E(v)
μ ,

(II)E(v)
μ

X−→ E
(c)
μ±1

A−→ E
(c)
μ±1

X−→ E(v)
μ ,

(III)E(v)
μ

Z−→ E(c)
μ

E1−→ E
(c)
μ±1

X−→ E(v)
μ ,

(IV)E(v)
μ

X−→ E
(c)
μ±1

E1−→ E(c)
μ

Z−→ E(v)
μ ,

(V)E(v)
μ

X−→ E
(c)
μ±1

E2−→ E
(c)
μ∓1

X−→ E(v)
μ , (11.41)

where A, E1, and E2 denote phonon modes of different Γ -point symmetries
of μ = 0, μ = ±1, and μ = ±2, respectively. The XZ plane is parallel
to the substrate on which the nanotubes lie, the Z axis is directed along the
nanotube axis, and the Y -axis is directed along the light propagation direction,
so that the Z and X in (11.41) stand for the light polarized parallel and
perpendicular to the nanotube axis, respectively. The five processes of (11.41)
result in different polarization configurations for different phonon modes: ZZ
and XX for A, ZX and XZ for E1, and XX for E2.

(a) Derive the selection rules in (11.41) explicitly.
(b) The Raman active modes are those transforming like quadratic functions

(XX,Y Y, ZZ,XY, Y Z,ZX). The selection rules associated with the first
and third arrows in (11.41) come basically from selection rules for the
electron–photon interaction. Show that the selection rules for different
polarizations obtained in (11.41) are in perfect agreement with the basis
functions analysis.

11.7. Show that the Raman and infrared active modes in chiral and achiral
carbon nanotubes are given by the following symmetries [8]:
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ΓRaman
zigzag = 2A1g + 3E1g + 3E2g → 8 modes ,

Γ infrared
zigzag = A2u + 2E1u → 3 modes ,

ΓRaman
armchair = 2A1g + 2E1g + 4E2g → 8 modes ,

Γ infrared
armchair = 3E1u → 3 modes ,

ΓRaman
chiral = 3A1 + 5E1 + 6E2 → 14 modes ,

Γ infrared
chiral = A2 + 5E1 → 6 modes . (11.42)



12

Electronic Energy Levels in a Cubic Crystal

In this chapter we apply space groups to determine the electronic dispersion
relations in crystalline materials, and use as an illustration the symmetrized
plane wave solutions of a cubic crystal.

12.1 Introduction

Suppose that we wish to calculate the electronic energy levels of a solid from
a specified potential. There are many techniques available for this purpose.
Some techniques are based on what is called first principles ab initio cal-
culations and directly find solutions to Schrödinger’s equation. Others are
based on the symmetry-imposed form of the dispersion relations, which are
used to fit experimental data. In all cases these techniques utilize the spa-
cial symmetry of the crystal, and emphasize the electronic energy bands
at high symmetry points and along high symmetry axes in the Brillouin
zone.

To illustrate how group theory is utilized in these calculations, we will con-
sider explicitly the energy bands of the nearly free electron model because of
its pedagogic value. If there were no periodic potential, the energy eigenvalues
would be the free electron energies

E(k′) =
�

2k′2

2m
, V (r) = 0 , (12.1)

and the free electron eigenfunctions would be

ψk′ (r) =
1√
Ω

eik′·r , (12.2)

where k′ is a wave vector in the extended Brillouin zone and Ω is the volume
of the crystal. In the empty lattice model, the presence of a weak periodic
potential imposes the symmetry of the crystal on the “empty lattice” elec-
tronic energy bands, but the potential V (r) itself is considered in the limit
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V (r) → 0. From a group theoretical point of view, the free electron energy
bands correspond to the symmetry of the full rotation group and the weak peri-
odic potential serves to lower the symmetry to that of the crystalline solid, as
for example to O1

h (space group #221) symmetry for a simple cubic crystal.
Thus, the introduction of a periodic potential results in symmetry-lowering,
similar to the crystal field problem (Sect. 5.3) which we have by now encoun-
tered in several contexts. We consider the empty lattice energy bands in the
reduced zone by writing the wave vector k′ in the extended zone scheme as

k′ = k + Kni , (12.3)

where k is a reduced wave vector in the first Brillouin zone and Kni is a re-
ciprocal lattice vector to obtain

E(k + Kni) =
�

2

2m
(k + Kni) · (k + Kni) , (12.4)

where

Kni =
2π
a

(n1, n2, n3) , and ni = integer , i = 1, 2, 3 . (12.5)

We use the subscript Kni on the energy eigenvalues Eni to denote the perti-
nent Kni vector when using the wave vector k within the first Brillouin zone.
If we write k in dimensionless units

ξ =
ka

2π
, (12.6)

we obtain

EKni
(k) =

�
2

2m

(
2π
a

)2 [
(ξ1 + n1)

2 + (ξ2 + n2)
2 + (ξ3 + n3)

2
]
. (12.7)

The empty lattice energy bands for the FCC cubic structure are shown in
Fig. 12.1 at the high symmetry points and along the high symmetry direc-
tions indicated by the Brillouin zone for the FCC lattice (see Fig. C.5a in Ap-
pendix C). The energy bands are labeled by the symmetries of the irreducible
representations appropriate to the group of the wave vector corresponding to
the pertinent space group. Group theory provides us with the symmetry desig-
nations and with the level degeneracies. In Sect. 12.2, we treat the symmetry
designations and mode degeneracies for the simple cubic lattice at k = 0,
and in Sects. 12.3 and 12.4 at other symmetry points in the Brillouin zone. In
Sect. 12.5, the effect of screw axes and glide planes on the electronic energy
band structure is considered.

In the reduced zone scheme, the wave functions for the plane wave solutions
to the empty lattice model become the Bloch functions

ψk′(r) =
1√
Ω

eik′·r =
1√
Ω

eik·reiKni
·r , (12.8)
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Fig. 12.1. Free-electron bands of the empty lattice in a face centered cubic struc-
ture. The labels of the high symmetry points in the FCC structure are given in
Fig. C.5(a) of Appendix C. The band degeneracies can be obtained from the dimen-
sions of the irreducible representations indicated on this diagram, and the energy is
given in units of (�2/2m)(2π/a)2

where the periodic part of the Bloch function is written as

uk(r) = eiKni
·r . (12.9)

According to Bloch’s theorem, the effect of the lattice vector translation op-
erator {ε|Rn} is to introduce a phase factor

{ε|Rn}ψk(r) = eik·Rnψk(r) , (12.10)

eik·Rn involving the lattice vector Rn.
In calculating the electronic energy bands in the empty lattice approxi-

mation, we recognize that the main effect of the periodic potential V (r) in
the limit V (r) → 0 limit is to lift the degeneracy of EKni

(k). At certain high
symmetry points or axes and at the Brillouin zone boundary, the degeneracy
in many cases is not fully lifted in the V (r) → 0 limit and a finite periodic
potential is needed to lift the degeneracy of the empty lattice dispersion re-
lations. Group theory tells us the form of the interactions, the symmetry of
the levels and their degeneracies. For each of the high symmetry points in the
Brillouin zone, different symmetry operations will be applicable, depending on
the appropriate group of the wave vector for the k point under consideration,
as illustrated below.
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12.2 Plane Wave Solutions at k = 0

The highest symmetry point in the Brillouin zone is of course the Γ point (k =
0) and we will therefore first illustrate the application of group theoretical
considerations to the energy bands at the Γ point first for a cubic crystal.
Setting k = 0 in (12.7), the energy eigenvalue EKni

(k) becomes

EKni
(0) =

�
2

2m

(
2π
a

)2 [
n2

1 + n2
2 + n2

3

]
=

�
2

2m

(
2π
a

)2

N2 , (12.11)

where
N2 = n2

1 + n2
2 + n2

3 . (12.12)

Corresponding to each reciprocal lattice vector Kni , a value for EKni
(0)

is obtained. For most Kni vectors, these energies are degenerate. We will
now enumerate for illustrative purposes the degeneracy of the first few levels,
starting with Kni = 0 and n1 = n2 = n3 = 0. We then find which irreducible
representations for Oh are contained in each degenerate state. If then a peri-
odic potential is applied, the degeneracy of some of these levels will be lifted.
Group theory provides a powerful tool for specifying how these degeneracies
are lifted. In Table 12.1 we give the energy, the degeneracy and the set of Kni

vectors that yield each of the five lowest energy eigenvalues EKni
(0) in cubic

symmetry. The example that we explicitly work out here is for the simple
cubic lattice [space group #221 (O1

h) or Pm3m], and many of the pertinent
character tables are found in Appendix C.

At Kni = 0 we have ψk(r) = (1/
√
Ω)eik·r. For a general Kni vector,

(n1, n2, n3) there will in general be a multiplicity of states with the same en-
ergy. We now show how to choose a properly symmetrized combination of
plane waves which transform as irreducible representations of the group of
the wave vector at k = 0, and therefore bring the empty lattice Hamiltonian
into block diagonal form. In the presence of a weak cubic periodic poten-
tial V (r), the degeneracy of states which transform as different irreducible
representations will be partially lifted.

By calculating the characters for the equivalence transformation, we obtain
χequiv. which is used to project out the irreducible representations contained
in Γ equiv.. We can then specify which plane waves are transformed into one
another by the elements of the group of the wave vector at the Γ point (k =
0). From Γ equiv., we can find the irreducible representations of Oh which
correspond to each empty lattice energy state and we can furthermore find
the appropriate linear combination of plane wave states which correspond to
a particular irreducible representation of Oh.

To calculate Γ equiv., we use the diagram in Fig. 12.2 which shows the cubic
symmetry operations of point group Oh. The character table for Oh symmetry
is given in Table 10.2 (see also Table A.30), where the column on the left gives
the familiar solid state notation for the irreducible representations of Oh. In
calculating χequiv. we consider that if a given plane wave goes into itself under
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Table 12.1. Listing of the energy, degeneracy and the list of Kni vectors for the
five lowest energy levels for the simple cubic lattice at k = 0

(i) E{000}(0) = 0 degeneracy=1 Kn{000} = 0 (0,0,0) N2 = 0

(ii) E{100}(0) = �
2

2m

(
2π
a

)2
degeneracy=6 Kn{100} = 2π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 0)

(1̄, 0, 0)

(0, 1, 0)

(0, 1̄, 0)

(0, 0, 1)

(0, 0, 1̄)

N2 = 1

Plane Wave States: e±
2πix

a , e±
2πiy

a , e±
2πiz

a

(iii) E{110}(0) = 2 �
2

2m

(
2π
a

)2
degeneracy=12 Kn{110} = 2

√
2π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 0)

(1̄, 1, 0)

(1, 0, 1)

(1̄, 0, 1)

(0, 1, 1)

(0, 1̄, 1)

(1, 1̄, 0)

(1̄, 1̄, 0)

(1, 0, 1̄)

(1̄, 0, 1̄)

(0, 1, 1̄)

(0, 1̄, 1̄)

N2 = 2

(iv) E{111}(0) = 3 �
2

2m

(
2π
a

)2
degeneracy=8 Kn{111} = 2

√
3π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 1)

(1, 1̄, 1)

(1, 1, 1̄)

(1̄, 1, 1)

(1̄, 1̄, 1)

(1, 1̄, 1̄)

(1̄, 1, 1̄)

(1̄, 1̄, 1̄)

N2 = 3

(v) E{200}(0) = 4 �
2

2m

(
2π
a

)2
degeneracy=6 Kn{200} = 4π

a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2, 0, 0)

(2̄, 0, 0)

(0, 2, 0)

(0, 2̄, 0)

(0, 0, 2)

(0, 0, 2̄)

N2 = 4
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Fig. 12.2. Diagram of cubic symmetry operations

Table 12.2. Characters for the equivalence representation Γ equiv. for the five lowest
energy levels of plane wave states labeled by {Kni} using the notation of Table 12.1

Kni E 3C2
4 6C2 8C3 6C4 i 3iC2

4 6iC2 8iC3 6iC4

{0,0,0} 1 1 1 1 1 1 1 1 1 1 Γ1

{1,0,0} 6 2 0 0 2 0 4 2 0 0 Γ1 + Γ12 + Γ15

{1,1,0} 12 0 2 0 0 0 4 2 0 0 Γ1 + Γ12 + Γ15 + Γ25′ + Γ25

{1,1,1} 8 0 0 2 0 0 0 4 0 0 Γ1 + Γ2 + Γ15 + Γ25′

{2,0,0} 6 2 0 0 2 0 4 2 0 0 Γ1 + Γ12 + Γ15

The irreducible representations for each energy level contained in Γ equiv. are listed
in the right-hand column

the symmetry operations of Oh, a contribution of one is made to the character;
otherwise a zero contribution is made. Using these definitions, we obtain the
characters χequiv. and the characters for the various plane waves are given in
Table 12.2, where the various plane wave states are denoted by one of the re-
ciprocal lattice vectors which describe each of these states using the notation
of Table 12.1. The reducible representations Γ equiv. for the various plane wave
states in the simple cubic lattice are decomposed into irreducible representa-
tions of Oh and the results are given on the right-hand side of Table 12.2.

Once we know the irreducible representations of Oh that are contained in
each of the degenerate levels of the simple cubic empty lattice, we can find
appropriate linear combinations of these plane wave states which will then
transform as the desired irreducible representations of Oh. When a cubic pe-
riodic potential is now applied, the degeneracy of these empty lattice states
will be lifted in accordance with the decomposition of the reducible represen-
tations of Γ equiv. into the irreducible representations of Oh. Thus the proper
linear combinations of the plane wave states will bring the secular equation of
the nearly free electron model energy bands into block diagonal form. As an ex-
ample of how this works, let us list the six appropriate linear combinations for
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the {1, 0, 0} set of reciprocal lattice vectors exp(±2πix/a), exp(±2πiy/a), and
exp(±2πiz/a) which will bring the secular equation into block diagonal form:

1√
6
[(1, 0, 0) + (1̄, 0, 0) + (0, 1, 0) + (0, 1̄, 0) + (0, 0, 1) + (0, 0, 1̄)] → Γ1

1√
6
[(1, 0, 0) + (1̄, 0, 0) + ω(0, 1, 0) + ω(0, 1̄, 0)

+ω2(0, 0, 1) + ω2(0, 0, 1̄)]

1√
6
[(1, 0, 0) + (1̄, 0, 0) + ω2(0, 1, 0) + ω2(0, 1̄, 0)

+ω(0, 0, 1) + ω(0, 0, 1̄)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

→ Γ12

1
i
√

2
[(1, 0, 0)− (1̄, 0, 0)]

1
i
√

2
[(0, 1, 0)− (0, 1̄, 0)]

1
i
√

2
[(0, 0, 1)− (0, 0, 1̄)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

→ Γ15 ,

(12.13)

in which we have used (1,0,0) to denote exp(2πix/a) and correspondingly for
the other plane waves. Here ω = 2πi/3 and we note that Γ1 and Γ12 are even
under inversion, but Γ15 is odd under inversion. Substituting

1
2
[(1, 0, 0) + (1̄, 0, 0)] = cos(2πx/a)

1
2i

[(1, 0, 0) − (1̄, 0, 0)] = sin(2πx/a) , (12.14)

we obtain the following linear combinations of symmetrized plane waves from
(12.13):

2√
6

[
cos

(
2πx
a

)
+ cos

(
2πy
a

)
+ cos

(
2πz
a

)]
→ Γ1

2√
6

[
cos

(
2πx
a

)
+ ω cos

(
2πy
a

)
+ ω2 cos

(
2πz
a

)]

2√
6

[
cos

(
2πx
a

)
+ ω2 cos

(
2πy
a

)
+ ω cos

(
2πz
a

)]
⎫⎪⎪⎬
⎪⎪⎭

→ Γ12

√
2 sin

(
2πx
a

)

√
2 sin

(
2πy
a

)

√
2 sin

(
2πz
a

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

→ Γ15 . (12.15)
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The linear combinations of plane wave states given in (12.15) transform as irre-
ducible representations of Oh, and bring the secular equation for E(k = 0) into
block diagonal form. For example, using the six combinations of plane wave
states given in (12.15), we bring the (6×6) secular equation for Kni = {1, 0, 0}
into a (1×1), a (2×2) and a (3×3) block, with no coupling between the blocks.
Since there are three distinct energy levels, each corresponding to a different
symmetry type, the introduction of a weak periodic potential will, in general,
split the sixfold level into three levels with degeneracies 1 (Γ1), 2 (Γ12) and
3 (Γ15). This procedure is used to simplify the evaluation of E(k) and ψk(r)
in first-order degenerate perturbation theory. Referring to Table 12.1, (12.15)
gives the symmetrized wave functions for the six K{1,0,0} vectors. The cor-
responding analysis can be done for the twelve K{110} vectors for the third
lowest energy level, etc. The results for E(k) for the empty lattice for the
simple cubic group #221 are shown in Fig. 12.3 for the Γ − X and Γ − R
axes.

The results obtained for the simple cubic lattice can be extended to other
cubic lattices (see Appendix C). The space group numbers for common cubic
crystals are as follows: simple cubic (#221), FCC (#225), diamond (#227),
BCC (#229) (using standard references such as [54] and [58]). For the FCC
lattice the (n1, n2, n3) integers are all even or all odd so that the allowed Kni

vectors are {000}, {1, 1, 1}, {200}, etc. (see for example: [6] or [45]). For the
BCC lattice, the integers (n1 + n2 + n3) must all sum to an even number,
so that we can have reciprocal lattice Kni vectors {000}, {1, 1, 0}, {200},
etc. Thus Table 12.1 can be used together with an analysis, such as given in
this section, to obtain the proper linear combination of plane waves for the
pertinent Kni vectors for the various cubic groups. These issues are clarified
in Problem 12.2. In this problem a weak periodic potential is considered. Then
the character tables for the group of the wave vector in Appendix C will be
of use.

To complete the discussion of the use of group theory for the solution of
the electronic states of the empty lattice (or more generally the nearly free
electron) model, we will next consider the construction of the symmetrized
plane wave states E(k) as we move away from k = 0.

12.3 Symmetrized Plane Wave Solutions
along the Δ-Axis

As an example of a nonzero k vector, let us consider E(k) as we move from
Γ (k = 0) toward point X [k = π/a(1, 0, 0)] along the (1,0,0) axis (labeled Δ
in Figs. 10.3 and 12.4). The appropriate point group of the wave vector k is
C4v, with the character table given in Table 10.3 (see also Table A.16).

In Table 12.3 are listed the characters for the three irreducible represen-
tations of Kni = {1, 0, 0}(2π/a) corresponding for the simple cubic empty
lattice dispersion relations at k = 0 and Oh symmetry. We consider these
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Fig. 12.3. Diagram of the empty lattice energy levels along (a) Γ -X and (b) Γ -R
for the simple cubic lattice #221. See the text for the symmetries of the energy
bands that are degenerate at the high symmetry points of the simple cubic empty
lattice model

as reducible representations of point group C4v. The decomposition of these
three reducible representations in C4v point group symmetry is indicated on
the right of Table 12.3. This decomposition yields the compatibility relations
(see Sect. 10.7):

Γ1 → Δ1

Γ12 → Δ1 +Δ2

Γ15 → Δ1 +Δ5 . (12.16)
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Fig. 12.4. Brillouin zone for a simple cubic lattice showing high symmetry points

Table 12.3. Characters for the three symmetrized plane waves (12.16) correspond-
ing to the six plane waves Kni = (2π/a)(1, 0, 0) in Table 12.1a,b

C4v (4mm) E C2 2C4 2σv 2σd

Γ1 1 1 1 1 1 Δ1

Γ12 2 2 0 2 0 Δ1+Δ2

Γ15 3 −1 1 1 1 Δ1+Δ5

a The characters for each symmetrized plane wave at k = 0 with Oh symmetry is
considered as a reducible representation in the C4v(4mm) group which is appropri-
ate for the wave vector k along a cubic axis. The decomposition of the reducible
representations into their irreducible components along the Δ axis are indicated us-
ing the notation of the character table for C4v
b The operation σv denotes iC010

2 and iC001
2 , while σd denotes iC011

2 and iC011̄
2

In the character table (Table 12.3), the main symmetry axis is the x-axis,
so that the basis functions that should be used (see Table A.16) require the
transformation: x→ y, y → z, z → x. The symmetry axis σv = iC010

2 denotes
the mirror planes y = 0 and z = 0, while σd = iC011

2 denotes the diagonal
(011) planes, with all symmetry operations referring to reciprocal space, since
we are considering the group of the wave vector at a point along the Δ axis.
The results of (12.16) are of course in agreement with the compatibility rela-
tions given in Sect. 10.7 for the simple cubic structure. Compatibility relations
of this type can be used to obtain the degeneracies and symmetries for all the
levels at the Δ point, starting from the plane wave solution at k = 0. A sim-
ilar approach can be used to obtain the symmetries and degeneracies as we
move away from k = 0 in other directions. For an arbitrary crystal structure
we have to use standard references or websites [54] to construct the compat-
ibility relations using the tables for the group of the wave vector given in this
reference. Some illustrative examples are given in Appendix C.

12.4 Plane Wave Solutions at the X Point

As we move in the Brillouin zone from a point of high symmetry to a point
of lower symmetry, the solution using the compatibility relations discussed



12.4 Plane Wave Solutions at the X Point 289

z

y

C2′
C2″

Fig. 12.5. Diagram of a square showing the twofold axes normal to the principal
C4 symmetry axis which are pertinent to point group D4h

in Sect. 12.3 is unique. On the other hand, when going from a point of lower
symmetry like a Δ point to one of higher symmetry, the solution from the
compatibility relations is not unique, and we must then go back to consider-
ation of the equivalence transformation. An example of this situation occurs
when we go from the Δ point (see Table C.8) to the X-point (D4h symmetry
and Table C.15), which has higher symmetry than the Δ point (C4v symme-
try). The appropriate character table for the group of the wave vector at the
X point (see Table C.15 in Appendix C) is D4h = D4⊗i shown in Table A.18.
At the X-point, the nearly free electron solutions for the simple cubic lattice
given by (12.7) become:

E
(
k =

π

a
x̂
)

=
�

2

2m

(
2π
a

)2
[(

1
2

+ n1

)2

+ n2
2 + n2

3

]
. (12.17)

The lowest energy level at the X-point is

E1

(
k =

π

a
x̂
)

=
�

2

2m

(
2π
a

)2 (1
4

)
. (12.18)

The pertinent plane waves which contribute to the energy level E1 in (12.18)
correspond to Kni vectors

Kni = (0, 0, 0)

Kni =
2π
a

(1̄, 0, 0) .

We will now find χequiv. for these plane waves, using the symmetry oper-
ations in Fig. 12.5 and in the character table for D4h in which we use the
transformation x → y, y → z, z → x to obtain the proper X-point (Ta-
ble 12.4). We note that the plane wave labeled Kni = (0, 0, 0) in Table 12.1
yields a plane wave e(πi/a)x at the X-point while the plane wave labeled
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Table 12.4. Character table for the point groupD4, showing the solid state notation
in the right-hand column

D4 (422) E C2 = C2
4 2C4 2C′

2 2C′′
2

x2 + y2, z2 A1 1 1 1 1 1 X1

Rz, z A2 1 1 1 −1 −1 X4

x2 − y2 B1 1 1 −1 1 −1 X2

xy B2 1 1 −1 −1 1 X3

(xz, yz)
(x, y)

(Rx, Ry)

}
E 2 −2 0 0 0 X5

With inversion D4h = D4 ⊗ i

Table 12.5. Characters for the two plane waves with energy E1 for the simple cubic
empty lattice electron dispersion relations at the X point (D4h symmetry)

E C2 2C4 2C′
2 2C′′

2 i iC2 2iC4 2iC′
2 2iC′′

2

exp(±πix/a) 2 2 2 0 0 0 0 0 2 2 A1g + A2u

Kni = (2π/a)(1̄, 0, 0) in Table 12.1 yields a plane wave e(
π
a ix− 2π

a ix) = e−
π
a ix

and both have energies E1 = �
2/2m

(
2π
a

)2 (1/4). The plane waves de-
noted by Kni = (0, 0, 0) and Kni = 2π/a(1̄, 0, 0) form partners of a re-
ducible representation, and the characters for these two plane waves in the
equivalence transformation Γ equiv. are here shown to yield (Table 12.5):

Γ equiv. = X+
1 +X−

4 . (12.19)

We thus obtain irreducible representations with X+
1 and X−

4 symmetries for
the lowest X-point level so that a periodic potential will split the degeneracy
of these levels at the X-point. In this case the level separation becomes
2|VKni

| (see for example [6, 45]) where Kni = (2π/a)(1̄, 0, 0). The appro-
priate linear combination of plane waves corresponding to the X+

1 and X−
4

irreducible representations are

X+
1 symmetry: (0, 0, 0) + (1̄, 0, 0) → 2 cos

π

a
x

X−
4 symmetry: (0, 0, 0) − (1̄, 0, 0) → 2 sin

π

a
x . (12.20)

and each of the X+
1 and X−

4 levels is nondegenerate. Referring to (12.17), the
next lowest energy level at the X point is

E2

(
k =

π

a
x̂
)

=
�

2

2m

(
2π
a

)2(5
4

)
. (12.21)
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Table 12.6. Characters for the plane waves comprising state with energy E2 at the
X point (D4h symmetry) for the simple cubic empty lattice electronic energy bands

E C2 2C4 2C′
2 2C′

2 i iC2 2iC4 2iC′
2 2iC′′

2

(12.22) 8 0 0 0 0 0 0 0 4 0

exp(±2πiy/a) 4 0 0 2 0 0 4 0 2 0

exp(±2πiz/a)

The eight pertinent plane waves for this energy level correspond to the Kni

vectors

Kni =
2π
a

(0, 1, 0),
2π
a

(0, 1̄, 0),
2π
a

(0, 0, 1),
2π
a

(0, 0, 1̄)

Kni =
2π
a

(1̄, 1, 0),
2π
a

(1̄, 1̄, 0),
2π
a

(1̄, 0, 1),
2π
a

(1̄, 0, 1̄)

in Table 12.1. More explicitly, the eight plane waves corresponding to these
Kni vectors are

exp
{
πix

a
+

2πiy
a

}
, exp

{
πix

a
− 2πiy

a

}
,

exp
{
πix

a
+

2πiz
a

}
, exp

{
πix

a
− 2πiz

a

}
,

exp
{−πix

a
+

2πiy
a

}
, exp

{
−πix

a
− 2πiy

a

}
,

exp
{
−πix

a
+

2πiz
a

}
, exp

{
−πix

a
− 2πiz

a

}
. (12.22)

To find the characters for the equivalence transformation for the eight plane
waves of (12.22) we use the character table for D4h and Fig. 12.5. The results
for several pertinent plane wave combinations are given in Table 12.6. The
reducible representation for the eight plane waves given by (12.22) yields the
following X-point irreducible representations

X+
1 +X+

2 +X−
5 +X−

4 +X−
3 +X+

5 . (12.23)

The same result can be obtained by considering the e±πix/a functions as
common factors of the e±2πiy/a and e±2πiz/a functions. The χequiv. for the
four e±2πiy/a and e±2πiz/a plane waves is also tabulated in Table 12.6. The
e±πix/a functions transform as X+

1 +X−
4 (see (12.19)), and the four functions

e±2πiy/a and e±2πiz/a transform as X+
1 +X+

2 +X−
5 . If we now take the direct

product indicated in (12.24), we obtain

(X+
1 +X−

4 )⊗ (X+
1 +X+

2 +X−
5 ) = X+

1 +X+
2 +X−

5 +X−
4 +X−

3 +X+
5 (12.24)
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in agreement with the result of (12.23). The proper linear combination of the
eight plane waves which transform as irreducible representations of the D4h

point symmetry group for the second lowest X point level is found from the
Kni vectors given in (16.16):

X+
1 : (0, 1, 0) + (0, 1̄, 0) + (0, 0, 1) + (0, 0, 1̄)

+(1̄, 1, 0) + (1̄, 1̄, 0) + (1̄, 0, 1) + (1̄, 0, 1)

X−
4 : (0, 1, 0) + (0, 1̄, 0) + (0, 0, 1) + (0, 0, 1̄)

−(1̄, 1, 0)− (1̄, 1̄, 0) − (1̄, 0, 1) − (1̄, 0, 1)

X+
2 : (0, 1, 0) − (0, 0, 1) + (0, 1̄, 0) − (0, 0, 1̄)

+(1̄, 1, 0)− (1̄, 0, 1) + (1̄, 1̄, 0) − (1̄, 0, 1̄)

X−
3 : (0, 1, 0) − (0, 0, 1) + (0, 1̄, 0) − (0, 0, 1̄)

−(1̄, 1, 0) + (1̄, 0, 1) − (1̄, 1̄, 0) + (1̄, 0, 1̄)

X−
5 :

(0, 1, 0)− (0, 1̄, 0) + (1̄, 1, 0) − (1̄, 1̄, 0)

(0, 0, 1)− (0, 0, 1̄) + (1̄, 0, 1) − (1̄, 0, 1̄)

}
two partners

X+
5 :

(0, 1, 0)− (0, 1̄, 0) − (1̄, 1, 0) + (1̄, 1̄, 0)

(0, 0, 1)− (0, 0, 1̄) − (1̄, 0, 1) + (1̄, 0, 1̄)

}
two partners , (12.25)

in which the plane waves are denoted by their corresponding Kni vectors.
We note that the wave vector Kni = (2π/a)(0, 1, 0) gives rise to a plane wave
exp[(πix/a)+ (2πiy/a)]. Likewise the wave vector Kni = (2π/a)(1̄, 1, 0) gives
rise to a plane wave exp[(πix/a) − (2πix/a) + (πiy/a)]. Using this notation
we find that the appropriate combinations of plane waves corresponding to
(12.25) are

X+
1 : cos

πx

a

(
cos

2πy
a

+ cos
2πz
a

)

X−
4 : sin

πx

a

(
cos

2πy
a

+ cos
2πz
a

)

X+
2 : cos

πx

a

(
cos

2πy
a

− cos
2πz
a

)

X−
3 : sin

πx

a

(
cos

2πy
a

− cos
2πz
a

)

X−
5 :

cos
πx

a
sin

2πy
a

cos
πx

a
sin

2πz
a

⎫⎪⎬
⎪⎭ two partners

X+
5 :

sin
πx

a
sin

2πy
a

sin
πx

a
sin

2πz
a

⎫⎪⎬
⎪⎭ two partners . (12.26)
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Fig. 12.6. (a) E(k) for a BCC lattice in the empty lattice approximation, V ≡ 0. (b)
E(k) for sodium, showing the effect of a weak periodic potential in lifting accidental
band degeneracies at k = 0 and at the zone boundaries (high symmetry points) in
the Brillouin zone. Note that the splittings are quite different for the various bands
and at different high symmetry points. The character tables in Appendix C for the
group of the wave vector for the BCC lattice are useful for solving the problem of
the electronic structure for a nearly free electron model for a BCC alkali metal
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A summary of the energy levels and symmetries along Γ −X for the simple
cubic lattice is given in Fig. 12.3(a). A similar procedure is used to find the
degeneracies and the symmetrized linear combination of plane waves for any
of the energy levels at each of the high symmetry points in the Brillouin
zone. We show for example results in Fig. 12.3(b) also for the empty lattice
bands along Γ − R. The corresponding results can be obtained by this same
procedure for the FCC and BCC lattices as well (see Figs. 12.1 and 12.6).
Some elaboration of these concepts is found in Problems 12.2 and 12.6.

In the following section we will consider the effect of nonsymmorphic op-
erations on plane waves.

12.5 Effect of Glide Planes and Screw Axes

Up to this point we have considered only symmorphic space groups where
the symmetry operations of the group of the wave vectors are simply point
group operations. The main effect of the glide planes and screw axes in non-
symmorphic space groups on the group of the wave vector is to cause energy
bands to stick together along some of the high symmetry points and axes
in the Brillouin zone. We first illustrate this phenomenon using the 2D space
group p2mg (#7) which has a twofold axis, mirror planes normal to the x-axis
at x = 1/4a and x = 3/4a, and a glide plane g parallel to the x-axis with
a translation distance a/2. In addition, group p2mg has inversion symmetry.
Suppose that X(x, y) is a solution to Schrödinger’s equation at the X point
kX = π/a(1, 0) (see Fig. 12.7).

In the two-dimensional case for the space group p2mg, the mirror glide
operation g implies

gX(x, y) = X

(
x+

1
2
a,−y

)
, (12.27)

Fig. 12.7. Brillouin zone for a rectangular 2D lattice [such as p2mg (#7)]
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while inversion i implies

iX(x, y) = X(−x,−y) . (12.28)

The mirror plane m at x = a/4 implies

mX(x, y) = X

(
−x+

1
2
a, y

)
, (12.29)

so that
gX(x, y) = m iX(x, y) , (12.30)

where m denotes reflection in a mirror plane and i denotes inversion. Since
i2X(x, y) = X(x, y) and m2X(x, y) = X(x, y), we would expect from (12.30)
that

g2X(x, y) = X(x, y) . (12.31)

But direct application of the glide operation twice yields for kx = π/a,

g2X(x, y) = X(x+ a, y) = eikxaX(x, y) = eπiX(x, y) = −X(x, y) , (12.32)

which contradicts (12.31). This contradiction is resolved by having the solu-
tions that ±X(x, y) stick together at the X point.

In fact, if we employ time reversal symmetry (to be discussed in Chap. 16),
we can show that bands ±ΦZ(x, y) stick together along the entire Brillouin
zone edge for all Z points, i.e., (π/a, ky) (see Fig. 12.7). Thus in addition to the
degeneracies imposed by the group of the wave vector, other symmetry rela-
tions can in some cases cause energy bands to stick together at high symmetry
points and axes.

The same situation also arises for 3D space groups. Some common ex-
amples where energy bands stick together are on the hexagonal face of the
hexagonal close-packed structure (space group #194, see Brillouin zone in
Fig. 12.8(a)), and the square face in the diamond structure (#227) for which
the Brillouin zone is given in Fig. 12.8(b). For the case of the hexagonal close
packed structure, there is only a single translation τ = (c/2)(0, 0, 1) con-
nected with nonsymmorphic operations in space group #194. The character
table for the group of the wave vector at the A point (see Table C.26) shows
that the bands stick together, i.e., there are no nondegenerate levels at the
A point. To illustrate this point, we give in Tables C.24 and C.26 the char-
acter tables for the Γ point and the A point, respectively, for space group
#194.

For the case of the diamond structure (space group #227), Miller and
Love [54] show that there are three different translation vectors (a/4)(1, 1, 0),
(a/4)(0, 1, 1), and (a/4)(1, 0, 1) can be used to describe the nonsymmorphic
aspects of the diamond structure [54]. The reason why these translations differ
from those used in this section (see Fig. 10.6) is the selection of a different
origin for the unit cell. In Miller and Love [54] the origin is selected to lie
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Fig. 12.8. Brillouin zone for (a) the hexagonal close packed structure, D4
6h, #194

and (b) the FCC structure (e.g., diamond #227) in which the high symmetry axes
are emphasized (see also Fig. C.5).

halfway between the two inequivalent lattice points, which is at a/8(1, 1, 1)
or at a/8(1̄, 1̄, 1̄), so that the inversion operation takes the white sublattice
into a black sublattice, and vice versa. In contrast, we have taken the origin
in Sect. 10.8 to coincide with the origin of the white sublattice so that in
this case the space group operation for inversion contains a translation by
τ = (a/4)(1, 1, 1) and is denoted by {i|τ}.

In Table C.17, we show the character tables for the group of the wave
vector appropriate for the diamond structure at the Γ point. The behavior of
E(k) at k = 0 for the diamond structure is similar to that for a symmorphic
cubic like the FCC structure. Furthermore, at the L-point in the Brillouin
zone, the structure factor does not vanish:

∑
j

eiKnL
·rj = 1 + ei2π/a(1,1,1)·a/4(1,1,1) = 1 − i �= 0 , (12.33)

and the behavior of E(k) is expected to be similar to the behavior of a sym-
morphic cubic space group like that for the FCC structure, space group #225.
Thus for the nonsymmorphic diamond structure, some high symmetry points
behave normally (such as the L point), while for other points (such as the X
point as we discuss below), the energy bands stick together.

Next we show that the nonsymmorphic nature of the diamond structure
strongly affects the empty lattice energy band structure and is totally an ef-
fect of symmetry considerations. Application of the empty lattice plane wave
energies for the first few lowest energy states at k = 0 (Γ point), the L-point,
and the X-point are shown in Table 12.7, and the corresponding empty lattice
E(k) diagram is shown in Fig. 12.9. The twofold, fourfold and eightfold de-
generate levels at the X-point are noted with the empty lattice nondegenerate
bands coming into the X-point with equal and opposite slopes.

At the X point (Table 10.12) we see that there are no nondegenerate
levels so that levels stick together (see Sect. 10.8). In the E(k) diagram for the
diamond structure (see Fig. 12.10 for E(k) for Ge), we see that all the bands
stick together at the X point, all being either twofold or fourfold degenerate,
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Table 12.7. Classification of the empty lattice eigenvalues at the symmetry points
Γ , L and X of the diamond structure (#227)

number of empty lattice irreducible

plane waves eigenvalues in units representations

of (�2/2m)(4π2/a2)

point Γ 1 (0,0,0) Γ1

k = (0, 0, 0) 8 (1,1,1) Γ1 Γ ′
25 Γ15 Γ ′

2

6 (2,0,0) Γ ′
25 Γ ′

12 Γ ′
2

12 (2,2,0) Γ1 Γ ′
25 Γ15 Γ12 Γ25

point L 2
(

1
2
, 1

2
, 1

2

)
L1 L′

2

k = 2π
a

(
1
2
, 1

2
, 1

2

)
6

(
3
2
, 1

2
, 1

2

)
L1 L′

2 L3 L′
3

6
(

1
2
, 3

2
, 3

2

)
L1 L′

2 L3 L′
3

6
(

5
2
, 1

2
, 1

2

)
L1 L′

2 L3 L′
3

2
(

3
2
, 3

2
, 3

2

)
L1 L′

2

point X 2 (1, 0, 0) X1

k = 2π
a

(1, 0, 0) 4 (0, 1, 1) X1 X4

8 (1,2,0) X1 X2 X3 X4

8 (2,1,1) 2X1 X3 X4

as seen in the character table for the X point in Table 10.12 and in the empty
lattice model in Table 12.7. The plane wave basis functions for the irreducible
representations X1, X2, X3 and X4 for the diamond structure are listed in
Table 12.8 and are consistent with these symmetry requirements.

Because of the nonsymmorphic features of the diamond structure, the en-
ergy bands at theX point behave differently from the bands at high symmetry
points where “essential” degeneracies occur. For the case of essential degen-
eracies, the energy bands E(k) come into the Brillouin zone with zero slope.
For the X point in the diamond structure, the E(k) dispersion relations with
X1 and X2 symmetry in general have a nonzero slope, but rather the slopes
are equal and opposite for the two levels X1 and X2 that stick together. The
physical reason for this behavior is that the X-ray structure factor for the
Bragg reflection associated with the X point in the Brillouin zone for the
diamond structure vanishes and thus no energy discontinuity in E(k) is ex-
pected, nor is it observed upon small variation of kx relative to the X point.
Explicitly the structure factor [45] at the X point for the diamond structure is

∑
j

eiKnX
·rj = 1 + ei4π/a(1,0,0)·a/4(1,1,1) = 1 − 1 ≡ 0 , (12.34)
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Fig. 12.9. Schematic diagram which indicates the symmetry types of the empty
lattice energy levels along Γ −L and Γ −X for the diamond structure, space group
#227 [10] The dashed horizontal line indicates the Fermi level on the empty lattice
model for four electrons per atom, indicating that the empty lattice model gives
a semimetal for the diamond structure for group IV materials. We therefore con-
clude that the empty lattice model is not a good approximation for semiconductors
crystallizing in the diamond structure

where KnX = (2π/a)(1, 0, 0) for the FCC structure from Table 12.1 and the
sum is over the two inequivalent atom sites in the unit cell [one is at the origin
and the other is at (a/4)(1, 1, 1)]. The vanishing of this structure factor for the
reciprocal lattice vector KnX = (4π/a)(1, 0, 0) associated with the X point
implies that there is no Fourier component of the periodic potential to split
the degeneracy caused by having two atoms of the same chemical species per
unit cell and thus the energy bands at the X-point stick together. In fact,
the structure factor in the diamond structure vanishes for all points on the
square face of the FCC Brillouin zone (see Fig. 12.8(b)), and we have energy
bands sticking together across the entire square face. A comparison between
the empty lattice energy band symmetries for the X-point of the FCC lattice
(Fig. 12.1) and for the diamond structure (Fig. 12.9) highlights the effect of
the nonsymmorphic symmetry on the electronic structure near the X-point
but not near the L-point.
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Fig. 12.10. Energy band structure for germanium as an example of a material which
is described by a nonsymmorphic space group #227 for the diamond structure. Note
that the energy bands stick together at the X point as predicted by group theory
(see text). In this diagram the spin-orbit interaction is neglected (see the treatment
of double groups in Chap. 14)

To get further insight into how the energy bands at the X-point stick
together, consider the operations of the inversion symmetry operator {i|τ d}
on the basis functions for the X-point listed in Table 12.8. To treat the effect
of {i|τd} on the various functions of (x, y, z) in Table 12.8, consider first the
action of {i|τd} on the coordinates:

{i|τ d}
⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝−x+ (a/4)

−y + (a/4)
−z + (a/4)

⎞
⎠ . (12.35)

Then using the trigonometric identity:

cos(α + β) = cosα cosβ − sinα sinβ

sin(α + β) = sinα cosβ + cosα sinβ , (12.36)
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Table 12.8. Plane wave basis functions for the group of the wave vector for the
X-point [2π/a(1, 0, 0)] for the nonsymmorphic diamond structure

representation function

X1 x11 = cos 2π
a
x

x12 = sin 2π
a
x

X2 x21 = cos 2π
a
x
[
cos 4π

a
y − cos 4π

a
z
]

x22 = sin 2π
a
x
[
cos 4π

a
y − cos 4π

a
z
]

X3 x31 = sin 4π
a

(y + z)
[
cos 2π

a
x+ sin 2π

a
x
]

x32 = sin 4π
a

(y − z)
[
cos 2π

a
x− sin 2π

a
x
]

X4 x41 = sin 4π
a

(y − z)
[
cos 2π

a
x+ sin 2π

a
x
]

x42 = sin 4π
a

(y + z)
[
cos 2π

a
x− sin 2π

a
x
]

we obtain for the effect of {i|τd} on the various trigonometric functions in
Table 12.8:

{i|τd} cos
(

2π
a
x

)
= cos

(
2π
a

(−x) +
π

2

)
= sin

(
2π
a
x

)

{i|τ d} sin
(

2π
a
x

)
= sin

(
2π
a

(−x) +
π

2

)
= cos

(
2π
a
x

)

{i|τd} cos
(

4π
a
y

)
= cos

(
4π
a

(−y) + π

)
= − cos

(
4π
a
y

)

{i|τd} sin
(

4π
a
y

)
= sin

(
4π
a

(−y) + π

)
= sin

(
4π
a
y

)

{i|τd} sin
(

4π
a

(y + z)
)

= sin
(

4π
a

(−y − z) + 2π
)

= − sin
(

4π
a

(y + z)
)

{i|τd} sin
(

4π
a

(y − z)
)

= sin
(

4π
a

(−y + z)
)

= − sin
(

4π
a

(y − z)
)
.(12.37)

Thus we obtain

{i|τ d}
(
x11

x12

)
=

(
cos

(
2π
a (−x) + π

2

)
sin

(
2π
a (−x) + π

2

)
)

=

(
sin

(
2π
a x

)
cos

(
2π
a x

)
)

=
(
x12

x11

)
,

(12.38)

and we see that the effect of {i|τd} is to interchange x11 ↔ x12. Similarly the
effect of {i|τ d} on x12 and x22 is
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{i|τ d}
(
x21

x22

)
=

(
− sin

(
2π
a (x)

) [
cos

(
4π
a y

)− cos
(

4π
a z

)]
− cos

(
2π
a (x)

) [
cos

(
4π
a y

)− cos
(

4π
a z

)]
)

=
(−x22

−x21

)
,

(12.39)

so that {i|τ d} in this case interchanges the functions and reverses their signs
x21 ↔ −x22. Similar results can be obtained by considering other operations
that are in the point groupOh (and not in the group Td), that is by considering
symmetry operations involving the translation operation τ d = (a/4)(1, 1, 1).
Correspondingly, the other symmetry operations involving translation τ d also
interchange the basis functions for the X1 and X2 irreducible representa-
tions.

The physical meaning of this phenomenon is that the energy bands EX1 (k)
and EX2(k) go right through theX point without interruption in the extended
zone scheme, except for an interchange in the symmetry designations of their
basis functions in crossing the X point, consistent with the E(k) diagram for
Ge where bands with X1 symmetry are seen.

In contrast, the effect of {i|τ d} on the x31 and x32 basis functions:

{i|τ d}
(
x31

x32

)
=

(
− sin

(
4π
a (y + z)

) [
sin

(
2π
a x

)
+ cos

(
2π
a x

)]
− sin

(
4π
a (y − z)

) [
sin

(
2π
a x

)− cos
(

2π
a x

)]
)

=
(−x31

x32

)

(12.40)

does not interchange x31 and x32. Thus the X3 level comes into the X point
with zero slope. The behavior for the X4 levels is similar

{i|τ d}
(
x41

x42

)
=

(
− sin

(
4π
a (y − z)

) [
sin

(
2π
a x

)
+ cos

(
2π
a x

)]
− sin

(
4π
a (y + z)

) [
sin

(
2π
a x

)− cos
(

2π
a x

)]
)

=
(−x41

x42

)

(12.41)

so that the X3 and X4 levels behave like ordinary doubly degenerate lev-
els. Equations (12.38)–(12.41) show that the character χ({i|τ d}) vanishes at
the X point for the X1, X2, X3 and X4 levels, consistent with the charac-
ter table for the diamond X-point given in Table 12.8 (see Problem 12.4).
These results also explain the behavior of the energy bands for Ge at the
X-point shown in Fig. 12.10. The nondegenerate Δ1 and Δ2′ energy bands
going into the X point stick together and interchange their symmetry desig-
nations on crossing the X point, while the doubly degenerate Δ5 levels go into
a doubly-degenerate X4 level with zero slope at the Brillouin zone boundary.
In Chap. 14 we will see that when the spin-orbit interaction is considered the
doubly-degenerate X5 levels are split by the spin–orbit interaction into Δ6

and Δ7 levels, and when the spin–orbit interaction is taken into account, all
the levels at the X-point have X5 symmetry and all show sticking-together
properties.
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Selected Problems

12.1. (a) For the simple cubic lattice find the proper linear combinations
of plane waves for the twelve (1,1,0) plane wave states at k = 0 which
transform as irreducible representations of the Oh point group.

(b) As we move away from k = 0, find the plane wave eigenfunctions which
transform according to Δ1 and Δ5 and are compatible with the eigenfunc-
tions for the Γ−

15 level at k = 0.
(c) Repeat part (b) for the case of Γ+

12 → Δ1 +Δ2.

12.2. Using the empty lattice, find the energy eigenvalues, degeneracies and
symmetry types for the two electronic levels of lowest energy for the FCC
lattice at the L point.

(a) Find the appropriate linear combinations of plane waves which provide
basis functions for the two lowest FCC L-point electronic states.

(b) Which states of the lower and upper energy levels in (a) are coupled by
optical dipole transitions?

(c) Repeat parts (a) and (b) for the two lowest X point energy levels for the
FCC empty lattice (i.e., the X1, X4′ and X1, X3, X5′ levels).

(d) Compare your results to those for the simple cubic lattice.

12.3. (a) Considering the empty lattice model for the 2D hexagonal lattice
(space group #17 p6mm), find the symmetries of the two lowest energy
states at the Γ point (k = 0).

(b) Find the linear combination of plane waves that transform according to
the irreducible representations in part (a).

(c) Repeat (a) and (b) for the lowest energy state at the M point shown in
the Fig. 12.11.

Fig. 12.11. Brillouin zone for the 2D triangular lattice

12.4. (a) Construct the character table for the group of the wave vector for
the diamond structure at k = 0 using the classes given in Table 10.8 and
check your results with Table C.17.
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(b) Consider the effect of the symmetry operation {C4|τd} for the diamond
structure on the x11 and x12 basis functions in Table 12.8 to show that
these basis functions stick together at the X point.

(c) Repeat (a) with the symmetry operation {C4|τd} for the x31 and x32 basis
functions in Table 12.8 to show that these basis functions come into the
X point with zero slope.

12.5. Find the structure factor for the nonsymmorphic 3D graphite structure
(see Problem 10.6) at a Δ point and at the A point in the Brillouin zone
(see (12.34)) for the structure factor at the X point for diamond). Discuss the
implication of your results on the electronic structure of 3D graphite.

12.6. Find the form of the E(k) relation for the second level of the empty
lattice for a BCC system and show how the degeneracy at k = 0 is lifted by
application of a finite potential. What is the form of E(k) for each of these
cases, and compare your results to those for the E(k) diagram for sodium (see
Fig. 12.6(b)). To do this problem you will find Tables C.7 and C.8 of use.
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Energy Band Models Based on Symmetry

Chapter 12 addressed the general application of space groups to the one-
electron energy bands in a periodic solid in the limit of vanishing periodic
potential [V (r) → 0]. This chapter deals with a model for which V (r) �= 0 is
present and where extensive use is made of crystal symmetry, namely k · p
perturbation theory. The Slater–Koster model, which also has a basic sym-
metry formalism, is discussed in Chap. 15, ater the spin–orbit interaction is
considered in Chap. 14.

13.1 Introduction

Just from the symmetry properties of a particular crystal, a good deal can
be deduced concerning the form of the energy bands of that crystal. Our
study of the group of the wave vector illustrates that some of the basic ques-
tions, such as band degeneracy and connectivity, are answered by group theory
alone. It is not necessary to solve Schrödinger’s equations explicitly to find
the degeneracies and the connectivity relations for En(k). An interpolation
or extrapolation technique for determining energy band dispersion relations
based on symmetry often provides the functional form of En(k) without actual
solution of Schrödinger’s equation. Such an approach is useful as an interpo-
lation scheme for experimental data or also for band calculations that are
carried out with great care at a few high symmetry points in the Brillouin
zone.

The interpolation/extrapolation method considered in this chapter is
called k · p perturbation theory (extrapolation or a Taylor’s series expansion
of E(k)). A related method called the Slater–Koster Fourier expansion [29]
(an interpolation or Fourier series expansion of E(k)) is the basis for sym-
metry formalism in the tight-binding method, and it will be discussed in
Chap. 15, after spin–orbit interaction is considered in Chap. 14. If the avail-
able experimental data are limited to one small region in the Brillouin zone
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Table 13.1. Irrreducible representations (IRs) of the cubic group Oh

even odd

Γ+
1 Γ1 Γ−

1 Γ1′

Γ+
2 Γ2 Γ−

2 Γ2′

Γ+
12 Γ12 Γ−

12 Γ12′

Γ+
15 Γ15′ Γ−

15 Γ15

Γ+
25 Γ25′ Γ−

25 Γ25

and that is all that is known and under consideration, then k · p pertur-
bation theory is the appropriate method to use for describing E(k). This
is often the case in practice for semiconductors. If, however, the available
experimental data relate to several points or regions in the Brillouin zone,
then the Slater–Koster approach is more appropriate. Although such experi-
ments might seem to yield unrelated information about the energy bands, the
Slater–Koster approach is useful for interrelating the results of such experi-
ments.

The particular example used here to illustrate k ·p perturbation theory is
the electronic structure for a material with simple cubic symmetry. This dis-
cussion is readily extended to the electronic structure of semiconductors that
crystallize in the diamond structure (e.g., silicon) or the zincblende structure
(e.g., GaAs). The valence and conduction bands for these semiconductors are
formed from hybridized s- and p-bands.

We first consider cubic electronic energy band structures with inversion
symmetry. To emphasize inversion symmetry we will here use the notation
Γ±

i to denote irreducible representations that are even and odd under the
inversion operator, when we write the irreducible representations of the cubic
Oh group, see Table 13.1 For the nonsymmorphic diamond structure, the s-
and p-functions at k = 0 in the Oh point group (at k = 0) transform as
the Γ+

1 and Γ−
15 irreducible representations, respectively (see Sect. 10.8). In

the diamond structure there are 2 atoms per unit cell and Γ equiv at k = 0
transforms as Γ+

1 + Γ−
2 (see Table 10.8). Thus we must consider eight bands

in discussing the valence and conduction bands formed by s- and p-bands for
the diamond structure. These bands have symmetries

Γ equiv ⊗ Γs-functions(Γ+
1 + Γ−

2 ) ⊗ Γ+
1 = Γ+

1 + Γ−
2

Γ equiv ⊗ Γp-functions(Γ+
1 + Γ−

2 ) ⊗ Γ−
15 = Γ−

15 + Γ+
25 . (13.1)

We identify the Γ+
1 and Γ+

25 bands as the bonding s- and p-bands and the Γ−
2

and Γ−
15 bands as antibonding s- and p-bands. The reason why the bonding

p-band has Γ+
25 symmetry follows from the direct product Γ−

2 ⊗ Γ−
15 = Γ+

25

in (13.1). So long as the discussion of En(k) remains close to k = 0, the
nonsymmorphic nature of the energy bands is not important and the simple
discussion presented here remains valid.
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Our discussion starts with a brief review of k · p perturbation the-
ory in general (Sect. 13.2). An example of k · p perturbation theory
for a nondegenerate level is then given in Sect. 13.3. This is followed
by an example of degenerate first-order perturbation theory and a two-
band model (Sect. 13.4) which is then followed by degenerate second-
order k · p perturbation theory which is appropriate for describing the
p-bonding and antibonding levels in the diamond structure (Sect. 13.5).
In all of these cases, group theory tells us which are the nonvanishing
matrix elements, which bands couple to one another and which matrix
elements are equal to each other. The application of k · p perturba-
tion theory to the electronic energy bands at a Δ point is discussed in
Sect. 13.6, and to the valley-orbit interaction in semiconductors is given in
Sect. 13.8.

13.2 k · p Perturbation Theory

An electron in a periodic potential obeys the one-electron Hamiltonian:
[
p2

2m
+ V (r)

]
ψn,k(r) = En(k)ψn,k(r) , (13.2)

where the eigenfunctions of the Hamiltonian are the Bloch functions

ψn,k(r) = eik·run,k(r) (13.3)

and n is the band index. Substitution of ψn,k(r) into Schrödinger’s equation
gives an equation for the periodic function un,k(r)

[
p2

2m
+ V (r) +

�k · p
m

+
�

2k2

2m

]
un,k(r) = En(k) un,k(r) . (13.4)

In the spirit of the (k · p) method, we assume that En(k) is known at
point k = k0 either from experimental information or from direct solution
of Schrödinger’s equation for some model potential V (r). Assume the band
in question has symmetry Γi so that the function un,k0(r) transforms as the
irreducible representation Γi. Then we have

Hk0u
(Γi)
n,k0

= εn(k0) u
(Γi)
n,k0

, (13.5)

where

Hk0 =
p2

2m
+ V (r) +

�k0 · p
m

(13.6)

and

εn(k0) = En(k0) − �
2k2

0

2m
. (13.7)
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If εn(k0) and un,k0(r) are specified at k0, the k · p method prescribes the
development of the periodic un,k0(r) functions under variation of k. At point
k = k0 + κ, the eigenvalue problem becomes

Hk0+κun,k0+κ(r) =
(
Hk0 +

�κ · p
m

)
un,k0+κ(r)

= εn (k0 + κ)un,k0+κ(r) . (13.8)

In the spirit of the usual k · p perturbation theory, κ is small so that the
perturbation Hamiltonian is taken as H′ = �κ · p/m and the energy eigenvalue
at the displaced k vector εn(k0 + κ) is given by (13.7), and En(k0) is given
by (13.2). We will illustrate this method first for a nondegenerate band (a Γ±

1

band for the simple cubic lattice) and then in Sect. 13.5 for a degenerate band
(a Γ±

15 band for the simple cubic lattice).

13.3 Example of k · p Perturbation Theory
for a Nondegenerate Γ +

1 Band

Suppose the energy of the Γ±
1 band at k = 0 in a crystal with Oh point sym-

metry is established by the identification of an optical transition and mea-
surement of its resonant photon energy. The unperturbed wave function at

k = 0 is uΓ+
1

n,0(r) and its eigenvalue from (13.7) is ε(Γ
+
1 )

n (0) = E
(Γ+

1 )
n (0) since

k0 = 0. Away from k0 = 0, we use k · p perturbation theory [31, 45]:

ε
(Γ+

1 )
n (κ) = E

(Γ+
1 )

n (0) +
(
u

Γ+
1

n,0|H′|uΓ+
1

n,0

)

+
∑
n′ �=n

(
u

Γ+
1

n,0|H′|uΓi

n′,0

)(
uΓi

n′,0|H′|uΓ+
1

n,0

)

E
Γ+

1
n (0) − EΓi

n′ (0)
, (13.9)

where the sum is over states n′ which have symmetries Γi.
Now H′ = �κ · p/m transforms like a vector, since H′ is proportional to

the vector p, which pertains to the electronic system and κ is considered as
an external variable not connected to the electronic system. If we expand the
eigenfunctions and eigenvalues of (13.9) about the Γ point (k = 0), then H′

which transforms according to the vector, will transform as the irreducible
representation Γ−

15 in Oh symmetry. In the spirit of k ·p perturbation theory,
the vector k0 determines the point symmetry group that is used to classify
the wave functions and eigenvalues for H′.

For the k ·p expansion about the Γ point, the linear term in k which arises

in first order perturbation theory vanishes when k0 = 0 since (uΓ+
1

n,0|H′|uΓ+
1

n,0)
transforms according to the direct product Γ+

1 ⊗ Γ−
15 ⊗ Γ+

1 = Γ−
15 which does

not contain Γ+
1 (see Sect. 6.7). The same result is obtained using arguments
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relevant to the oddness and evenness of the functions which enter the matrix
elements of (13.9). At other k points in the Brillouin zone, the k ·p expansion
may contain linear k terms since the group of the wave vector for that k · p
expansion point may not contain the inversion operation.

Now let us look at the terms
(
uΓi

n′,0|H′|uΓ+
1

n,0

)

that arise in second order perturbation theory. The product H′uΓ+
1

n,0 transforms
as Γ−

15⊗Γ+
1 = Γ−

15 so that Γi must be of Γ−
15 symmetry if a nonvanishing matrix

element is to result. We thus obtain

ε
Γ+

1
n (κ) = E

Γ+
1

n (0)+Σn′ �=n (Γ−
15)

(
u

Γ+
1

n,0|H′|uΓ−
15

n′,0

)(
u

Γ−
15

n′,0|H′|uΓ+
1

n,0

)

E
Γ+

1
n (0) − E

Γ−
15

n (0)
+ · · · (13.10)

and a corresponding relation is obtained for the nondegenerate Γ−
1 and Γ±

2

levels. For a semiconductor that crystallizes in the diamond structure, the
symmetry Γ+

1 describes the valence band s-band bonding state, while sym-
metry Γ−

2 describes the conduction band s-band antibonding state (see Prob-
lem 13.1).

Thus we see that by using group theory, our k · p expansion is greatly
simplified, since it is only the Γ−

15 levels that couple to the Γ+
1 level by k · p

perturbation theory in (13.10). These statements are completely independent
of the explicit wave functions which enter the problem, but depend only on
their symmetry. Further simplifications result from the observation that for
cubic symmetry the matrix elements

(
u

Γ+
1

n,0|H′|uΓ−
15

n′,0

)

can all be expressed in terms of a single matrix element, if uΓ−
15

n′,0 is identified
with specific basis functions, such as p-functions (denoted by x, y, z for brevity)

and uΓ+
1

n,0 with an s-function (denoted by 1 for brevity). Thus for the Oh group,
the selection rules (see Sect. 6.6) give

(1|px|x) = (1|py|y) = (1|pz|z) , (13.11)

and all other cross terms of the form (1|px|y) vanish. This result, that the
matrix elements of p in Oh symmetry have only one independent matrix
element, also follows from the theory of permutation groups (see Chap. 17).
Combining these results with

ε
Γ+

1
n (κ) = E

Γ+
1

n (κ) − �
2κ2/2m
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we get

E
Γ+

1
n (κ) = E

Γ+
1

n (0) +
�

2κ2

2m
+

�
2κ2

m2

∑
n′ �=n

|(1|px|x)|2

E
Γ+

1
n (0) − E

Γ−
15

n′ (0)
, (13.12)

where the sum is over all states n′ with Γ−
15 symmetry. A similar expansion

formula is applicable to

E
Γ−

2
n (k) ,

which corresponds to the conduction antibonding s-band in the diamond
structure. Equation (13.12) is sometimes written in the form

E
Γ+

1
n (κ) = E

Γ+
1

n (0) +
�

2κ2

2m∗
n

, (13.13)

where the effective mass parameter m∗
n is related to band couplings through

the momentum matrix element:

m

m∗
n

= 1 +
2
m

∑
n′ �=n

|(1|px|x)|2

E
Γ+

1
n (0) − E

Γ−
15

n′ (0)
, (13.14)

in which the sum over n′ is restricted to states with Γ−
15 symmetry. Consistent

with (13.12), the effective mass m∗
n is related to the band curvature by the

relation
∂2E

Γ+
1

n (κ)
∂κ2

=
�

2

m∗
n

. (13.15)

Thus m∗
n is proportional to the inverse of the band curvature. If the curva-

ture is large, the effective mass is small and conversely, and if the bands are
“flat” (essentially k-independent), the effective masses are large. Thus the k·p
expansion for a nondegenerate band in a cubic crystal leads to an isotropic
parabolic dependence of En(k) on k which looks just like the free electron dis-
persion relation except that the free electron mass m is replaced by m∗ which
reflects the effect of the crystalline potential on the motion of the electron.

For the case that the nondegenerate level with Γ+
1 symmetry is predom-

inantly coupled to a single degenerate band (such as one degenerate band
with Γ−

15 symmetry which in this case relates to the p bonding state in the
conduction band), the effective mass formula (13.14) becomes

m

m∗
n

= 1 +
2
m

|(1|px|x)|2
εg

, (13.16)

which is useful for estimating effective masses, provided that we know the
magnitude of the matrix element and the band gap εg. On the other hand,
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if m∗ and εg are known experimentally, then (13.16) is useful for evaluating
|(1|px|x)|2. This is, in fact, the most common use of (13.16). The words matrix
element or oscillator strength typically refer to the momentum matrix element
(un,k|px|un′,k) when discussing the optical properties of solids.

The treatment given here for the nondegenerate bands is easily carried
over to treating the k · p expansion about some other high symmetry point
in the Brillouin zone for symmorphic structures. For arbitrary points in the
Brillouin zone, the diagonal term arising from first order perturbation theory
does not vanish. Also the matrix element(

u
Γ±

i

n,k0
|pα|uΓ∓

j

n,k0

)

need not be the same for each component α = x, y, z, and for the most gen-
eral case, six independent matrix elements would be expected. For example,
along the Δ and Λ axes, the matrix element for momentum ‖ to the high sym-
metry axis is not equal to the components ⊥ to the axis, and there are two
independent matrix elements along each of the Δ and Λ axes (see Sect. 13.6).

These two directions are called longitudinal (‖ to the axis) and transverse
(⊥ to the axis), and lead to longitudinal and transverse effective mass com-
ponents away from the Γ point. Furthermore, for the case of nonsymmorphic
structures like the diamond structure, the nonsymmorphic symmetry elements
involving translations must be considered in detail away from k = 0.

13.4 Two Band Model:
Degenerate First-Order Perturbation Theory

One of the simplest applications of k · p perturbation theory is to two-band
models for crystalline solids. These models are applicable to describe the en-
ergy dispersion E(k) about a point k0 for one of two bands that are strongly
coupled to each other and are weakly coupled to all other bands. The strongly
coupled set is called the nearly degenerate set (NDS) and, if need be, the
weakly coupled bands can always be treated in perturbation theory after the
problem of the strongly interacting bands is solved. Simple extensions of the
two-band model are made to handle three strongly coupled bands, such as
the valence band of silicon, germanium and related semiconductors, or even to
handle four strongly coupled bands as occur in graphite. We illustrate the pro-
cedure here for symmorphic systems, but for application to nonsymmorphic
groups, care with handling phase factors becomes important (see Sect. 12.5).

The eigenvalue problem to be solved is
[
p2

2m
+ V (r) +

�k0 · p
m

+
�κ · p
m

]
un,k0+κ(r) = εn(k0 + κ)un,k0+κ(r) ,

(13.17)
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in which εn(k0) is related to the solution of Schrödinger’s equation En(k0) by
(13.7).

Let n = i, j be the two bands that are nearly degenerate. Using first-order
degenerate perturbation theory, the secular equation is written as

i j

i
j

∣∣∣∣∣
〈i|H0 + H′|i〉 − ε

〈j|H0 + H′|i〉
〈i|H0 + H′|j〉

〈j|H0 + H′|j〉 − ε

∣∣∣∣∣ = 0 , (13.18)

in which we have explicitly written i and j to label the rows and columns.
Equation (13.18) is exact within the two-band model, i.e., all the coupling

occurs between the nearly degenerate set and no coupling is made to bands
outside this set. For many cases where the two-band model is applied (e.g.,
PbTe), the unperturbed wave functions un,k0(r) are invariant under inversion.
Then because of the oddness of H′ = �κ · p/m, the matrix elements vanish

〈i|H′|i〉 = 〈j|H′|j〉 = 0 . (13.19)

Also since the “band edge” wave functions un,k0(r) are constructed to dia-
gonalize the Hamiltonian

H0un,k0(r) = εn(k0)un,k0(r) , (13.20)

there are no off-diagonal matrix elements of H0 or

〈i|H0|j〉 = 0 , for i �= j . (13.21)

We then write
〈i|H0|i〉 = E0

i and 〈j|H0|j〉 = E0
j , (13.22)

where for n = i, j

E0
n = En(k0) − �

2k2
0

2m
. (13.23)

In this notation the secular equation can be written as
∣∣∣∣∣

E0
i − ε (�/m)κ · 〈i|p|j〉

(�/m)κ · 〈j|p|i〉 E0
j − ε

∣∣∣∣∣ = 0 , (13.24)

where 〈i|p|j〉 �= 0 for the two-band model. The secular equation implied by
(13.24) is equivalent to the quadratic equation

ε2 − ε
[
E0

i + E0
j

]
+ E0

i E
0
j − �

2

m2
κ · 〈i|p|j〉〈j|p|i〉 · κ = 0 . (13.25)

We write the symmetric tensor
↔
p2

ij coupling the two bands as
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Fig. 13.1. Two strongly coupled mirror bands separated by an energy εg at the
band extremum. This sketch is based on the concept that these two bands would
be degenerate at the center of the band gap but a strong interaction splits this
degeneracy at a high symmetry point and creates a band gap εg

↔
p2

ij= 〈i|p|j〉〈j|p|i〉 , (13.26)

where i and j in the matrix elements refer to the band edge wave functions
un,k0(r) and n = i, j. The solution to the quadratic equation (13.25) yields

ε(κ) =
E0

i + E0
j

2
± 1

2

√
(E0

i − E0
j )2 +

4�2

m2
κ·

↔
p2

ij ·κ . (13.27)

We choose our zero of energy symmetrically such that

E0
i = εg/2 , E0

j = −εg/2 (13.28)

to obtain the two-band model result (see Fig. 13.1):

ε(κ) = ±1
2

√
ε2g +

4�2

m2
κ·

↔
p2

ij ·κ , (13.29)

which at κ = 0 reduces properly to ε(0) = ±1/2εg.
Equation (13.29) gives a nonparabolic dependence of E upon κ. For

strongly coupled bands, the two-band model is characterized by its non-
parabolicity. In the approximation that there is no coupling to bands out-
side the nondegenerate set, these bands are strictly mirror bands, whereby
one band is described by an E(κ) relation given by the + sign; the other by
the identical relation with the − sign. For cubic materials there is only one
independent matrix element

↔
p2

ij= 〈i|pα|j〉〈j|pα|i〉 ≡ p2
ij , α = x, y, z , (13.30)
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and the
↔
p2

ij tensor assumes the form

↔
p2

ij=

⎛
⎜⎝
p2

ij 0 0
0 p2

ij 0
0 0 p2

ij

⎞
⎟⎠ . (13.31)

In applying the two-band model to cubic symmetry, the degeneracy of the
Γ+

25 valence bands or the Γ−
15 conduction bands is often ignored. The two-

band model formula then becomes

ε(κ) = ±1
2

√
ε2g +

4�2κ2p2
ij

m2
, where κ2 = κ2

x + κ2
y + κ2

z . (13.32)

In this form, (13.32) is called the Kane two-band model. The generalization of
(13.32) to noncubic materials is usually called the Lax two-band model, and

in the case of bismuth the
↔
p2

ij tensor has the following form

↔
p2

ij=

⎛
⎜⎝
p2

xx 0 0
0 p2

yy p
2
yz

0 p2
yz p

2
zz

⎞
⎟⎠ , (13.33)

where the x axis is a binary axis ⊥ to the mirror plane in bismuth (space
group R3m, #166), and the matrix elements of (13.33) have four independent
components.

We now show that for small κ we recover the parabolic ε(κ) relations. For
example, for the Kane two-band model, a Taylor’s series expansion of (13.32)
yields

ε(κ) = ±1
2

√
ε2g +

4�2κ2p2
ij

m2
= ±εg

2

[
1 +

4�
2κ2p2

ij

ε2gm
2

]1/2

, (13.34)

which to order κ4 becomes

ε(κ) = ±
[
εg
2

+
�

2κ2p2
ij

εgm2
− �

4κ4p4
ij

ε3gm
4

+ · · ·
]
, (13.35)

where ε(κ) is given by (13.7), the momentum matrix elements, which reflect
group theoretical considerations, are given by

p2
ij = |(1|px|x)|2 , (13.36)

and the bandgap at the band extrema is given by En(k0) − En′(k0) = ±εg.
If the power series expansion in (13.35) is rapidly convergent (either be-

cause κ is small or the bands are not that strongly coupled – i.e., p2
ij is not
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too large), then the expansion through terms in κ4 is useful. We note that,
within the two-band model, the square root formula of (13.34) is exact and is
the one that is not restricted to small κ or small p2

ij . It is valid so long as the
two-band model itself is valid.

Some interesting consequences arise from these nonparabolic features of
the dispersion relations. For example, the effective mass (or band curva-
ture) is energy or κ-dependent. Consider the expression which follows from
(13.35):

En(k0 + κ) � �
2|k0 + κ|2

2m
±
[
εg
2

+
�

2κ2p2
ij

εgm2
− �

4κ4p4
ij

ε3gm
4

]
. (13.37)

Take k0 = 0, so that

∂2E

∂κ2
=

�
2

m
±
[

2�
2p2

ij

εgm2
− 12κ2

�
4p4

ij

ε3gm
4

]
≡ �

2

m∗ . (13.38)

From this equation we see that the curvature ∂2E/∂κ2 is κ dependent. In fact
as we more further from the band extrema, the band curvature decreases, the
bands become more flat and the effective mass increases. This result is also
seen from the definition of m∗ (13.38)

m

m∗ = 1 ±
[

2
m

p2
ij

εg
− 12�

2κ2p4
ij

ε3gm
3

]
. (13.39)

Another way to see that the masses become heavier as we move higher
into the band (away from k0) is to work with the square root formula
(13.34):

ε = ±1
2

√
ε2g +

4�2κ2p2
ij

m2
. (13.40)

Squaring (13.40) and rewriting this equation, we obtain

(2ε− εg)(2ε+ εg) =
4�

2κ2p2
ij

m2
, (13.41)

(2ε− εg) =
4�

2κ2p2
ij

m2(2ε+ εg)
. (13.42)

For κ = 0 we have ε = εg/2, and we then write an expression for ε(κ):

ε(κ) =
εg
2

+
2�

2κ2p2
ij

m2(2ε+ εg)
=
εg
2

+
�

2κ2p2
ij

m2(ε+ εg
2 )

. (13.43)
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Therefore we obtain the nonparabolic two-band model relation

E(κ) =
εg
2

+
�

2κ2

2m

[
1 +

2p2
ij

m(ε+ εg
2 )

]
, (13.44)

which is to be compared with the result for simple nondegenerate bands
(13.12):

Ei(κ) = Ei(0) +
�

2κ2

2m

[
1 +

2p2
ij

mεg

]
. (13.45)

Equation (13.44) shows that for the nonparabolic two-band model, the effec-
tive mass at the band edge is given by

m

m∗ =

[
1 +

2p2
ij

mεg

]
, (13.46)

but the effective mass becomes heavier as we move away from k0 and as we
move up into the band. The magnitude of the k or energy dependence of the
effective mass is very important in narrow gap materials such as bismuth. At
the band edge, the effective mass parameter for electrons in Bi is ∼ 0.001m0

whereas at the Fermi level m∗ ∼ 0.008m0. The number of electron carriers
in Bi is only 1017 cm−3. Since the density of states for simple bands in a 3D
crystal has a dependence ∼ m∗3/2E1/2, we can expect a large increase in the
density of states with increasing energy in a nonparabolic band with a small
effective mass at the band edge. Since bismuth has relatively low symmetry,
the tensorial nature of the effective mass tensor must be considered and the
dispersion relations for the coupled bands at the L point in bismuth are
generally written as

ε(κ) = ±1
2

√
ε2g + 2�2εg

κ· ↔α ·κ
m

, (13.47)

in which
↔
α is a reciprocal effective mass tensor.

13.5 Degenerate second-order k · p Perturbation Theory

For many cubic crystals it is common to have triply degenerate energy bands
arising from degenerate p states, with extrema at k = 0. Such bands are of
great importance in the transport properties of semiconductors such as silicon,
germanium, and III–V compounds. The analysis of experiments such as cy-
clotron resonance in the valence band of semiconductors depends upon degen-
erate second-order k ·p perturbation theory which is discussed in this section.
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Second-order degenerate k · p perturbation theory becomes much more
complicated than the simpler applications of perturbation theory discussed
in Sect. 13.2–13.4. Group theory thus provides a valuable tool for the solu-
tion of practical problems. For example, we consider here how the degeneracy
is lifted as we move away from k = 0 for a Γ−

15 level for a crystal with Oh

symmetry; a similar analysis applies for the Γ+
25 level, which pertains to the

degenerate p-band bonding states in the valence band in the diamond struc-
ture.

Suppose that we set up the secular equation for a Γ−
15 level using degenerate

perturbation theory

x y z

x
y
z

∣∣∣∣∣∣∣
(x|H′|x) − ε

(y|H′|x)
(z|H′|x)

(x|H′|y)
(y|H′|y) − ε

(z|H′|y)

(x|H′|z)
(y|H′|z)

(z|H′|z) − ε

∣∣∣∣∣∣∣
= 0 , (13.48)

where the x, y and z symbols denote the (x, y, z) partners of the basis functions
in the Γ−

15 irreducible representation derived from atomic p-functions and the
diagonal matrix elements for H′

0 are set equal to zero at the band extremum,
such as the top of the valence band. We notice that since H′ = �k · p/m,
then H′ transforms like the Γ−

15 irreducible representation. Therefore we get
(Γ−

15|H′|Γ−
15) = 0, since

Γ−
15 ⊗ Γ−

15 = Γ+
1 + Γ+

12 + Γ+
15 + Γ+

25 , (13.49)

or more simply, since H′ is odd under inversion, each matrix element in
(13.48) vanishes because of parity considerations. Since each of the matrix
elements of (13.48) vanishes, the degeneracy of the Γ−

15 level is not lifted
in first-order degenerate perturbation theory; thus we must use second-
order degenerate perturbation theory to lift this level degeneracy. We
show below the derivation of the form of the matrix elements for the off-
diagonal matrix elements in (13.48) showing that the vanishing H′

mn is
replaced by

H′
mn → H′

mn +
∑

α

H′
mαH′

αn

E
(0)
m − E

(0)
n

. (13.50)

We will see below that the states with symmetries given in (13.49) will serve
as the intermediate states α which arise in second-order perturbation theory.
In applying second-order degenerate perturbation theory, we assume that we
have a degenerate (or nearly degenerate) set of levels – abbreviated NDS.
We assume that the states inside the NDS are strongly coupled and those
outside the NDS are only weakly coupled to states within the NDS (see
Fig. 13.2).

The wave function for a state is now written in terms of the unperturbed
wave functions and the distinction is made as to whether we are dealing with
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Fig. 13.2. NDS ≡ nearly degenerate set. We use Roman letter subscripts for levels
within the NDS (such as n) and Greek indices for levels outside the NDS (such as α)

a state inside or outside of the NDS. If we now expand the wavefunction ψn′

in terms of the unperturbed band edge states, we obtain

ψn′ =
∑

n

anψ
(0)
n +

∑
α

aαψ
(0)
α , (13.51)

where ψ
(0)
n and ψ

(0)
α are, respectively, the unperturbed wavefunctions in-

side (n) and outside (α) of the nearly degenerate set. Substitution into
Schrödinger’s equation yields

Hψn′ = Eψn′ =
∑

n

an(E0
n + H′)ψ(0)

n +
∑
α

aα(E(0)
α + H′)ψ(0)

α . (13.52)

We multiply the left-hand side of (13.52) by ψ(0)∗
m0 and integrate over all space,

making use of the orthogonality theorem
∫
ψ

(0)∗
m ψ

(0)
n dr = δmn to obtain the

iterative relation between the expansion coefficients (Brillouin–Wigner Per-
turbation Theory)

[E − E(0)
m ]am = amH′

mm +
∑

n′ �=m

an′H′
mn′ +

∑
α

aαH′
mα , (13.53)

where the sum over n′ denotes coupling to states in the NDS and the sum
over α denotes coupling to states outside the NDS (see Fig. 13.2). A similar
procedure also leads to a similar equation for levels outside the NDS:

[E − E(0)
α ]aα = aαH′

αα +
∑

n

anH′
αn +

∑
β �=α

aβH′
αβ . (13.54)

We now substitute (13.54) for the coefficients aα outside the NDS in (13.53)
to obtain
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[E − E(0)
m ]am = amH′

mm +
∑

n′ �=m

an′H′
mn′ (13.55)

+
∑
α

H′
mα

E − E
(0)
α

⎧⎨
⎩
∑

n

anH′
αn + aαH′

αα +
∑

β

aβH′
αβ

⎫⎬
⎭ .

If we neglect terms in (13.56) which couple states outside the NDS to other
states outside the NDS, we obtain

am(E(0)
m − E) +

∑
n

anH′
mn +

∑
n

an

∑
α

H′
mαH′

αn

E
(0)
m − E

(0)
α

= 0 , (13.56)

in which the first sum is over all n without restriction, and for E in the
denominator of the second-order perturbation term in (13.56) we replace E
by E(0)

m in the spirit of perturbation theory. Equation (13.56) then implies the
secular equation

n∑
n=1

an

[
(E(0)

m − E)δmn + H′
mn +

∑
α

H′
mαH′

αn

E
(0)
m − E

(0)
α

]
= 0 , (13.57)

which yields an n× n secular equation with each matrix element given by

H′
mn +

∑
α

H′
mαH′

αn

E
(0)
m − E

(0)
α

, (13.58)

as indicated in (13.50).In degenerate k ·p perturbation theory, we found that
H′

mn = 0 for a Γ−
15 level, and it was for this precise reason that we had to go

to degenerate second -order perturbation theory. In this case, each state in the
NDS couples to other states in the NDS only through an intermediate state
outside of the NDS.

In second-order degenerate perturbation theory (13.49) shows us that for
a threefold Γ−

15 level k · p degenerate perturbation theory will involve only
states of Γ+

1 , Γ
+
12, Γ

+
15, or Γ+

25 symmetry as intermediate states. In our discus-
sion of nondegenerate k ·p perturbation theory (see Sect. 13.3), we found that
there was only one independent matrix element of p coupling a Γ+

1 state to
a Γ−

15 state. To facilitate the use of (13.48) and its more explicit form (13.58),
we include in Table 13.2 a useful list of matrix elements of p between states of
different symmetries for Γ point levels in cubic crystals. These matrix elements
are found using the basis functions for each of the irreducible representations
of Oh given in Table 10.2 and appearing also in Tables C.17 and 10.9 for the
Γ point and Δ point of the diamond structure. Table 13.2 lists the nonvanish-
ing matrix elements appearing in the k · p perturbation theory for electronic
energy bands with cubic Oh symmetry.

For the matrix element A2 in Table 13.2 we note with the help of Ta-
ble 10.2 that the pertinent basis functions are Γ−

2 = xyz and Γ+
25,x = yz. For
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Table 13.2. Matrix elements for H′ = �k · p/m in cubic Oh symmetry, where H′

transforms as Γ−
15

(Γ±
1 |H′|Γ∓

15,α) = A1
�

m kα A1 = (Γ±
1 |px|Γ∓

15,x)

(Γ±
2 |H′|Γ∓

25,α) = A2
�

m kα A2 = (Γ±
2 |px|Γ∓

25,x)

(Γ±
12,1|H′|Γ∓

15,x) = A3
�

m kx

(Γ±
12,1|H′|Γ∓

15,y) = A3
�

m kyω2

(Γ±
12,1|H′|Γ∓

15,z) = A3
�

m kzω

}
A3 = (Γ±

12|px|Γ∓
15,x)

f1 = f∗
2 = x2 + ωy2 + ω2z2

(Γ±
12,2|H′|Γ∓

15,x) = A∗
3

�

m kx ω = exp(2πi/3)

(Γ±
12,2|H′|Γ∓

15,y) = A∗
3

�

m kyω

(Γ±
12,2|H′|Γ∓

15,z) = A∗
3

�

m kzω2

(Γ±
12,1|H′|Γ∓

25,x) = A4
�

m kx A4 = (Γ±
12|px|Γ∓

25,x)

(Γ±
12,1|H′|Γ∓

25,y) = A4
�

m kyω2 f1 = f∗
2 = x2 + ωy2 + ω2z2

(Γ±
12,1|H′|Γ∓

25,z) = A4
�

m kzω

(Γ±
12,2|H′|Γ∓

25,x) = A∗
4

�

m kx

(Γ±
12,2|H′|Γ∓

25,y) = A∗
4

�

m kyω

(Γ±
12,2|H′|Γ∓

25,z) = A∗
4

�

m kzω2{
(Γ±

15,x|H′|Γ∓
15,x) = 0

(Γ±
15,x|H′|Γ∓

15,y) = −A5
�

m kz

(Γ±
15,x|H′|Γ∓

15,z) = A5
�

m ky

A5 = (Γ±
15,y |px|Γ∓

15,z)

{
(Γ±

15,y |H′|Γ∓
15,x) = A5

�

m kz

(Γ±
15,y |H′|Γ∓

15,y) = 0

(Γ±
15,y |H′|Γ∓

15,z) = −A5
�

m kx{
(Γ±

15,z |H′|Γ∓
15,x) = −A5

�

m ky

(Γ±
15,z |H′|Γ∓

15,y) = A5
�

m kx

(Γ±
15,z |H′|Γ∓

15,z) = 0{
(Γ±

15,x|H′|Γ∓
25,x) = 0

(Γ±
15,x|H′|Γ∓

25,y) = A6
�

m kz

(Γ±
15,x|H′|Γ∓

25,z) = A6
�

m ky

A6 = (Γ±
15,x|py|Γ∓

25,z)

{
(Γ±

15,y |H′|Γ∓
25,x) = A6

�

m kz

(Γ±
15,y |H′|Γ∓

25,y) = 0

(Γ±
15,y |H′|Γ∓

25,z) = A6
�

m kx{
(Γ±

15,z |H′|Γ∓
25,x) = A6

�

m ky

(Γ±
15,z |H′|Γ∓

25,y) = A6
�

m kx

(Γ±
15,z |H′|Γ∓

25,z) = 0{
(Γ±

25,x|H′|Γ∓
25,x) = 0

(Γ±
25,x|H′|Γ∓

25,y) = −A7
�

m kz

(Γ±
25,x

|H′|Γ∓
25,z

) = A7
�

m ky

A7 = (Γ±
25,x|py|Γ∓

25,z)

{
(Γ±

25,y |H′|Γ∓
25,x) = A7

�

m kz

(Γ±
25,y |H′|Γ∓

25,y) = 0

(Γ±
25,y |H′|Γ∓

25,z) = −A7
�

m kx{
(Γ±

25,z |H′|Γ∓
25,x) = −A7

�

m ky

(Γ±
25,z |H′|Γ∓

25,y) = A7
�

m kx

(Γ±
25,z

|H′|Γ∓
25,z

) = 0

+ denotes even and − denotes odd states under inversion,

except for f1 ≡ f+
1 and f2 ≡ f−

1 .

See Table 10.2 for explicit forms for the basis functions for the Oh group
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A4 we note that the basis function Γ−
25,z = z(x2 − y2) gives C2Γ

−
25,z = −Γ−

25,z

where C2 denotes a rotation of π around the (011) axis. For A5 we use as
basis functions: Γ−

15,x = x and Γ+
15,x = yz(z2 − y2) which is odd under the

interchange y ↔ z. For A6 we use as basis functions: Γ+
25,x = yz and Γ−

15,x = x,
where A6 = (Γ±

15,x|py|Γ∓
25,z). For A7 we use as basis functions: Γ+

25,x = yz;
Γ−

25,x = x(y2 − z2); Γ−
25,z = z(x2 − y2).

Let us make a few general comments about Table 13.2. Since H′ is odd,
only states of opposite parity are coupled. For each of the seven symmetry type
couplings given in the table, there is only one independent matrix element.
For example, the coupling between the Γ+

12 and Γ−
15 representations involve 2×

3×3 = 18 matrix elements, but there is only one independent matrix element:

(x|px|f1) = (x|px|f2) = ω(y|py|f1) = ω2(y|py|f2) = ω2(z|pz|f1) = ω(z|pz|f2)
and all others vanish. Here we write

f1 = x2 + ωy2 + ω2z2

f2 = x2 + ω2y2 + ωz2

}
(13.59)

as the basis functions for the Γ+
12 representation. For Γ+

25 symmetry we can
take our basis functions as

⎧⎨
⎩
yz
zx
xy

which in the table are denoted by

⎧⎪⎨
⎪⎩

(Γ+
25,x)

(Γ+
25,y)

(Γ+
25,z) .

The three Γ+
25 basis functions are derived from three of the five atomic d func-

tions, the other two being Γ+
12 functions. Using these results for the matrix

elements, the secular equation (13.48) can be written as a function of kx, ky

and kz to yield the dispersion relations for the degenerate Γ−
15 bands as we

move away from the Γ point k = 0 in the Brillouin zone.
Since Γ−

15 ⊗ Γ−
15 = Γ+

1 + Γ+
12 + Γ+

15 + Γ+
25, and from (13.57), the secular

equation (13.48) for the Γ−
15 levels involves the following sums:

F =
�

2

m2

∑
Γ+

1 (n′)

|(x|px|1)|2

E
Γ−

15
n (0) − E

Γ+
1

n′ (0)
,

G =
�

2

m2

∑
Γ+

12(n′)

|(x|px|f1)|2
E

Γ−
15

n (0) − E
Γ+

12
n′ (0)

,

H1 =
�

2

m2

∑
Γ+

25

|(x|py |xy)|2
E

Γ−
15

n (0) − E
Γ+

25
n (0)

,

H2 =
�

2

m2

∑
Γ+

15

|(x|py|xy(x2 − y2))|2

E
Γ−

15
n (0) − E

Γ+
15

n (0)
. (13.60)
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We are now ready to solve the secular equation (13.48) using (13.57) to in-
clude the various terms which occur in second-order degenerate perturbation
theory. Let us consider the diagonal entries first, as for example the xx entry.
We can go from an initial Γ−

15,x state to the same final state through an
intermediate Γ+

1 state which brings down a k2
x term through the F term in

(13.60). We can also couple the initial Γ−
15 state to itself through an interme-

diate Γ+
12,1 or Γ+

12,2 state, in either case bringing down a k2
x term through the

G contribution – so far we have Fk2
x + 2Gk2

x. We can also go from a Γ−
15,x

state and back again through a Γ+
25,y or Γ+

25,z state to give a (k2
y + k2

z)H1

contribution and also through a Γ+
15,y or Γ+

15,z state to give a (k2
y + k2

z)H2

contribution. Therefore on the diagonal xx entry we get

Lk2
x +M(k2

y + k2
z) , where L = F + 2G and M = H1 +H2 . (13.61)

Using similar arguments, we obtain the results for other diagonal entries yy
and zz, using a cyclic permutation of indices.

Now let us consider an off-diagonal entry such as (x|H′|y), where we start
with an initial Γ−

15,x state and go to a final Γ−
15,y state. This can be done

through either of four intermediate states:

Intermediate state Γ+
1 gives kxkyF

Intermediate state Γ+
12 gives (ω2 + ω)kxkyG = −kxkyG

Intermediate state Γ+
15 gives − kxkyH2

Intermediate state Γ+
25 gives kxkyH1 .

Therefore we get Nkxky = (F −G+H1 −H2)kxky for the total xy entry.
Using the same procedure we calculate the other four independent en-

tries to the secular equation. Collecting terms we have the final result for
the Taylor expansion of the secular equation for the Γ−

15 degenerate p-
band:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

−ε(k)
Nkxky Lk2

y +M(k2
z + k2

x) Nkykz

−ε(k)
Nkxkz Nkykz Lk2

z +M(k2
x + k2

y)
−ε(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (13.62)

The secular equation (13.62) is greatly simplified along the high symmetry
directions. For a [100] axis, ky = kz = 0, and kx = κ, then (13.62) re-
duces to ∣∣∣∣∣∣∣

Lκ2 − ε(κ) 0 0

0 Mκ2 − ε(κ) 0

0 0 Mκ2 − ε(κ)

∣∣∣∣∣∣∣
= 0 , (13.63)
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which has the roots

ε(κ) = Lκ2

ε(κ) = Mκ2 twice . (13.64)

The result in (13.64) must be consistent with the compatibility relations
about the k = 0 (Γ -point) whereby

Γ+
15 → Δ1′ +Δ5 , (13.65)

in which the Δ1′ level is nondegenerate and the Δ5 level is doubly degener-
ate.

Along a Λ [111] axis, kx = ky = kz = κ and the general secular equation
of (13.62) simplifies into
∣∣∣∣∣∣∣
(L+ 2M)κ2 − ε(κ) Nκ2 Nκ2

Nκ2 (L+ 2M)κ2 − ε(κ) Nκ2

Nκ2 Nκ2 (L+ 2M)κ2 − ε(κ)

∣∣∣∣∣∣∣
= 0 , (13.66)

which can readily be diagonalized to give

ε(κ) =
L+ 2M + 2N

3
κ2 once (Λ2 level) ,

ε(κ) =
L+ 2M −N

3
κ2 twice (Λ3 level) , (13.67)

where the Λ2 level is nondegenerate and the Λ3 level is doubly degenerate.
The secular equation for a general κ point is more difficult to solve, but it

can still be done in closed form by solving a cubic equation. In practice, the
problem is actually simplified by including the effects of the electron spin (see
Chap. 15). For each partner of the Γ−

15 levels we get a spin up state and a spin
down state so that the secular equation is now a (6 × 6) equation. However,
we will see that spin–orbit interaction simplifies the problem somewhat and
the secular equation can be solved analytically.

The band parameters L,M , and N , which enter the secular equation
(13.62), express the strength of the coupling of the Γ−

15 levels to the vari-
ous other levels. In practice, these quantities are determined from experimen-
tal data. The cyclotron resonance experiment carried out along various high
symmetry directions provides accurate values [31] for the band curvatures and
hence for the quantities L,M and N . In the spirit of the k · p perturbation
theory, solution of the secular equation provides the most general form al-
lowed by symmetry for E(k) about k = 0. The solution reduces to the proper
form along the high symmetry directions, Δ,Λ and Σ. However, group theory
cannot provide information about the magnitude of these coefficients. These
magnitudes are most easily obtained from experimental data.
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The k·p method has also been used to obtain the energy bands throughout
the Brillouin zone for such semiconductors as silicon and germanium [17]. In
the k · p approach of Cardona and Pollack, seven other bands outside this
“nearly degenerate set” of eight (Γ+

1 , Γ
−
2 , Γ

−
15, Γ

+
25) bands are allowed to couple

to this nearly degenerate set of bands.
New features in the electronic energy band problem arise in going from

points of lower symmetry to points of higher symmetry. For example, the k ·p
expansion can be used to connect a Λ point to an L point, along the Λ or
(111) axis. The k · p method has been made to work well in this context,
to parametrize theoretical calculations at high symmetry points and axes for
use in regions of the Brillouin zone adjoining the locations for which the
calculations were carried out. This use of k · p perturbation theory for a high
symmetry point in the interior of the Brillouin zone is illustrated in the next
section.

13.6 Nondegenerate k · p Perturbation Theory
at a Δ Point

Figure 13.3 shows that important aspects of the electronic band structure
for many cubic semiconductors occurs at k points away from k = 0 in the
Brillouin zone, examples being the location of band extrema, of energy gaps
and of carrier pockets for electrons and holes. In this section we illustrate
how k · p perturbation theory is used both as an interpolation method and
as an extrapolation method for the solution of the energy eigenvalues and
eigenfunctions for an unperturbed crystal for k points of high symmetry away
from k = 0. In Sect. 13.7 we will show how k · p perturbation theory is used
to interpret experiments where a probe is used to interact with a sample to
study the electronic structure of the perturbed electronic system (from a group
theory standpoint, the procedure is quite similar).

Let us consider the use of k · p perturbation theory for the group of the
wave vector for a Δ point rather than about a Γ point, which was consid-
ered in Sects. 13.3–13.5. The momentum operator p in the k · p Hamiltonian
transforms as a vector. For the group of the wave vector at a Δ point, the
vector transforms as Δ1 for the longitudinal component x and as Δ5 for the
transverse components y, z.

Typically for semiconductors the conduction bands are nondegenerate. In
most cases the conduction band extrema are at k = 0 but for silicon the
conduction band extrema are located at the six equivalent (Δ, 0, 0) locations,
where Δ is 85% of the distance from Γ to X . The nondegenerate level in the
conduction band at k = 0 has Γ−

2 symmetry, but has Δ2′ symmetry as we
move away from k = 0 in a (100) direction (see the compatibility relations for
cubic groups in Sect. 10.7 and the character table for the group of the wave
vector at a Δ point in Table 10.9 for the diamond structure).
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Fig. 13.3. Important details of the band structure of typical group IV and III–V
semiconductors are found to occur both at k = 0 and for k points elsewhere in the
Brillouin zone, including the location of conduction and valence band extrema and
the location of carrier pockets

We now consider matrix elements of the form (Δ2′ |px|Δ2′) which enter
the expression for E(k) about the Δ point. In first-order perturbation theory,
we can have a nonvanishing contribution along kx of the form (Δ2′ |px|Δ2′)
since Δ1 ⊗ Δ2′ = Δ2′ . Thus, there is in general a linear k term for E(k)
in the longitudinal direction. However, at the band extremum this matrix
element vanishes (not by symmetry but because of the band extremum). We
show below that the transverse matrix elements (Δ2′ |py|Δ2′) and (Δ2′ |pz |Δ2′)
vanish by symmetry along the Δ-axis. The second-order contributions to E(k)
are as follows:

E(k) = E(k0) +
�

2k2
x

2m∗
�

+
�

2(k2
y + k2

z)
2m∗

t

. (13.68)

The longitudinal terms (Δ2′ |Δ1|Δj) require that the intermediate state Δj

transforms as Δ2′ according to the compatibility relations, or else the matrix
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element vanishes. States with Δ2′ symmetry at a Δ point arise by compati-
bility relations from Γ+

25, Γ
−
2 , and Γ−

12 states at k = 0 and all of these inter-
mediate states make contributions to a quadratic term in k2

x in the dispersion
relation given by (13.68). For the transverse ky and kz terms, the matrix el-
ement (Δ2′ |Δ5|Δj) requires the intermediate state Δj to transform as Δ5.
States with Δ5 symmetry arise from Γ±

25 levels at k = 0.
Since the basis function for Δ2′ is yz (see Table 10.3), the vector com-

ponent Δ5,y couples to the z component of the intermediate state with sym-
metry Δ5,z while the vector component Δ5,z couples to the y component of
the intermediate state with symmetry Δ5,y. Therefore there cannot be any
nonvanishing matrix elements of the form (Δ2′ |Δ5|Δ2′) for either a Δ5,y or
a Δ5,z component of the vector.

However, in second-order we can have nonvanishing matrix elements about
band extremum at k0 of the form (Δ2′ |Δ5,y|Δ5,z) and (Δ2′ |Δ5,z|Δ5,y) and
therefore E(k) about the Δ point extremum must be of the form of (13.68),
in agreement with the expression used in solid state physics textbooks. As we
move away from the Δ point extremum along the (100) axis, a linear term
kx in the E(k) relation develops, but this term (allowed by group theory) is
generally too small to be of significance to the constant energy contours ap-
plicable to practical situations, even for high doping levels and carrier pockets
of larger volumes in k space.

The ellipsoidal form of E(k) given by (13.68) is very common in semi-
conductor physics as we move away from k = 0. The case of the conduc-
tion band of silicon was shown here as an illustration, but similar ellip-
soidal constant energy surfaces occur for germanium at the zone boundary
L point and for other common III–V semiconductors at the X-point. These
arguments given above can then be extended to other points in the Bril-
louin zone, and to two-band and three-band models for materials with cubic
symmetry (see Problems 13.3 and 13.4). The k · p perturbation theory ap-
proach can of course also be extended to crystals described by other space
groups.

13.7 Use of k · p Perturbation Theory
to Interpret Optical Experiments

To carry out experiments in solid state crystalline physics, a probe is normally
used to interrogate the materials system under investigation. These probes in-
teract weakly with the system, causing perturbations that we measure in some
way to provide information about the electronic structure of the solid state
system. In this section we show how k ·p perturbation theory is used to study
the perturbation imposed on a material by an electromagnetic field and how
information is provided by studying this perturbation with an electromagnetic
(optical) probe.
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The Hamiltonian in the presence of electromagnetic is discussed in
Sect. 6.1, and the optical perturbation terms H′

opt are

H′
opt = − e

mc
A · p +

e2A2

2mc2
, (13.69)

in which the lowest order term is

H′
opt

∼= − e

mc
p · A , (13.70)

where the vector potential A relates to the optical fields and is not strongly
affected by the crystal, while p relates directly to the momentum of electrons
in the crystal and is strongly affected by the symmetry of the crystal. There-
fore the momentum matrix elements 〈v|p|c〉 coupling valence and conduction
states mainly determine the strength of optical transitions in a low-loss (but
finite loss) crystal. It is of interest that this same momentum matrix element
governs k ·p perturbation theory within a crystal and also governs the magni-
tudes of the effective mass components. With regard to the spatial dependence
of the vector potential in (13.70) we can write

A = A0 exp[i(kni · r − ωt)] , (13.71)

where for a loss-less medium described by a propagation constant kn =
ñω/c = 2πñ/λ is a slowly varying function of r, since 2πñ/λ is much smaller
than typical wave vectors in solids. Here ñ, ω, and λ are, respectively, the
real part of the index of refraction, the optical frequency, and the wavelength
of light. Thus, to the extent that we neglect the small spatial dependence
of the optical propagation constant kn, it is only the momentum matrix ele-
ment 〈v|p|c〉 coupling the valence and conduction bands that is important to
lowest order perturbation theory. We note that electromagnetic interactions
with a crystal involve the same matrix element that is connected with the
effective mass components of the effective mass tensor for the unperturbed
crystal. Group theory thus shows us that optical fields provide a very sensi-
tive probe of the symmetry of a crystal by providing a way to measure this
matrix element which is closely related to the effective mass tensor in the
solid.

13.8 Application of Group Theory
to Valley–Orbit Interactions in Semiconductors

In this section, we shall discuss the application of group theory to the im-
purity problem of a multivalley semiconductor, such as occurs in the donor
carrier pockets in silicon and germanium. In the case of silicon, the lowest
conduction bands occur at the six equivalent (Δ, 0, 0) points where Δ = 0.85
on a scale where the Γ point is at the origin and the X point is at 1. In the
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case of germanium, the conduction band minima occur at the L points so
that the Fermi surface for electrons consists of eight equivalent half-ellipsoids
of revolution (four full ellipsoids). Other cases where valley–orbit interactions
are important are multivalley semiconductors, such as PbTe or Te, where the
conduction and valence band extrema are both away from k = 0.

Group theory tells us that the maximum degeneracy that energy levels or
vibrational states can have with cubic symmetry is a threefold degeneracy.
Cubic symmetry is imposed on the problem of donor doping of a semiconduc-
tor through the valley–orbit interaction which causes a partial lifting of the
n-fold degeneracy of an n-valley semiconductor. In this section we show how
group theory prescribes the partial lifting of this n-fold degeneracy. This effect
is important in describing the ground state energy of a donor-doped n-valley
semiconductor.

Our discussion of the application of group theory to the classification of
the symmetries of the impurity levels in a degenerate semiconductor proceeds
with the following outline:

(a) Review of the one-electron Hamiltonian and the effective mass Hamilto-
nian for a donor impurity in a semiconductor yielding hydrogenic impurity
levels for a single-valley semiconductor.

(b) Discussion of the impurity states for multivalley semiconductors in the
effective mass approximation.

(c) Discussion of the valley–orbit interaction. In this application we consider
a situation where the lower symmetry group is not a subgroup of the
higher symmetry group.

13.8.1 Background

In this section, we briefly review the one-electron Hamiltonian, effective mass
approximation and the hydrogenic impurity problem for a single-valley semi-
conductor. We write the one-electron Hamiltonian for an electron in a crystal
which experiences a perturbation potential U(r) due to an impurity:[

p2

2m
+ V (r) + U(r)

]
Ψ(r) = EΨ(r) , (13.72)

in which V (r) is the periodic potential. In the effective mass approximation,
the perturbing potential due to an impurity is taken as U(r) = −e2/(εr)
where ε is the dielectric constant and the origin of the coordinate system is
placed at the impurity sites. This problem is usually solved in terms of the
effective mass theorem to obtain[

p2

2m∗
αβ

+ U(r)

]
fj(r) = (E − E0

j )fj(r) , (13.73)

where m∗
αβ is the effective mass tensor for electrons in the conduction band

about the band extremum at energy E0
j , and fj(r) is the effective mass wave
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function. We thus note that by replacing the periodic potential V (r) by an ef-
fective mass tensor, we have lost most of the symmetry information contained
in the original periodic potential. This symmetry information is restored by
introducing the valley–orbit interaction, as in Sects. 13.8.2 and 13.8.3.

The simplest case for an impurity in a semiconductor is that for a shal-
low substitutional impurity level described by hydrogenic impurity states in
a nondegenerate conduction band, as for example a Si atom substituted for
a Ga atom in GaAs, a direct gap semiconductor with the conduction band
extremum at the Γ point (k = 0). To satisfy the bonding requirements in
this case, one electron becomes available for conduction and a donor state is
formed. The effective mass equation in this case becomes[

p2

2m∗ − e2

εr

]
f(r) = (E − E0

j )f(r) , (13.74)

where U(r) = −e2/(εr) is the screened Coulomb potential for the donor
electron, ε is the low frequency dielectric constant, and the donor energies
are measured from the band edge E0

j . This screened Coulomb potential is
expected to be a good approximation for r at a sufficiently large distance from
the impurity site, so that ε is taken to be independent of r. The solutions to
this hydrogenic problem are the hydrogenic levels

En − E0
j = − e2

2εa∗0n2
n = 1, 2, . . . , (13.75)

where the effective Bohr radius is

a∗0 =
ε�2

m∗e2
. (13.76)

Since (En − E0
j ) ∼ m∗/ε2, we have shallow donor levels located below the

band extrema, because of the large value of ε and the small value of m∗ in
many semiconductors of interest.

Group theoretical considerations enter in the following way. For many
III–V compound semiconductors, the valence and conduction band extrema
are at k = 0 so that the effective mass Hamiltonian has full rotational sym-
metry. Since the hydrogenic impurity is embedded in a crystal with a periodic
potential, the crystal symmetry (i.e., Td point group symmetry) will perturb
the hydrogenic levels and cause a splitting of various degenerate levels:

s levels → Γ1 (no splitting) ,

p levels → Γ15 (no splitting) ,

d levels → Γ12 + Γ15 (splitting occurs) ,

f levels → Γ2 + Γ15 + Γ25 (splitting occurs) .

In principle, if a multiplet has the same symmetry as an s or p level, then an
interaction can occur giving rise to an admixture of states of similar symme-
tries. In practice, the splittings are very small in magnitude and the effects of
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the crystal field are generally unimportant for shallow donor levels in single
valley semiconductors.

13.8.2 Impurities in Multivalley Semiconductors

Group theory plays a more important role in the determination of impurity
states in multivalley semiconductors than for the simple hydrogenic case de-
scribed in Sect. 13.8.1. A common example of a multivalley impurity state is
an As impurity in Si (or in Ge). In Si there are six equivalent valleys for the
carrier pockets while for Ge there are four equivalent valleys. The multivalley
aspect of the problem results in two departures from the simple hydrogenic
series.

The first is associated with the fact that the constant energy surfaces
are ellipsoids rather than spheres. We then write Schrödinger’s equation for
a single valley in the effective mass approximation as

[
p2

x + p2
y

2mt
+

p2
z

2ml
− e2

εr

]
= E f(r) , (13.77)

in which mt is the transverse mass component, ml is the longitudinal mass
component, and the energy E is measured from the energy band extremum.
The appropriate symmetry group for the effective mass equation given by
(13.77) is D∞h rather than the full rotation group which applies to the hy-
drogenic impurity levels. This form for the effective mass Hamiltonian follows
from the fact that the constant energy surfaces are ellipsoids of revolution,
which in turn is a consequence of the selection rules for the k · p Hamilto-
nian at a Δ point (group of the wave vector C4v) in the case of Si, and at
an L point (group of the wave vector D3d) in the case of Ge. The anisotropy
of the kinetic energy terms corresponds to the anisotropy of the effective
mass tensor. For example in the case of silicon ml/m0 = 0.98 (heavy mass),
mt/m0 = 0.19 (light mass). This anisotropy in the kinetic energy terms re-
sults in a splitting of the impurity levels with angular momentum greater
than 1, in accordance with the irreducible representations of D∞h. For ex-
ample, in D∞h symmetry we have the following correspondence with angular
momentum states:

s states → Σ+
g = A1g ,

p states → Σ+
u + πu = A2u + E1u ,

d states → Δg + πg +Σ+
g = A1g + E1g + E2g .

We note that s and d states are even (g) and p states are odd (u) under in-
version in accordance with the character table for D∞h (see Table A.34.).
Thus a 2p level with an angular momentum of one splits into a twofold
2p±1 level and a nondegenerate 2p0 level in which the superscripts denote
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the nl component of the angular momentum. Furthermore in D∞h symme-
try, the splitting of d-levels gives rise to the same irreducible representation
(Σ+

g ) that describes the s-levels, and consequently a mixing of these levels
occurs.

Referring back to (13.77), we note that the effective mass equation cannot
be solved exactly if ml �= mt. Thus, the donor impurity levels in these indirect
gap semiconductors must be deduced from some approximate technique such
as a variational calculation or using perturbation theory. The effective mass
approximation itself works very well for these p-states because |ψp|2 for p
states vanishes for r = 0; consequently, for r values small enough for central
cell corrections to be significant, the wave function has a small amplitude and
thus small r values do not contribute significantly to the expectation value of
the energy for p-states.

13.8.3 The Valley–Orbit Interaction

The second departure from the hydrogenic series in a multivalley semiconduc-
tor is one that relates closely to group theory. This effect is most important
for s-states, particularly for the 1s hydrogenic state.

For s-states, a sizable contribution to the expectation value for the en-
ergy is made by the perturbing potential for small r. The physical picture of
a spherically symmetric potential U(r) for small r cannot fully apply because
the tetrahedral bonding must become important for |r| ≤ a. This tetrahe-
dral crystal field which is important within the central cell lifts the spherical
symmetry of an isolated atom. Thus we need to consider corrections to the
effective mass equation due to the tetrahedral crystal field. This tetrahedral
crystal field term is called the valley–orbit effective Hamiltonian, H′

valley−orbit,
which couples equivalent conduction band extrema in the various conduction
band valleys.

To find the wave functions for the donor states in a multivalley semicon-
ductor, we must find linear combinations of wave functions from each of the
conduction band valleys that transform as irreducible representations of the
crystal field about the impurity ion. For example, in silicon, the symmetrized
linear combination of valley wave functions is in the form

ψγ(r) =
6∑

j=1

Aγ
j fj(r)uj,kj

0
(r)eikj

0·r , (13.78)

in which ψγ(r) denotes one of six possible linear combinations of the wave
functions for the six carrier pockets denoted by γ. The index j is the valley
index and fj(r) is the envelope effective mass wave function, while uj,kj

0
(r)

is the periodic part of the Bloch function in which kj
0 is the wave vector to

the band minimum of valley j. The six equivalent valleys along the (100) axes
for the conduction band of silicon are shown in Fig. 13.4(a). The indices j
which label the various ellipsoids or valleys in Fig. 13.4(a) correspond to the
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(a)

(b)

Fig. 13.4. (a) Constant energy ellipsoids of the conduction-band minima of sil-
icon along {100} directions in reciprocal space. (b) The regular tetrahedron in-
scribed inside a cube, useful for seeing the symmetry operations of the six valleys
in (a)

Table 13.3. Irreducible representations contained in Γvalley sites of Si

E 8C3 3C2 6σd 6S4

χvalley sites 6 0 2 2 0 = Γ1 + Γ12 + Γ15

indices j of (13.78). The local symmetry close to the impurity center is Td,
reflecting the tetrahedral bonding at the impurity site. The character table
for the Td point group is shown in Table A.32. The diagram which is useful
for finding which valleys are invariant under the symmetry operations of Td is
given in Fig. 13.4(b). To get the equivalence transformation for the valley sites,
we ask for the number of valleys which remain invariant under the various
symmetry operations of Td. This is equivalent to finding Γ equiv or Γvalley sites,
which forms a reducible representation of point group Td. From Fig. 13.4(b), we
immediately see that the characters for the reducible representation Γvalley sites

are (see Table 13.3), and that the irreducible representations contained in
Γvalley sites are the Γ1 + Γ12 + Γ15 irreducible representations of the point
group Td. To find the splitting of a level we must take the direct product
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of the symmetry of the level with Γvalley sites, provided that the level itself
transforms as an irreducible representation of group Td:

Γlevel ⊗ Γvalley sites . (13.79)

Since Γlevel for s-states transforms as Γ1, the level splitting for s-states is just
Γvalley sites = Γ1 + Γ12 + Γ15:

—Γ15

—Γ12

—Γ1 .

The appropriate linear combination of valley functions corresponding to each
of these irreducible representations is (using the notation from (13.78)):

A
(Γ1)
j = 1√

6
(1, 1, 1, 1, 1, 1) ,

A
(Γ12,1)
j = 1√

6
(1, 1, ω, ω, ω2, ω2)

A
(Γ12,2)
j = 1√

6
(1, 1, ω2, ω2, ω, ω)

⎫⎬
⎭ ,

A
(Γ15,1)
j = 1√

2
(1,−1, 0, 0, 0, 0)

A
(Γ15,2)
j = 1√

2
(0, 0, 1,−1, 0, 0)

A
(Γ15,3)
j = 1√

2
(0, 0, 0, 0, 1,−1)

⎫⎪⎪⎬
⎪⎪⎭
,

(13.80)

in which each of the six components of the coefficients Aγ
j refers to one of

the valleys. The totally symmetric linear combination Γ1 is a nondegenerate
level, while the Γ12 basis functions have two partners which are given by
f1 = x2 + ωy2 + ω2z2 and f2 = f∗

1 and the Γ15 basis functions have three
partners (x, y, z).

The analysis for the p-levels is more complicated because the p-levels in
D∞h do not transform as irreducible representations of group Td. The p-
level in group D∞h transforms as a vector, with A2u and E1u symmetries for
the longitudinal and transverse components, respectively. Since Td does not
form a subgroup of D∞h we write the vector for group Td as a sum over its
longitudinal and transverse components

Γvec. = Γlongitudinal + Γtransverse , (13.81)

where Γvec. = Γ15. We treat the longitudinal component of the vector as
forming a σ-bond and the transverse component as forming a π-bond so that
Γlongitudinal = Γ1 and Γtransverse = Γ15 − Γ1, where we note that

Γ15 ⊗ (Γ1 +Γ12 +Γ15) = Γ15 + (Γ15 + Γ25) + (Γ1 +Γ12 +Γ15 +Γ25) . (13.82)
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Fig. 13.5. Excitation spectrum of phosphorus donors in silicon. The donor concen-
tration is ND ∼ 5 × 1015 cm−3. Various donor level transitions to valley–orbit split
levels are indicated. The labels for the final state of the optical transitions are in
accordance with the symmetries of point group Td

We thus obtain for the longitudinal (Γ 2p0) and transverse (Γ 2p±) levels:

Γ 2p0 = Γvalley sites ⊗ Γ1 = Γ1 + Γ12 + Γ15 for m� = 0 (13.83)

Γ 2p± = Γvalley sites ⊗ (Γ15 − Γ1) = 2Γ15 + 2Γ25 for m� = ±1
(13.84)

for group Td. If we perform high resolution spectroscopy experiments for the
donor impurity levels, we would expect to observe transitions between the
various 1s multiplets to the various 2p-multiplets, as allowed by symmetry
selection rules [46]. Experimental evidence for the splitting of the degener-
acy of the 1s donor levels in silicon is provided by infrared absorption stud-
ies [4, 67]. An experimental trace for the excitation spectrum of phosphorus
impurities in silicon is shown in Fig. 13.5 for several sample temperatures.
The interpretation of this spectrum follows from the energy level diagram in
Fig 13.6 [46].

It is of interest that the valley orbit splitting effect is only important
for the 1s levels. For the higher levels, the tetrahedral site location of the
impurity atom becomes less important since the Bohr orbit for the impurity
level increases as n2 which qualitatively follows from

a∗Bohr =
ε�2

m∗e2
n2 (13.85)

where n is the principal quantum number for the donor impurity level.
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Fig. 13.6. Energy-level scheme for transitions from the valley–orbit split 1s multi-
plet of states to the 2p0, 2p± levels. The irreducible representations for the various
valley–orbit split levels in Td symmetry are indicated. The conduction band edge
(C.B.) is also indicated schematically as are the splittings between the three con-
stituents of the valley-orbit split 1s level, showing a separation of D between the A1

and T2 levels and a separation of O between the T2 and E levels

In addition to spectroscopic studies of impurity states, these donor
states for multivalley semiconductors have been studied by the ENDOR
technique [35]. Here the nuclear resonance of the 29Si atoms is observed.
The random distribution of the 29Si sites with respect to the donor im-
purity sites is used to study the spatial dependence of the donor wave-
function, and to determine the location in k-space of the conduction band
extrema.

Selected Problems

13.1. (a) Using k · p perturbation theory, find the dispersion relation E(k)
for the nondegenerate Γ−

2 (or Γ2′) band around the conduction band ex-
tremum near k = 0 for a simple cubic solid.

(b) The conduction band for germanium which crystallizes in the diamond
structure has Γ−

2 (or Γ2′) symmetry. Explain how your result in (a) can be
used to describe E(k) about k = 0 for the conduction band of germanium.
What modifications occur to (13.12) and (13.14)?
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13.2. In this problem, use k · p perturbation theory to find the form of the
secular equation for the valence band of Si with Γ+

25 symmetry, neglecting the
spin–orbit interaction

(a) Which intermediate states couple to the Γ+
25 valence band states in second-

order k · p perturbation theory?
(b) Which matrix elements (listed in Table 13.2) enter the secular equation

in (a)?
(c) Write the secular equation for the Γ+

25 valence bands that is analogous to
(13.62) for the Γ−

15 band?
(d) Using the general result in (a), find the special form of the secular equation

for the Γ+
25 valence band that is obtained along a Λ (111) axis?

13.3. (a) Using k · p perturbation theory, find the form of the E(k) relation
near the L-point in the Brillouin zone for a face centered cubic lattice
arising from the lowest energy levels. In the free electron model these
levels are doubly degenerate and have L1 and L′

2 symmetry. Which of the
nonvanishing k ·p matrix elements at the L-point are equal to each other
by symmetry?

(b) Using k ·p perturbation theory, find the form of E(k) for a nondegenerate
band with W1 symmetry about the W point in the FCC lattice (see
Table C.12).

13.4. The form of the E(k) relation for the second level of the empty lattice
for a BCC system was discussed in Problem 12.6 for both the empty lattice
and in the presence of a small periodic potential

(a) Now consider the lowest energy levels at the H point where the Δ
axis along (100) meets the Brillouin zone boundary (see Fig. 12.6
and Tables C.15 and C.8). Find the form of the dispersion rela-
tions near the H point using k · p perturbation theory and com-
pare your results with the dispersion relations for Na shown in
Fig. 12.6(b).

(b) Using symmetry arguments, why is the splitting between H1 and H15 so
much larger than between H12 and H15?

13.5. Find the symmetries and appropriate linear combination of valley func-
tions for the 1s and 2p donor levels for germanium (conduction band minima
at the L-point in the Brillouin zone), including the effect of valley–orbit
interaction. Indicate the transitions expected in the far infrared spectra for
these low temperature donor level states.



14

Spin–Orbit Interaction

in Solids and Double Groups

The discussion of angular momentum and the rotation group has thus far
been limited to integral values of the angular momentum (see Chap. 5). The
inclusion of half integral angular momentum states requires the introduction
of the spin–orbit interaction and “double groups”, which are the focus of this
chapter.

14.1 Introduction

The spin angular momentum of an electron is half integral or Sz = �/2.
Furthermore, associated with each electron is a magnetic moment μB =
−|e|�/(2mc) = 0.927 × 10−20 erg/gauss. The magnetic moment and spin an-
gular momentum for the free electron are related by

μ = − |e|
mc

S = − |e|
mc

�

2
S

|S| (14.1)

and μ and S are oppositely directed because of the negative charge on elec-
trons. This relation between the spin angular momentum and the magnetic
moment gives rise to an interaction, called the spin–orbit interaction, which
is important in describing the electronic structure of crystalline materials. In
this section we briefly review this interaction and then in the following sec-
tions of this Chapter, we consider the group theoretical consequences of the
half-integral spin and the spin–orbit interaction.

An electron in an atom sees a magnetic field because of its own orbital mo-
tion and consequently gives rise to the spin–orbit interaction whereby this in-
ternal magnetic field tends to line up its magnetic moment along the magnetic
field: HSO = −μ ·H . Substitution for H = −(v/c)×E and μ = −[|e|/(mc)]S
together with a factor of 1/2 to make the result correct relativistically yields

H′
SO =

1
2m2c2

(∇V × p) · S . (14.2)
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For an atom the corresponding expression is written as

H′
SO atom = ξ(r)L · S (14.3)

since ∇V ∼ r/r3 and where L is the orbital angular momentum. A detailed
discussion of the spin–orbit interaction is found in standard quantum mechan-
ics text books.

This spin–orbit interaction gives rise to a spin–orbit splitting of atomic
levels which are labeled by their total angular momentum quantum numbers,
as discussed below. As an example, consider an atomic p state (� = 1). Writing
the total angular momentum

J = L + S , (14.4)

where L and S are, respectively, the orbital angular momentum operator and
the spin angular momentum operator, we obtain for the dot product

J · J = (L + S) · (L + S) = L · L + S · S + (L · S + S · L) , (14.5)

in which the operators L and S commute since they operate in different coor-
dinate spaces. Since L and S are coupled through the spin–orbit interaction,
m� and ms are no longer good quantum numbers since they are coupled by
H′

SO, though � and s remain good quantum numbers. To find the magnitude
of the spin–orbit interaction in (14.2), we need to take the matrix elements
of H′

SO in the |j, �, s,mj〉 representation. Using (14.5) for the operators J , L
and S, we obtain for the diagonal matrix element of J · J

j(j + 1) = �(�+ 1) + s(s+ 1) + 2〈L · S〉/�2 , (14.6)

so that the expectation value of L·S in the |j, �, s,mj〉 representation becomes

〈L · S〉 =
�

2

2
[j(j + 1) − �(�+ 1) − s(s+ 1)] . (14.7)

For p states with spin–orbit interaction, we have � = 1, and s = 1/2 so that
j = 3/2 or 1/2

〈L · S〉 = �
2/2 for j = 3/2

〈L · S〉 = −�
2 for j = 1/2 . (14.8)

Thus the spin–orbit interaction introduces a splitting between the j = 3/2
and j = 1/2 angular momentum states of the p-levels.

From the expression for the expectation value of 〈L · S〉, we note that
the degeneracy of an s-state is unaffected by the spin–orbit interaction, and
remains two denoting a spin up and spin down state. On the other hand,
a d-state is split up into a D5/2 (sixfold degenerate) and a D3/2 (fourfold
degenerate) state. Thus, the spin–orbit interaction does not lift all the de-
generacy of atomic states. To lift the remaining degeneracy, it is necessary to
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Table 14.1. Spin–orbit interaction energies for some important cubic semiconduc-
tors (for the valence band at k = 0) [38,55]

semiconductor atomic number Γ -point splitting

diamond Z = 6 ΔE = 0.006 eV

silicon Z = 14 ΔE = 0.044 eV

germanium Z = 32 ΔE = 0.29 eV

InSb

{
In

Sb

Z = 49

Z = 51
ΔE = 0.9 eV

lower the symmetry further, for example, by the application of a magnetic
field. The magnitude of the spin–orbit interaction in atomic physics depends
also on the expectation value of ξ(r). For example,

〈n, j, �, s,mj |H′
SO|n, j, �, s,mj〉 = 〈j, �, s,mj|L · S|j, �, s,mj〉

×
∫ ∞

0

R∗
n�ξ(r)Rn�dr , (14.9)

where Rn� (the radial part of the wave function) has an r dependence.
The magnitude of the integral in (14.9) increases rapidly with increasing
atomic number Z, approximately as Z3 or Z4. The physical reason be-
hind the strong Z dependence of 〈H′

SO〉 is that atoms with high Z have
more electrons to generate larger internal H fields and more electrons
with magnetic moments to experience the interaction with these magnetic
fields.

For most atomic species that are important in semiconducting materials,
the spin–orbit interaction plays a significant role. Some typical values for the
spin–orbit splitting energies ΔE for common cubic semiconductors are shown
in Table 14.1, where the ΔE listing gives the Γ -point valence band splittings.
We will see that in crystalline solids the spin–orbit splittings are k-dependent.
For example, at the L-point for cubic materials, the spin–orbit splittings are
typically about 2/3 of the Γ -point value.

The one-electron Hamiltonian for a solid including spin–orbit interaction is

H =
p2

2m
+ V (r)︸ ︷︷ ︸
H0

+
1

2m2c2
(∇V × p) · S︸ ︷︷ ︸
H′SO

. (14.10)

When the spin–orbit interaction is included, the wave functions consist of
a spatial part and a spin part. This means that the irreducible representations
that classify the states in a solid must depend on the spin angular momentum.
To show the effect of the k-dependence of the spin–orbit interaction on the
energy bands of a semiconductor, consider the energy bands for germanium
shown in Fig. 14.1(a) along the Δ(100) axis, Λ(111) axis and Σ(110) axes
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Fig. 14.1. Energy versus dimensionless wave vector for a few high-symmetry di-
rections in germanium using standard notation. (a) The spin–orbit interaction has
been neglected. (b) The spin–orbit interaction has been included and the bands are
labeled by the double group representations

for no spin–orbit interaction. Here we show the four bonding and the four
antibonding s- and p-bands. This picture is to be compared with the energy
bands for Ge including the spin–orbit interaction shown in Fig. 14.1(b). The
treatment of spin–orbit interaction in crystals that lack inversion symmetry
(e.g., such as III–V compounds which have Td symmetry) gives rise to the
“Dresselhaus spin–orbit” term [25] which is often referred to in the spintronics
literature. This topic is further discussed in Chap. 16 in connection with time
reversal symmetry.

We note that the Fermi level is between the top of the highest valence
band (the Γ25′ band) and the bottom of the lowest conduction band (the
L1 band). The energy band extrema for the more common semiconductors
usually occur at high symmetry points. The inclusion of the spin–orbit in-
teraction has two major effects on the energy band structure affecting both
the level degeneracies and the labeling of the energy bands. Note that the
(L±

4 +L±
5 ) and (Λ4+Λ5) are Kramers-degenerate doublet states, which means

that these bands stick together at high symmetry points and along high
symmetry directions, because of time reversal symmetry to be discussed in
Chap. 16. The Γ+

7 band which lies below the Γ+
8 valence band in Fig. 14.1(b)

is called the split-off band, and the separation between the Γ+
7 and the Γ+

8

bands is the Γ -point spin–orbit splitting energy ΔE given in Table 14.1
for Ge.
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14.2 Crystal Double Groups

Figure 14.1(b) shows energy bands that are labeled by the irreducible repre-
sentations of the double group for the diamond structure. Double groups come
into play when we are dealing with the electron spin, whereby half-integral
angular momentum states are introduced. In this section we discuss the dou-
ble group irreducible representations which arise when the electron spin is
introduced.

The character tables for states of half-integral angular momentum are
constructed from the same basic formula as we used in Chap. 5 for finding the
characters for a rotation by an angle α in the full rotation group:

χj(α) =
sin(j + 1/2)α

sin(α/2)
. (14.11)

Not only is (14.11) valid for integral j (as we have discussed in Chap. 5) but
the formula is also valid for j equal to half-integral angular momentum states.
We will now discuss the special issues that must be considered for the case of
half-integral spin.

Firstly we note that (14.11) behaves differently under the transformation
α → (α + 2π) depending on whether j is an integral or half-integral angular
momentum state. This difference in behavior is responsible for the name of
double groups when j is allowed to assume half-integral values. Let us consider
how rotation by α+ 2π is related to a rotation by α:

χj(α+ 2π) =
sin(j + 1/2)(α+ 2π)

sin
(

α+2π
2

) =
sin(j + 1/2)α · cos(j + 1/2)2π

sin(α/2) · cosπ
,

(14.12)
since sin(j + 1/2)2π = 0 whether j is an integer or a half-integer. For integral
values of j, cos(j + 1/2)2π = −1 while for half-integral values of j, cos(j +
1/2)2π = +1. Therefore we have the important relation

χj(α+ 2π) = χj(α)(−1)2j , (14.13)

which implies that for integral j, a rotation by α, α ± 2π, α ± 4π, etc. yields
identical characters (integral values of j correspond to odd-dimensional rep-
resentations of the full rotation group), the dimensionality being given by
2j + 1. For half-integral values of j, corresponding to the even-dimensional
representations of the rotation group, we have

χj(α ± 2π) = −χj(α)

χj(α ± 4π) = +χj(α) , (14.14)

so that rotation by 4π is needed to yield the same character for χj(α). The
need to rotate by 4π (rather than by 2π) to generate the identity operation
leads to the concept of double groups which is the main theme of this chapter.
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Fig. 14.2. (a) A schematic diagram of the neutron interferometer used to establish
the phase of the electron wave function along the path AC along which the neutrons
are in a magnetic field B (500G) for a distance � (2 cm), while the path AB has no
magnetic field [72]. (b) The periodic interference pattern as a function of magnetic
field, implying a periodicity of 4π

Although the concept of double groups goes back to 1929 [11] experimental
evidence that wave functions for Fermions are periodic in 4π and not 2π was
not available until 1975 [72] when an ingenious experiment was carried out to
measure the phase shift of a neutron due to its precession in a magnetic field.
The experiment utilizes a neutron interferometer and determines the phase
shift of the neutron as it travels along path AC, where it sees a magnetic field
Bgap as opposed to path AB where there is no magnetic field, as shown in
Fig. 14.2(a). The phase shift measured by counters C2 and C3 shows an inter-
ference pattern that is periodic, as shown in Fig. 14.2(b), implying a magnetic
field precession with a periodicity of 4π. To account for this behavior of the
wave function, it is convenient to introduce a new group element (rotation by
2π) in dealing with symmetry properties of crystals for which half-integral val-
ues of the angular momentum arise as, for example, through the introduction
of the electron spin.

Let R denote a rotation by 2π, and now let us assume that R = ±E
or equivalently R2 = E, since the rotation by 4π leaves the characters for
the full rotation group invariant for both integral and half-integral j values.
Suppose that the elements of the symmetry group without the electron spin
are E,A2, A3, . . . , Ah. Then, with spin, we have twice as many group elements.
That is, we now have the same h elements of the type Ai that we had before
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the spin on the electron was considered, plus h new elements of the form
RAi. Just as the matrix representation for the identity operator E is the unit
matrix 1̂ and for RE it is ±1̂, the matrix representation for Ai isD(Γj)(Ai) and
for RAi it is ±D(Γj)(Ai), depending upon whether the representation Γj is
related by compatibility relations to even- or odd-dimensional representations
of the full rotation group. The introduction of this symmetry element R leads
to no difficulties with the quantum mechanical description of the problem,
since the wave functions ψ and −ψ describe the same physical problem and
the matrices ±D(Γj)(Ai) each produce the same linear combination of the
basis functions.

Because of the introduction of the symmetry element R, the point groups
of the crystal have twice as many elements as before. These point groups also
have more classes, but not exactly twice as many classes because some of
the elements RAi are in the same classes as other elements Ak. For example,
according to (14.11), when j assumes half-integral values, then we have for
a C2 operation

χj(π) =
sin(j + 1/2)π

sin(π/2)
= 0 (14.15)

and

χj(π ± 2π) =
sin(j + 1/2)(π ± 2π)

sin
(

π±2π
2

) =
0
−1

= 0 . (14.16)

As presented in Sect. 14.3, for some classes of twofold axes, the elements RC2

and C2 are, in fact, in the same class.

14.3 Double Group Properties

We will now state some properties of the even-dimensional representations
of the full rotation group and of double groups corresponding to the half-
integral angular momentum states. These properties are given here without
proof. More complete treatments can be found, for example, in Heine’s book
on group theory [37]. We list below four important rules for the properties of
double groups.

(a) If a set of symmetry operations {Ak} forms a class in the original point
group, then {Ak} and the corresponding symmetry operations for the
double group {RAk} form two different classes in the double group, except
in the case noted below under heading (b).

(b) The exceptions to property (a) are classes of rotations by π, if, and only
if, there is in addition to the operation C2 another twofold axis ⊥ to the
twofold axis C2 for all members of the class. In this case only, C2 and RC2

are in the same class.
(c) Any irreducible representation of the original group is also an irreducible

representation of the double group, with the same set of characters
[χ(RCk) = χ(Ck)].
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(d) In addition to the irreducible representations described in property (c),
there must be additional double group representations, so that we have as
many irreducible representations as there are classes. For these additional
irreducible representations, the characters for the class RCk are found
from the characters of class Ck according to the relation χ(RCk) = −χ(Ck).
The relation χ(Ck) = −χ(RCk) follows because the signs of the wavefunc-
tions change as a result of the symmetry operation RCk. In the special
case where property (b) applies and {Ak} and {RAk} are in the same
class, then

χ(Ck) = +χ(RCk) = −χ(RCk) = 0 , (14.17)

since both types of symmetry operations are in same class. Therefore, for
classes obeying property (b), it is always the case that Ck = C2 where
χ(C2) = 0.

We can now write down the characters for double group representations and
relate these results to the spin–orbit interaction. In a solid, without spin–orbit
coupling

H0 =
p2

2m
+ V (r) . (14.18)

Now if we include the electron spin, but still neglect the spin–orbit interaction,
the Bloch functions in the simplest case can be written as

ψ+
nk = eik·runk(r)α

ψ−
nk = eik·runk(r)β , (14.19)

where α, β are the spin up and spin down eigenfunctions for spin 1/2, and
n, k denote the band index and wave number, respectively, and for a single
electron with Sz = ±1/2. Without spin–orbit coupling, each state is doubly
degenerate and is an eigenstate of Sz. If the spin–orbit interaction is included,
then the states are no longer eigenstates of Sz and the wave function becomes
some linear combination of the states given by (14.19)

ψnk = aψ+
nk + bψ−

nk . (14.20)

The group theoretical way to describe these states is in terms of the
direct product Γi ⊗ D1/2 of the irreducible representation of the spa-
tial wave functions Γi with the irreducible representation of the spin
function of an electron which we will denote by D1/2 and is called the
Spinor.

To illustrate how we write the characters for D1/2, let us consider cubic
crystals with an O symmetry point group. (The results for Oh are immedi-
ately obtained from O by taking the direct product Oh = O ⊗ i.) From the
rules given above, the classes of the double group for O are E,R, (3C2

4 +
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Table 14.2. Character for rotations by α for the full rotational symmetry group
and the j = 1/2 Spinor irreducible representation D1/2

α χ 1
2
(α) χ 1

2
(Rα)

0
α

α/2
= 2 −2

π 0 0

π

2

sin π
2

sin π
4

=
1
1√
2

=
√

2 −√
2

π

3

sin 2π
3

sin π
3

=

√
3

2√
3

2

= 1 −1

3RC2
4 ), 6C4, 6RC4, (6C2 + 6RC2), 8C3, 8RC3. Having listed the classes (eight

in this case), we can now find the characters for D1/2 by the formula

χj(α) =
sin(j + 1/2)α

sin(α/2)
=

sinα
sin(α/2)

, (14.21)

since j = 1/2. For the Full Rotational Symmetry group, the characters for
a rotation by α for the double point group O are found using (14.21) and the
results are given in Table 14.2. This procedure for finding the characters for
the spinor D1/2 is general and can be done for any point group.

Now we will write down the complete character table for the double
group O. In O itself, there are 24 elements, and therefore in the double group
derived from O there are 24 × 2 = 48 elements. There are eight classes in
the double group O and therefore eight irreducible representations. We al-
ready have five of these irreducible representations (see Table 14.3 for group
O). These five irreducible representations are all even representations of the
group Oh (see Table D.1 for the corresponding basis functions). Using rule (b)
in Sect. 14.3 for the character tables of double group representations, we have
the following condition for the dimensionality of the three additional double
group representations (Γ6, Γ7, Γ8) that are not present in the original group O

∑
i

�2i = h (14.22)

12 + 12 + 22 + 32 + 32 + �26 + �27 + �28 = 48 , (14.23)

yielding the following restriction on the dimensionalities of the double group
irreducible representations:

�26 + �27 + �28 = 24 . (14.24)
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Table 14.3. Worksheet for the double group characters for the group O

E R 3C2
4 + 3RC2

4 6C4 6RC4 6C′
2 + 6RC′′

2 8C3 8RC3

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 −1 −1 −1 1 1

Γ12 2 2 2 0 0 0 −1 −1

Γ15′ 3 3 −1 1 1 −1 0 0

Γ25′ 3 3 −1 −1 −1 1 0 0

Γ6 2 −2 0
√

2 −√
2 0 1 −1

Γ7 2 −2 0 0

Γ8 4 −4 0 0

Table 14.4. Characters used to find entries x and y for represenation Γ7

E 8C3 6C4

Γ6 2 1
√

2

Γ7 2 x y

Table 14.5. Characters used to find entries x′ and y′ for representation Γ8

E 8C3 6C4

Γ6 2 1
√

2

Γ7 2 1 −√
2

Γ8 4 x′ y′

This allows us to fill in many of the entries in the double group character
table for group O (Table 14.3). For example, Γ6, Γ7 and Γ8 cannot have 5-
dimensional representations, because then �2j = 25 > 24. Among 1-, 2-, 3- and
4-dimensional irreducible representations, the only combination we can make
to satisfy (14.24) is

22 + 22 + 42 = 24 . (14.25)

We already have identified a 2-dimensional irreducible representation of the
double group, namely the “spinor” D1/2 (see Table 14.2). We see immediately
that D1/2 obeys all the orthogonality relations, and the characters for D1/2

can be added to the character table, using the notation D1/2 = Γ6.
In Table 14.3 we have also filled in zeros for the characters for all the

C2 classes in the special double group representations Γ6, Γ7 and Γ8. Using
orthogonality and normalization conditions which follow from the wonderful
orthogonality theorem on character, it is quite easy to complete this character
table. To get the Γ7 representation we have to consider the entries in Table 14.4
and orthogonality requires 4+8x+6

√
2y = 0 which is satisfied for x = ±1, and

y = −√
2. Having filled in those entries it is easy to get the four-dimensional

representation (see Table 14.5). Orthogonality now requires: 8+8x′±√
2y′ = 0
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Table 14.6. Double group character table for the group O

O E R 3C2
4 + 3RC2

4 6C4 6RC4 6C′
2 + 6RC′′

2 8C3 8RC3

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 −1 −1 −1 1 1

Γ12 2 2 2 0 0 0 −1 −1

Γ15′ 3 3 −1 1 1 −1 0 0

Γ25′ 3 3 −1 −1 −1 1 0 0

Γ6 2 −2 0
√

2 −√
2 0 1 −1

Γ7 2 −2 0 −√
2

√
2 0 1 −1

Γ8 4 −4 0 0 0 0 −1 1

Table 14.7. Direct products Γi ⊗ Γ+
6 for Oh symmetry

Γ+
1 ⊗ Γ+

6 = Γ+
6 Γ−

1 ⊗ Γ+
6 = Γ−

6

Γ+
2 ⊗ Γ+

6 = Γ+
7 Γ−

2 ⊗ Γ+
6 = Γ−

7

Γ+
12 ⊗ Γ+

6 = Γ+
8 Γ−

12 ⊗ Γ+
6 = Γ−

8

Γ+
15 ⊗ Γ+

6 = Γ+
6 + Γ+

8 Γ−
15 ⊗ Γ+

6 = Γ−
6 + Γ−

8

Γ+
25 ⊗ Γ+

6 = Γ+
7 + Γ+

8 Γ−
25 ⊗ Γ+

6 = Γ−
7 + Γ−

8

Γ+
6 ⊗ Γ+

6 = Γ+
1 + Γ+

15 Γ−
6 ⊗ Γ+

6 = Γ−
1 + Γ−

15

Γ+
7 ⊗ Γ+

6 = Γ+
2 + Γ+

25 Γ−
7 ⊗ Γ+

6 = Γ−
2 + Γ−

25

Γ+
8 ⊗ Γ+

6 = Γ+
12 + Γ+

15 + Γ+
25 Γ−

8 ⊗ Γ+
6 = Γ−

12 + Γ−
15 + Γ−

25

which is satisfied for x′ = −1, y′ = 0. So now we have the whole character
table, as shown in Table 14.6.

In practice, we do not have to construct these character tables because the
double group character tables have already been tabulated in the literature
[47,48,54] or via the website cited in Ref. [54]. An example of a double group
character table for O symmetry is given in Appendix D, Table D.1. Here you
will see that a symmetry element RCn is listed as Rn following the notation
in Koster’s book. Other examples of double group character tables are found
in Appendix D.

We will now apply the double group characters to a cubic crystal with Oh

symmetry at the Γ point, k = 0 and we make use of Table 14.6 or Table D.1
and Oh = O ⊗ i or Table D.1. The spin functions α and β transform as the
partners of the irreducible representation D1/2 which is written as Γ+

6 for the
double group Oh. Now we see that the appropriate double group representa-
tions (which must be used when the effects of the electron spin are included)
are obtained by taking the direct product of the irreducible representation Γi

with the spinor (D1/2) as shown in Table 14.7. Since group Oh = O ⊗ i, the
number of classes in the double group Oh is 2× 8 = 16 and the total number
of irreducible representations is 16, and each is labeled according to whether
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it is even or odd under the inversion operation, noting that Γ ′
15 = Γ+

15 and
Γ ′

25 = Γ+
25, while Γ15 = Γ−

15 and Γ25 = Γ−
25.

When the spin–orbit interaction is introduced into the description of the
electronic structure, then the energy bands are labeled by double group irre-
ducible representations (e.g., Γ±

6 , Γ±
7 and Γ±

8 for the Oh group at k = 0).
Table 14.7 shows that the one-dimensional representations without the spin–
orbit interaction Γ±

1 and Γ±
2 all become doubly degenerate after taking the

direct product with the spinor D1/2. This result is independent of the sym-
metry group. When the spin–orbit interaction is introduced, all formerly non-
degenerate levels therefore become double degenerate as in Fig. 14.1(b). (This
effect is called the Kramers degeneracy.)

In the case of the Oh group, the twofold levels Γ±
12 become fourfold de-

generate when spin is included as is shown in Table 14.7. However, something
different happens for the triply degenerate Γ±

15 and Γ±
25 states. These states

would become sixfold degenerate with spin, but the spin–orbit interaction
partly lifts this degeneracy so that these sixfold levels split into a twofold and
a fourfold level, just as in the atomic case. Group theory does not tell us the
ordering of these levels, nor the magnitude of the splitting, but it does give
the symmetry of the levels. By including the spin–orbit interaction in dealing
with the valence band of a semiconductor like germanium, the sixfold level
can be partially diagonalized; the (6 × 6) k · p effective Hamiltonian breaks
up into a (2 × 2) block and a (4 × 4) block.

Figure 14.1 shows the effect of the spin–orbit interaction on the energy
bands of germanium. We note that the magnitudes of the spin–orbit splittings
are k dependent. Spin–orbit effects are largest at k = 0, moderately large
along the (111) direction (Λ) and at the L-point, but much smaller along
the (100) direction (Δ) and at the X-point. Group theory does not provide
information on these relative magnitudes. As was mentioned above, the spin–
orbit interaction effects tend to be very important in the III–V compound
semiconductors. Since in this case the two atoms in the unit cell correspond
to different chemical species, the appropriate point group at k = 0 is Td and
the bonding and antibonding bands both have symmetries Γ1 and Γ15 for the
s and p states, respectively. The general picture of the energy bands for the
III–V compounds is qualitatively similar to that given in Fig. 14.1 except for
a generally larger spin–orbit splitting and for a linear k term to be discussed
with regard to time reversal symmetry (see Chap. 16).

Another important class of semiconductors where the spin–orbit interac-
tion is important is the narrow gap lead salts (e.g., PbTe). Since Pb has a high
atomic number, it is necessary to give a more exact theory for the spin-orbit
interaction in this case, by including relativistic correction terms [21]. How-
ever, the group theoretical considerations given here apply equally well when
relativistic corrections are included.

In writing down the double group irreducible representations, we see that
a particular representation may be associated with various single group rep-
resentations. For example, the direct products in Table 14.7 show that the
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Γ+
7 irreducible double group representation could be associated with either

a Γ+
2 or a Γ+

25 irreducible single group representation. In dealing with ba-
sis functions in the double group representations, it is often useful to know
which single group representation corresponds to a particular double group
representation. The standard notation used for this association is for exam-
ple Γ+

8 (Γ+
12), in which the appropriate single group representation is put in

parenthesis, indicating that the particular Γ+
8 basis functions of interest are

those arising from the direct product Γ+
12 ⊗ Γ+

6 rather than from one of the
other possibilities listed in Table 14.7.

14.4 Crystal Field Splitting
Including Spin–Orbit Coupling

In our treatment of crystal field splittings in solids in Chap. 5 we ignored
the spin–orbit coupling, thus providing a first approximation for describing
the crystal field levels for the impurity ions in a host lattice. To improve on
this, we consider in this chapter the effect of the spin–orbit interaction which
will allow us to treat crystal field splittings in host lattices with rare earth
ions (where the spin–orbit interaction is in fact larger than the crystal field
interaction), and also to obtain a better approximation to the crystal field
splittings for 3d transition metal ions that were first discussed in Chap. 5.

The introduction of a transition-metal ion in an atomic d-state into an oc-
tahedral crystal field gives rise to crystal field splittings, as shown in Fig. 14.3
(see also Sect. 5.3).

For a single d-electron, s = 1/2 and in Oh symmetry the appropriate
double group representation for the spinor is Γ+

6 . Thus when the spin–orbit
interaction is included in the crystal field problem, the d-levels are further
split. Thus the twofold crystal field level in Oh cubic symmetry transforms as

Γ+
12 ⊗ Γ+

6 = Γ+
8 (14.26)

and the threefold crystal field level in Oh symmetry is split according to

Γ+
25 ⊗ Γ+

6 = Γ+
7 + Γ+

8 . (14.27)

In (14.26) and (14.27), Γ+
12 and Γ+

25 denote spatial wave-functions and Γ+
6

denotes the spin wave-function. Here we see that the Eg (Γ+
12) level does not

split further by the spin-orbit interaction, but the T2g (Γ+
25) level splits into

a twofold and a fourfold level.
For the 2D state of the free 3d transition-metal ion, we use to Fig. 14.3

to show the splitting induced by a large crystal field and a small spin-orbit
interaction (where the number of states is given in parentheses and we use the
notation 2s+1XJ to denote the quantum numbers s and J while X denotes
the orbital angular momentum). The analysis in Fig. 14.3 is valid only if the
crystal field interaction is large compared with the spin–orbit splitting. This
situation describes the iron-group transition metal ions.
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Fig. 14.3. Schematic diagram of the crystal field splitting of a 2D state with
a tenfold degeneracy, followed by further splitting by the spin–orbit interaction.
This model is appropriate for a 3d transition metal ion in a crystal with Oh sym-
metry for which the crystal field perturbation is large compared to the spin–orbit
interaction. The degeneracy of each of the levels is indicated by the parentheses.
Also shown in this figure are the labels for the crystal field levels associated with
each of the Γ+

8 levels in the absence of the spin–orbit interaction. Below the crystal
field splitting diagram, the form of the crystal field Hamiltonian is indicated on
the left in the absence of the spin–orbit interaction, and on the right when the
spin–orbit interaction is included

When we move down the periodic table to the palladium group (4d) and
the platinum group (5d), the spin–orbit interaction becomes large compared
with the crystal field. In this case, we consider first the spin–orbit splitting of
the free ion state as the major perturbation (see Fig. 14.4). We now have to
consider the effect of the crystal field on levels described by half-integral j val-
ues. To compute the characters for the full rotation group, we use the formula

χj(α) =
sin(j + 1/2)α

sin(α/2)
. (14.28)

We then find the characters for the 2D5/2 and 2D3/2 states to see how they
split in the cubic field (see Table 14.8). Using Table 14.8 we see immediately



14.4 Crystal Field Splitting Including Spin–Orbit Coupling 351

Fig. 14.4. Schematic diagram of the spin–orbit splitting of a 2D level with a tenfold
degeneracy and of the subsequent crystal field splittings of these levels in a cubic
field for an ion with a spin–orbit interaction that is large compared to the crystal
field splittings (which might apply to a 4d or a 5d atomic level). The degeneracy of
each level is shown in parentheses

that the irreducible representations for 2D5/2 and 2D3/2 become

2D5/2 → Γ7 + Γ8 (14.29)

2D3/2 → Γ8 (14.30)

as indicated in Fig. 14.4. The symmetries in Figs. 14.3 and 14.4 for the levels
in the presence of both the spin–orbit interaction and the cubic field of the
crystalline solid are Γ+

7 +2Γ+
8 in both cases with the + parity coming from the

orbital angular momentum being a D-level (even parity state). In Fig. 14.4,
the crystal field splittings are small compared with the spin–orbit splittings,
in contrast to the case in Fig. 14.3.

Let us consider another example of crystal field levels that show some other
important features. Consider the levels of the holmium ion Ho3+ in a cubic
field (group O) for which the atomic configuration is 4f105s25p6 so that by
Hund’s rule the ground state, after the spin–orbit interaction is included,
becomes, s = 2, l = 6, j = 8 denoted by the spectroscopic notation 5I8 (see
page 404 of Ref. [45]). Since j = 8 is an integer, application of the formula

χj(α) =
{

sin(j + 1/2)α
sin(α/2)

}
(14.31)

gives only ordinary irreducible representations, even though the electron spin
is included. We thus get the characters for the ground state 5I8 given in
Table 14.9.

Decomposition of the Γ (5I8) level into irreducible representations of O
yields

Γ (5I8) → Γ1 + 2Γ12 + 2Γ15 + 2Γ25 , (14.32)
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Table 14.8. Decomposition into double group Oh representations for a � = 2 level

E R 3C2
4 + 3RC2

4 6C4 6RC4 6C2 + 6RC2 8C3 8RC3

χ(2D5/2) 6 −6 0 −√
2

√
2 0 0 0

χ(2D3/2) 4 −4 0 0 0 0 −1 1

Table 14.9. Characters for the 5I8 and 4I15/2 states in O symmetry

E 3C2
4 6C4 6C2 8C3

Γ (5I8) 17 1 1 1 −1

Γ (4I15/2) 16 0 0 0 −1

where there are seven levels for 17 states. Finding the crystal field splittings
for a 17-fold level would be a very difficult problem without group theory. As
another example, let us consider the erbium ion Er3+ in a host crystal. This
ion is the basis for applications of amplification capabilities in optical fibers.
We consider the level splitting for the rare earth ion Er3+ in a 4f115s2p6

which gives a 4I15/2 ground state. The characters for the j = 15/2 state are
given in Table 14.9 and the splitting of these states in a cubic O field is also
included in this table. The j = 15/2 state in cubic O symmetry splits into

Γ (4I15/2) → Γ6 + Γ7 + 3Γ8 .

In dealing with the crystal field problem, we often encounter a situation where
a perturbation is applied to lower the crystal symmetry. In such cases we fol-
low the procedure which we have used many times before – the irreducible
representation of the high symmetry group is treated as a reducible represen-
tation for the lower symmetry group and we look for the irreducible repre-
sentations contained therein. The only difference in including the spin–orbit
interaction is the use of double groups for all point groups – both for the
high symmetry and the low symmetry groups. It is the case that the sin-
gle group irreducible representations in a group of higher symmetry will al-
ways go into single group irreducible representations of the lower symmetry
group. For example, the level Γ8 in point group O goes into Γ4 + Γ5 + Γ6

in point group D3, when the symmetry is lowered (see Table D.7 in Ap-
pendix D.)

In considering optical transitions in semiconductors which are described
by either single or double group representations, the electromagnetic interac-
tion Hamiltonian will in all cases transform as the vector within the single
group representations. Suppose that we consider the application of an elec-
tromagnetic light wave on a Ge crystal where we are considering the coupling
of light to the Γ−

7 conduction band at the center of the Brillouin zone. Then
we can write

Γ−
15 ⊗ Γ−

7 = Γ+
7 + Γ+

8 , (14.33)
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and see that light couples the conduction band at k = 0 to the valence
band and to its related split-off band. Thus, if single group states had been
considered instead, such as the Γ−

2 conduction band in Ge without spin–
orbit interaction, the coupling of the Γ−

2 band by light would be found
by (Γ−

15 ⊗ Γ−
2 = Γ+

25), which tells us that the Γ−
7 conduction band and

the Γ+
25 valence band are in this case also coupled by light. Then (14.33)

shows that the corresponding double group conduction band state (Γ−
7 ) is

optically coupled to the corresponding double group valence band states
(Γ+

7 + Γ+
8 ).

Whereas the wave function for a single electron transforms as D1/2 (or
Γ+

6 for Oh symmetry), a two-electron wavefunction transforms as the direct
product D1/2 ⊗D1/2. For Oh symmetry, we have for this direct product

Γ+
6 ⊗ Γ+

6 = Γ+
1 + Γ+

15 , (14.34)

where Γ+
1 is the singlet s = 0 state and the Γ+

15 corresponds to the triplet
s = 1 level which has three values of ms. More explicitly, using ↑ and ↓ to
denote the two spin states and the numerals 1 and 2 to denote each of the
two electrons, we can denote the s = 0 state by 1/

√
2(↑1↓2 − ↓1↑2) and the

three partners of s = 1 by (↑1↑2), 1/
√

2(↑1↓2 + ↓1↑2), and (↓1↓2). We note
that in both cases, the levels have integral values of spin angular momentum
and thus the state transforms as a single group irreducible representation.
Finally, we note that for a D3/2 in full rotational symmetry generated by
two p-electrons, the double group representation in cubic symmetry for two
p electrons yields D+

1/2 ⊗ Γ−
15 = Γ−

6 + Γ−
8 . For the Γ−

8 level, the mj values
are 3/2, 1/2, −1/2 and −3/2 with very different wave functions than arise for
the case of two electrons in s states. The D−

1/2 level is made up of p states
with mj = 1/2 and −1/2 values. These topics are further considered in the
following sections.

14.5 Basis Functions for Double Group Representations

We will use the following notation for single electron spin states:

↑ = spin up =
(

1
0

)

↓ = spin down =
(

0
1

)
. (14.35)

The states in (14.35) are the states for the spinor D1/2 irreducible represen-
tation. For the cubic group O this spinor is denoted by the double group
representation Γ6 and for the Oh group by Γ+

6 . Operation by the Pauli spin
matrices σx, σy and σz
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σx =
(

0 1
1 0

)

σy =
(

0 −i
i 0

)

σz =
(

1 0
0 −1

)
(14.36)

on the pure spin up and spin down states yields

σx ↑ = ↓
−iσy ↑ = ↓
σz ↑ = ↑
σx ↓ = ↑

−iσy ↓ = − ↑
σz ↓ = − ↓ . (14.37)

The Pauli spin matrices σx, σy, σz together with the (2 × 2) unit matrix

1̂ =
(

1 0
0 1

)
(14.38)

span a 2 × 2 space, so that every 2 × 2 matrix can be expressed in terms
of these four matrices, 1̂, σx, −iσy, σz. Also the raising σ+ and lowering σ−
operators are defined by

σ± = σx ± iσy , (14.39)

so that
1
2
σ− ↑=↓ and

1
2
σ+ ↓=↑ . (14.40)

One set of basis functions for Γ+
6 is the pair ↑, ↓ which form partners

for Γ+
6 relevant to spinors. This pair is also referred to as [φ(1/2, 1/2)

and φ(1/2,−1/2)] denoting the s and ms values for each partner. Any
other pair can be found from multiplication of this pair by another ba-
sis function such as Γ+

1 , since Γ+
6 = Γ+

1 ⊗ Γ+
6 . We will see below how

very different-looking basis functions can be used for Γ+
6 depending on

the single group representation with which Γ+
6 is connected, such as a Γ+

1

or a Γ+
15 state. Thus, it is convenient to label the basis functions for any

double group representation with the single group representation from
which it comes. Thus the pair ↑, ↓ would be associated with a Γ+

6 (Γ+
1 )

state, whereas Γ+
6 (Γ+

15) would have a different significance as discussed be-
low.

To understand this notation better, consider the Γ+
8 (Γ+

15) state which
comes from the direct product Γ+

15 ⊗ Γ+
6 = Γ+

6 + Γ+
8 . For the Γ+

15 state
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we may select the basis functions Lx, Ly, Lz (angular momentum compo-
nents). Then the six functions Lx↑, Lx↓, Ly↑, Ly↓, Lz↑, Lz↓ make up
basis functions for the combined Γ+

6 and Γ+
8 representations, assuming

no spin–orbit interaction. However, when the spin–orbit interaction is in-
cluded, we must now find the correct linear combinations of the above
six functions so that two of these transform as Γ+

6 and four transform
as Γ+

8 . The correct linear combinations are found by identifying those
basis functions which arise in the electronic energy band problem with
by making use of angular momentum states as discussed in Sect. 14.6.
The principles of group theory tell us that if the group theory problem
is solved for angular momentum functions, then the same group theoret-
ical solution can be applied to the electronic energy band eigenfunctions
with the same symmetry. This approach is utilized in the following two
sections.

14.6 Some Explicit Basis Functions

In this section, we will generate the basis functions for the j = 3/2, � = 1,
s = 1/2 states and for the j = 1/2, � = 1, s = 1/2 states. For the an-
gular momentum functions in the |�sm�ms〉 representation, the six eigen-
functions correspond to the orbital states � = 1, m� = 1, 0,−1 and the
spin states s = 1/2, ms = 1/2,−1/2. The transformations we are looking
for will transform these states into j = 3/2, mj = 3/2, 1/2,−1/2,−3/2
and j = 1/2, mj = 1/2,−1/2. The matrices which carry out these
transformations generate what are known as the Clebsch–Gordan coeffi-
cients. Tables of Clebsch–Gordan coefficients are found in quantum me-
chanics and group theory books for many of the useful combinations
of spin and orbital angular momentum that occur in practical prob-
lems [20].

A basis set that is appropriate for � = 1, s = 1/2 is given below for a Γ+
8

double group state derived from a Γ+
15 single group state (see also Sect. 14.9)

|j,mj〉State Basis Function

|32 , 3
2 〉 ξ1 = 1√

2
(Lx + iLy) ↑

| 32 , 1
2 〉 ξ2 = 1√

6
[(Lx + iLy) ↓ +2Lz ↑]

|32 ,− 1
2 〉 ξ3 = 1√

6
[(Lx − iLy) ↑ +2Lz ↓]

|32 ,− 3
2 〉 ξ4 = 1√

2
(Lx − iLy) ↓ .

(14.41)

These basis functions are obtained using the fundamental relations for raising
operators

L+|�,m�〉 =
√

(�−m�)(�+m� + 1) |�,m� + 1〉

J+|j,mj〉 =
√

(j −mj)(j +mj + 1) |j,mj + 1〉 . (14.42)
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We further note that the state |j = 3/2,mj = −3/2〉 is identical with the
state for � = 1, s = 1/2 and |m� = −1,ms = −1/2〉. Therefore, we start with
the j = 3/2, mj = −3/2 state and apply the raising operator to obtain the
other states:

J+

∣∣∣∣j =
3
2
,mj = −3

2

〉
=

√(
3
2

+
3
2

)(
3
2
− 3

2
+ 1

) ∣∣∣∣j =
3
2
,mj = −1

2

〉

= (L+ + S+)
∣∣∣∣m� = −1,ms = −1

2

〉

=
√

(1 + 1)(1 − 1 + 1)
∣∣∣∣m� = 0,ms = −1

2

〉
(14.43)

+

√(
1
2

+
1
2

)(
1
2
− 1

2
+ 1

)∣∣∣∣m� = −1,ms =
1
2

〉
.

Collecting terms, we obtain
∣∣∣∣j =

3
2
,mj = −1

2

〉
=

√
2

3

∣∣∣∣m� = 0,ms = −1
2

〉
+

1√
3

∣∣∣∣m� = −1,ms =
1
2

〉
.

(14.44)
We make the identification:

m� = +1 → 1√
2
(Lx + iLy)

m� = 0 → Lz

m� = −1 → 1√
2
(Lx − iLy)

ms =
1
2
→ ↑

ms = −1
2
→ ↓ ,

from which we obtain the basis functions

|j,mj〉State Basis Function

|32 ,− 3
2 〉 1√

2
(Lx − iLy) ↓

|32 ,− 1
2 〉 1√

6
[(Lx − iLy) ↑ +2Lz ↓] .

(14.45)

Similarly, operation of J+ on the state |j = 3/2,mj − 1/2〉 results in
a state |j = 3/2,mj = 1/2〉 and operation of L+ + S+ on the correspond-
ing functions of |m� = 0,ms = −1/2〉 and |m� = −1,ms = 1/2〉
results in states |m� = 0,ms = 1/2〉 and |m� = +1,ms = −1/2〉.
In this way we obtain all the basis functions for Γ+

8 (Γ+
15) given in

(14.41).
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We will now proceed to obtain the basis functions for Γ+
6 (Γ+

15) which are

|j,mj〉State Basis Function

|12 , 1
2 〉 λ1 = 1√

3
[(Lx + iLy) ↓ −Lz ↑]

|12 ,− 1
2 〉 λ2 = 1√

3
[−(Lx − iLy) ↑ +Lz ↓] .

(14.46)

The notation “ξi” was used in (14.41) to denote the four Γ+
8 (Γ+

15) basis func-
tions for j = 3/2 and “λi” for the two Γ+

6 (Γ+
15) basis functions for j = 1/2.

This notation “ξi” and “λi” is arbitrary and is not standard in the literature.
To obtain the Γ+

6 (Γ+
15) basis functions we note that the appropriate

(m�,ms) quantum numbers corresponding to j = 1/2 and mj = ±1/2 are

m� = 0 , ms = ±1
2
,

m� = 1 , ms = −1
2
,

m� = −1 , ms = +
1
2
,

so that the corresponding basis functions are completely specified by making
them orthogonal to the |j = 3/2,mj = +1/2〉 and |j = 3/2,mj = −1/2〉
states. For example, the function orthogonal to

√
2
3

∣∣∣∣m� = 0,ms = −1
2

〉
+

1√
3

∣∣∣∣m� = −1,ms = +
1
2

〉
(14.47)

is the function

1√
3

∣∣∣∣m� = 0,ms = −1
2

〉
−
√

2
3

∣∣∣∣m� = −1,ms = +
1
2

〉
, (14.48)

which yields the basis functions for the |j = 1/2,mj = −1/2〉 state:

1√
3
|Lz ↓ −(Lx − iLy) ↑〉 . (14.49)

Similarly the basis function for the |j = 1/2,mj = +1/2〉 state can be
found by application of the raising operators J+ and (L+ + S+) to the
|j = 1/2,mj = −1/2〉 state, or alternatively by requiring orthogonality to
the |j = 3/2,mj = +1/2〉 state. Applying the raising operator to the state
(14.48) yields

1√
3

∣∣∣∣m� = 0,ms = +
1
2

〉
−
√

2
3

∣∣∣∣m� = +1,ms = −1
2

〉

=
1√
3
[(Lx + iLy) ↓ −Lz ↑] , (14.50)
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which is seen to be orthogonal to

1√
6
[(Lx + iLy) ↓ +2Lz ↑] . (14.51)

In finding the basis functions for Γ+
8 (Γ+

15) we have made use of the sym-
metry properties of the angular momentum operators. As far as the sym-
metry properties are concerned, it makes no difference whether L is an
angular momentum function or an electronic energy band wave function
with Γ+

15 symmetry. This concept allows us to write down wave functions
with Γ+

8 symmetry derived from other single group states, and examples
of such results are given in Sect. 14.7, and others are taken from the liter-
ature [47] or elsewhere (see also Appendix D for tables of these coupling
coefficients).

14.7 Basis Functions for Other Γ +
8 States

Basis functions for the Γ±
8 state derived from Γ−

8 (Γ−
15), Γ

+
8 (Γ+

25), Γ
−
8 (Γ−

25),
etc. can be found from Γ+

8 (Γ+
15) and Γ+

6 (Γ+
15), as explained below. To

obtain the basis functions for Γ−
8 (Γ−

15), all we have to do is to re-
place

Lx, Ly, Lz → x, y, z

in (14.41) of Sect. 14.6. This set of basis functions is also considered in
Sect. 14.8 using tables available from the literature. Likewise to obtain
Γ+

8 (Γ+
25), we have to replace

Lx, Ly, Lz → εx, εy, εz ,

where εx = yz, εy = zx, εz = xy. By using this prescription, the basis func-
tions for Γ±

8 will be of the same form for all symmetry-related partners,
whether the basis functions are derived from a Γ±

15 or a Γ±
25 single group

representation. This correspondence is a highly desirable feature for working
practical problems.

We note that the Γ+
8 (Γ+

12) representation can also be produced by con-
sidering the electron spin for a Γ+

12 spinless level: Γ+
6 ⊗ Γ+

12 = Γ+
8 . We

can always make a set of four basis functions for this representation out of
f1 ↑, f1 ↓, f2 ↑, f2 ↓ where f1 = x2 +ωy2 +ω2z2, f2 = f∗

1 and ω = exp(2πi/3).
This makes up a perfectly good representation, but the actual functions that
are partners look very different from those of Γ+

8 (Γ+
15) or Γ+

8 (Γ+
25). We can,

however, make a unitary transformation of these four functions so that they
look like the Γ+

8 (Γ+
15) set.

We can make use of these double group basis functions in many ways.
For example, these basis functions are used to determine the nonvanishing
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k · p matrix elements (uΓi
n,0|H′|uΓj

n,0) (see Chap. 15 and (15.12)). These basis
functions also determine which of the nonvanishing matrix elements are equal
to each other for a given group of the wave vector.

One technique that can be used to determine the number of nonvanish-
ing matrix elements in cases involving multidimensional representations is
as follows. If the relevant matrix element is of the form (Γi|Γinteraction|Γj)
then the number of independent matrix elements is the number of times
the identity representation (Γ+

1 ) is contained in the triple direct product
Γi ⊗ Γinteraction ⊗ Γj . For example, the direct product of the matrix element
(Γ+

1 |Γ−
15|Γ−

15) is

Γ+
1 ⊗ Γ−

15 ⊗ Γ−
15 = Γ+

1 + Γ+
12 + Γ+

15 + Γ+
25 , (14.52)

and since all nonvanishing matrix elements must be invariant under all
symmetry operations of the group, only the Γ+

1 term leads to a nonva-
nishing matrix element. This triple direct product then tells us that of
the nine possible combinations of partners, there is only one indepen-
dent nonvanishing matrix element, and therefore all nine possible com-
binations of partners must be related to this nonvanishing matrix ele-
ment.

For the case of double groups, the matrix element (Γ+
6 |Γ−

15|Γ−
6 ) has 2×3×

2 = 12 possible combinations. Now Γ+
6 ⊗Γ−

15⊗Γ−
6 = Γ+

1 +Γ+
15+Γ+

12+Γ+
15+Γ+

25,
so that once again there is only one independent matrix element. Finally, for
the case (Γ+

6 |Γ−
15|Γ−

8 ) there are 24 possible combinations. The direct product
Γ+

6 ⊗ Γ−
15 ⊗ Γ−

8 = Γ+
1 + Γ+

2 + Γ+
12 + 2Γ+

15 + 2Γ+
25, and once again there is one

independent matrix element. Furthermore, if Γ−
6 and Γ−

8 are both related
through a Γ−

15 interaction term, then the same independent matrix element
applies to both (Γ+

6 |Γ−
15|Γ−

6 ) and (Γ+
6 |Γ−

15|Γ−
8 ).

14.8 Comments on Double Group Character Tables

At this point, it is important to address the reader to Appendix D, which
contains much information and many illustrative tables pertinent to dou-
ble groups. This appendix provides an interface between this chapter and
the literature [48, 54] and various sources of information about double
groups.

In dealing with electronic energy bands for which the spin–orbit interac-
tion is included, we use the |j�smj〉 representation, and this in general requires
a transformation from the basis functions in the |�sm�ms〉 representation to
the |j�smj〉 representation. Table D.4 in Appendix D gives us the following
relations between the pertinent basis functions for the two representations for
the double group Oh:



360 14 Spin–Orbit Interaction in Solids and Double Groups

ψ6
−1/2 =

∣∣∣∣12 ,−
1
2

〉
= −(i/

√
3)(u4

x − iu4
y) ↑ +(i/

√
3)u4

z ↓

ψ6
1/2 =

∣∣∣∣12 ,
1
2

〉
= −(i/

√
3)(u4

x + iu4
y) ↓ −(i/

√
3)u4

z ↑

ψ8
−3/2 =

∣∣∣∣32 ,−
3
2

〉
= (i/

√
2)(u4

x − iu4
y) ↓

ψ8
−1/2 =

∣∣∣∣32 ,−
1
2

〉
= (i/

√
6)(u4

x − iu4
y) ↑ +(i

√
2/

√
3)u4

z ↓

ψ8
1/2 =

∣∣∣∣32 ,
1
2

〉
= −(i/

√
6)(u4

x + iu4
y) ↓ +(i

√
2/

√
3)u4

z ↑

ψ8
3/2 =

∣∣∣∣32 ,
3
2

〉
= −(i/

√
2)(u4

x + iu4
y) ↑ . (14.53)

In Table D.4, Γ−
15 is denoted by Γ4, and (u4

x, u
4
y, u

4
z) are the three partners

of Γ4, while the spinor partners are denoted by ↑= v6
1/2 and ↓= v6

−1/2, thus
constituting the |�sm�ms〉 representations. The linear combinations given in
(14.53) and written above are basically the Clebsch–Gordan coefficients in
quantum mechanics [20]. We make use of these equations in Sect. 14.9 when
we discuss the introduction of spin and the spin–orbit interaction into the
plane wave relations describing the energy eigenvalues and eigenfunctions of
the empty lattice for an electron with spin.

Table D.1 gives the point group character tables for group O and group
Td including double groups, while Table D.7 gives the compatibility relations
showing the decomposition of the irreducible representations of Td and O into
the irreducible representations of the appropriate lower symmetry groups.
Note in Table D.7 that E refers to the electric field and H to the magnetic
field. The table can be used for many applications, such as finding the re-
sulting symmetries under crystal field splittings as for example Oh → D3 (see
Sect. 14.4). The decomposition of the irreducible representations of the full ro-
tation group into irreducible representations of groupsO and Td for the s, p, d,
. . . functions, etc. is given in Tables D.8 andD.9. Note that all the irreducible
representations of the full rotation group D±

j are listed, with the ± sign de-
noting the parity (even or odd under inversion) and the subscript giving the
angular momentum quantum number (j), so that the dimensionality of the
irreducible representation D±

j is (2j + 1).

14.9 Plane Wave Basis Functions
for Double Group Representations

In Chap. 12 we discussed the nearly free electron approximation for the en-
ergy bands in crystalline solids, neglecting the electron spin. In this case, the
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electron wave functions were expressed in terms of symmetrized linear combi-
nations of plane waves transforming according to irreducible representations
of the group of the wave vector. In the present section, we extend the pre-
sentation in Chap. 12 by giving an explicit example for Oh symmetry (space
group #221 for the simple cubic lattice) focusing on the plane wave solutions
at k = 0 for the corresponding situation where the spin of the electron is
included and the wave functions are described in terms of the double group
irreducible representations.

It is relatively simple to include the effect of the electron spin for the
irreducible representations Γ±

1 and Γ±
2 because there are no splittings induced

by the spin–orbit coupling. Thus the basis functions in this case are simple
product functions given by Γ±

6 = Γ±
1 ⊗ Γ+

6 and Γ±
7 = Γ±

2 ⊗ Γ+
6 or more

explicitly

ΨΓ±
6

(Kni) = ψΓ±
1

(Kni)
(
α
β

)

ΨΓ±
7

(Kni) = ψΓ±
2

(Kni)
(
α
β

)
, (14.54)

in which the Kni denote reciprocal lattice vectors while ψΓ±
1

(Kni) and
ψΓ±

2
(Kni) denote the symmetrized plane wave combinations considered in

Chap. 12, but in that case ignoring the effect of the electron spin, while α
and β here denote spin up and spin down functions, respectively, which form
partners of the Γ+

6 double group irreducible representation.
For the degenerate plane wave combinations, such as those with Γ±

12, Γ
±
15

and Γ±
25 symmetries, one method to find an appropriate set of basis functions

when the electron spin is included is to use the tables presented in Appendix D.
For example, basis functions for the four partners for Γ±

8 = Γ±
3 ⊗ Γ+

6 can be
found in the Table D.5. Consider that the functions u3

1, u
3
2 for Γ3 in this table

transform as

u3
1 ∝ 3z2 − r2

u3
2 ∝

√
3(x2 − y2) (14.55)

and the spinor functions are given by

v6
+1/2 ∝ α

v6
−1/2 ∝ β . (14.56)

Then the application of Table D.5 gives

ΨΓ±
8

(Kni) =
1√
2

⎛
⎜⎜⎝

√
3(x2 − y2)α

(3z2 − r2)β
−(3z2 − r2)α
−√

3(x2 − y2)β

⎞
⎟⎟⎠ . (14.57)
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A more symmetric set of basis functions for Γ±
8 = Γ±

12 ⊗ Γ+
6 is

ΨΓ±
8

(Kni) =
1√
2

⎛
⎜⎜⎜⎜⎜⎝

[ω2ψ∗
Γ±

12
(Kni) + ωψΓ±

12
(Kni)]α

−i[ω2ψ∗
Γ±

12
(Kni) − ωψΓ±

12
(Kni)]β

i[ω2ψ∗
Γ±

12
(Kni) − ωψΓ±

12
(Kni)]α

−[ω2ψ∗
Γ±

12
(Kni) + ωψΓ±

12
(Kni)]β

⎞
⎟⎟⎟⎟⎟⎠
, (14.58)

in which ψΓ+
12

(Kni) = x2 + ωy2 + ω2z2 and ψ∗
Γ+

12
(Kni) = x2 + ω2y2 + ωz2.

Since the three-dimensional levels Γ±
15 and Γ±

25 split under the spin–orbit
interaction

Γ±
15 ⊗D1/2 = Γ±

6 + Γ±
8

Γ±
25 ⊗D1/2 = Γ±

7 + Γ±
8

the basis functions for these levels are somewhat more complicated, but the
coupling coefficients can be found in Table D.4 for the case of Γ±

15 ⊗D1/2 and
in Table D.6 for the case of Γ±

25 ⊗D1/2. In these tables, (u4
x, u4

y, u
4
z) and (u5

x,
u5

y, u5
z) are the three partners of Γ±

15 (Γ4) and Γ±
25 (Γ5), respectively, and from

these tables we obtain for the twofold levels:

ΨΓ±
6

(Kni) =
1√
3

⎛
⎜⎝
[
−i

(
ψx

Γ±
15

(Kni) − iψy

Γ±
15

(Kni)
)
α+ iψz

Γ±
15

(Kni)β
]

[
−i

(
ψx

Γ±
15

(Kni) + iψy

Γ±
15

(Kni)
)
β − iψz

Γ±
15

(Kni)α
]
⎞
⎟⎠

ΨΓ±
7

(Kni) =
1√
3

⎛
⎜⎝
[
−i

(
ψx

Γ±
25

(Kni) − iψy

Γ±
25

(Kni)
)
α+ iψz

Γ±
25

(Kni)β
]

[
−i

(
ψx

Γ±
25

(Kni) + iψy

Γ±
25

(Kni)
)
β − iψz

Γ±
25

(Kni)α
]
⎞
⎟⎠ .

(14.59)

Problem 14.3 considers the corresponding fourfold levels obtained from taking
the direct products of Γ±

15(Γ
±
4 ) ⊗ Γ+

6 and Γ±
25(Γ

±
5 ) ⊗ Γ+

6 .

14.10 Group of the Wave Vector
for Nonsymmorphic Double Groups

In the case of nonsymmorphic space groups, we found in Sect. 12.5 that bands
are often required to stick together at certain high symmetry points on the
Brillouin zone boundary where the structure factor vanishes. In Sect. 12.5 it
was explicitly shown that for the diamond structure the nondegenerate Δ1
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and Δ2′ levels come into the X point with equal and opposite nonzero slopes,
so that in the extended Brillouin zone, the E(k) curves together with all their
derivatives, pass through the X point continuously as they interchange their
symmetry designations. It was shown in Sect. 12.5 that the physical basis for
bands sticking together in this way is that the structure factor vanishes. In
such cases it is as if there were no Brillouin zone boundary so that the energy
eigenvalues continue through the symmetry point without interruption.

In this section, we consider the corresponding situation including the elec-
tron spin and the spin–orbit interaction. Here we explicitly illustrate the
sticking together of energy bands in terms of another space group #194 for
the hexagonal close packed structure. Another objective of this section is to
gain further experience with using double group irreducible representations.
Space group #194 was previously discussed in Problems 9.6 and 10.6 and in
Sect. 11.4.3 in relation to the lattice modes in graphite. In the case of lat-
tice modes, we only make use of the single group representations. Mention
of space group #194 was also made in Sect. 12.5 in connection with bands
sticking together at the zone boundary in cases where the structure factor
vanishes for nonsymmorphic groups, but in Sect. 12.5 the electron spin and
the spin–orbit interaction was neglected. We here consider the case where
energy bands for the nonsymmorphic hexagonal close packed lattice stick to-
gether and the spin–orbit interaction is included [26] so that double groups
must be considered.

Let us consider the wave vector to going from a high symmetry point (Γ )
(see Fig.C.7) to a lower symmetry point (Δ) to the point A at the BZ bound-
ary. The double group character tables for these three high symmetry points
Γ , Δ and A are found in Tables D.10, D.11 and D.13, respectively. At the A
point there are six classes for the group of the wave vector and six irreducible
representations, three of which are ordinary irreducible representations ΓA

1 ,
ΓA

2 , ΓA
3 and three of which are double group representations (ΓA

4 , ΓA
5 , ΓA

6 ).
The compatibility relations between the irreducible representations at A

and at Δ:

(A) 1 2 3 4+5 6
↓ ↓ ↓ ↓ ↓

(Δ) (1+3) (2+4) (5+6) 2(9) (7+8)

show that in the vicinity of the A point, we have band crossings for all the sin-
gle group bands with A1, A2 and A3 symmetry. These band crossings, shown
in Fig. 14.5, are based on these compatibility relations. The energy bands pass
through the A point without interruption and merely change their symmetry
designations, as for exampleΔ1 → A1 → Δ3. Bands for the doubly degenerate
double group irreducible representations Δ7 and Δ8 stick together as an A6

band at the A point. At the A point (kz = π/c) the phase factor exp[i(c/2)kz ],
associated with the symmetry operations containing τ = (c/2)((0, 0, 1) such
as {C6|τ}, becomes eiπ/2 = i. Energy bands with double group representa-
tions A4 and A5 have complex characters and are complex conjugates of each
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Fig. 14.5. Energy band dispersion relations for various irreducible representations
for group #194 near the A point. The energy bands go through the A point without
interruption because of the vanishing structure factor at the A point. Note that A4,
A5, A6, Δ7, Δ8 and Δ9 are double group representations. The A4 and A5 levels
stick together because of time reversal symmetry discussed in Chap. 16

other. In Chap. 16 we will see that such bands stick together because of time
reversal symmetry. Thus two Δ9 levels come into the A point to form A4 +A5

levels and leave the A point with the same Δ9 symmetry (see Fig. 14.5).

Selected Problems

14.1. (a) Following the procedure in Sect. 14.3, find the double group char-
acter table for the point group D6. First find the number of classes and
the number of irreducible representations. Then identify the classes as
listed in the character table, and the dimensionality of each irreducible
representation. Finally find the entries in the character table.

(b) Use the results in (a) to obtain the double group character table for the
group of the wave vector at k = 0 for space group #194 which is a non-
symmorphic group. Check your results against Table D.10.

(c) To which double group states do the states Γ+
7 , Γ+

8 , and Γ+
9 couple opti-

cally through electric dipole transitions?
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14.2. Consider an Er3+ rare earth ion entering an insulating ionic crystal in
a position with point group symmetry D4h.

(a) Find the double group irreducible representations of the crystal field (D4h

point group symmetry) corresponding to the ground state configuration
for the free ion. Compare with the crystal field splitting that would occur
for icosahedral point group symmetry Ih.

(b) Use Hund’s rules (see page 404 of Ref. [45]) to identify the lowest energy
optical transitions that can be induced from the ground state level of
the free Er3+ ion. Using group theory, find the lowest energy transitions
expected for an Er3+ ion in a crystal with D4h point group symmetry.

(c) What changes in the spectra (b) are expected to occur if a stress is applied
along the fourfold symmetry axis? in the direction along a twofold axis
perpendicular to the fourfold axis?

(d) Now suppose that a Dy3+ rare earth ion is introduced into the same lattice
instead of the Er3+ ion. What are the symmetry types for levels to which
optical transitions can be induced from a multiplet corresponding to the
ground state level of the free Dy3+ ion. (Use Hund’s rule to obtain the
ground state energies.) Work the problem only for the D4h point group
symmetry. Comment on the expected differences in the optical spectrum
for the Dy3+ and the Er3+ ions in part (c).

14.3. Using the linear combinations for plane waves given in Chap. 12 and the
coupling coefficients in Appendix D (see Sect. 14.9), find the linear combina-
tion of the appropriate partners for Γ±

8 (kni) for the fourfold levels obtained
from Γ+

5 ⊗ Γ+
6 for a material crystallizing in the simple cubic structure.



15

Application of Double Groups

to Energy Bands with Spin

In this chapter we apply the group theoretical background for the electron
spin and the spin–orbit interaction (which is discussed in Chap. 14) to the
treatment of electronic energy band models for solids (which is discussed in
Chaps. 12 and 13 for the case when the electron spin is neglected). By includ-
ing the spin–orbit interaction we can also discuss the effective g-factor, which
together with the effective mass tensor, characterize the properties of a semi-
conductor in a magnetic field. We also review the Slater–Koster method for
determination of the electronic energy band structure of crystalline solids by
interpolation and extrapolation of energy eigenvalues and eigenfunctions that
are accurately known at a few high symmetry points in the Brillouin zone
either from ab initio calculations or from experiments.

15.1 Introduction

The one-electron Hamiltonian including spin–orbit interaction is written as

H =
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ , (15.1)

where σ is the dimensionless spin operator [S = (�/2)σ]. The first two terms
of (15.1) denote the kinetic energy and periodic potential of the one-electron
Hamiltonian in a simple periodic potential V (r) that reflects the crystal sym-
metry, and the third term denotes the spin–orbit interaction H′

SO

H′
SO =

�

4m2c2
(∇V × p) · σ , (15.2)

where H = H0 + H′
SO. The Hamiltonian (15.1) is appropriate when the

spin–orbit splittings are significant compared with typical energy gaps. The
presence of the spin operator σ in the spin–orbit term H′

SO requires the use
of spin-dependent wave functions with double group symmetry designations



368 15 Application of Double Groups to Energy Bands with Spin

for the energy bands. Since the magnitude of the spin–orbit interaction is
comparable to energy band gaps for many important electronic materials, it
is important in these cases to consider the spin–orbit interaction explicitly
when carrying out energy band calculations.

Thus explicit band calculations of E(k) with spin–orbit interaction have
been carried out using all the standard techniques for energy band calcula-
tions. Quite independent of the particular calculational technique that is used,
group theoretical techniques are introduced to classify the states and to bring
the secular equation into block diagonal form. To illustrate these points we
consider explicitly the use of group theory (i.e., double groups as discussed in
Chap. 14) to treat the electronic energy bands for several situations, including
the empty lattice, the nearly free electron approximation, for k · p perturba-
tion theory and the Slater–Koster method. These examples are also designed
to provide some experience with the handling of double groups.

15.2 E(k) for the Empty Lattice
Including Spin–Orbit Interaction

In this section the calculation of the empty lattice electronic energy dispersion
relations is considered in the presence of spin–orbit interaction following the
discussion in Chap. 12 for the case where the electron spin is neglected.

Referring to (15.2) we see that both V (r) and ∇V (r) vanish for the empty
lattice, and therefore it is only the change in irreducible representations from
single group to double group representations that needs to be considered.
Thus when considering the plane waves labeled by the reciprocal lattice vec-
tors {Kni} in Table 12.2, we should now use double group irreducible repre-
sentations, which are found by taking the direct product of each single group
irreducible representation Γi with the spinor D1/2. Here the spinor is demon-
strated for the cubic O group where D1/2 transforms as Γ6 and the pertinent
direct products are easily obtained from Table 14.7. As an example of the
effect of spin on the empty lattice, consider the E(k) diagram in Fig. 12.1 for
the FCC empty lattice. The ground state label would now become Γ6, and for
the next excited state we would have

Γ6 ⊗ Γ1 + Γ6 ⊗ Γ2′ + Γ6 ⊗ Γ15 + Γ6 ⊗ Γ25′ = 2(Γ6 + Γ7 + Γ8) ,

but the eigenstates now could be also labeled more completely by using also
the single group irreducible representations to which they relate:

[Γ6(Γ1) + Γ6(Γ15)] + [Γ7(Γ2′) + Γ7(Γ25′)] + [Γ8(Γ15) + Γ8(Γ25′)] .

A similar procedure could then be applied to all the labels in Fig. 12.1 using the
appropriate character tables for the various symmetry points in the Brillouin
zone. The curves in Fig. 12.1 would not change because both V (r) = 0 and
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∇V (r) = 0, and because the Kramers degeneracy applies. Introduction of spin
into the nearly free electron approximation requires the use of double groups.

15.3 The k · p Perturbation with Spin–Orbit Interaction

Schrödinger’s equation including the spin–orbit interaction can be written as
[
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ

]
ψnk(r) = En(k)ψnk(r) , (15.3)

in which the Bloch functions ψnk(r) for H′
SO include spinors ψnk↑(r) and

ψnk↓(r) rather than the simple wave functions considered in Chap. 13.
These spinor basis functions can be written in more expanded nota-
tion as

ψnk↑(r) = eik·runk↑(r)

ψnk↓(r) = eik·runk↓(r) , (15.4)

where the arrow in the subscript of ψnk↑(r) means that the state is
generally spin up or the expectation value of σz in this state is pos-
itive, and the down arrow gives a negative expectation value for σz so
that

〈ψnk↑|σz|ψnk↑〉 > 0

〈ψnk↓|σz|ψnk↓〉 < 0 . (15.5)

The Bloch states are only pure spin up or spin down states when the spin–
orbit interaction is neglected (H′

SO ≡ 0). The spin–orbit interaction mixes
the spin-up and spin-down partners, and, as was discussed in Chap. 14 for
the atomic case, the |j, �, s,mj〉 representation becomes the appropriate ir-
reducible representation for the spin–orbit coupled system rather than the
|�, s,m�,ms〉 representation.

Let us focus our attention on one of the periodic spinor unk(r) functions
(either of the components ↑ or ↓ in (15.4) which diagonalize the Schrödinger
equation (15.3)). Using k·p perturbation theory, the corresponding differential
equation for unk(r) is

[
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ

]
unk(r)

+
�k

m
·
(

p +
�

4mc2
σ × ∇V

)
unk(r)

=
[
En(k) − �

2k2

2m

]
unk(r)

(15.6)
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in which we have made use of the vector identities:

(A × B) · C = (B × C) · A = (C × A) · B , (15.7)

or more explicitly

(∇V × p) · σeik·runk(r) = (σ × ∇V ) · p eik·runk(r) , (15.8)

and
peik·runk(r) = eik·r [�kunk(r) + punk(r)] . (15.9)

If we identify terms in (15.6) with an unperturbed Hamiltonian H0 and a per-
turbation Hamiltonian H′

k·p we obtain

H0 =
p2

2m
+ V (r) +

�

4m2c2
(∇V × p) · σ , (15.10)

and

H′
k·p =

�k

m
·
(

p +
�

4mc2
σ × ∇V

)
, (15.11)

so that Rayleigh–Schrödinger perturbation theory for energy bands near k =
0 yields the following expression for the nondegenerate state Γi [see (13.4)
and (13.9)]

EΓi
n (k) = EΓi

n (0) + (uΓi
n,0|H′|uΓi

n,0) +
∑
n′ �=n

(uΓi

n,0|H′|uΓj

n′,0)(u
Γj

n′,0|H′|uΓi

n,0)

EΓi
n (0) − E

Γj

n′ (0)
,

(15.12)
in which the unperturbed functions uΓi

n,0 are evaluated at k = 0 (the expansion
point for the k · p perturbation) and Γj labels the irreducible representations
for bands n′. The sum in (15.12) is over states Γj that couple to state Γi

through the k · p perturbation Hamiltonian given by (15.11). We note that
(15.12) has the same form as the corresponding expression without spin–orbit
interaction (13.9) except that in (15.12):

(a) The unperturbed Hamiltonian yielding the energy eigenvalues at k = 0
explicitly contains a spin–orbit term.

(b) The k · p perturbation Hamiltonian explicitly contains the spin operator
and a spin–orbit term.

(c) The irreducible representations Γi and Γj are both double group repre-
sentations.

In treating k·p perturbation theory without explicitly considering the electron
spin (see Chap. 13), we have three possibilities: nondegenerate levels, degen-
erate (or nearly degenerate) levels that are treated in first-order degenerate
perturbation theory, and degenerate levels that are treated in second-order de-
generate perturbation theory. In all three of these cases, we use group theory
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to determine which are the nonvanishing matrix elements of a vector operator
taken between double group states, and which of the nonvanishing matrix ele-
ments are equal to each other. More explicitly, for the case of a crystal with Oh

symmetry, all the Γi and Γj representations have either Γ±
6 , Γ

±
7 and Γ±

8 sym-
metry at k = 0 since the spatial part of the wavefunctions transform according
to one of the five ordinary irreducible representations and the direct product
of an ordinary irreducible representation with the spinor D+

6 yields one of the
double group representations. By inspection, we find that for the Oh group all
the irreducible representations Γi are at least twofold degenerate. But this de-
generacy is maintained for all k values and is lifted only by the application of
an external (or internal) magnetic field. This twofold degeneracy, know as the
Kramers degeneracy is generally found in the absence of a magnetic field. We
therefore look for this degeneracy when working practical problems, because
it greatly reduces the labor in dealing with problems involving spin. Because
of this Kramers degeneracy, we can effectively use nondegenerate perturbation
theory to deal with twofold levels such as the Γ±

6 and Γ±
7 levels occurring in

many applications.
Group theory can be used to greatly simplify the k ·p expansion for one of

the Γ±
6 or Γ±

7 levels. For example, take Γi = Γ+
6 and note that the generalized

momentum operator P including the spin–orbit interaction explicitly

P = p +
�

4mc2
σ × ∇V (15.13)

transforms like the Γ−
15 irreducible representation. The generalized momentum

operator P transforms as Γ−
15 whether or not the spin–orbit interaction is

included, since p is a vector and so is (σ × ∇V ), both being radial vectors.
Since Γ+

6 ⊗Γ−
15 = Γ−

6 +Γ−
8 and since Γ+

6 is orthogonal to Γ−
6 and Γ−

8 , we have
no linear k term in the k · p expansion of (15.12). In the quadratic term we
can only have intermediate states with Γ−

6 and Γ−
8 symmetry. For example,

if the spin–orbit interaction is neglected for a crystal with Oh symmetry, then
a nondegenerate Γ+

1 state is coupled by the k·p perturbation Hamiltonian only
to a Γ−

15 intermediate state (see Sect. 13.3). When the spin–orbit interaction
is included, the Γ+

1 and Γ−
15 states become the following double group states

(see Table 14.7):

Γ+
1 → Γ+

6

Γ−
15 → Γ−

6 + Γ−
8 , (15.14)

so that, with the spin–orbit interaction, a Γ+
6 band will couple to bands with

Γ−
6 and Γ−

8 symmetries. We note that bands with Γ−
8 symmetry can arise

from single-group bands with Γ−
12, Γ

−
15 and Γ−

25 symmetries. In this sense the
spin–orbit interaction gives more possibilities for immediate states.

Again we can use group theory to show relations between the various
nonvanishing matrix elements of P , and as before, only a very small number
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of matrix elements are independent. To study these matrix elements we use
the basis functions for the double group irreducible representations discussed
in Sects. 14.5–14.7.

15.4 E(k) for a Nondegenerate Band
Including Spin–Orbit Interaction

In this section we discuss the form of E(k) for a nondegenerate band including
spin–orbit interaction while in Sect. 15.5 the corresponding discussion is given
for degenerate energy bands, which is followed by a discussion of the effective
g-factor in Sect. 15.6, which is a topic that arises because of the presence of
spin.

The form of E(k) for a nondegenerate band is developed in Sect. 15.3
through nondegenerate k · p perturbation theory see (15.12) by considering
the form of the k ·p matrix elements implied by group theory. Since p and P
both transform as Γ−

15, the group theory is not changed and it is only in the
numerical evaluation of the specific terms that we need distinguish between p
and P . In this section, we illustrate the theory by an example, the nondegen-
erate Γ+

6 band for a cubic crystal with Oh symmetry for the group of the wave
vector at k = 0. From Sect. 14.5, we take as basis functions for the Γ+

6 state:

Γ+
6 :

{
1 ↑
1 ↓ .

(15.15)

Within the framework of k·p perturbation theory, the Γ+
6 state couples only to

Γ−
6 and Γ−

8 since Γ+
6 ⊗Γ−

15 = Γ−
6 +Γ−

8 . For the Γ−
6 and Γ−

8 states, we use the
basis functions derived from (14.41) and (14.46), together with the extension
Lx, Ly, Lz → x, y, z discussed in Sect. 14.7 so that for Γ−

6 (Γ−
15) we write

|j,mj〉 State Basis Function∣∣ 1
2 ,

1
2

〉 (
1√
3

)
[(x+ iy) ↓ −z ↑]∣∣ 1

2 ,− 1
2

〉 (
1√
3

)
[−(x− iy) ↑ +z ↓] ,

(15.16)

and for Γ−
8 (Γ−

15) we write

|j,mj〉 State Basis Function∣∣ 3
2 ,

3
2

〉 (
1√
2

)
(x+ iy) ↑∣∣ 3

2 ,
1
2

〉 (
1√
6

)
[(x+ iy) ↓ +2z ↑]∣∣ 3

2 ,− 1
2

〉 (
1√
6

)
[(x− iy) ↑ +2z ↓]∣∣ 3

2 ,− 3
2

〉 (
1√
2

)
(x− iy) ↓ .

(15.17)
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We can read off the basis functions relating the |j,mj〉 representation and
the |�sm�ms〉 representation for the Γ−

6 (j = 1/2) and Γ−
8 (j = 3/2) states

that are derived from the Γ−
15 level directly from (15.16) and (15.17). The x, y

and z in (15.16) and (15.17) refer to the three partners of the Γ−
15 state. For

this case there are no nonvanishing matrix elements in (15.12) in first-order
perturbation theory. In second-order, the nonvanishing terms are

(
1 ↑ |Px|

(
1√
2

)
(x+ iy) ↑

)
=
(

1√
2

)
(1|Px|x)

(
1 ↑ |Py |

(
1√
2

)
(x+ iy) ↑

)
=
(

i√
2

)
(1|Py|y)

(
1 ↑ |Pz |

(
1√
6

)
{(x+ iy) ↓ +2z ↑}

)
=
(

2√
6

)
(1|Pz|z)

(
1 ↑ |Px|

(
1√
6

)
{(x− iy) ↑ +2z ↓}

)
=
(

1√
6

)
(1|Px|x)

(
1 ↑ |Py |

(
1√
6

)
{(x− iy) ↑ +2z ↓}

)
= −

(
i√
6

)
(1|Py|y)

(
1 ↑ |Pz |

(
1√
3

)
{(x+ iy) ↓ −z ↑}

)
= −

(
1√
3

)
(1|Pz |z)

(
1 ↑ |Px|

(
1√
3

)
{(−x+ iy) ↑ +z ↓}

)
= −

(
1√
3

)
(1|Px|x)

(
1 ↑ |Py |

(
1√
3

)
{(−x+ iy) ↑ +z ↓}

)
=
(

i√
3

)
(1|Py|y) . (15.18)

Summing up the second-order terms and utilizing the equality

(1|Px|x) = (1|Py|y) = (1|Pz |z) , (15.19)

we obtain

EΓ+
6 (k) = EΓ+

6 (0) +
�

2|(1|Px|x)|2
m2Eg

{
1
3
k2

x +
1
3
k2

y +
1
3
k2

z

}

+
�

2|(1|Px|x)|2
m2(Eg +Δ)

{
1
2
k2

x +
1
2
k2

y +
2
3
k2

z +
1
6
k2

x +
1
6
k2

y

}

= EΓ+
6 (0) +

�
2k2

m2
|(1|Px|x)|2

{
1

3Eg
+

2
3(Eg +Δ)

}
, (15.20)

where Eg and Eg + Δ are defined in Fig. 15.1. One can note that the en-
ergy bands in (15.12) have subscripts n and n′ to denote their band index
identification. The EΓ+

6 (k) in (15.20) denotes the s-band lying low in the
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Fig. 15.1. Energy versus k at the Γ point showing the effect of the spin–orbit
interaction in splitting the p-level. The relevant bands are labeled by the double
group representations for a cubic group near k = 0 with Oh symmetry

valence band which through k · p perturbation theory is shown to couple to
the conduction band levels with Γ−

6 and Γ−
8 symmetries arising from the

conduction p bands (see Fig. 15.1).

15.5 E(k) for Degenerate Bands
Including Spin–Orbit Interaction

In dealing with k · p perturbation theory for degenerate states we again use
basis functions such as are given by (14.41) and (14.46) to classify the degen-
erate states. For example, instead of the (3 × 3) secular equation for p-bands
(Γ−

15 symmetry) without spin–orbit coupling that was discussed in Sect. 13.5,
inclusion of the spin–orbit interaction leads to solution of a (6 × 6) secu-
lar equation. This (6 × 6) equation assumes block diagonal form containing
a (4 × 4) block with Γ−

8 symmetry and a (2 × 2) block with Γ−
6 symmetry,

because the spin functions transform as D1/2 or Γ+
6 and because

Γ+
6 ⊗ Γ−

15 = Γ−
6 + Γ−

8 , (15.21)

where Γ−
6 corresponds to a j = 1/2 state and Γ−

8 to a j = 3/2 state (see
Fig. 15.1). Thus the Γ−

15 conduction band for the case of no spin becomes Γ−
6

and Γ−
8 when spin–orbit interaction is included (see Fig. 15.1).

An important application of degenerate k ·p perturbation theory including
the effects of spin–orbit interaction is to the valence band of the group IV
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and III–V compound semiconductors. A description of E(k) for the valence
band is needed to construct the constant energy surfaces for holes in these
semiconductors. The k · p perturbation theory method is useful for analysis
of cyclotron resonance measurements on holes in group IV and III–V semi-
conductors, which were studied in the 1950s and 1960s for 3D crystals and
40–50 years later these measurements are being used to study low-dimensional
nanostructured systems.

One way to solve for the energy levels of the valence band of a group IV
semiconductor about the valence band maximum k = 0 (Γ+

25 single group
level) is to start with the (6 × 6) matrix labeled by the double group basis
functions. The secular equation is constructed by considering

H = H0 + H′
k·p , (15.22)

in which the matrix elements for H′
k·p vanish in first-order. Therefore in degen-

erate second-order perturbation theory we must replace each matrix element
〈i|H′|j〉 by

〈i|H′|j〉 +
∑
α

〈i|H′|α〉〈α|H′|j〉
Ei − Eα

, (15.23)

in which H′ denotes the k · p perturbation Hamiltonian (see Sect. 13.5), and
i, j, α all denote double group irreducible representations. In this case we ob-
tain the appropriate basis functions for the Γ+

7 and Γ+
8 states from the com-

bination that we previously derived using the raising operator J+ = L+ + S+

see (14.41) and (14.46) and making the transcription Lx, Ly, Lz → εx, εy, εz

discussed in Sect. 14.7. Thus for the Γ+
7 (Γ+

25) states, the basis functions are

|j,mj〉 State Basis Function∣∣1
2 ,

1
2

〉
μ1 = 1√

3
[(εx + iεy) ↓ −εz ↑]∣∣1

2 ,
1
2

〉
μ2 = 1√

3
[−(εx − iεy) ↑ +εz ↓] ,

(15.24)

and for the Γ+
8 (Γ+

25) states, the basis functions are

|j,mj〉 State Basis Function∣∣ 3
2 ,

3
2

〉
ν1 = 1√

2
(εx + iεy) ↑∣∣ 3

2 ,
1
2

〉
ν2 = 1√

6
[(εx + iεy) ↓ +2εz ↑]∣∣ 3

2 ,− 1
2

〉
ν3 = 1√

6
[(εx − iεy) ↑ +2εz ↓]∣∣ 3

2 ,− 3
2

〉
ν4 = 1√

2
(εx − iεy) ↓ ,

(15.25)

in which the states Γ+
7 and Γ+

8 are labeled by |j,mj〉 and the components of
the function εi relate to x, y, z partners according to
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εx = yz

εy = zx

εz = xy . (15.26)

In solving for E(k) for the valence band of a semiconductor, such as germa-
nium, we use the unperturbed and perturbed Hamiltonians given by (15.10)
and (15.11), respectively. The states used to solve the eigenvalue problem are
labeled by the wave functions that diagonalize the “unperturbed” Hamiltonian
H0 of (15.10). Since H′

k·p transforms as Γ−
15 and since Γ−

15 ⊗ Γ+
7 = Γ−

7 + Γ−
8 ,

we conclude that H′
k·p does not couple band Γ+

7 to band Γ+
7 . This same result

follows more easily just from parity arguments (i.e., the evenness and oddness
of states for systems exhibiting inversion symmetry).

A solution to the resulting (6 × 6) secular equation involves explicit com-
putation of matrix elements as was done for the spinless case in Sect. 13.5. For
brevity, we will not include a detailed evaluation of all the matrix elements,
but we will instead just summarize the results. For the Γ+

7 (Γ+
25) level, the

dispersion relation (see Fig. 14.1) E(k) assumes the form

E(Γ+
7 ) = k2

(
�

2

2m
+ 4C1 +

4
3
C2 + C3

)
, (15.27)

where

C1 =
�

2

m2

⎧⎨
⎩

∑
Γ−

8 (Γ−
12)

|〈Γ+
7 |Px|Γ−

8 〉|2
E0 − E�

+
∑

Γ−
8 (Γ−

25)

|〈Γ+
7 |Px|Γ−

8 〉|2
E0 − E�

⎫⎬
⎭

C2 =
�

2

m2

∑
Γ−

8 (Γ−
15)

|〈Γ+
7 |Px|Γ−

8 〉|2
E0 − E�

C3 =
�

2

m2

∑
Γ−

7 (Γ−
2 )

|〈Γ+
7 |Pz|Γ−

7 〉|2
E0 − E�

, (15.28)

in which
P = p +

�

4m2c2
(σ × ∇V ) , (15.29)

and E� is an intermediate state with the indicated symmetries. Since bands
with Γ−

12 and Γ−
25 symmetries do not lie close to the valence band Γ+

25 in
a typical cubic semiconductor, we would expect C1 to be much smaller than
C2 or C3.

The solution for the Γ+
8 level in the valence band is a good deal more

complicated than that for the Γ+
7 level, and yields the result

E[Γ+
8 (Γ+

25)] = A k2 ±
√
B2k4 + C2(k2

xk
2
y + k2

yk
2
z + k2

zk
2
x) , (15.30)
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where

A = �
2

2m + 2
3E1 + 2E2 + E3 + 5E4 + 1

2E5

B2 = 4
9E

2
1 + 4E2

2 + 16E2
4 + 1

4E
2
5 − 8

3E1E2 + 16
3 E1E4

− 2
3E1E5 − 16E2E4 + 2E2E5 − 4E4E5

C2 = − 9
16E

2
5 + 16E1E2 − 32E1E4 + E1E5 − 9E2E5 + 18E4E5 ,(15.31)

and where

E1 =
�

2

m2

∑
Γ−

6 (Γ−
15)

|〈Γ+
8 |Px|Γ−

6 〉|2
E0 − E�

E2 =
�

2

m2

∑
Γ−

7 (Γ−
2 )

|〈Γ+
8 |Px|Γ−

7 〉|2
E0 − E�

E3 =
�

2

m2

∑
Γ−

8 (Γ−
15)

|〈Γ+
8 (Γ+

25)|Pz |Γ−
8 (Γ−

15)〉|2
E0 − E�

E4 =
�

2

m2

∑
Γ−

8 (Γ−
25)

|〈Γ+
8 (Γ+

25)|Pz |Γ−
8 (Γ−

25)〉|2
E0 − E�

E5 =
�

2

m2

∑
Γ−

8 (Γ−
12)

|〈Γ+
8 (Γ+

25)|Pz |Γ−
8 (Γ−

12)〉|2
E0 − E�

. (15.32)

In (15.32), E4 and E5 are expected to be small using arguments similar to
those given in (15.28) for the E[Γ+

7 (Γ+
25)] band dispersion. Because of the

E0 − E� denominator that enters second-order degenerate perturbation the-
ory, the most important contributions to k ·p perturbation theory come from
bands lying close in energy to the E0 level, which in this case refers to the
Γ -point valence band energy extrema. For germanium the levels lying rel-
atively close to the Fermi level have Γ+

25, Γ
+
1 , Γ

−
2 and Γ−

15 symmetries (see
Fig. 14.1) so that only the double group states derived from these states will
contribute significantly to the sums in (15.32). The far-lying levels only con-
tribute small correction terms. See Problem 15.2 for more details on the so-
lutions to E[Γ+

8 (Γ+
25)] and E[Γ+

7 (Γ+
25)]. To construct E(k) throughout the

Brillouin zone as in Fig. 14.1, we use compatibility relations to move away
from k = 0, and then we use different compatibility relations to get to the BZ
boundary.

Although the spin–orbit perturbation term contained in H0 in (15.10)
does not depend on k, the resulting energy bands show a k-dependent
spin–orbit splitting. For example, in Fig. 14.1 we note that the spin–
orbit splitting of the Γ+

8 (Γ+
25) level is Δ = 0.29 eV at the Γ point in
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Ge while along the Λ axis, the splitting is only about 2/3 this value
and remains constant over most of the Λ axis. For the corresponding
levels along the Δ or (100) direction, the spin–orbit splitting is very
much smaller (see Fig. 14.1). When the spin–orbit interaction is weak,
it is convenient to deal with this interaction in perturbation theory. We
note that the spin–orbit interaction can be written in a diagonal form
using the |j,mj〉 representation. Therefore instead of writing the wave-
functions for the unperturbed problem in the |�, s,m�,ms〉 representa-
tion, as we did here, it is convenient to use the |j,mj〉 representation
for the whole perturbation theory problem. A classic work on spin–
orbit interaction in solids [33] has been applied to k · p perturbation
theory [31].

15.6 Effective g-Factor

One of the important applications of double groups in solid-state physics is
to the treatment of the effective g-factor which directly relates to the electron
spin. In calculating the effective g-factor (geff), we employ k · p perturbation
theory with spin, and show that in a magnetic field B, new terms arise in
the one-electron Hamiltonian. Some of these new terms have the symmetry
of an axial vector (e.g., the magnetic moment μeff), giving rise to an inter-
action μeff · B. We review first the origin of the effective g-factor in solid
state physics and show the important role of group theory in the evaluation
of the pertinent matrix elements. In this problem we consider three perturba-
tions:

(a) Spin–orbit interaction,
(b) k · p perturbation,
(c) Perturbation by a magnetic field.

We will see that the effective one-electron Hamiltonian for an electron in
a solid in an applied magnetic field can be written as

Heff =
1

2m∗
αβ

(
p − e

c
A
)2

− geffμBmsB , (15.33)

which implies that in effective mass theory, the periodic potential is replaced
by both an effective mass tensor and an effective g-factor. Just as the effective
mass of an electron can differ greatly from the free electron value, so can
the effective g-factor differ greatly from the free electron value of 2. To see
how this comes about, let us consider energy bands about a band extrema
in a crystal with Oh symmetry. The discussion given here follows closely
that given for k · p perturbation theory in Chap. 13, and as expanded in this
chapter by including the spin–orbit interaction.
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Every entry in the secular equation for the k · p Hamiltonian is of the fol-
lowing form since there are no entries in first-order that couple the degenerate
states:

�
2k2

2m
δn,n′ +

∑
n′′

〈n|H′|n′′〉〈n′′|H′|n′〉
En − En′′

, (15.34)

where
∑

n′′ denotes the sum over states outside the nearly degenerate set
(NDS, see Sect. 13.5) and where we are assuming that every member in
the NDS is of approximately the same energy, like the situation for degen-
erate p-bands or of strongly coupled s and p bands. The k · p perturba-
tion Hamiltonian is either H′ = (�/m)k · p for the spinless problem or it is
H′ = (�/m)k ·P for the problem with spin, where P = p+(�/4mc2)σ×∇V .
With this identification of H′ we can rewrite the entries to the secular equation
(15.34) as

∑
αβ

Dnn′αβkαkβ =
∑
αβ

kαkβ

{
�

2

2m
δnn′δαβ +

�
2

m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n′〉
E

(0)
n − E

(0)
n′′

}
,

(15.35)

where
∑

αβ denotes a sum on components of the k vectors, and
∑

n′′ denotes
a sum over members outside the NDS, and where Dnn′αβ denotes the term
in curly brackets, and depends on the band indices n, n′. The eigenvalues are
found by solving the secular equation

∑
n′

⎡
⎣∑

αβ

Dnn′αβkαkβ − Eδnn′

⎤
⎦ fn′ = 0 . (15.36)

Equation (15.36) is the eigenvalue problem in zero magnetic field. The same
form for the secular equation also applies when B �= 0. This equation sym-
bolically represents the problem with spin if the fn′ functions are taken
to transform as irreducible representations of the crystal double group and
the P vectors are chosen so that they include the spin–orbit interaction
P = p + (�/4mc2)(σ × ∇V ).

In an external magnetic field we replace the operator p → p − (e/c)A
(where A is the vector potential, and the magnetic field B is related to A by
B = ∇ × A), in the Hamiltonian and from this it follows generally that in
(15.36) we must make the transcription

�k → �

i
∇ − e

c
A , (15.37)

when a magnetic field is applied. The relation (15.37) is called the Kohn–
Luttinger transcription and is widely used in the solution of magnetic field
problems in semiconductor physics. As a result of (15.37), k in a magnetic
field becomes a noncommuting operator, rather than just a simple commuting
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operator in zero magnetic field. Let us, for example, select a gauge for the
vector potential

Ax = −By (15.38)

Ay = 0 (15.39)

Az = 0 , (15.40)

so that B = Bẑ, and from (15.37), �kz becomes

�kx =
�

i

∂

∂x
+
e

c
By , (15.41)

�ky =
�

i

∂

∂y
, (15.42)

so that kx and ky no longer commute and we obtain the commutation relation

[kx, ky] =
ieB

�c
. (15.43)

The commutation relation (15.43) tells us that the amount by which the
operators kx and ky fail to commute is proportional to B. We note that all
other pairs of wave vector components, such as [kx, kz], etc. still commute.
Since the order of operators is important in a magnetic field, we will need to
rewrite the secular equation (15.36) when B �= 0 in terms of a symmetric and
an antisymmetric part:

Dnn′αβkαkβ =
1
2
DS

nn′αβ {kα, kβ}︸ ︷︷ ︸
anticommutator

+
1
2
DA

nn′αβ [kα, kβ ]︸ ︷︷ ︸
commutator

, (15.44)

where the symmetric part is

DS
nn′αβ =

1
2

[Dnn′αβ +Dnn′βα] , (15.45)

and the antisymmetric part is

DA
nn′αβ =

1
2

[Dnn′αβ −Dnn′βα] , (15.46)

in which the commutator is [kα, kβ ] = kαkβ − kβkα and the anticommutator
is {kα, kβ} = kαkβ + kβkα. Thus the symmetric part DS

nn′αβ can be written
explicitly as

DS
nn′αβ =

�
2

2m
δnn′δαβ +

�
2

2m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n′〉 + 〈n|Pβ |n′′〉〈n′′|Pα|n′〉
En(0) − En′′(0)

(15.47)
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and gives the effective mass tensor through the relation

1
m∗

αβ

=
∂2En

�2∂kα∂kβ
. (15.48)

Since the electron spin is now included, the states in (15.47) are labeled by
irreducible representations of the double groups and P is a function of σ, as
seen in (15.11).

The antisymmetric part DA
nn′αβ is from the above definition:

DA
nn′αβ =

�
2

2m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n′〉 − 〈n|Pβ |n′′〉〈n′′|Pα|n′〉
En(0) − En′′(0)

. (15.49)

In the case of a spinless electron in a cubic crystal, DA
nn′αβ would vanish

identically because there is only one independent momentum matrix element
in cubic Oh symmetry in the absence of a magnetic field. If now we also include
the electron spin and the double group representations, these arguments do
not apply and we will find that DA

nn′αβ does not generally vanish and in fact
contributes strongly to the effective g-factor. By way of comparison, the zero
magnetic field eigenvalue problem is

∑
n′

⎡
⎣∑

αβ

Dnn′αβkαkβ − Eδnn′

⎤
⎦ fn′ = 0 , (15.50)

and the magnetic field eigenvalue problem then becomes

∑
n′

⎧⎨
⎩
∑
αβ

1
2
[
DS

nn′αβ{kα, kβ} +DA
nn′αβ [kα, kβ ]

]− μBσ · B − Eδnn′

⎫⎬
⎭ fn′ = 0 ,

(15.51)
where μB is the Bohr magneton

μB = − |e|�
2mc

,

and σ = 2S/�. The term DS
nn′αβ gives rise to a replacement of the periodic

potential by an effective mass tensor. In computing m∗
αβ we ordinarily neglect

the difference between p and P .
In the presence of a magnetic field, the wavevectors k are operators which

act on the effective mass wave functions fn′ . From (15.43) we see that the
components of the wave vector operator do not commute, so that

[kα, kβ ] =
ieBγ

�c
, (15.52)

and the commutator in (15.52) vanishes in zero magnetic field, as it should.
Here the α, β, γ directions form a right-handed coordinate system. The term
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DA
nn′αβ vanishes if there is no spin. The commutator [kα, kβ ] transforms as

an axial vector. Because of the form of DA
nn′αβ given in (15.49), we see that

DA
nn′αβ also transforms as an axial vector. Therefore the term DA

nn′αβ has the
same symmetry properties as −μBσ and gives rise to an effective magnetic
moment different from the free electron value of the Bohr magneton μB. If we
now write

[kx, ky] =
ieBz

�c
= iBz

(
e�

2mc

)(
2m
�2

)
= iμBBz

2m
�2

, (15.53)

then

DA
N ′s[kx, ky] =

iBz

m
μB

∑
n′′

〈n|Px|n′′〉〈n′′|Py |n′〉 − 〈n|Py|n′′〉〈n′′|Px|n′〉
En(0) − En′′(0)

,

(15.54)
so that the effective magnetic moment of an electron in a crystal is

μ∗
αβ = |μB|

[
δαβ +

i

m

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n〉 − 〈n|Pβ |n′′〉〈n′′|Pα|n〉
En(0) − En′′(0)

]
,

(15.55)
where the effective g-factor is related to μ∗

αβ by

geff αβ = 2μ∗
αβ/μB . (15.56)

We recall that the energy levels of a free electron in a magnetic field are

Ems = gμBmsB , (15.57)

so that for spin 1/2, the spin splitting of the levels is 2μBB. In a crystalline
solid, the spin splitting becomes 2μ∗B.

For comparison we include the corresponding formula for the effective mass
tensor component

1
m∗

αβ

=
δαβ

m
+

1
m2

∑
n′′

〈n|Pα|n′′〉〈n′′|Pβ |n〉 + 〈n|Pβ |n′′〉〈n′′|Pα|n〉
En(0) − En′′ (0)

, (15.58)

in which
P = p +

�

4mc2
σ × ∇V . (15.59)

Thus an electron in a magnetic field and in a periodic potential acts as if the
periodic potential can be replaced by letting m→ m∗

αβ and μB → μ∗
αβ . Thus,

symbolically we would write an effective Hamiltonian as

Heff =
1

2m∗
(
p− e

c
A
)2

− μ∗σ · B , (15.60)
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where
μ∗ = μBgeff/2 . (15.61)

In deriving the formula for the effective g-factor above, we did not pay much
attention to whether P was merely the momentum operator p or the more
complete quantity including the spin–orbit interaction

p +
�

4mc2
(σ × ∇V ) .

It turns out that it is not very important whether we distinguish between
matrix elements of p and of P since the matrix element of

�

4mc2
(σ × ∇V )

is generally quite small. However, what is important, and even crucial,
is that we consider the states n, n′, n′′ in the above expressions as states
characterized by the irreducible representations of the crystal double
groups.

Let us illustrate how we would proceed to calculate an effective g-factor
for a typical semiconductor. Let us consider the effective g-factor for ger-
manium at the Γ point (k = 0). In Fig. 15.2 we let Eg denote the en-
ergy gap between the conduction band and the uppermost valence band,
and we let Δ denote the spin–orbit splitting of the valence band. In ger-
manium Eg ∼ 0.8 eV and Δ ∼ 0.3 eV. We will assume in this simple exam-
ple that these are the only bands to be included in carrying out the sum
on n′′. Since the band extrema occur at k = 0, the effect of the transla-
tions τ = (a/4)(1, 1, 1) are not important for Ge in this limit and can be
neglected.

To evaluate μ∗ and m∗ in (15.55) and (15.58) we use the basis func-
tions discussed in Sects. 14.6 and 14.7 to find the nonvanishing matrix
elements of �k · p/m. We write the basis functions for Γ+

8 (Γ+
25) and

Γ+
7 (Γ+

25) in a symbolic form from (15.24) and (15.25) so that we can
make use of all the group theory ideas that were discussed in Sect. 13.5
in connection with the corresponding problem without spin. This ap-
proximation is valid if Δ � Eg and each double group level can be
clearly identified with the single group level from which it originates.
Otherwise the Γ+

8 levels mix appreciably with one another and all ma-
trix elements must be evaluated in the double group representation di-
rectly, so that the numerical estimates obtained here would have to be
revised.

Now let us evaluate the matrix elements that go into (15.55) for μ∗. One
set of matrix elements have the form:〈

γ− ↑ |px|32 ,
3
2

〉
=
〈
γ− ↑ |px| 1√

2
(εx + iεy) ↑

〉
. (15.62)
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Fig. 15.2. Level ordering at the Γ point in Ge for the energy bands near the Fermi
level

For the Γ−
7 state we take the basis functions to be (γ− ↑, γ− ↓) where γ−

is a basis function for the Γ−
2 representation. For the basis functions for Γ+

8

(Γ+
25) we use

|j,mj〉 State Basis Function∣∣3
2 ,

3
2

〉
ν1 = 1√

2
(εx + iεy) ↑∣∣3

2 ,
1
2

〉
ν2 = 1√

6
[(εx + iεy) ↓ +2εz ↑]∣∣3

2 ,− 1
2

〉
ν3 = 1√

6
[(εx − iεy) ↑ +2εz ↓]∣∣3

2 ,− 3
2

〉
ν4 = 1√

2
(εx − iεy) ↓ .

(15.63)

From Sect. 13.5 we have (Γ±
2 |H′|Γ∓

25,α) = A2�kα/m, where A2 =
(Γ±

2 |px|Γ∓
25,x) is the only independent matrix element connecting these sym-

metry types, where we note that the basis function for Γ−
2 symmetry is xyz.

Using the basis functions for Γ+
8 (Γ+

25) given by (15.63) we obtain

〈
γ− ↑∣∣ px

∣∣∣∣32 ,
3
2

〉
=

1√
2
A2

〈
γ− ↑∣∣ px

∣∣∣∣32 ,
1
2

〉
= 0

〈
γ− ↑∣∣ px

∣∣∣∣32 ,−
1
2

〉
=

1√
6
A2

〈
γ− ↑∣∣ px

∣∣∣∣32 ,−
3
2

〉
= 0 ,
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where we consider the ortho-normality of both the spin and orbital states. For
the py matrix, the same procedure gives

〈
γ− ↑∣∣ py

∣∣∣∣32 ,
3
2

〉
=

i√
2
A2

〈
γ− ↑∣∣ py

∣∣∣∣32 ,
1
2

〉
= 0

〈
γ− ↑∣∣ py

∣∣∣∣32 ,−
1
2

〉
= − i√

6
A2

〈
γ− ↑∣∣ py

∣∣∣∣32 ,−
3
2

〉
= 0 .

To find the contribution to μ∗/μB, we sum (15.55) over the four Γ+
8 levels to

obtain
∑

i

[〈γ− ↑ |px|νi〉〈νi|py|γ− ↑〉 − 〈γ− ↑ |py|νi〉〈νi|px|γ− ↑〉]
Eg

=
1
Eg

[{
A2√

2

}{
− iA

∗
2√
2

}
+
{
A2√

6

}{
iA∗

2√
6

}

−
{
iA2√

2

}{
A∗

2√
2

}
−
{
− iA2√

6

}{
A∗

2√
6

}]

=
|A2|2
Eg

[
−2i

3

]
. (15.64)

We thus obtain for the contribution from the Γ+
8 (Γ+

25) levels to (μ∗/μB)
a value of

i

m

(
−2i

3

) |A2|2
Eg

=
2|A2|2
3mEg

. (15.65)

Let us now find the contribution to μ∗/μB from the spin–orbit split-off bands.
Here we use the basis functions for Γ+

7 (Γ+
25)

|j,mj〉 State Basis Function∣∣1
2 ,

1
2

〉
μ1 = 1√

3
[(εx + iεy) ↓ −εz ↑]∣∣1

2 ,− 1
2

〉
μ2 = 1√

3
[−(εx − iεy) ↑ +εz ↓] ,

(15.66)

so that the matrix elements for px and py become

〈
γ− ↑∣∣ px

∣∣∣∣12 ,
1
2

〉
= 0

〈
γ− ↑∣∣ px

∣∣∣∣12 ,−
1
2

〉
= − 1√

3
A2
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〈
γ− ↑∣∣ py

∣∣∣∣12 ,
1
2

〉
= 0

〈
γ− ↑∣∣ py

∣∣∣∣12 ,−
1
2

〉
=

i√
3
A2 .

We thus obtain the contribution of

i
m(Eg +Δ)

[
2i
3
|A2|2

]
= −2

3
|A2|2

m(Eg +Δ)
(15.67)

to μ∗/μB in (15.55) from the Γ+
7 (Γ+

25) levels. Adding up the two contributions
from (15.65) and (15.67) we finally obtain

(
μ∗

μB

)
orbital

= −2|A2|2
3m

[
1

Eg +Δ
− 1
Eg

]
+ 1 , (15.68)

where +1 in (15.68) is the free electron contribution.
We can now evaluate |A2|2 in terms of the conduction band effective mass

using the symmetric contribution DS
nn′αβ and for this term we can use the

relation
m

m∗ = 1 +
2
m

∑
n

|〈γ− ↑ |px|n〉|2
EΓ2′ (0) − En(0)

. (15.69)

Evaluating the matrix elements in (15.69), we thus obtain

m

m∗ = 1 +
2
m

[ |A2|2
2Eg

+
|A2|2
6Eg

+
|A2|2

3(Eg +Δ)

]
≈ 2

3m
|A2|2

[
2
Eg

+
1

Eg +Δ

]
,

(15.70)

where the free electron term of unity is usually small compared to other terms
in the sum in (15.70) and can be neglected in many cases. Neglecting this term,
we now substitute for |A2|2 in terms of m∗ to obtain

geff =
2μ∗

μB
= 2 − 2m

m∗

(
Δ

3Eg + 2Δ

)
. (15.71)

In the limit, Δ → 0, then g → 2 in agreement with the results for the free
electron g-factor. In the limit Δ� Eg

geff → 2 − m

m∗ , (15.72)

which implies geff → −m/m∗ for carriers with very light masses.
For germanium, for which m∗/m ∼ 0.12, Δ ∼ 0.3 eV, and Eg ∼ 0.8 eV, the

effective g-factor mostly cancels the free electron contribution:
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Fig. 15.3. Landau levels in InSb showing the spin splitting resulting from the large
negative effective g-factor

geff = 2
[
1 −

(
1

0.12

)
0.3

3(0.8) + 2(0.3)

]
= 2

[
1 − 1

1.2

]
� 1

3
. (15.73)

For InSb the spin–orbit splitting is large compared with the direct band gap
m∗/m ∼ 0.013, Δ ∼ 0.9 eV, and Eg ∼ 0.2 eV

geff ∼ 2
[
1 −

(
1

0.013

)
0.9

3(0.2) + 2(0.9)

]
∼ 2(1 − 28) � −54 (15.74)

leading to the picture for InSb shown in Fig. 15.3. In InSb, the spin splitting
is almost as large as the Landau level separation. However, the geff has the
opposite sign as compared with the free electron spin g-value, where we note
that because of the negative sign of the charge on the electron and on the Bohr
magneton, the free electron spin state of lowest energy is aligned antiparallel
to the applied field. Sometimes it is convenient to define the spin effective
mass by the relation

μ∗

μB
=

m

m∗
s

, (15.75)

where m∗
s denotes spin effective mass, so that geff = 2m/m∗

s [19,52,62,74,77].
In general, the spin and orbital effective masses will not be the same.

If they are (see Fig. 15.4), the Landau level spacing is equal to the spacing
between spin levels. The physical reason why these masses are not expected
to be equal is that the orbital mass is determined by a momentum matrix
element (which transforms as a radial vector). Since the spin mass depends
on the coupling between electronic energy bands through an operator which
transforms as an axial vector, different energy bands with different symmetries
are coupled for the two cases.

In treating cyclotron resonance transitions, the transitions are spin con-
serving and the g-factors usually cancel out. They are, however, important for
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Fig. 15.4. Strict two-band model where the Landau level separation is equal to the
spin splitting, as occurs for the case of a free electron gas. This limit applies quite
well to the L-point Landau levels for the conduction band in bismuth

interband Landau level transitions even though the transitions are spin con-
serving, since the g-factors in the valence and conduction bands can be differ-
ent. Thus spin up and spin down transitions can occur at different energies.
The effective g-factors are directly observed in spin resonance experiments
which occur between the same Landau level but involve a spin flip.

Of interest also is the case where the spin effective mass and the orbital
effective mass are equal to one another. In a strict two-band model this must be
the case. For bismuth, the strongly coupled two-band model is approximately
valid and m∗

s � m∗ (see Fig. 15.4). Landau level separations equal to the spin
splitting also occur for the free electron magnetic energy levels. However, for
band electrons, the Landau level separations are proportional to the inverse
cyclotron effective mass rather than the inverse free electron mass.

For high mobility (low effective mass) materials with a small spin–orbit
interaction, the Landau level separation is large compared with the spin split-
ting (see Fig. 15.3). On the other hand, some high mobility narrow gap semi-
conductors with a large spin–orbit interaction can have spin splittings larger
than the Landau level separations; such a situation gives rise to interesting
phenomena at high magnetic fields.

Summarizing, the effective mass Hamiltonian was considered in the pres-
ence of a magnetic field, taking into account the spin on the electron. In this
case, we form the following symmetrized combinations of wave vectors:

Γ+
1 → k2

x + k2
y + k2

z

Γ+
12 → k2

x + ωk2
y + ω2k2

z , k
2
x + ω2k2

y + ωk2
z ,

Γ+
25 → ({ky, kz}, {kz, kx}, {kx, ky})
Γ+

15 → ([ky , kz], [kz , kx], [kx, ky ]) (15.76)



15.7 Fourier Expansion of Energy Bands 389

in which the wave vector is taken as an operator. These symmetrized forms
of the wave vector are used in connection with the effective g-factor for an
electron in a periodic solid to which a magnetic field is applied [19,52,62,74,77].

We will return to the g-factor in semiconductors in Chap. 16 where we
discuss time reversal symmetry. Since a magnetic field breaks time reversal
symmetry, the form of E(k) is sensitive to spin and time reversal symmetry.
These considerations are very important to the field of spintronics.

15.7 Fourier Expansion of Energy Bands:
Slater–Koster Method

The Slater–Koster technique uses group theory to provide the most general
form for the energy bands throughout the Brillouin zone which is consistent
with the crystal symmetry. The method is used when experiments or theory
provide information relevant to E(k) at different points in the Brillouin zone.
The method provides the best fit to the form of E(k) consistent with the
experimental or theoretical constraints. Like the k·p method, it is an approach
whereby the energy bands can be determined from experimental data without
recourse to a definite energy band model or to a specific crystal potential. In
contrast to k·p perturbation theory which makes use of the group of the wave-
vector for an expansion of E(k) about a specific point in the Brillouin zone
such as k = 0, the Slater–Koster method considers the entire Brillouin zone
and makes use of the full space group symmetry to form E(k) on an equal
basis. The original work done by Slater and Koster provided an interpolation
formula for calculating energy bands at high symmetry points in the Brillouin
zone [66], and the method was later applied to silicon and germanium [29].
We will illustrate the method here for a simple cubic lattice [27].

Because of the periodicity of the lattice, the energy bands En(k) are peri-
odic in the extended Brillouin zone

En(k + Kni) = En(k) , (15.77)

where Kni is a reciprocal lattice vector so that Kni · Rm = 2πp, with p
an integer. The energy bands En(k) are furthermore continuous across a zone
boundary and they approach this boundary with zero slope (giving the elec-
trons zero velocity at a zone boundary). We make use of this periodicity as
follows. Suppose that we have a function V (r) which is periodic in the three-
dimensional lattice. This function reflects the full symmetry of the crystal and
symmetry operations of the space group. The function V (r) can be Fourier
expanded in the reciprocal lattice

V (r) =
∑
Kni

v(Kni)e
iKni

·r (15.78)

in which the summation is over all reciprocal lattice vectors. In the extended
zone scheme, the energy En(k) is periodic in a three-dimensional space defined
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by the reciprocal lattice vectors. Therefore it is possible to Fourier expand
En(k) in a space “reciprocal” to the reciprocal lattice, i.e., in the direct lattice,
to obtain:

En(k) =
∑

d

εn(d)eik·d , (15.79)

where d = Rm are Bravais lattice vectors and εn(d) can be interpreted
as an overlap integral in the tight binding approximation. What is im-
portant here is that the tight binding wave functions reflect the symme-
try operations of the space group. Crystal symmetry restricts the num-
ber of independent expansion coefficients εn(d) following the principles that
govern the determination of the number of independent nonvanishing ma-
trix elements (see Sect. 6.6). Provided that the Fourier series of (15.79) is
rapidly convergent, it is possible to describe En(k) in terms of a small num-
ber of expansion parameters εn(d). The number of εn(d) is determined by
group theory and their values, in principle, can be determined by experi-
ment.

For example, let us consider a nondegenerate, isolated s-band in a simple
cubic crystal. Such a band has Γ+

1 symmetry and is invariant under the point
group operations of the cubic group. The Fourier expansion would then take
the form of the tight binding functions and relate to linear combinations of
plane waves (see Sect. 12.2):

En(k) = εn(0) + εn(1) [cos akx + cos aky + cos akz]

+εn(2) [cos a(ky + kz) + cos a(ky − kz) + cos a(kz + kx)

+ cosa(kz − kx) + cos a(kx + ky) + cos a(kx − ky)]

+εn(3) [cos a(kx + ky + kz) + cos a(kx − ky − kz)

+ cosa(−kx + ky − kz) + cos a(−kx − ky + kz)] + · · · (15.80)

where d = 0 is the zeroth neighbor at a(0, 0, 0)
d = 1 is the nearest neighbor at a(1, 0, 0)
d = 2 is the next nearest neighbor at a(1, 1, 0)
d = 3 is the next–next nearest neighbor at a(1, 1, 1), etc.

In the tight binding approximation, the expansion coefficients appear as over-
lap integrals and transfer integrals of various kinds. Thus, the tight bind-
ing form is written to satisfy the symmetry of the space group and is of
the Slater–Koster form. Now suppose that ab initio calculations provide
the energy levels and wave functions with high accuracy at a few points
in the Brillouin zone. The Slater–Koster method allows all these solutions
to be brought together to give E(k) throughout the Brillouin zone, con-
sistent with space group symmetry. For example in Ge, we could have ex-
perimental data relevant to the Γ point from measurements of the hole
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constant energy surfaces at the Γ point, and electron constant energy sur-
faces about the L points in the Brillouin zone [29] and optical transitions
at both the Γ point and the L point. The Slater–Koster method provides
a framework that allows use of each of these experiments to aid in the de-
termination of the electronic energy band structure throughout the Brillouin
zone [27].

Now for energy bands of practical interest, we will not have isolated non-
degenerate bands, but rather coupled bands of some sort. We can express the
eigenvalue problem for n coupled bands in terms of an (n×n) secular equation
of the form

|〈i|H|j〉 − En(k)δij | = 0 . (15.81)

In (15.81) the indices i and j denote Bloch wave functions which diagonalize
the Hamiltonian

H =
p2

2m
+ V (r) , (15.82)

and are labeled by the wave vector k. The matrix elements 〈i|H|j〉 thus con-
stitute a k-dependent matrix. But at each k point, these matrix elements
are invariant under the symmetry operations of the group of the wave vector
at k. The Hamiltonian at k = 0 has Γ+

1 symmetry just like its eigenvalues
En(k). This matrix is also periodic in the reciprocal lattice in the extended
zone scheme and therefore can be Fourier expanded.

The expansion is carried out in terms of a complete set of basis matrices
which are taken as angular momentum matrices in the spirit of Sect. 14.6. For
example, a (2 × 2) Hamiltonian including the electron spin (i.e., the double
group representations Γ±

6 or Γ±
7 in Chap. 14) would be expanded in terms

of four basis matrices 1, Sx, Sy and Sz , representing the angular momentum
matrices for spin 1/2. A (3 × 3) Hamiltonian, such as would be used to de-
scribe the valence bands of many common semiconductors, is expanded in
terms of the nine linearly independent basis matrices which span this space,
namely, 1̂, Sx, Sy, Sz , S2

x, S2
y , {Sz, Sy}, {Sz, Sx} and {Sx, Sy}, in which 1̂

is a (3 × 3) unit matrix, Sx, Sy, Sz are angular momentum matrices for
spin 1, and {Si, Sj} denotes the anticommutator for matrices Si and Sj .
Under the point group operations of the group of the wave vector, the an-
gular momentum matrices Si transform as an axial vector – i.e., at k = 0,
Si transforms as Γ+

15, while the matrix Hamiltonian still is required to be
invariant. Therefore, it is necessary to take products of symmetrized combi-
nations of the n basis matrices with appropriate symmetrized combinations
of the Fourier expansion functions so that an invariant matrix Hamiltonian
results.

The (n×n) matrix Hamiltonian which is denoted byDΓ1(k) can be Fourier
expanded in terms of these basis function matrices in the form

DΓ1(k) =
∑

d

αd,Γj CΓj (d) · SΓj , (15.83)
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which is a generalization of (15.79). In (15.83), SΓj denotes a collection of basis
matrices which transforms as Γj , and these symmetrized products of angular
momentum matrices are given in Table 15.1 for the simple cubic lattice (space
group #221). The distance d denotes the order of the expansion in (15.83)
and corresponds to the distance of neighbors in the Fourier expansion in the
tight binding sense, so that orders 0, 1, 2, . . ., etc. correspond to d = 0 or
d = 1 (nearest neighbor terms) or d = 2 (next nearest neighbor terms), etc.
The angular momentum matrices in Table 15.1 are given by

Sx =

⎛
⎝ 0 0 0

0 0 i
0 −i 0

⎞
⎠ , Sy =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , Sz =

⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠ . (15.84)

Products of the dimensionless angular momentum matrices Si are listed rep-
resentations of cubic group in Table 15.1, using an abbreviated notation.
For example, S(x)

Γ+
15

(1) denotes the x component of a three component vec-

tor Sx, Sy, Sz and all three components would appear in (15.83). Similarly,
S(i)

Γ+
12

(2) is a two component vector with partners

S2
x + ωS2

y + ω2S2
z

and

S2
x + ω2S2

y + ωS2
z ,

and only one of the partners is listed in Table 15.1, where several other
three component matrices are found, such as S(α)

Γ+
25

(2) for which the x com-

ponent is the anticommutator {Sy, Sz} and the y and z components of
S(α)

Γ+
25

(2) are found by cyclic permutation of the indices x, y, z. It is worth

Table 15.1. Symmetrized products of angular momenta for the cubic group

order representation notation symmetrized products

0 Γ+
1 S

Γ+
1

(0) 1

1 Γ+
15 Sx

Γ+
15

(1) Sx

2 Γ+
12 S(1)

Γ+
12

(2) S2
x + ωS2

y + ω2S2
z

Γ+
25 S(x)

Γ+
25

(2) {Sy , Sz}
3 Γ+

2 S
Γ+
2

(3) SxSySz + SxSzSy

Γ+
15 S(x)

Γ+
15

(3) S3
x

Γ+
25 S(x)

Γ+
15

(3) {Sx, (S
2
y − S2

z )}



15.7 Fourier Expansion of Energy Bands 393

mentioning that all of the S matrices in (15.83) are 3 × 3 matrices which are
found explicitly by carrying out the indicated matrix operations. For exam-
ple:

{Sy, Sz} = SySz + SzSy =

⎛
⎝0 0 0

0 0 0
0 −1 0

⎞
⎠+

⎛
⎝0 0 0

0 0 −1
0 0 0

⎞
⎠ =

⎛
⎝0 0 0

0 0 −1
0 −1 0

⎞
⎠ .

(15.85)
Also useful for carrying out matrix operations are the definitions:

Sx =
�

i

(
y
∂

∂z
− z

∂

∂y

)
(15.86)

so that

Sx

⎛
⎝x
y
z

⎞
⎠ =

�

i

⎛
⎝ 0

−z
y

⎞
⎠ . (15.87)

Another point worth mentioning about Table 15.1 concerns the terms that do
not appear. For example, in second-order we could have terms like S2

x+S2
y+S2

z

but this matrix is just the unit matrix which has already been listed in the
table. Similarly, the commutators [Sy, Sz] which enter in second-order are
matrices that have already appeared in first-order as iSx.

We give below the nine basis matrices that span the (3 × 3) matrices for
spin 1, where we note that (Γ+

15 ⊗ Γ+
15) = Γ+

1 + Γ+
12 + Γ+

15 + Γ+
25:

SΓ+
1

=

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.88)

S(1)

Γ+
12

=

⎛
⎝−1 0 0

0 1 + ω2 0
0 0 1 + ω

⎞
⎠ =

⎛
⎝−1 0 0

0 −ω 0
0 0 −ω2

⎞
⎠ , (15.89)

S(2)

Γ+
12

=

⎛
⎝−1 0 0

0 1 + ω 0
0 0 1 + ω2

⎞
⎠ , (15.90)

S(x)

Γ+
15

=

⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠ , (15.91)

S(y)

Γ+
15

=

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , (15.92)



394 15 Application of Double Groups to Energy Bands with Spin

S(z)

Γ+
15

=

⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠ , (15.93)

S(x)

Γ+
25

=

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , (15.94)

S(y)

Γ+
25

=

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , (15.95)

S(z)

Γ+
25

=

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , (15.96)

Any arbitrary (3 × 3) matrix can be written as a linear combination of these
nine matrices.

Table 15.1 however was constructed to be more general than just to de-
scribe interacting p-bands in a 3×3 matrix formulation. The table can equally
well be used to form the appropriate 16 basis matrices which are needed to
deal with interacting s and p bands, such as would arise in semiconductor
physics. Such interacting s and p bands give rise to a 4 × 4 matrix Hamil-
tonian and therefore 16 basis matrices are needed to span the space for the
secular equation in this case. The symmetries involved for order 0, 1, 2, 3, . . .
correspond to the symmetries of the angular momentum matrices in cubic
symmetry.

Now let use return to the Fourier expansion of (15.83). For each neighbor
distance |d| there are several lattice vectors that enter, just as in the plane
wave problem of Chap. 12 where we considered sets of Kni vectors of equal
magnitude. The terms in (15.83) can be labeled by their symmetry types so
that the sum on d breaks up into a sum on the magnitude |d| and on the
symmetry type Γj occurring at distance d. The linear combinations of the
exponential functions exp(ik ·d) which transform as the pertinent irreducible
representations of the cubic group are given in Table 15.2 out through third
nearest neighbor distances. Once again, if a representation is one-dimensional,
the basis function itself is given. For the two-dimensional representations,
only one of the functions is listed, the partner being the complex conjugate
of the listed function. For the three-dimensional representations, only the x-
component is listed; the partners are easily found by cyclic permutations of
the indices.

The combinations of plane waves and basis functions that enter the Fourier
expansion of (15.83) are the scalar products of these symmetrized Fourier
functions CΓj (d) and the basis functions SΓj (d). This means that for the
two-dimensional representations, we write

C(1)

Γ+
12

(
S(1)

Γ+
12

)∗
+ C(2)

Γ+
12

(
S(2)

Γ+
12

)∗
, (15.97)
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Table 15.2. Symmetrized Fourier functions for a simple cubic lattice

d repr. notation symmetrized Fourier functions

a(0, 0, 0) Γ+
1 C

Γ+
1

(000) 1

a(1, 0, 0) Γ+
1 C

Γ+
1

(100) cos akx + cos aky + cos akz

Γ+
12 C(1)

Γ
+
12

(100) cos akx + ω cos aky + ω2 cos akz

Γ−
15 C(x)

Γ−
15

(100) sin akx

a(1, 1, 0) Γ+
1 C

Γ+
1

(110) cos a(ky + kz) + cos a(ky − kz) + cos a(kz + kx)
+cos a(kz −kx)+cos a(kx +ky)+cos a(kx−ky)

Γ+
12 C(1)

Γ
+
12

(110) [cos a(ky + kz) + cos a(ky − kz)]
+ ω[cos a(kz + kx) + cos a(kz − kx)]
+ ω2[cos a(kx + ky) + cos a(kx − ky)]

Γ−
15 C(x)

Γ−
15

(110) sin a(kx + ky) + sin a(kx − ky)
+ sin a(kx + kz) + sin a(kx − kz)

Γ−
25 C(x)

Γ−
25

(110) sin a(kx + ky) + sin a(kx − ky)
− sin a(kx + kz) − sin a(kx − kz)

Γ+
25 C(x)

Γ+
25

(110) cos a(ky + kz) − cos a(ky − kz)

a(1, 1, 1) Γ+
1 C

Γ+
1

(111) cos a(kx + ky + kz) + cos a(kx − ky − kz)
+ cos a(−kx + ky − kz) + cos a(−kx − ky + kz)

Γ−
2 C

Γ−
2

(111) sin a(kx + ky + kz) + sin a(kx − ky − kz)
+ sin a(−kx + ky − kz) + sin a(−kx − ky + kz)

Γ−
15 C(x)

Γ−
15

(111) sin a(kx + ky + kz) + sin a(kx − ky − kz)
− sin a(−kx + ky − kz) − sin a (−kx − ky + kz)

Γ+
25 C(x)

Γ+
25

(111) cos a(kx + ky + kz) + cos a (kx − ky − kz)
− cos a(−kx + ky − kz)− cos a (−kx − ky + kz)

ω = exp(2πi/3) and a is the lattice constant

where the second term is the complex conjugate of the first so that the sum is
real. For the three-dimensional representations we write for the scalar product

CxSx + CySy + CzSz . (15.98)

Finally, the Fourier expansion parameters αd,Γj are just numbers that give the
magnitude of all the terms which enter the Fourier expansion. By taking the
CΓi and SΓi to transform according to the same irreducible representation,
the direct product will contain Γ1 which is invariant under the symmetry op-
erations of the group. These coefficients are often evaluated from experimental
data.

Now suppose that we are going to do a Fourier expansion for p-bands. If
the spin–orbit interaction is neglected, the p-bands have Γ−

15 symmetry. We
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ask what symmetry types can we have in the coupling between p-bands –
clearly only the symmetries that enter into the direct product

Γ−
15 ⊗ Γ−

15 = Γ+
1 + Γ+

12 + Γ+
15 + Γ+

25 . (15.99)

We will now indicate the terms which contribute at each neighbor distance to
(15.83).

15.7.1 Contributions at d = 0

From Table 15.2 we can have only Γ+
1 symmetry at d = 0 for which the basis

matrix is ⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.100)

and the symmetrical Fourier function is the number 1, so that the net contri-
bution to (15.83) is

α0,Γ+
1

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ . (15.101)

15.7.2 Contributions at d = 1

For Γ+
1 symmetry the contribution is in analogy to (15.101)

α1,Γ+
1
CΓ+

1
(100)

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.102)

while for Γ+
12 symmetry, the contribution is

α1,Γ+
12

C(1)

Γ+
12

⎛
⎝ω + ω2 0 0

0 1 + ω2 0
0 0 1 + ω

⎞
⎠+ α1,Γ+

12
C(2)

Γ+
12

⎛
⎝ω + ω2 0 0

0 1 + ω 0
0 0 1 + ω2

⎞
⎠ ,

(15.103)
where we have used the relation S

(1)
Γ12

= S2
x + ωS2

y + ω2S2
z to obtain the

appropriate matrices. We also use the relations 1 + ω + ω2 = 0 for the cube
roots of unity to simplify (15.103). We note that both terms in (15.103) have
the same expansion parameter α1,Γ+

12
.

These are all the contributions for d = 1. The symmetry type Γ−
15 does not

enter into this sum since there are no basis matrices with symmetries Γ−
15 for

d = 1 (see Table 15.1). This symmetry would however enter into treating the
interaction between s and p bands. Group theory thus tells us that we get no
off-diagonal terms until we go to second-neighbor distances. This should not
be surprising to us since this is exactly what happens in the k · p treatment
of p bands. In fact, the Fourier expansion technique contains in it a k · p
expansion for every point in the Brillouin zone.
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15.7.3 Contributions at d = 2

At the second-neighbor distance Table 15.2 yields contributions from Γ+
1 , Γ+

12

and Γ+
25 symmetries. These contributions at d = 2 are:

Γ+
1 symmetry α2,Γ+

1
CΓ+

1
(110)

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (15.104)

Γ+
12 symmetry α2,Γ+

12

⎡
⎣C(1)

Γ+
12

(110)

⎛
⎝−1 0 0

0 −ω 0
0 0 −ω2

⎞
⎠+ c.c.

⎤
⎦ (15.105)

Γ+
25 symmetry α2,Γ+

25

⎛
⎜⎜⎝

0 C(z)

Γ+
25

(110) C(y)

Γ+
25

(110)

C(z)

Γ+
25

(110) 0 C(x)

Γ+
25

(110)

C(y)

Γ+
25

(110) C(x)

Γ+
25

(110) 0

⎞
⎟⎟⎠ (15.106)

Terms with Γ−
15 and Γ−

25 symmetries in Table 15.2 do not enter because there
are no basis matrices with these symmetries.

15.7.4 Summing Contributions through d = 2

Symmetries Γ+
1 and Γ+

25 contribute and these are written down as above. To
get the matrix Hamiltonian we add up contributions from (15.101)–(15.106).
There are six parameters αd,Γj that enter into the Fourier expansion through
second-neighbor terms (d = 0, 1, 2). The Γ+

1 representation at d = 0 con-
tributes to the (1,1) position in the secular equation a term in α0,Γ+

1
and at

d = 1 contributes a term α1,Γ+
1

(cos akx + cos aky + cos akz) in which the two
coefficients α0,Γ+

1
and α1,Γ+

1
will have different numerical values. The other

entries into the (3×3) matrix are found similarly. The resulting (3×3) matrix
Hamiltonian is then diagonalized and the eigenvalues are the En(k) we are
looking for. This En(k) properly expresses the crystal symmetry at all points
in the Brillouin zone.

It is instructive to write out this matrix Hamiltonian in detail along the
(100), (110) and (111) directions and to verify that all connectivity relations
and symmetry requirements are automatically satisfied. It is directly shown
that near k = 0, the Hamiltonian of (15.83) is of the k · p form previously
derived. As stated above, the Fourier expansion approach contains the k · p
form for all expansion points k0 in the Brillouin zone.

15.7.5 Other Degenerate Levels

The Fourier expansion can also be applied to the twofold Γ+
12 levels in cubic

symmetry arising from d-bands, or to Γ±
12 levels more generally. Of particular
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interest is application of the Slater–Koster method [66] to coupled s and p-
bands as has been done for silicon and germanium, both of which crystallize
in the diamond structure. In the case of coupled s and p bands, the 3 × 3
expansion in Sect. 15.7 and the s-band expansion are coupled with the Fourier
terms from Table 15.2 having symmetries Γi ⊗Γ−

15. We give an outline in this
section for setting up the secular equation to solve the Fourier expansion for
these two interesting cases.

The four 2×2 matrices that are used as basis matrices for Fourier expand-
ing the Γ±

12 levels are implied by Γ±
12 ⊗ Γ±

12 = Γ+
1 + Γ+

2 + Γ+
12:

for Γ+
1 symmetry SΓ+

1
=
(

1 0
0 1

)
, (15.107)

for Γ+
2 symmetry SΓ+

2
=
(

1 0
0 −1

)
, (15.108)

for Γ+
12 symmetry SΓ+

12,1
=
(

0 1
0 0

)
, (15.109)

where the partner of SΓ+
12,1

is the Hermitian transpose

SΓ+
12,2

= S∗
Γ+

12,1
= S†

Γ+
12,1

=
(

0 0
1 0

)
. (15.110)

Using these matrices we see that

SΓ+
12,1

S†
Γ+

12,1
+ SΓ+

12,2
S†

Γ+
12,2

=
(

1 0
0 1

)
= SΓ+

1
, (15.111)

and

SΓ+
12,1

S†
Γ+

12,1
− SΓ+

12,2
S†

Γ+
12,2

=
(

1 0
0 −1

)
= SΓ+

2
. (15.112)

The dispersion relation of E(k) for a band with Γ+
12 symmetry at k = 0 can

then be Fourier expanded throughout the Brillouin zone in terms of the basis
functions in (15.107)–(15.110) as

EΓ±
12

(k) =
∑

d

αd,Γ+
1
CΓ+

1
(d)

(
1 0
0 1

)
+
∑

d

αd,Γ+
2
CΓ+

2
(d)

(
1 0
0 −1

)

+
∑

d

αd,Γ+
12
C(1)

Γ±
12

(d)
(

0 1
0 0

)
+
∑

d

αd,Γ+
12
C(2)

Γ±
12

(d)
(

0 0
1 0

)
,

(15.113)

where C(2)

Γ±
12

(d) = C(1)∗
Γ±

12
(d) and the CΓ±

i
(d) functions are found in Table 15.2.
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For the case of interacting s (Γ+
1 ) and p (Γ−

15) bands, the interaction terms
have Γ+

1 ⊗ Γ−
15 = Γ−

15 symmetry so the 4 × 4 expansion matrices must be
supplemented by the matrices

Sx
Γ−

15
=

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , (15.114)

and the two partners

Sy

Γ−
15

=

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , Sz

Γ−
15

=

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ . (15.115)

The detailed treatment of the Fourier expansion for the eight coupled s and p
bonding and antibonding bands in the nonsymmorphic diamond structure has
been presented [29] and was used to describe the Si and Ge bands throughout
the Brillouin zone. The nonsymmorphic diamond structure requires certain
restrictions on the energy bands, as discussed in Sect. 12.5 and in Appendix C.
The same basic treatment without the s bands was used to treat the lattice
dynamics for the diamond structure [30].

Selected Problems

15.1. Consider the empty lattice E(k) diagram in Fig. 12.1 for an FCC struc-
ture, but now also including the electron spin.

(a) Find the symmetry designations and energy for the lowest nonzero double
group energy level which arises from the single group L1 and L2′ levels.

(b) Then find the symmetry designations and energy for the next lowest en-
ergy level which is derived from the X1 and X4′ levels.

(c) What are the corresponding basis functions for these levels?
(d) What is the difference between these lowest energy levels for the case of the

diamond structure in comparison to the symmorphic FCC space group?
The character tables for the group of the wave vector for the diamond
structure can be found in Appendix C.

15.2. (a) Give more details to show how group theory leads to the form of
E(Γ+

7 ) given by (15.27).
(b) Similarly, give more details to show how the form of E(k) for the four-fold

degenerate valence band of Ge is obtained.
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(c) The derivation given in Sect. 15.5 was for a symmorphic cubic group. How-
ever, Ge is described by the space group #227 which is nonsymmorphic.
What is the effect of the screw axis in the diamond structure on the forms
of E(Γ+

7 ) and E(Γ+
8 ) discussed in (a) and (b)? When would the sticking

together of bands discussed in Sect. 12.5 become important? You may find
the character tables for the diamond structure in Appendix C useful for
this problem.

15.3. Find the form of E(k) including the spin–orbit interaction for a non-
degenerate valence band level in a column IV semiconductor (2 atoms/unit
cell) with a simple symmorphic hexagonal structure (space group #191) at
the Γ point and at the K point in the Brillouin zone using k · p perturbation
theory. Assume that at k = 0, the energy bands have D6h symmetry and that
the nondegenerate band in this problem is derived from the fully symmetric
single group irreducible representation Γ1.

15.4. Apply the formalism in Sect. 15.6 to find the effective g-factor for a car-
rier pocket at the Γ point for a nondegenerate valence band for a crystal with
hexagonal symmetry (space group #191) as in Problem 15.3.

15.5. (a) Using the procedure in Sect. 15.7, write down the matrices for Sx,
Sy and Sz for angular momentum 3/2. Products of these matrices and
the (4× 4) unit matrix form the 16 matrix basis functions which span the
vector space for the (4 × 4) Slater–Koster secular equation for coupled s
and p bands for a simple cubic lattice. Find these 16 matrices and indicate
the combination of Sx, Sy and Sz used and indicate the symmetry type
of each.

(b) Returning to the Slater–Koster (3 × 3) secular determinant for a simple
cubic lattice, write the explicit expression for this matrix along a (100)
direction. Show that by doing a Taylor’s expansion of the Slater–Koster
Hamiltonian about the X point, the proper k ·p Hamiltonian is obtained
at the X point.

15.6. (a) Using the Slater–Koster technique [66], find the form for E(k) for
the lowest two levels for a face centered cubic lattice at the X point, the
L point and the K point (see Table C.6).

(b) Using your results in (a), expand E(k) about the L-point in a Taylor
expansion and compare your results with those obtained using k · p per-
turbation theory.
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Time Reversal Symmetry

In this chapter we consider the properties of the time reversal operator
(Sects. 16.1 and 16.2) and the topic of time reversal symmetry. We then
consider the effect of time reversal symmetry on the form of the electronic
dispersion relations and this topic is discussed here for the case of no spin
(Sect. 16.3) and when the spin–orbit interaction is included (Sect. 16.4). As
a second illustration of time reversal symmetry, we consider magnetic space
groups in Sect. 16.5, where the time reversal operator itself can become
a symmetry element of the group.

In high energy physics, arguments regarding time inversion were essential
in providing guidance for the development of a theory for the fundamental
particles. The CPT invariance in particle physics deals with charge conjuga-
tion (C) which is the reversal of the sign of the electrical charge, parity (P)
which is spatial inversion, and time inversion (T).

16.1 The Time Reversal Operator

Knowledge of the state of a system at any instant of time t and the determin-
istic laws of physics are sufficient to determine the state of the system both
into the future and into the past. If the wave function ψ(r, t) specifies the time
evolution of state ψ(r, 0), then ψ(r,−t) is called the time-reversed conjugate
of ψ(r, t). The time-reversed conjugate state is achieved by running the system
backwards in time or reversing all the velocities (or momenta) of the system.

The time evolution of a state is governed by Schrödinger’s equation (one
of the deterministic laws of physics)

i�
∂ψ

∂t
= Hψ , (16.1)

which is satisfied by a time-dependent wave function of the form

ψ(r, t) = e
−iHt

� ψ(r, 0) , (16.2)
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where exp [−iHt/�] is the time evolution factor. The effect of time reversal
t → −t (which we denote by the operator T̂ ) on the wave function is that of
complex conjugation ψ → ψ∗ so that

T̂ ψ(r, t) = ψ(r,−t) = ψ∗(r, t) . (16.3)

In Sect. 16.2, we discuss some of the important properties of T̂ .

16.2 Properties of the Time Reversal Operator

The important properties of the time reversal operator T̂ include:

(a) Commutation: [T̂ ,H] = 0
Because of energy conservation, the time reversal operator T̂ commutes
with the Hamiltonian T̂H = HT̂ . Since T̂ commutes with the Hamilto-
nian, eigenstates of the time reversal operator are also eigenstates of the
Hamiltonian.

(b) Antilinear : T̂ i = −i
From Schrödinger’s equation (16.1), it is seen that the reversal of time
corresponds to a change of i → −i, which implies that T̂ i = −i. We call
an operator antilinear if its operation on a complex number yields the
complex conjugate of the number T̂ a = a∗ rather than the number itself.

(c) Complex conjugation of wave functions :
Since T̂ is an antilinear operator, we have T̂ ψ = ψ∗. Since T̂ψ = ψ∗, the
action of T̂ on a scalar product is

T̂ (ψ, φ) =
∫
φ∗(r)ψ(r)d3r = (ψ, φ)∗ . (16.4)

(d) In the case of no spin, we have T̂ = K̂ where K̂ is the complex conjugation
operator. With spin, we show below that T̂ = K̂σy where σy is the Pauli
spin operator,

σy =
(

0 −i
i 0

)
.

We will see below that both T̂ and K̂ are antiunitary operators. From
Schrödinger’s equation (no spin), the effect of T̂ on p is to reverse p (time
goes backward) and T̂ leaves V (r) invariant, so that indeed H is invariant
under T̂ . When spin is included, however, the Hamiltonian H must still be
invariant under T̂ . We note that T̂p = −p and T̂L = −L (orbital angular
momentum). We likewise require that T̂S = −S where S = spin angular
momentum. If these requirements are imposed, we show below that the H
is still invariant under T̂ , that is H commutes with T̂ when the spin–orbit
interaction is included:
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H =
p2

2m
+ V (r) +

�

4m2c2
σ · (∇V × p) . (16.5)

To show that T̂ commutes with H when the spin–orbit interaction is
included, we first note that K̂[σx, σy, σz ] = [σx,−σy, σz ] when the spin
components are written in terms of the Pauli matrices

σx =
(

0 1
1 0

)
,

σy =
(

0 −i
i 0

)
,

σz =
(

1 0
0 −1

)
, (16.6)

since only the Pauli matrix σy contains i. Thus K̂ by itself is not sufficient
to describe the time reversal operation on the Hamiltonian H (16.5) when
the spin–orbit interaction is included. We will however see below that the
product K̂σy can describe the time reversal of H.
Let us now consider the effect of K̂σy on the spin matrices K̂σy[σx, σy, σz ].
We note that

σyσx = −σxσy so that K̂σyσx = −K̂σxσy = −σxK̂σy

σyσz = −σzσy so that K̂σyσz = −K̂σzσy = −σzK̂σy .

Also we have K̂σyσy = −σyK̂σy since, from above K̂σy = −σyK̂. Thus
we obtain

K̂σyσ = −σK̂σy ,

so that the operator K̂σy transforms σ (or S) into −σ (or −S). Clearly
σy does not act on any of the other terms in the Hamiltonian.
Since K̂K̂ = K̂2 = 1̂, where 1̂ is the unit matrix, we can write the
important relation T̂ = K̂σy which implies K̂T̂ = σy = unitary operator
since σ†

yσ
−1
y = 1̂. But also σ2

y = σyσy = 1̂ so we have σ†
y = σy and σ†2

y = 1̂,
where the symbol † is used to denote the adjoint of an operator.

(e) In the case of no spin T̂ 2 = 1̂, since K̂2 = 1̂ and T̂ = K̂. With spin we will
now show that T̂ 2 = −1̂. Since T̂ = K̂σy when the effect of the electron
spin is included, then

T̂ 2 = (K̂σy)(K̂σy) = −(σyK̂)(K̂σy) = −σyK̂
2σy = −σyσy = −1̂ .

More generally if we write K̂T̂ = Û = unitary operator (not necessarily
σy), we can then show that T̂ 2 = ±1̂. Since two consecutive operations by
T̂ on a state ψ must produce the same physical state ψ, we have T̂ 2 = C1̂



406 16 Time Reversal Symmetry

where C is a phase factor eiφ of unit magnitude. Since K̂2 = 1̂, we can
write

K̂2T̂ = T̂ = K̂Û = Û∗K̂ , (16.7)

T̂ 2 = K̂ÛK̂Û = Û∗K̂2Û = Û∗Û = C1̂ . (16.8)

We show below that C = ±1̂. Making use of the unitary property Û †Û =
Û Û † = 1̂, we obtain by writing Û∗ = Û∗Û Û † = CÛ †,

Û∗ = CÛ † = CŨ∗ , (16.9)

where Ũ denotes the transpose of Û . Taking the transpose of both sides
of (16.9) yields

Ũ∗ = Û † = CÛ∗ = C(CŨ∗) = C2Û † or C2 = 1 and C = ±1 .
(16.10)

We thus obtain either T̂ 2 = +1̂ or T̂ 2 = −1̂.
(f) Operators H, r, V (r) are even under time reversal T̂ ; operators p,L,σ

are odd under T̂ . Operators are either even or odd under time reversal.
We can think of spin angular momentum classically as due to a current
loop in a plane ⊥ to the z-axis. Time reversal causes the current to flow
in the opposite direction.

(g) T̂ and K̂ are antiunitary operators , as shown below.

In this subsection we show that T̂ and K̂ are antiunitary operators which
means T̂ T̂ † = −1̂ and K̂K̂† = −1̂. We show below that T̂ and K̂ are an-
tiunitary whether or not the spin is considered explicitly. The properties of
the inverse of T̂ and K̂ are readily found. Since K̂2 = 1̂, then K̂K̂ = 1̂ and
K̂−1 = K̂. If for the case where the spin is treated explicitly T̂ 2 = −1̂, then
T̂ T̂ = −1̂ and T̂−1 = −T̂ ; T̂ = K̂σy for the case of spin. For the spinless case,
T̂ 2 = 1̂ and T̂−1 = T̂ . Since complex conjugation changes i → −i, we can
write K̂† = −K̂ so that K̂ is antiunitary.

We now use this result to show that both T̂ and K̂ are antiunitary. This
is the most important property of T̂ from the point of view of group theory.
Since K̂ = T̂ in the absence of spin, and since K̂ is antiunitary, it follows that
T̂ is antiunitary in this case. However, when spin is included, T̂ = K̂σy and

σy = K̂T̂

σ†
y = T̂ †K̂† . (16.11)

Since σy is a unitary operator, thus T̂ †K̂†K̂T̂ = 1̂ but since K̂†K̂ = −1̂ it
follows that T̂ †T̂ = −1̂, showing that T̂ is also antiunitary.

Furthermore K̂ and T̂ behave differently from all the operators that we
have thus far encountered in group theory, such as the point group operations
(rotations, improper rotations, mirror planes, inversion and R =rotation of
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2π must be considered for spin dependent Hamiltonians). Thus in considering
symmetry operations in group theory, we treat all the unitary operators sepa-
rately by use of character tables and all the associated apparatus, and then we
treat time reversal symmetry as an additional symmetry constraint. We will
see in Sect. 16.5 how time reversal symmetry enters directly as a symmetry
element for magnetic point groups.

We discuss first in Sects. 16.3 and 16.4 the general effect of T̂ on the form of
E(k) for the case of electronic bands neglecting spin (Sect. 16.3) and including
spin (Sect. 16.4). In these sections we also consider the question of degeneracies
imposed on energy levels by time reversal symmetry (the Herring Rules) [39].

16.3 The Effect of T̂ on E(k), Neglecting Spin

If for the moment we neglect spin, then the time reversal operation acting on
a solution of Schrödinger’s equation yields

T̂ψ(r) = ψ∗(r) . (16.12)

Since the Hamiltonian commutes with T̂ , then both ψ(r) and ψ∗(r) satisfy
Schrödinger’s equation for the same energy eigenvalue, so that a twofold de-
generacy occurs. We will now show that time reversal symmetry leads to two
symmetry properties for the energy eigenvalues for Bloch states: the evenness
of the energy eigenvalues E(k) = E(−k), and the zero slope of En(k) at the
Brillouin zone boundaries.

The effect of the translation operation on a Bloch state is

ψk(r + Rn) = eik·Rnψk(r) , (16.13)

and the effect of time reversal is

T̂ψk(r) = ψ∗
k(r) . (16.14)

We can write the following relation for the complex conjugate of Bloch’s the-
orem

ψ∗
k(r + Rn) = e−ik·Rnψ∗

k(r) , (16.15)

and we can also rewrite (16.15) in terms of k → −k as

ψ∗
−k(r + Rn) = eik·Rnψ∗

−k(r) , (16.16)

which upon comparing (16.13), (16.15) and (16.16) implies that for nonde-
generate levels the time reversal operator transforms k → −k

T̂ψk(r) = ψ−k(r) = ψ∗
k(r) . (16.17)

If the level is doubly degenerate and ψk(r) and φk(r) are the corresponding
eigenstates, then if T̂ψk(r) = φk(r) = ψ−k(r), and no additional degeneracy
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is required by time reversal symmetry. Time reversal symmetry thus implies
that for a spinless system

En(k) = En(−k) , (16.18)

and the energy is an even function of wave vector k whether or not there is
spatial inversion symmetry.

Using this result (16.18) and the E(k) = E(k+K) periodicity in k space,
where K is a reciprocal lattice vector, we obtain

E

(
K

2
− δk

)
= E

(
−K

2
+ δk

)
= E

(
K

2
+ δk

)
, (16.19)

where δk is an infinitesimal distance to the Brillouin zone boundary. Thus
referring to Fig. 16.1, E(k) comes into the zone boundary with zero slope for
both the lower and upper branches of the solutions in Fig. 16.1. For the case
where the energy band shows a degeneracy at the zone boundary, the upper
and lower bands will have equal and opposite slopes.

We have been using the symmetry properties in (16.18) and (16.19)
throughout our solid state physics courses. In the most familiar cases, E(k)
depends on k2. Figure 16.1 illustrates the symmetry properties of (16.18) and
(16.19) for a simple parabolic band at k = 0 and at the Brillouin zone bound-
ary.

Let us now consider the consequences of these ideas from a group theoret-
ical point of view, and enumerate Herring’s rules which summarize the effect
of time reversal T̂ on the irreducible representations of a group. If ψ(r) be-
longs to the irreducible representation D, then T̂ψ(r) = ψ∗(r) will transform
according to D∗ which consists of the complex conjugate of all the matri-
ces in D. We can distinguish three different possibilities in the case of no
spin:

(a) All of the matrices in the representation D are real matrices or can be
made into real matrices by a unitary transformation. In this case, the time
reversal operator leaves the representation D invariant and no additional
degeneracies in E(k) result.

(b) If the representations D and D∗ cannot be brought into equivalence by
a unitary transformation, there is a doubling of the degeneracy of such
levels due to time reversal symmetry. Then the representations D and D∗

are said to form a time reversal symmetry pair and these levels will stick
together.

(c) If the representations D and D∗ can be made equivalent under a suitable
unitary transformation, but the matrices in this representation cannot be
made real, then the time reversal symmetry also requires a doubling of
the degeneracy of D and the bands will stick together.

To illustrate these possibilities, consider the point group C4 (see Table 16.1).
Here irreducible representations A and B are of type (a) above and each of
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Fig. 16.1. Simple E(k) diagram for a spinless electron illustrating both E(k) =
E(−k) and the zero slope of E(k) at the Brillouin zone boundary

Table 16.1. Character table for point group C4

C4 (4) E C2 C4 C3
4 time reversal

x2 + y2, z2 Rz, z A 1 1 1 1 (a)

x2 − y2, xy B 1 1 −1 −1 (a)

(xz, yz)
(x, y)

(Rx, Ry)

}
E

1

1

−1

−1

i

−i
−i
i

(b)

(b)

these representations correspond to nondegenerate energy levels. However, the
two representations labeled E are complex conjugates of each other and are
of type (b) since there is no unitary transformation that can bring them into
equivalence. Thus because of the time reversal symmetry requirement, rep-
resentation E corresponds to a doubly degenerate level. This illustrates the
case where time reversal symmetry gives rise to an additional level degener-
acy.

The time reversal partners are treated as different representations when
applying the following rules on character:

(a) The number of irreducible representations is equal to the number of
classes.

(b)
∑

i �
2
i = h.
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Using the character table for the group of the wave vector, we can distinguish
which of the three cases apply for a given irreducible representation using the
Herring test [39], which is now discussed. Let Q0 be an element in the space
group which transforms k into −k. Then Q2

0 is an element in the group of
the wave vector k, since all elements in the group of the wave vector leave
k invariant and therefore each of these group elements are elements with
the properties of Q2

0. If the inversion operator i is contained in the group of
the wave vector k, then all the elements Q0 are in the group of the wave
vector k. If i is not an element of the group of the wave vector k, then the
elements Q0 may or may not be an element in the group of the wave vector.
Let hQ0 equal the number of elements Q0. The Herring space group test is
then

∑
R

χ(Q2
0) = hQ0 case (a)

= 0 case (b)

= −hQ0 case (c) ,

where χ is the character for a representation of the group of the wave vector k
and the sum is over all the elements of the group. These tests can be used to
decide whether or not time reversal symmetry introduces any additional de-
generacies to this representation. Information on the Herring test is normally
presented in each of the 32 point groups in the character tables in Koster’s
book [47, 48].

To apply the Herring test to the point group C4, and consider the group
of the wave vector for k = 0. Then all four symmetry operations take k → −k
since k = 0. Furthermore, E2 = E,C2

2 = E,C2
4 = C2 and (C3

4 )2 = C2 so that
for representations A and B

∑
R

χ(Q2
0) = 1 + 1 + 1 + 1 = 4 (16.20)

from which we conclude that A and B correspond to case (a), in agree-
ment with Koster’s tables. On the other hand, for each representation un-
der E, ∑

R

χ(Q2
0) = 1 + 1 + (−1) + (−1) = 0 (16.21)

from which we conclude that representations E correspond to case (b).
Therefore the two irreducible representations under E correspond to the
same energy and the corresponding E(k) will stick together. The two
representations under E are called time reversal conjugate representa-
tions.
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16.4 The Effect of T̂ on E(k),
Including the Spin–Orbit Interaction

When the spin–orbit interaction is included, then the Bloch functions trans-
form as irreducible representations of the double group. The degeneracy of the
energy levels is different from the spinless situation, and in particular every
level is at least doubly degenerate.

When the spin–orbit interaction is included, T̂ = K̂σy and not only do we
have k → −k, but we also have σ → −σ under time reversal symmetry. This
is written schematically as

T̂ψn,k↑(r) = ψn,−k↓(r) , (16.22)

so that the time reversal conjugate states are

En↑(k) = En↓(−k) (16.23)

and
En↓(k) = En↑(−k) . (16.24)

If inversion symmetry exists as well,

En(k) = En(−k) , (16.25)

then
En↑(k) = En↑(−k) and En↓(k) = En↓(−k) (16.26)

making En↑(k) and En↓(k) degenerate. In more detail, since T̂ = K̂σy and
since

σy ↑ =
(

0 −i
i 0

)(
1
0

)
= i

(
0
1

)
= i ↓

σy ↓ =
(

0 −i
i 0

)(
0
1

)
= −i

(
1
0

)
= −i ↑ ,

we obtain

T̂ ψn,k↑(r) = T̂ eik·r
[
un,k↑

(
1
0

)]
= e−ik·r

[
iu∗n,k↑

(
0
1

)]

= e−ik·run,−k↓

(
0
1

)
, (16.27)

which is a Bloch state for wave vector −k and spin ↓. Likewise

T̂ψn,k↓(r) = T̂ eik·r
[
un,k↓

(
0
1

)]
= e−ik·r

[
−iu∗n,k↓

(
1
0

)]

= e−ik·run,−k↑

(
1
0

)
(16.28)
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Fig. 16.2. Schematic example of Kramers degeneracy in a crystal in the case of:
(a) no spin–orbit interaction where each level is doubly degenerate (↑, ↓), (b) both
spin–orbit interaction and inversion symmetry are present and the levels are doubly
degenerate, (c) spin–orbit interaction and no spatial inversion symmetry where the
relations (16.23) and (16.24) apply

which is a Bloch state for wave vector −k and spin ↑ in which we have written

iu∗n,k↑ = un,−k↓

and

−iu∗n,k↓ = un,−k↑ .

For a general point in the Brillouin zone, and in the absence of spin–orbit
coupling, but including the spin on the electron, the energy levels have a nec-
essary twofold spin degeneracy and also exhibit the property E(k) = E(−k),
whether or not there is inversion symmetry. This is illustrated in Fig. 16.2(a).
When the spin–orbit interaction is turned on and there is inversion symme-
try, then we get the situation illustrated in Fig. 16.2(b), where the twofold
degeneracy remains.

However, if there is no inversion symmetry, then the only relationships
that remain are those of (16.23) and (16.24) shown in Fig. 16.2(c), and the
Kramers degeneracy results in E↑(k) = E↓(−k) and E↓(k) = E↑(−k).

The role of inversion symmetry is also important for the E(k) relations for
degenerate bands. This is illustrated in Fig. 16.3 for degenerate bands near
k = 0. We take as examples: (a) diamond for which the spin–orbit interaction
can be neglected and all levels are doubly degenerate at a general point in the
Brillouin zone, (c) InSb or GaAs which have Td symmetry (lacking inversion)
so that relations (16.23) and (16.24) apply and the twofold Kramers degener-
acy is lifted by the Dresselhaus-spin–orbit term [25], (b) Ge or Si which have
Oh symmetry (including inversion) and the twofold Kramers degeneracy is
retained at a general point in the Brillouin zone.

We give in Table 16.2 the general Herring rules (see Sect. 16.3) which apply
whether or not the spin–orbit interaction is included. When the spin–orbit
interaction is included, there are also three cases which can be distinguished.
When the time reversal operator T̂ acts on a spin dependent wavefunction ψ



16.4 The Effect of T̂ on E(k), Including the Spin–Orbit Interaction 413

Fig. 16.3. Schematic examples of energy bands E(k) near k = 0: (a) in diamond
without spin-orbit interaction, each band having a twofold spin degeneracy. (b) in
Ge where the spin-orbit interaction split bands, with each band remaining at least
doubly degenerate. (c) in GaAs where the Γ8 bands are split by the spin-orbit
interaction and the degeneracy occurs only at k = 0. At a general k point the levels
do not stick together. The magnitudes of the splittings are not to scale

Table 16.2. Summary of Herring rules regarding degeneracies and time reversal

case relation between
D and D∗

Frobenius–
Schur test

spinless
electron

half-integral
spin electron

(a) D and D∗ are equivalent
to the same real irreducible
representation

∑
R
χ(Q2

0) = h no extra
degeneracy

doubled
degeneracy

(b) D and D∗ are
inequivalent

∑
R
χ(Q2

0) = 0 doubled
degeneracy

doubled
degeneracy

(c) D and D∗ are equivalent
to each other but not
to a real representation

∑
R
χ(Q2

0) = −h double
degeneracy

no extra
degeneracy

which transforms according to an irreducible representation D, then we have
three possibilities:

(a) If the representationD is real, or can be transformed by a unitary transfor-
mation into a set of real matrices, then the action of T̂ on these matrices
will yield the same set of matrices. To achieve the required additional
degeneracy, we must have D occur twice.

(b) If representations D and D∗ cannot be brought into equivalence by a uni-
tary transformation, then the corresponding levels must stick together in
pairs to satisfy the time reversal degeneracy requirement.
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Table 16.3. Character table for the double group C4
a

C4 E Ē C4 C̄4 C2 C̄2 C−1
4 C̄−1

4 time basis for

inv. group C4

Γ1 1 1 1 1 1 1 1 1 a z or Sz

Γ2 1 1 −1 −1 1 1 −1 −1 a xy

Γ3 1 1 i i −1 −1 −i −i b −i(x+ iy)

or −(Sx + iSy)

Γ4 1 1 −i −i −1 −1 i i b i(x− iy)

or (Sx − iSy)

Γ5 1 −1 ω −ω i −i −ω3 ω3 b φ(1/2, 1/2)

Γ6 1 −1 −ω3 ω3 −i i ω −ω b φ(1/2,−1/2)

Γ7 1 −1 −ω ω i −i ω3 −ω3 b φ(3/2,−3/2)

Γ8 1 −1 ω3 −ω3 −i i −ω ω b φ(3/2, 3/2)

a In the table i = eiπ/2 and ω = eiπ/4, and Ē, C̄4, C̄2 and C̄−1
4 denote

RE, RC4, RC2 and RC−1
4 where R is rotation by 2π (see Chap. 14)

(c) If representations D and D∗ can be brought into equivalence but neither
can be made all real, then no additional degeneracy need be introduced
and both make up the time reversal degenerate pair.

These results are summarized in Table 16.2 for both the case of no spin and
when spin–orbit interaction is included. We now illustrate these rules with
two cases:

(i) The double group representations of point group C4 (symmorphic);
(ii) The double group representation at the L point in Ge (or Si) where the

levels are degenerate by time reversal symmetry (nonsymmorphic).

For the first illustration, we give in Table 16.3 the character table for the
double group C4 discussed in the literature [47, 48]. We note that the double
group tables contain an entry for time inversion, which summarizes the results
discussed in Sect. 16.1 for the spinless bands. Inspection of this character table
shows that the double group representations involve the 4th roots of unity (as
shown below) and obey the relation χ(Ai) = −χ(Āi) for each of the pairs of
symmetry operations Ai and Āi where Āi = RAi. Note that the character
table originally given in Koster has some misprints with regard to χ(C−1

4 ) =
−χ(C̄−1

4 ), which are corrected in Table 16.3. Table 16.4 clearly shows that
the characters for the Γ5 and Γ6 irreducible representations are time reversal
degenerate pairs, and likewise for the Γ7 and Γ8 irreducible representations.

For the double group representations, we consider the character χ(Q0Q̄0)
in applying the Herring rules which is also known in the literature as the
Frobenius–Schur test. Application of the Frobenius–Schur test for Γ5 gives
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Table 16.4. Characters for Γ5, Γ6, Γ7 and Γ8 irreducible representations in terms
of ω = eiπ/4

E Ē C4 C̄4 C2 C̄2 C−1
4 C̄−1

4

Γ5: ω0 ω4 ω ω5 ω2 ω6 ω7 ω3

Γ6: ω0 ω4 ω7 ω3 ω6 ω2 ω ω5

Γ7: ω0 ω4 ω5 ω ω2 ω6 ω3 ω7

Γ8: ω0 ω4 ω3 ω7 ω6 ω2 ω5 ω

∑
χ(Q0Q̄0) = (1)(−1) + (1)(−1) − ω2 − ω2 + 1 + 1 − ω6 − ω6

= −1 − 1 − i− i+ 1 + 1 + i+ i = 0 , (16.29)

and shows that Γ5 is type “b” under time reversal symmetry. By doing a similar
Frobenius–Schur test for the other double group irreducible representations
of double group C4 we find that the representations Γ6, Γ7 and Γ8 are also
of the b type with respect to time reversal symmetry and this information is
also given in Table 16.3.

For the second illustration involving the L-point levels in Ge, see the E(k)
diagram in Fig. 14.1(b) for the case where the spin–orbit interaction is in-
cluded. The character table appropriate to the L-point (group D3d) is given
in Table 16.5. The character table for the group of the wave vector for the
L point for the diamond structure is given in Table C.18 in the absence of
spin. Since the translation τ d = (a/4)(1, 1, 1) does not enter into any of the
symmetry operations, the classes can be simply represented as in Table 16.5.

The designations for the L-point representations have been added on the
left column of Koster’s table which is given in general in Table 16.5 for a double
group for D3d symmetry. This example shows the importance of checking the
notation used in the literature for dispersion relations (Fig. 14.1(b)) and the
notation used in general tables for double groups (Table 16.5) to verify that
they are internally consistent.

For a Λ point (group D3), the operations E, 2C3 and 3C′
2 take k → −k so

each symmetry operation corresponds to an operator of the Q0 type. For the
L-point (group D3d) also, all operations are of the Q0 type, so that for the
representations L1, L2 and L3, we have Σχ(Q0Q̄0) = 12, yielding representa-
tions of type a, in agreement with the character table for D3d (Table 16.5).
For the double group representation L+

6 we obtain

L+
6 = Σχ(Q0Q̄0) = −4 − 2 + 0 − 4 − 2 + 0 = −12 type (c) , (16.30)

where again we write Q0Q̄0 or Q0RQ0 for Q2
0. For the double group repre-

sentation L+
4 , the Frobenius–Schur test yields

L+
4 : Σχ(Q0Q̄0)) = −1 − 2 + 3 − 1 − 2 + 3 = 0 type (b) . (16.31)
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Table 16.5. Character table and basis functions for the double group D3d [48]

D3d E Ē 2C3 2C̄2 3C′
2 3C̄′

2 I Ī 2S6 2S̄6 3σd 3σ̄d time
inv.

bases

L+
1 Γ+

1 1 1 1 1 1 1 1 1 1 1 1 1 a R

L+
2 Γ+

2 1 1 1 1 −1 −1 1 1 1 1 −1 −1 a Sx

L+
3 Γ+

3 2 2 −1 −1 0 0 2 2 −1 −1 0 0 a (Sx − iSy),

−(Sx + iSy)

L−
1 Γ−

1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 a zSz

L−
2 Γ−

2 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 a z

L−
3 Γ−

3 2 2 −1 −1 0 0 −2 −2 1 1 0 0 a (x− iy),

−(x+ iy)

L+
6 Γ+

4 2 −2 1 −1 0 0 2 −2 1 −1 0 0 c φ(1/2,−1/2)

L+
4 Γ+

5 1 −1 −1 1 i −i 1 −1 −1 1 i −i b φ(3/2,−3/2)

−iφ(3/2, 3/2)

L+
5 Γ+

6 1 −1 −1 1 −i i 1 −1 −1 1 −i i b −(φ(3/2, 3/2)

−iφ(3/2,−3/2))

L−
6 Γ−

4 2 −2 1 −1 0 0 −2 2 −1 1 0 0 c Γ+
4 × Γ−

1

L−
4 Γ−

5 1 −1 −1 1 i −i −1 1 1 −1 −i i b Γ+
5 × Γ−

1

L−
5 Γ−

6 1 −1 −1 1 −i i −1 1 1 −1 i −i b Γ+
6 × Γ−

1

Likewise L+
5 is of type b. Since L+

4 and L+
5 are complex conjugate rep-

resentations, L+
4 and L+

5 form time reversal degenerate pairs. Similarly,
L−

4 and L−
5 are type b representations and form time reversal degenerate

pairs (see Figs. 14.1(b) and 16.2(b)). For both L+
4 and L+

5 (and likewise
for L−

4 and L−
5 ) which are type (b) under time reversal symmetry, the

dispersion shown in Fig. 16.2(b) applies. To obtain the regime shown in
Fig. 16.2(c), the crystal should have no spatial inversion symmetry, which
is pertinent to the zinc blende structure. Finally in Table 16.5 we see basis
function entries of the form φ(1/2,−1/2) which denote spherical harmonics
for which the two entries 1/2 and −1/2, respectively, denote j = 1/2 and
mj = −1/2.

With this discussion of time reversal symmetry, we have explained all
the entries to the character tables, and have explained why because of time
reversal symmetry certain bands stick together on the E(k) diagrams, such
as in Fig. 14.1(b).

16.5 Magnetic Groups

If atoms at each lattice site can be represented as a charge distribution ρ(r)
with no particular spin symmetry (paramagnetic or diamagnetic), the ordi-
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Fig. 16.4. (a) The 14 ordinary Bravais lattices on the left and (b) the 22 additional
magnetic Bravais lattices on the right. The open circles represent the time reversed
sites

nary space groups are used. If, however, we have ordered arrangements of
spins, then the time reversal operator (which reverses the spin direction) can
be combined with other group elements to form elements of a new type of
symmetry group. Groups in which the time reversal operator forms group el-
ements are called magnetic space groups and the corresponding point groups
are called magnetic point groups. In this section we present some of the essen-
tial properties of magnetic space groups and give some examples of interest
to solid state physics [54, 70].
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16.5.1 Introduction

When magnetically ordered phases are taken into account, the magnetic
unit cell is often larger than the chemical unit cell, as for example in an
antiferromagnetic system. Additional symmetry elements are introduced (see
Sect. 16.5.2), and as a result many more point groups and space groups are
possible (see Sect. 16.5.3).

There are, in fact, 122 (58 + 2 × 32) magnetic point groups (rather than
32), and 1,651 (1, 191+2×230) magnetic space groups (rather than 230), and
36 (22 + 14) magnetic Bravais lattices rather than 14. The magnetic Bravais
lattices which are important for describing antiferromagnetic structures are
shown in Fig. 16.4(b), and for comparison the 14 ordinary Bravais lattices are
also shown in Fig. 16.4(a), and are further explained below. We will confine
our brief discussion to magnetic single groups (not double groups) and we
shall only discuss magnetic point groups, and showing their connection to
time reversal symmetry.

16.5.2 Types of Elements

Magnetic groups have symmetry elements corresponding to unitary operators
(denoted by Ai) and antielements Mk = T̂Ak corresponding to antiunitary
operators, where T̂ is the antiunitary time reversal operator (see Sect. 16.2).
We show in Fig. 16.5(a) a one-dimensional lattice in which T̂ when combined
with a translation is a symmetry operation. However, by displacing the non-
magnetic white atoms relative to the magnetic shaded atoms in Fig. 16.5(b)
relative to their positions in Fig. 16.5(a), we see that T̂ is no longer a sym-
metry operation. The lowering of the symmetry of the chain of atoms intro-
duced by the spin on the magnetic ion breaks the time reversal symmetry
in Fig. 16.5(b) as the spin-up magnetic species attracts the nonmagnetic ion
relative to the interaction with the spin-down magnetic ion. This structural

Fig. 16.5. Diagram showing a one-dimensional lattice where the white atoms are
nonmagnetic and the shaded atoms are magnetic with the indicated direction of spin
angular momentum: (a) the operation T̂ is combined with translation as a space
group symmetry operation, (b) T̂ is not a symmetry operation of the group, even if
combined with translations
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lattice distortion represents another manifestation of the Jahn–Teller effect
(see Sect. 7.7).

The product of two unitary elements Ai or of two antiunitary elements
Mk yields a unitary element, while the product of a unitary element Ai with
an antiunitary element Mk yields an antiunitary element:

AiAi′ = Ai′′

AiMk = Mk′

MkAi = Mk′′

MkMk′′′ = Ai′′′ . (16.32)

To satisfy these relations, group properties and the rearrangement theorem,
there must be equal numbers of elements of the type Ai and of the type Mk

in a magnetic point group.

16.5.3 Types of Magnetic Point Groups

In classifying the magnetic point groups we must consider three types of point
groups:

(a) 32 ordinary point groups G′ where T̂ is not an element.
(b) 32 ordinary point groups G′ ⊗ T̂ . In these magnetic point groups, all

elements Ai of G′ are contained together with all elements T̂Ai.
(c) 58 point groups G in which half of the elements are {Ai} and half are

{Mk} where Mk = T̂Ak and the {Ai, Ak} form an ordinary point group
G′. Also {Ai} is a subgroup of G′. It is important to emphasize that the
Mk elements are made from Ak elements that are different from the Ai

elements.

Summing the number of types (a), (b), and (c) we obtain (32+32+58) = 122
magnetic point groups. Case (a) can apply to nonmagnetic materials and
some ferromagnetic materials. Case (b) can apply to some antiferromagnetic
materials. Case (c) can apply to magnetic materials with a variety of spin
orderings.

We list in Table 16.6 the 58 magnetic point groups of type (c) and denoted
by G; also included in the table are the 32 ordinary point groups of type (a)
which are denoted by G′ [70]. The 32 point groups of type (b), obtained from
those in type (a) as G′ ⊗ T̂ , are not listed. The magnetic groups of type (c)
are related to elements of a group G′ and a subgroup Hr and are denoted by
G′(Hr). The appropriate group G′ contains the symmetry elements {Ai, Ak}
while the subgroup Hr of G′ only has elements {Ai}.

16.5.4 Properties of the 58 Magnetic Point Groups {Ai, Mk}
We list below some of the properties of the magnetic point groups [type (c)]
that contain both unitary and antiunitary symmetry elements, Ai and Mk =
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Table 16.6. The magnetic point groups of type (a) and type (c)

(Group G′ is a point group and the underscores on the Shubnikov notation denote
elements of G′ to which T̂ has been adjoined. F and AF denote ferromagnetic and
antiferromagnetic ordering, respectively)
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Table 16.6. (continued)
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T̂Ak, respectively. We denote a typical magnetic point group of this category
by G = {Ai,Mk}.
(a) T̂ is not an element in the magnetic point group G (since the identity

element is one of the elements of {Ai} but not of {Ak}).
(b) Ai and Ak are distinct, so that no element in the set {Ai} is also in {Ak}

where {Mk} = {T̂Ak}. If there were one Aj in common, then we could
have T̂Aj in {Mk} and A−1

j in {Ai}, which on multiplication T̂AjA
−1
j

implies that T̂ is in G, in contradiction with property (a).
(c) G′ ≡ {Ai, Ak} is one of the 32 ordinary point groups.
(d) The set Hr = {Ai} forms an invariant unitary subgroup of G. This sub-

group is selfconjugate because conjugation of an element in Ai with any
element in {Mk} written as MkAiM

−1
k yields an element in {Ai} as a re-

sult of (16.32), and likewise the conjugation AiMkA
−1
i yields an element

in {Mk}.
(e) The number of unitary operators Ai = the number of antiunitary op-

erators Mk, to satisfy the multiplication rules in (16.32) and the group
properties of G.

(f) {Ai} is the only coset of Hr in G and {Ak} is the only coset of Hr in G′.
(g) Since Hr and G′ are groups, and properties (e) and (f) apply, then G is

a group of the form
G = Hr + T̂ (G′ −Hr) . (16.33)

(h) From property (g), we see that the procedure for finding magnetic point
groups is to start with one of the 32 point groups G′ and find all invariant
subgroups Hr of index 2 where half of the elements in G′ are in Hr and
half are not. Denoting each such subgroup by Hr we can form a magnetic
group Gr such that

Gr = Hr + T̂ (G′ −Hr) . (16.34)

We denote each magnetic group Gr thus formed by G′(Hr) in which the
relevant G′ and Hr for each Gr are listed. This notation is used in Table 16.6
and the various G′(Hr) can be found in this table.

To illustrate the elements of magnetic point groups, we consider the four
entries under C2h in Table 16.6. We then list below the symmetry elements
of each of the C2h(Hr) magnetic point groups.

C2h(C2h) : E,C2, i, iC2 , (iC2 = σh)

C2h(C2) : E,C2, T̂ i, T̂ iC2

C2h(Ci) : E, i, T̂C2, T̂ iC2

C2h(C1h) : E, iC2, T̂ i, T̂C2 , (16.35)

in which the magnetic point group C2h(C2h) is of type (a), and the other
three are of type (c). Not listed is the magnetic space group C2h ⊗ T̂ of type
(b) which contains the eight symmetry elements {Ai} = {E,C2, i, iC2} and
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{T̂⊗Ai} = {T̂ , T̂C2, T̂ i, T̂ iC2} (see Table A.6 in Appendix A for the character
table for C2h). We note that the time reversal operator of T̂ reverses the sign
of a spin, while the inversion operator i leaves a spin invariant (since the
angular momentum L is even under inversion, while r and p are each odd).

16.5.5 Examples of Magnetic Structures

We give below three examples of magnetic structures in each case illustrating
a different aspect of magnetic structures. First we illustrate an orthorhombic
ferromagnetic structure for which the magnetic unit cell and the chemical unit
cell are the same (see Fig. 16.6).

The symmetry of this magnetic structure is denoted by D2h (C2h) which
denotes a point group D2h from which the subgroup (C2h) forms the set of
symmetry elements {Ai} and the remaining symmetry elements of G′ are
{Ak} where the elements Mk in G are of the form Mk = T̂Ak. We note from
Table 16.6 that D2h (C2h) corresponds to a ferromagnetic structure such as
the one shown in Fig. 16.6. In the paramagnetic state, the proper symmetry
group for this structure in D2h.

The symmetry operations for D2h = D2 ⊗ i are E, C2x, C2y, C2z , i, iC2x,
iC2y, iC2z [see Appendix A for character tables for D2h (Table A.7) and C2h

(Table A.6)]. It is immediately seen that the subgroup of D2h which leaves
the spin invariant consists of the elements {Ai} = E, C2z , i, iC2z, since both
orbital and spin angular momentum are invariant under inversion. These four
elements form the group C2h = C2 ⊗ i, noting again that the spin angular
momentum S is even under inversion. The remaining elements of D2h reverse
the spins, so that the time reversal operator T̂ is needed to keep all the spins

Fig. 16.6. Magnetic spin arrangement in D2h(C2h) symmetry for an orthorhombic
ferromagnetic system
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ferro-magnetically aligned. We therefore obtain {Mk} = T̂C2x, T̂C2y , T̂ iC2x

and T̂ iC2y for the remaining symmetry elements of D2h (C2h). The appropri-
ate Bravais lattice in this case is the orthorhombic-P Bravais lattice for the
nonmagnetic groups (see Fig. 16.4(a)). The magnetic space group D2h(C2h)
is further developed in Problem 16.5.

Next we consider for our second example antiferromagnets with the Rutile
structure as shown in Fig. 16.7. The open circles are the F ions while the
black circles with spins denote the magnetic cations. The point group for this
structure in the paramagnetic state is D4h = D4 ⊗ i. In the antiferromagnetic
state, each unit cell has one spin up and one spin down cation. The chemical
and magnetic unit cells contain the atoms shown in Fig. 16.7. The space group
symmetry operations for D4h pertinent to the rutile structure are the 16
operations listed below:

1. {E|0} 9. {i|0}
2. {C2|0} 10. {σh|0} = {C2|0}{i|0}
3. {C2ξ|0} 11. {σdξ|0} = {C2ξ|0}{i|0}
4. {C2ν |0} 12. {σdν |0} = {C2ν |0}{i|0}
5. {C4|τ0} 13. {S−1

4 |τ0} = {C4|τ0}{i|0}
6. {C−1

4 |τ0} 14. {S4|τ0} = {C−1
4 |τ0}{i|0}

7. {C2x|τ0} 15. {σvx|τ0} = {C2x|τ0}{i|0}
8. {C2y|τ0} 16. {σvy|τ0} = {C2y|τ0}{i|0} ,

(16.36)

where the axes ξ = (110) and ν = (11̄0) denote twofold axes and the transla-
tion τ 0 = 1/2(a1+a2 +a3) is from the origin at the lower left hand corner of
the figure to the body center of the unit cell (see Fig. 16.7). The point group

Fig. 16.7. Common antiferromagnets MnF2, FeF2 and CoF2 crystallize in the rutile
structure with |a1| = |a2| = a; |a3| = c; c �= a. The diagram emphasizes the magnetic
unit cell for the rutile structure that has the magnetic point group D4h (D2d) which
describes the antiferromagnetic spin alignment of these magnetic materials
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D4h corresponding to these space group operations is found by setting τ0 = 0.
The character table for D4 is given in Table A.18 where D4h = D4 ⊗ i. The
operations listed in (16.36) correspond to the space group for the chemical
unit cell for the rutile structure.

The unitary subgroup that forms the symmetry group for antiferromag-
netic MF2 (M = magnetic cation) consists of the four elements of the symme-
try group D2 {E|0}, {C2|0}, {C2x|τ0}, {C2y|τ0} and four additional elements
formed by combining these with inversion. These eight elements constitute
{Ai} which corresponds to the group D2h = D2 ⊗ i (see Table A.7). From
Fig. 16.7 we see that the operations C2x and C2y invert the spins. The ap-
propriate Bravais lattice for MnF2 is the tetragonal Bravais lattice PI for the
magnetic groups (see Fig. 16.4). If we ignore the fluorine anions, the chem-
ical unit cell would be half as large containing only one magnetic cation.
The magnetic unit cell would then be twice as large as the chemical unit
cell. Nevertheless the magnetic point group for the antiferromagnetic chemi-
cal structure remains D4h (D2h). Further elaboration on this space group is
given in Problem 16.7.

As a third example we consider the magnetic states of EuSe because the
nearest and next-nearest exchange constants are of approximately equal mag-
nitude and of opposite sign, and for this reason EuSe exhibits several dif-
ferent and interesting magnetic phases, depending on the magnetic field and
temperature variables. In Figs. 16.8(a)–(c) we see, respectively, the spin ar-
rangement for the antiferromagnetic (AF-II) two spin (↑↓) phase, the ferri-

Fig. 16.8. Magnetic structure of EuSe in (a) the AF-II phase (↑↓), (b) the ferri-
magnetic phase (↑↑↓), and (c) the antiferromagnetic AF-I phase (↑↑↓↓) in which the
magnetic Eu spins are shown
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magnetic three spin (↑↑↓) phase, and the antiferromagnetic (AF-I) four spin
(↑↑↓↓) phase.

A ferromagnetic phase is also found upon application of a high applied
magnetic field. In all four magnetically ordered phases, the spins in a given
(11̄1) plane are parallel to each other and are oriented along the [011] direction.
The resulting magnetic space group has very low symmetry. For the AF-II
phase, the symmetry elements are {E|0}, {i|0}, T̂{E|τ0}, T̂{i|τ0} in which
the vector τ 0 takes the spins from one sublattice to the other

τ 0 =
1
4
(ax, 0, az) . (16.37)

Thus the magnetic point group is S2 ⊗ T̂ .
If, however, the spins were oriented instead along [11̄1] and [1̄11̄] directions

in alternate (111) planes, then the magnetic symmetry of the group increases
and is C3 ⊗ T̂ . Thus the spin direction is important in determining the mag-
netic point group and the magnetic space group. We note that the number
of sublattices (1, 2, 3, or 4) is also important in determining the symmetry
operations in the magnetic space groups. For some cases it is useful to ignore
the spin directions and just to consider each atom on a given sublattice as
a colored atom. Such groups are called color groups [43]. Color groups have
more symmetry than the magnetic groups.

16.5.6 Effect of Symmetry on the Spin Hamiltonian
for the 32 Ordinary Point Groups

The n lowest energy states for electrons in a paramagnetic center where an
external magnetic field H has been applied can be described by an Effective
Spin Hamiltonian Hspin generally given by [59]:

Hspin = HZ + HF + Hhf + Hshf + HZN + HQ , (16.38)

where the contributions from the electronic Zeeman effect HZ , the fine inter-
action HF , the hyper-fine interaction Hhf , the super-hyper-fine interactions
Hshf , the nuclear Zeeman effect HZN and the nuclear quadrupole interac-
tion HQ are taken into account. Each of these contributions are represented
by tensors, and the symmetries of the system can be used to evaluate the
nonzero and the independent terms in Hspin. The group theory procedure for
dealing with general tensors is discussed in Chap. 18.

It is however interesting to comment here on the influence of symmetries
in the spin Hamiltonian. If we limit ourselves to spin operators S transforming
like angular momentum (invariant under spatial inversion and odd under time
reversal symmetry), it is clear that different Hamiltonians related to each
other by the spatial inversion are identical. Therefore, two groups obtained
from each other by the direct multiplication with the inversion operator will
indeed give the same Hspin. They will be magnetically equivalent.
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Table 16.7. Categories of magnetic equivalence for the 32 ordinary point groups

categories 1 2 3 4 5 6 7 8 9 10 11

C1 C2 D2 C3 D3 C4 D4 C6 D6 T O

S2 C1h C2v S6 C3v S4 C4v C6h C6v Th Td

C2h D2h D3d C4h D2d C3h D3h Oh

D4h D6h

Considering the 32 ordinary point groups, Table 16.7 gives the 11 cate-
gories of magnetically equivalent groups. It is enough to find Hspin for the
lowest symmetry point groups for each of the 11 categories, and the spin
Hamiltonian for the higher symmetry groups will be identical.

Selected Problems

16.1. Consider the space group D4
6h (#194) which we discussed in connec-

tion with the lattice modes for graphite (see Problem 11.1). We will now
concern ourselves with the electronic structure of graphite. Since the Fermi
surfaces are located close to the HK axes in the Brillouin zone, it is im-
portant to work with the group of the wave vector at points H , K and A
(see Fig. 16.9).

(a) Using Appendix D and other literature references [47,54] give the charac-
ter table including double groups for the group of the wave vector at point
K. Classify each of the irreducible representations according to whether
they behave as a, b or c under time reversal symmetry.

(a) Find the compatibility relations as we move away from K toward H .

16.2. Now consider a 2D graphene sheet, which by definition is one atomic
layer of 3D graphite.

(a) What are the symmetry operations for this structure and what is the
appropriate 2D space group?

Fig. 16.9. Brillouin zone and Fermi surfaces for electrons and holes of semimetallic
graphite
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(b) Give the character table for the group of the wave vector at the Γ point
(center of the Brillouin zone), and include the time reversal classification
for the cases where the spin–orbit interaction is neglected and where it is
included.

(c) Repeat part (b) for the group of the wave vector at the K point where the
valence and conduction band are degenerate right at theK point (corner of
the Brillouin zone) and have a linear k dependence as we move away from
the K point. What is the relation between the K and K ′ points in the 2D
Brillouin zone under time reversal symmetry? Consider the symmetry rela-
tion between E↑(k) and E↓(k) in the vicinity of the K andK ′ points for the
linear k bands and for those coming into points K and K ′ with zero slope.

16.3. Consider the zinc blende space group (#227) which lacks inversion sym-
metry. For an energy band with two fold degeneracy, time reversal symmetry
gives the relation E(k, ↑) = E(−k, ↓)) (see Sect. 16.4)

(a) What is the form of E(k) as we move away from k = 0?
(b) What is the form of the constant energy surface for the case where the car-

rier concentration is 1017 carriers/cm3? Does time reversal symmetry have
an effect on the constant energy surface at the Fermi level? What happens
in the presence of a magnetic field for which μ∗B > EF and μ∗B < EF?

16.4. Consider the symmetry operations of the arrangement of the chains of
magnetic and nonmagnetic atoms in Fig. 16.5.

(a) What are the symmetry operations of the chain shown in Fig. 16.5(a)?
What type of magnetic group would be applicable to the group of the
wave vector for k = 0, using the classifications in Sect. 16.5.3.

(b) Repeat (a) for the case of the chain shown in Fig. 16.5(b). Fig. 16.5 for
E(k, ↑) under spatial and time inversion symmetry?

16.5. (a) For the ferromagnetic structure in Fig. 16.6, what is the difference
between the chemical and magnetic unit cell [51]? What are the differences
in the symmetry operations when the system is in the ferromagnetic state
as compared to the paramagnetic states?

(b) What difference do you expect for E(k) for the two cases in (a)? What is
the effect of the time reversal operator on E(k)? Do you expect a change
in E(k) when a phase transition from a paramagnetic to a ferromagnetic
state occurs?

(c) Suppose now that the spins were all aligned by a high magnetic field
along the a axis. What would be the new magnetic group? On physical
arguments, would you expect this to be a stable configuration when you
turn off the magnetic field? Why? What information does group theory
provide regarding this question?

16.6. Suppose that we have a magnetic compound MX (where M is the
magnetic species) that crystallizes in the zinc-blende structure. Suppose that
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Fig. 16.10. In the chalcopyrite structure for ZnGeP2, the lattice is compressed
slightly along the vertical direction and the phosphorus atoms are slightly displaced
from the positions they would have in the zinc blende structure

at the Neél temperature the magnetic species undergo a magnetic phase
transition to an antiferromagnetic two sublattice phase such that by treating
the M↑ and M↓ as different species, the magnetic crystal is described by the
chalcopyrite structure (Fig. 16.10).

(a) Reconfigure the prototype chalcopyrite structure, shown in Fig. 16.10 for
ZnGeP2, to correspond to the antiferromagnetic MX compound with the
two spin states. What is the space group for this structure?

(b) Find the change in the Raman spectra associated with this magnetic phase
transition from the zinc-blende to the chalcopyrite structures shown in
Fig. 16.10.

16.7. Consider the structure shown for MnF2 in Fig. 16.7.

(a) What are the classes formed by the elements in (16.36)? What is the effect
of time reversal symmetry on each of these classes?

(b) What is the appropriate space group for MnF2 in the paramagnetic state?
What changes occur at the magnetic phase transition to an antiferromag-
netic state?

(c) The Raman effect probes certain lattice modes in this structure. Find the
Raman active modes in the paramagnetic phase?

(d) What changes would you expect to see in the Raman spectra when the
MnF2 undergoes a magnetic phase transition to the magnetic D4h(D2d)?

16.8. The ferrites (XFe2O4, X2+ = metallic ion) are important magnetic ma-
terials belonging to the cubic Fd3m (O7

h) space group. To calculate the spin
Hamiltonian Hspin for this material, it is enough to obtain Hspin for one of
the ordinary point groups of class 11 in Table 16.7. Show that the spin Hamil-
tonian can be written in the following form [3, 15, 34, 41]:
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Hspin = gμH ·S−gNμNH ·I +AI ·S +B40(O40 +5O44)+B60(O60 +21O64) ,
(16.39)

where

O40 = 35S4
z + 25S3

z − 30S(S + 1)S2
z + 3S2(S + 1)2 − 6S(S + 1) ,

O44 = (1/2)(S4
+ + S4

−) ,
O60 = 231S6

z − 315S(S + 1)S4
z + 735S4

z + 105S2(S + 1)2S2
z − 525S(S + 1)S2

z

+294S2
z − 5S3(S + 1)3 + 40S2(S + 1)2 − 60S(S + 1) ,

O64 = (1/2)(S4
+ + S4

−)(11S2
z − S(S + 1) − 38) .
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Permutation Groups and Many-Electron States

In this chapter we discuss the properties of permutation groups, which are
known as “Symmetric Groups” in the mathematics literature. Although per-
mutation groups are quite generally applicable to many-body systems, they
are used in this chapter to classify the symmetry in many-electron states.
This discussion applies to the symmetries of both the spin and orbital states.
In Chap. 18 we apply the results of this chapter for the permutation groups
to show a very different use of permutation groups, which is to classify the
symmetry properties for tensors occuring in solid state physics in a powerful
way.

The main application of the permutation group in this chapter is to
describe atoms with full rotational symmetry. We give explicit results for
two, three, four, and five electron systems. Whereas two electron systems
can be handled without group theory, the power of group theory is evi-
dent for three, four, five, and even larger electron systems. With a five-
electron system, we can treat all multielectron states arising from s, p,
and d electrons, since five electrons fill half of a d level, and a more than
half-filled level such as for eight d electrons can be treated as two d level
holes, using concepts equivalent to the presence of hole states in solid
state physics. To deal with all multielectron states that could be made
with f electrons we would need to also consider the permutation groups
for six and seven objects. In the solid state, multielectron states occur
predominantly in the context of crystal fields, as for example the sub-
stitution of a transition metal ion (having d electrons) on a crystal site
which experiences the symmetry of the crystal environment. The crys-
tal field lowers the full rotational symmetry of the free ion giving rise to
crystal field splittings. In this case the effect of the crystal field must be
considered once the symmetry of the electronic configuration of the free
ion has been determined using the permutation groups discussed in this
chapter.
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17.1 Introduction

In the physics of a many-electron atom or molecule we are interested in solu-
tions to a Hamiltonian of the form

H(r1, . . . , rn) =
n∑

i=1

(
p2

i

2m
+ V (ri)

)
+

1
2

∑
i�=j

e2

rij
, (17.1)

where V (ri) is a one-electron potential and the Coulomb electron–electron
interaction term is explicitly included. The one-electron potential determines
the rotational and translational symmetry of the Hamiltonian.

In addition to symmetry operations in space, the Hamiltonian in (17.1)
is invariant under interchanges of electrons, i.e., permutation operations P of
the type

P =

(
1 2 . . . n

a1 a2 . . . an

)
, (17.2)

where the operation P replaces 1 by a1, 2 by a2, etc. and n by an. We have
already seen that these permutation operations form a group (see Sect. 1.2),
i.e., there exists the inverse operation

P−1 =

(
a1 a2 . . . an

1 2 . . . n

)
, (17.3)

and the identity element is given by

E =

(
1 2 . . . n
1 2 . . . n

)
, (17.4)

which leaves the n electrons unchanged. Multiplication involves sequential
permutation operations of the type given by (17.2). The number of symmetry
operations in a permutation group of n objects is n!, which gives the order
of the permutation group to be n!. Thus the group P (3) in Sect. 1.2 has
h = 3! = 3 · 2 · 1 = 6 elements.

The wave function solutions of the many-electron Hamiltonian (17.1) are
denoted by ΨΓi(r1, . . . , rn). Since all electrons are indistinguishable, the per-
mutation P commutes with the Hamiltonian, and we, therefore, can classify
the wave functions of the group of the Schrödinger equation according to an ir-
reducible representation Γi of the permutation or the symmetric group. Some
permutations give rise to symmetric states, others to antisymmetric states,
and the remainder are neither. In some cases, all possible states are either
symmetric or antisymmetric, and there are no states that are neither fully
symmetric nor fully antisymmetric.
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For the permutation group of n objects amongst the various possible ir-
reducible representations, there are two special one-dimensional irreducible
representations: one that is symmetric and one that is antisymmetric under
the interchange of two particles. The basis function for the symmetric repre-
sentation Γ s

1 of an orbital state is just the product wave function

ΨΓ s
1
(r1, r2, . . . , rn) =

1√
n!

∑
permutations

ψ1(r1)ψ2(r2) . . . ψn(rn) . (17.5)

The total wave function for a many-electron system is the product of the or-
bital and spin wave functions. The basis function for the antisymmetric rep-
resentation Γ a

1 is conveniently written in terms of the Slater determinant [6]:

ΨΓ a
1
(x1,x2, . . . ,xn) =

1√
n!

∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ1(r2, σ2) . . . ψ1(rn, σn)
ψ2(r1, σ1) ψ2(r2, σ2) . . . ψ2(rn, σn)

...
...

. . .
...

ψn(r1, σ1) ψn(r2, σ2) . . . ψn(rn, σn)

∣∣∣∣∣∣∣∣∣∣
, (17.6)

where xi denotes a generalized coordinate, consisting of ri, the spatial coordi-
nate and σi, the spin coordinate. When written in this form, the many-body
wave function automatically satisfies the Pauli principle since the repetition of
either a row or a column results in a zero determinant, thereby guaranteeing
that every electron is in a different state.

The higher dimensional irreducible representations of the permutation
group are also important in determining many-electron states which sat-
isfy the Pauli principle. For example, in the L · S coupling scheme for
angular momentum, one must take combinations of n spins to get the
total S. These must be combined with the orbital angular momentum
combinations to get the total L. Both the spin states and the orbital
states will transform as some irreducible representation of the permuta-
tion group. When combined to make a total J , only those combinations
which transform as the antisymmetric representation Γ a

1 are allowed by the
Pauli principle. We will illustrate these concepts with several examples in
this chapter, including the three-electron p3 state and the four-electron p4

state.
In this chapter we will use the permutation groups to yield information

about the symmetry and the degeneracy of the states for a many-electron
system. We emphasize that in contrast to the case of rotational invariance,
the ground state of (17.1) does not transform as the totally symmetric rep-
resentation of the permutation group Γ s

1 . But rather for electrons (or half
integral spin (Fermion) particles), the ground state and all allowed excited
states transform as the antisymmetric one-dimensional irreducible represen-
tation Γ a

1 since any physical perturbation H′ will not distinguish between
like particles. The perturbation H′ itself transforms as the totally symmetric
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irreducible representation of the permutation group. Only integral spin par-
ticles (Bosons) have ground states that transform as the totally symmetric
irreducible representation Γ s

1 .
Mathematicians also study another aspect of permutations called braids

[36], where both the permutation and the ordered sequence of the permutation
is part of the definition of the group element. The group theory and application
of braids to solid state physics is not considered in this chapter.

In this chapter we first discuss the classes of the permutation groups
(Sect. 17.2), their irreducible representations (Sect. 17.2), and their basis
functions (Sect. 17.3). Applications of the permutation groups are then made
(Sect. 17.4) to classify two-electron, three-electron, four-electron and five-
electron states.

17.2 Classes and Irreducible Representations
of Permutation Groups

Of particular interest to the symmetry properties of permutation groups are
cyclic permutations.

Definition 26. A cyclic permutation is here defined in terms of an example:

If a permutation group has n objects, one of the group elements of a cyclic
permutation of n objects is

(
1 2 3 . . . (n− 1) n
2 3 4 . . . n 1

)
≡ (23 . . . n1) ,

where the permutation (1 2 3 . . . n) denotes the identity element. It is clear
that the n cyclic permutations of n identical objects are all related to one
another by an equivalence transformation

(1 2 3 . . . n) = (2 3 4 . . . n 1) = (3 4 . . . n 1 2) = etc. (17.7)

Since all of these group elements are identical, and all these cyclic permuta-
tions have 1 → 2, 2 → 3, 3 → 4, all are the same permutation of n identical
objects, all are related by an equivalence transformation, i.e., all of these cyclic
permutations represent the same physics.

Theorem. Any permutation can be decomposed into cycles.

Proof. The decomposition of a given permutation is demonstrated by the
following example.
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Pi =

(
1 2 3 4 5 6 7
4 3 2 5 7 6 1

)
≡ (1 4 5 7)(2 3)(6) (17.8)

can be decomposed into three cycles as indicated in (17.8). The decomposition
of a permutation into cycles is unique, since different arrangements of cycles
correspond to different permutations. �
Definition 27. Length of a cycle.

Let us assume that a permutation of n objects is decomposed into cycles as
follows: there are λ1 cycles of one element, i.e., of length 1, λ2 cycles of length
2, . . . , λq cycles of length q:

n = λ1 + 2λ2 + · · · + qλq . (17.9)

It is easily seen that there are

n!
1λ1λ1! 2λ2λ2! . . . qλqλq!

(17.10)

permutations that have the same cycle structure. An example of the length
of the cycle for permutation group P (4) will be given after the next theorem.

Theorem. Permutations with the same cycle structure belong to the same
class.

Proof. Consider two permutations P and P ′ with the same cycle structure
given by

P = (a1a2 . . . aλ1)(b1b2 . . . bλ2) . . . (d1d2 . . . dλr )

P ′ = (a′1a
′
2 . . . a

′
λ1

)(b′1b
′
2 . . . b

′
λ2

) . . . (d′1d
′
2 . . . d

′
λr

) . (17.11)

Here P takes a1 → a2, etc. b1 → b2, etc., d1 → d2, etc. while P ′ does the
corresponding permutation for the primed quantities. Now we introduce the
permutation operation T which takes the primed quantities into the unprimed
quantities (e.g., a′i → ai)

T =

(
a′1 . . . a

′
λ1
b′1 . . . b

′
λ2
. . . d′1 . . . d

′
λr

a1 . . . aλ1 b1 . . . bλ2 . . . d1 . . . dλr

)
(17.12)

and T−1 takes ai → a′i. Thus T−1PT does the following sequence: a′i → ai,
ai → ai+1 and finally ai+1 → a′i+1. But this is equivalent to a′i → a′i+1 which
is precisely the permutation P ′. Therefore,

T−1PT = P ′ .

P ′ is related to P by conjugation, thus completing the proof of the theorem.
The number of elements in each class is found from (17.10). �
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From the above theorem it follows that the number k of different classes
(and hence the number of irreducible representations) of the permutation
group of n objects is the number of different cycle structures that can be
formed. Thus, the number of classes is just the number of ways in which the
number n can be written as the sum of positive integers. For example, n = 4
objects can be constituted into five different cycle structures as enumerated
below:

n = 4 4 = 4 (1, 2, 3, 4)
4 = 3 + 1 (1, 2, 3)(4)
4 = 2 + 1 + 1 (1, 2)(3)(4)
4 = 2 + 2 (1, 2)(3, 4)
4 = 1 + 1 + 1 + 1 (1)(2)(3)(4)

(17.13)

giving rise to five classes and the number of members in each class can be
found from (17.10).

As an example of this theorem consider the cycle structure (abc)(d) of the
permutation group P (4), which is isomorphic to the point group Td for the
symmetry operations of a regular tetrahedron. The cycle structure (abc)(d) in
P (4) corresponds to the rotation about a threefold axis, which also forms
a class. The number of symmetry operations k in this class according to
(17.10) is

4!
(11)(1!)(31)(1!)

= 8 ,

which is in agreement with the number of elements in 8C3 in the group Td.
Another example is finding the number of symmetry operations in the class
(ab)(cd) of the point group P (4), corresponding to the twofold axes around
x, y, z, would be 4!/[(22)(2!)] = 3 from (17.10), as expected for k from the
isomorphism of (ab)(cd) of P (4) and 3C2 in Td.

In the same way, n = 5 objects can be constituted in seven different cycle
structures giving rise to 7 classes. Correspondingly q = 6 gives rise to 11
classes, q = 7 gives rise to 15 classes, q = 8 gives rise to 22 classes, etc. as
further discussed in Problem 17.1(a).

Since the number of classes is equal to the number of irreducible repre-
sentations, we can construct Table 17.1 where P (n) labels the permutation
group of n objects. Since the permutation groups are finite groups, we can
appeal to our experience regarding finite groups and use the Theorem (3.40)

h =
∑

i

�2i , (17.14)

where �i is the dimensionality of the representation i, and h is the order of
the group. For a permutation group of n objects, the order of the group is
h = n!. From Table 17.1 we note that P (3) is isomorphic with group C3v or
alternatively with group D3. Similarly P (4) is isomorphic with the tetrahe-
dral group Td. Although the groups P (5) and Ih both have 120 symmetry
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Table 17.1. The number of classes and a listing of the dimensionalities of the
irreducible representations

group classes number of group elements
∑

i
�2i

P (1) 1 1! = 12 = 1

P (2) 2 2! = 12 + 12 = 2

P (3) 3 3! = 12 + 12 + 22 = 6

P (4) 5 4! = 12 + 12 + 22 + 32 + 32 = 24

P (5) 7 5! = 12 + 12 + 42 + 42 + 52 + 52 + 62 = 120

P (6) 11 6! = 12 + 12 + 52 + 52 + 52 + 52 + 92 + 92 + 102 + 102 + 162 = 720

P (7) 15 7! = 12 + 12 + 62 + 62 + 142 + 142 + 142 + 142 + 152 + 152

+212 + 212 + 352 + 352 + 202 = 5040

P (8) 22 8! = 12 + 12 + 72 + 72 + 142 + 142 + 202 + 202 + 212 + 212

+282 + 282 + 352 + 352 + 562 + 562 + 642 + 642 + 702 + 702

+422 + 902 = 40320
...

operations, P (5) is not isomorphic to the icosahedral group Ih since the two
groups have different numbers of classes. The number of classes of P (5) is
seven while the number of classes of Ih is 10. The dimensions �i of the seven
classes in the group P (5) are listed in Table 17.1, and include two irreducible
representations with �i = 1, two with �i = 4, two with �i = 5 icosahedral
group Ih, and one with �i = 6. The 10 irreducible representations of Ih have
the following dimensionalities: 2[1+3+3+4+5] (the 2 refers to two irreducible
representations for each dimensionality arising from the inversion symmetry).
Making use of the isomorphism of P (3) and P (4) mentioned above, matrix
representations for the symmetry operations of these groups are easily written
down.

17.3 Basis Functions of Permutation Groups

The basis functions considered here are for the particular application of per-
mutation groups to many-particle systems. For example, the one-electron
Hamiltonian

H0(r1) =
p2
1

2m
+ V (r1) (17.15)

has one-electron solutions ψ0(r1), ψ1(r1), etc. Thus the solutions of the many-
electron problem can be expanded in terms of products of the one-electron
wave functions for the Hamiltonian in (17.15). Below, we write down the
ground state many-electron wave function formed by putting all electrons in
the ground state, and the lowest excited states are formed by putting one
electron in an excited state.
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Since electrons are Fermions, we present the discussion more generally
in terms of particles. We will first consider the ground state of lowest energy
which is a fully symmetric state with Γ s

1 symmetry. Every n-particle (electron)
system also has one fully antisymmetric state with Γ a

1 symmetry. Because of
the Pauli principle, we know that every allowed Fermion state must have Γ a

1

symmetry and thus we always look for the product of orbital and spin states
that transform as Γ a

1 .
Ground State: (Boson gas)
The many-particle ground state wave function Ψ0 is found by putting all the
particles into the one-particle ground state:

Ψ0 = ψ0(r1)ψ0(r2) . . . ψ0(rn) → Γ s
1 (17.16)

and from a group theoretical point of view, this orbital state transforms at
the totally symmetric representation Γ s

1 .
Single Excitation: (e.g., “phonons” or “magnons”)
To form the first excited state, consider the functions gi found by placing the
ith particle in the first excited state ψ1(ri):

ψ1(r1)ψ0(r2) . . . ψ0(rn) = g1 ,

ψ0(r1)ψ1(r2) . . . ψ0(rn) = g2 ,

...

ψ0(r1)ψ0(r2) . . . ψ1(rn) = gn . (17.17)

The basis functions given by (17.17) transform as an n-dimensional reducible
representation. Decomposition of this reducible representation yields

Γn(reducible) = Γ s
1 + Γn−1 ,

where Γ s
1 refers to the totally symmetric representation, with basis functions

is given by

Ψ ′
Γ s

1
=

1√
n

n∑
i=1

gi → Γ s
1 (17.18)

and Γn−1 is the (n−1) dimensional irreducible representation, the basis func-
tions depending on the ensemble of phase factors forming all possible nth roots
of unity

Ψ ′
Γn−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
n

n∑
i=1

ω(i−1)gi

1√
n

n∑
i=1

ω2(i−1)gi

...

1√
n

n∑
i=1

ωn(i−1)gi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→ Γn−1 (17.19)



17.3 Basis Functions of Permutation Groups 439

where ω are phase factors given by ω = e2πi/n. For the special case n = 2,
where ω = −1, we obtain

Ψ ′
Γ1=Γ a

1
=

1√
2
[ψ1(r1)ψ0(r2) − ψ0(r1)ψ1(r2)] .

For the case n = 3, where ω = e2πi/3, we obtain

Ψ ′
Γ2

=
1√
3
{ψ1(r1)ψ0(r2)ψ0(r3) + ωψ0(r1)ψ1(r2)ψ0(r3)

+ω2ψ0(r1)ψ0(r2)ψ1(r3)
}

and its partner

Ψ ′′
Γ2

=
1√
3

(
ψ1(r1)ψ0(r2)ψ0(r3) + ω2ψ0(r1)ψ1(r2)ψ0(r3)

+ωψ0(r1)ψ0(r2)ψ1(r3))

for the two-dimensional irreducible representation.
The (n− 1) cyclic permutations (1)(2 3 . . . n), (1)(n 2 3 . . . (n− 1)), . . . all

commute with each other. Hence the eigenfunctions can be chosen so that
these matrices are brought into diagonal form. This means that the (n − 1)
diagonal terms become eigenvalues, given by

e
2πi
n ( n−2

2 ), . . . , e
−2πi

n ( n−2
2 ) .

This Γn−1 irreducible representation is present in every permutation
group P (n).
Irreducible Representation Γ a

1 . Also present in every permutation group is
a one-dimensional irreducible representation Γ a

1 which is totally antisymmet-
ric and Γ a

1 can be found from the regular representation which contains every
irreducible representation (see Sect. 3.7) of the group in accordance with its
dimensionality.
Regular Representation. Since all n electrons are in distinct states, they have
different eigenfunctions. The Slater determinant (Sect. 17.1) formed from these
eigenfunctions is distinct, and does not vanish. Furthermore the Slater deter-
minant forms the basis function for the antisymmetric representation Γ a

1 . For
the case where all n one-electron functions are distinct, the n! functions form
a regular representation of the permutation group, and the character for the
identity element for the regular representation is the order of the group and
according to (3.42) we have

χregular =
n∑
j

�j χ
Γj = h = n! , (17.20)

where �j is the dimension of the irreducible representation Γj and each rep-
resentation occurs a number of times which is equal to the dimension of the
representation, and h is the order of the group = n!.
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17.4 Pauli Principle in Atomic Spectra

We will in the following subsections of this section apply the results in
Sect. 17.3 to specify the symmetry of many-body wave-functions formed by
two electrons, three electrons, etc. For each case, we will point out the states
corresponding to the representations Γ s

1 , Γ a
1 , and Γn−1 discussed in Sect. 17.3.

17.4.1 Two-Electron States

For the case of two electrons, the use of group theory is not especially needed
for selecting the proper linear combinations of wave functions. The same re-
sults can be found just from consideration of even and odd states, since there
are only two classes and two irreducible representations for P (2). We discuss
this case here largely for review and pedagogic reasons. The Slater determi-
nant for the two-electron problem can be written as

Ψ(x1,x2) =
1√
2

∣∣∣∣∣
ψ1(r1, σ1) ψ1(r2, σ2)
ψ2(r1, σ1) ψ2(r2, σ2)

∣∣∣∣∣ , (17.21)

where Ψ(x1,x2) denotes the many-electron wave function for the case of two
electrons. The wave-functions ψi(rj , σj), j = 1, 2 denote the one-electron wave
functions with each electron having spatial rj and spin σj coordinates. The
subscript i (i = 1, 2) refers to two distinct electron states that obey the Pauli
Principle. We use the vector xi to denote both the orbital and spin variables
(ri, σi). The two electron state defined by the Slater determinant in (17.21)
has Γ a

1 symmetry.
The lowest energy state for the two-electron problem is achieved by putting

both electrons in 1s orbital states, taking the symmetric (s) linear combination
of spatial orbitals and taking the spins antiparallel. This choice provides two
different states for the two electrons by the Pauli Principle, and minimizes
the energy. Multiplying out the Slater determinant in this case yields

Ψ(1, 2) =
1√
2
ψ1s

s (1)ψ1s
s (2)[α1β2 − α2β1] , (17.22)

where the spin up state is denoted by α or ↑ and the spin down state by β, or ↓,
and Ψ(1, 2) denotes the two-electron ground state. The function [α1β2−α2β1]
denotes the antisymmetric spin function where the subscripts refer to the
individual electrons.

Let us now consider the transformation properties of these two electrons
more generally, including their excited states. The possible spin states for two
electrons are S = 0, 1 where capital S denotes the total spin for the many elec-
tron system. The phase factor for the two-electron problem is ω = e2πi/2 = −1
so that the linear combinations simply involve ±1. For the two-electron prob-
lem we can form a symmetric and an antisymmetric combination of α and β
as given in Table 17.2.
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Table 17.2. Transformation properties of two-electron states under permutations

configuration state irreducible allowed

representations states

(α1β2 − β1α2)/
√

2 S = 0 Γ a
1

(α1α2 + α2α1)/
√

2, . . . S = 1 Γ s
1

s2 L = 0 Γ s
1

1S

1s2s L = 0 Γ s
1 + Γ a

1
1S, 3S

sp L = 1 Γ s
1 + Γ a

1
1P , 3P

p2 L = 0 Γ s
1

1S

p2 L = 1 Γ a
1

3P

p2 L = 2 Γ s
1

1D

pd L = 1 Γ s
1 + Γ a

1
1P + 3P

pd L = 2 Γ s
1 + Γ a

1
1D + 3D

pd L = 3 Γ s
1 + Γ a

1
1F + 3F

d2 L = 0 Γ s
1

1S

d2 L = 1 Γ a
1

3P

d2 L = 2 Γ s
1

1D

d2 L = 3 Γ a
1

3F

d2 L = 4 Γ s
1

1G

f2 L = 0 Γ s
1

1S

f2 L = 1 Γ a
1

3P

f2 L = 2 Γ s
1

1D

f2 L = 3 Γ a
1

3F

f2 L = 4 Γ s
1

1G

f2 L = 5 Γ a
1

3H

f2 L = 6 Γ s
1

1I

The symmetries of the irreducible representations of the permutation group P (2)
label the various spin and orbital angular momentum states. To obtain states allowed
by the Pauli Principle, the direct product of the symmetries between the orbital and
spin states must contain Γ a

1

For the antisymmetric combination (S = 0) as in (17.22), we can have
only MS = 0 and the corresponding linear combination of spin states is given
in Table 17.2. For the symmetric spin combination (S = 1), we can have three
linear combinations. Only the MS = 1 combination (α1α2+α2α1)/

√
2 is listed

explicitly in Table 17.2. The MS = 0 combination (α1β2 + β1α2)/
√

2 and the
MS = −1 combination (β1β2 + β2β1)/

√
2 do not appear in the table.

We also make entries in Table 17.2 for the symmetries of the orbital angu-
lar momentum states. If the two electrons are in the same symmetric orbital s
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state (L = 0), then the spin functions must transform as an antisymmetric
linear combination Γ a

1 in Table 17.2 and corresponding to the spectroscopic
notation 1S as in (17.22). However, if the two s electrons have different prin-
cipal quantum numbers, then we can make both a symmetric and an an-
tisymmetric combination of orbital states, as is illustrated here for the two
electrons occupying 1s and 2s states, where the symmetric and antisymmetric
combinations are

(ψ1s(r1)ψ2s(r2) + ψ1s(r2)ψ2s(r1))/
√

2 ,

which transforms as Γ s
1 and

(ψ1s(r1)ψ2s(r2) − ψ1s(r2)ψ2s(r1))/
√

2 ,

which transforms as Γ a
1 . Because of the Pauli principle, the orbital Γ s

1 combi-
nation goes with the Γ a

1 spin state leading to an 1S level, while the Γ a
1 orbital

state goes with the Γ s
1 spin state leading to an 3S level (see Table 17.2).

The state with Γn−1 symmetry will be a one-dimensional representation also,
but we already have two one-dimensional representations and there can be no
more than two irreducible representations for P (2) because we have only two
classes.

We now consider the next category of entries in Table 17.2. If one elec-
tron is in an s state and the second is in a p state (configuration labeled
sp), the total L value must be L = 1. We however have two choices for the
orbital states: a symmetric Γ s

1 state or an antisymmetric Γ a
1 state. The sym-

metric combination of orbital wave functions (Γ s
1 ) must then correspond to

the S = 0 antisymmetric spin state (Γ a
1 ), resulting in the 1P level, whereas

the antisymmetric orbital combination (transforming as Γ a
1 ) goes with the

symmetric triplet Γ s
1 spin state and yields the 3P level (see Table 17.2).

Placing two electrons in p states with the same principal quantum num-
ber (configuration p2 in Table 17.2) allows for a total angular momentum of
L = 0 (which must have Γ s

1 symmetry), of L = 1 (with Γ a
1 symmetry) and of

L = 2 (again with Γ s
1 symmetry). Each p electron can be in one of the three

orbital states (p+, p0, p−), corresponding to ml = 1, 0,−1, respectively, for
each one-electron state. Combining the p+p+ product yields an ML = 2 state
which belongs exclusively to the L = 2 multiplet, whereas combining the p+p0

states symmetrically yields the ML = 1 state of the L = 2 multiplet. We use
the notation p+p0 to denote ψp+(r1)ψp0(r2). However, combining p+p0 anti-
symmetrically yields the ML = 1 state of the L = 1 multiplet. The formation
of the two-electron states for the various L and ML values occurring for the
p2 configuration is given below. Since the orbital functions for the L = 1 state
transform as Γ a

1 the spin functions transform as Γ s
1 and the L = 1 multiplet

is a triplet spin state 3P . The L = 0 and L = 2 states both transform as Γ s
1

and thus the allowed spin states must be the singlet spin state S = 0 (see
Table 17.2).

The wave functions for the p2 configuration sketched above can be found
in many standard quantum mechanics text books and are:
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L = 2 symmetry (Γ s
1 ) going with Γ a

1 for the spins to yield a 1D state.

Ψ(L = 2,ML = 2) = (p+p+)

Ψ(L = 2,ML = 1) = (p0p+ + p+p0)/
√

2

Ψ(L = 2,ML = 0) = [(p0p0) + (p+p− + p−p+)/
√

2]/
√

2

Ψ(L = 2,ML = −1) = (p0p− + p−p0)/
√

2
Ψ(L = 2,ML = −2) = (p−p−) . (17.23)

L = 1 symmetry (Γ a
1 ) going with a symmetric spin state (Γ s

1 ) to yield a 3P
state.

Ψ(L = 1,ML = 1) = (p0p+ − p+p0)/
√

2

Ψ(L = 1,ML = 0) = (p+p− − p−p+)/
√

2

Ψ(L = 1,ML = −1) = (p0p− − p−p0)/
√

2 . (17.24)

L = 0 symmetry (Γ s
1 ) going with an antisymmetric spin state (Γ a

1 ) to yield
a 1S state.

Ψ(L = 0,ML = 0) = [(p0p0) − (p+p− + p−p+)/
√

2]/
√

2 . (17.25)

Following this explanation for the p2 configuration, the reader can now fill in
the corresponding explanations for the states formed from two-electron states
derived from the pd, d2 or f2 configurations listed in Table 17.2.

17.4.2 Three-Electron States

For the case of three electrons, the use of group theory becomes more im-
portant. In this case we have the permutation group of three objects P (3)
which has six elements, three classes and three irreducible representations
(see Table 17.3). In the extended character table above, we label the class

Table 17.3. Extended character table for permutation group P (3)

χ(E) χ(A,B,C) χ(D,F)

P (3) (13) 3(2, 1) 2(3)

Γ s
1 1 1 1

Γ a
1 1 −1 1

Γ2 2 0 −1

Γperm.(ψ1ψ1ψ1) 1 1 1 ⇒ Γ s
1

Γperm.(ψ1ψ1ψ2) 3 1 0 ⇒ Γ s
1 + Γ2

Γperm.(ψ1ψ2ψ3) 6 0 0 ⇒ Γ s
1 + Γ a

1 + 2Γ2
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(13) to denote the cyclic structure (1)(2)(3) and class (2, 1) to denote the
cyclic structures (1 2)(3), (2)(1 3), (1)(2 3), and class (3) to denote the cyclic
structure (1 2 3). The correspondence between the six symmetry elements
E,A,B,C,D, F and these three classes is immediate and is given in the table
explicitly. Also given below the character table are all the possible symme-
tries of the permutations for three-electron wave functions. Because of these
additional listings, we call this an extended character table. The first per-
mutation representation Γperm. for the three-electron state would correspond
to having all the same one-electron states (ψ1ψ1ψ1). This function is invari-
ant under any of the six permutations of the group, so that all characters
are one and the function (ψ1ψ1ψ1) transforms as Γ s

1 . In the second possible
case, one of the electrons is in a different state (ψ1ψ1ψ2), and since there are
three possible combinations that can be formed with the ψ2 one-electron wave
function, we have three distinct functions that can be obtained from permu-
tation of the electrons. Hence (ψ1ψ1ψ2) transforms as a three-dimensional
reducible representation of the permutation group P (3) with three partners
for this state. The identity operation leaves the three partners invariant so
we get a character three. Each of the permutation operations [3(2, 1)] leaves
one of the partners invariant, so we get a character of one, while the cyclic
permutations change all partners yielding a character of zero. The reduction
of this reducible representation to its irreducible components yields Γ s

1 +Γ2 as
indicated on the table. Finally, we consider the case when all three electrons
are in different states (ψ1ψ2ψ3). This choice gives rise to six partners, and it
is only the identity operation which leaves the partners (ψ1ψ2ψ3) invariant.
This reducible representation [like the regular representation can be expressed
in terms of its irreducible constituents using the relation h =

∑
i(�

2
i )] contains

Γ s
1 + Γ a

1 + 2Γ2 as is expected for the regular representation. The equivalence
principle is thus used to form reducible representations such as those for P (3)
given in Table 17.3. This table is also given in Appendix F as Table F.1.

Let us now look at the spin states that can be made from three electrons.
Referring to Sect. 17.3 we can make a symmetric state

(α1α2α3)

with symmetry Γ s
1 that corresponds to the S = 3/2 and MS = 3/2 spin state.

To obtain the linear combination of spin states for the three other MS values
(MS = 1/2,−1/2,−3/2), we must apply lowering operators to the MS = 3/2
state (α1α2α3). With regard to the S = 1/2 state, (17.17) tells us that this
state is a two-dimensional representation with partners:

Ψ ′
Γ2

=

{
(g1 + ωg2 + ω2g3)

(g1 + ω2g2 + ωg3) ,
(17.26)

where ω = exp(2πi/3) and where the functions gi are assembled by sequen-
tially selecting the spin down state β at each of the sites 1, 2 or 3. This
explains the first two entries in Table 17.4. The state Ψ ′

Γ2
corresponds to the
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Table 17.4. Transformation properties of three-electron states under permu-
tations(a)

configuration state irreducible representation allowed state

(↑↑↓) S = 1/2 Γ2

(↑↑↑) S = 3/2 Γ s
1

s3 L = 0 Γ s
1 –

1s22s L = 0 Γ s
1 + Γ2

2S

s2p L = 1 Γ s
1 + Γ2

2P

sp2 L = 0 Γ s
1 + Γ2

2S

sp2 L = 1 Γ a
1 + Γ2

2P , 4P

sp2 L = 2 Γ s
1 + Γ2

2D

(2p)2(3p) L = 0 Γ a
1 + Γ2

2S, 4S

(2p)2(3p) L = 1 2Γ s
1 + Γ a

1 + 3Γ2
2P , 2P , 2P , 4P

(2p)2(3p) L = 2 Γ s
1 + Γ a

1 + 2Γ2
2D, 2D, 4D

(2p)2(3p) L = 3 Γ s
1 + Γ2

2F

p3 L = 0 Γ a
1

4S

p3 L = 1 Γ s
1 + Γ2

2P

p3 L = 2 Γ2
2D

p3 L = 3 Γ s
1 –

d3 L = 0 Γ s
1 –

d3 L = 1 Γ a
1 + Γ2

2P , 4P

d3 L = 2 Γ s
1 + 2Γ2

2D, 2D

d3 L = 3 Γ s
1 + Γ a

1 + Γ2
2F , 4F

d3 L = 4 Γ s
1 + Γ2

2G

d3 L = 5 Γ2
2H

d3 L = 6 Γ s
1 –

f3 L = 0 Γ a
1

4S

f3 L = 1 Γ s
1 + Γ2

2P

f3 L = 2 Γ a
1 + 2Γ2

2D, 2D, 4D

f3 L = 3 2Γ s
1 + Γ a

1 + 2Γ2
2F , 2F , 4F

f3 L = 4 Γ s
1 + Γ a

1 + 2Γ2
2G, 2G, 4G

f3 L = 5 Γ s
1 + 2Γ2

2H , 2H

f3 L = 6 Γ s
1 + Γ a

1 + Γ2
2I , 4I

f3 L = 7 Γ s
1 + Γ2

2J

f3 L = 8 Γ2
2K

f3 L = 9 Γ s
1 –

(a) The symmetries of the irreducible representations of the permutation group P (3)
label the various spin and orbital angular momentum states. To obtain the states
allowed by the Pauli Principle, the direct product of the symmetries between the
orbital and spin states must contain Γ a

1
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state with Γn−1 symmetry in Table 17.4. Using the g1, g2, and g3 functions
we can write the state with Γ s

1 symmetry as

Ψ ′
Γ s

1
=

1√
3
(g1 + g2 + g3) (17.27)

and the state with Γ a
1 symmetry as the Slater determinant

Ψ ′
Γ a

1
=

1√
3

∣∣∣∣∣∣∣
g1(x1) g1(x2) g1(x3)
g2(x1) g2(x2) g2(x3)
g3(x1) g3(x2) g3(x3)

∣∣∣∣∣∣∣
. (17.28)

Now let us examine the spatial states. Putting all three electrons in the same
s state would yield a state with L = 0, ML = 0 and having Γ s

1 symmetry.
Taking the direct product between Γ s

1 for the orbital L = 0 state and either
of the spin states Γ s

1 ⊗(Γ s
1 +Γ2) does not yield a state with Γ a

1 symmetry, and
therefore the s3 configuration is not allowed because of the Pauli principle.
This is a group theoretical statement of the fact that a particular s level can
only accommodate one spin up and one spin down electron. If now one of the
electrons is promoted to a 2s state, then we can make an Γ s

1 state and a Γ2

state in accordance with Sect. 17.3 and with the character table for P (3) in
Table 17.3, taking g1 = ψ2s(r1)ψ1s(r2)ψ1s(r3), etc. and forming states such
as given in (17.18) and (17.19). The direct product

Γ2 ⊗ Γ2 = Γ s
1 + Γ a

1 + Γ2

then ensures that a state with Γ a
1 symmetry can be assembled to satisfy the

Pauli principle. Since the spin state with Γ2 symmetry corresponds to a Pauli-
allowed component S = 1/2, the allowed 1s22s state will be a doublet 2S state
as shown in Table 17.4. Similar arguments apply to the formation of s2p states
with L = 1.

For the sp2 configuration the orbital angular momentum can be L = 0,
L = 1 and L = 2. This corresponds to (2 × 6 × 6 = 72) possible states in the
multiplet. We show below using the Pauli principle and group theory argu-
ments that the number of allowed states is 30. The spatial states for the sp2

configuration with L = 2 are formed from products of the type sp+p+ for the
ML = 2 state (see (17.23)–(17.25)). Once again from the character table (Ta-
ble 17.3) for P (3), the symmetries which are contained in the three-electron
wave function sp+p+ (denoting ψs(r1)ψp+(r2)ψp+(r3)) are Γ s

1 and Γ2 just
as was obtained for the 1s22s configuration. The only possible allowed state
for L = 2 has S = 1/2 which results in the 2D state listed in the table. The
ML = 1 states are linear combinations of the sp+p0 functions which have the
symmetries Γ s

1 +Γ a
1 +2Γ2, since this case corresponds to (ψ1ψ2ψ3) in the char-

acter table. Of these symmetry types, the Γ s
1 + Γ2 states are associated with

the ML = 1 state of the L = 2 multiplet, since the irreducible representation
is specified by the quantum number L and the ML only specify the partners
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of that irreducible representation. After this subtraction has been performed
the symmetry types Γ a

1 + Γ2 for the L = 1, ML = 1 level are obtained.
Referring to Table 17.4, the symmetry for the L = 0 state of the sp2

configuration could arise from a sp0p0 state which is of the (ψ1ψ1ψ2) form
and therefore transforms according to Γ s

1 + Γ2 symmetry (see the character
table (Table 17.3) for P (3)). These orbital states go with the spin states Γ a

1 .
For the L = 1 state, the orbital Γ a

1 irreducible representation goes with
the Γ s

1 spin 3/2 state to give rise to a quartet 4P state while the Γ2 orbital
state can only go with the Γ2 spin state to give a Γ a

1 state when taking the
direct product of the symmetries of the orbital and spin states (Γ2 ⊗ Γ2).
The case of the p3 configuration is an instructive example where we can see
how group theory can be used to simplify the analysis of the symmetries of
multi-electron states. As the number of electrons increases, the use of group
theory becomes essential to keep track of the symmetries that are possible by
the addition of angular momentum and the symmetries that are allowed by
the Pauli principle. For the p3 configuration, we can have a total of 6×6×6 =
216 states. We will show below that if all electrons have the same principal
quantum number, only 20 of these states are allowed by the Pauli principle
and we will here classify their symmetry types.

For the p3 configuration we can have L = 3, 2, 1 and 0 total orbital
angular momentum states. In the discussion that follows we will assume that
all electrons have the same principal quantum number (e.g., 2p3). For the
L = 3 state to be allowed, we must be able to put all three electrons into
a (p+p+p+) state to make the ML = 3 state. From the extended character
table (Table 17.3) for P (3), we see that L = 3 must transform as Γ s

1 . Since
the direct product of the orbital and spin states Γ s

1 ⊗ (Γ s
1 + Γ2) does not

contain Γ a
1 this state is not allowed. The L = 2 multiplet is constructed from

an ML = 2 state having p+p+p0 combinations which from the character table
(Table 17.3) for P (3) transform as Γ s

1 + Γ2. Since ML = 2 also contributes
to the L = 3 state with symmetry Γ s

1 , we must subtract Γ s
1 from Γ s

1 + Γ2 to
get the symmetry Γ2 for the L = 2 state. If we take a direct product of the
orbital and spin states for this case, we obtain

Γ2 ⊗ (Γ s
1 + Γ2) = Γ s

1 + Γ a
1 + 2Γ2 ,

but it is only the direct product Γ2 ⊗ Γ2 which contributes a state with Γ a
1

symmetry that is allowed by the Pauli principle. Thus only the 2D state
is symmetry-allowed as indicated in Table 17.4. To get the symmetry of
the L = 1 state, consider the combinations p+p0p0 and p+p+p− which con-
tribute to the ML = 1 state. In this case the ML = 1 state contains irreducible
representations 2(Γ s

1 + Γ2). Since ML = 1 also appears for L = 2 and L = 3,
we need to subtract (Γ s

1 + Γ2) to obtain (Γ s
1 + Γ2) for the symmetries of the

orbital L = 1 state (see Table 17.4). For the ML = 0 levels we have the com-
binations p0p0p0 and p+p−p0, the first transforming as Γ s

1 and the second as
Γ s

1 + Γ a
1 + 2Γ2 to give a total of 2Γ s

1 + Γ a
1 + 2Γ2. However ML = 0 is also

present in the L = 3, 2 and 1 multiplets, so we must subtract the irreducible
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representations (Γ s
1 ) + (Γ2) + (Γ s

1 + Γ2) to obtain Γ a
1 for the L = 0 state. For

an orbital angular momentum with symmetry Γ a
1 , it is only the S = 3/2 Γ s

1

spin state that is allowed by the Pauli principle (see Table 17.4).
The same procedure can be used to obtain all the other entries in Ta-

ble 17.4, as well as the many three-electron states not listed. As the angular
momentum increases (e.g., for the case of d3 or f3 configurations), group
theoretical concepts become increasingly important.

17.4.3 Four-Electron States

In consideration of the four-electron problem we must consider the permuta-
tion group P (4). The character table for the group P (4) is given in Table 17.5
and also in Table F.2. The irreducible representations are denoted by sub-
scripts referring to their dimensionality. Also shown in Table 17.5 are the
transformation properties for the various products of functions. These trans-
formation properties are obtained in the same way as for the case of the group
P (3) discussed in Sect. 17.4.2. The various four-electron states of a free ion or
atom that are consistent with the Pauli principle are formed with the help of
this extended character table.

We first consider the possible spin states for the four-electron configura-
tion. The transformation of the spin states under the operations of the permu-
tation group are shown in Table 17.6. The four spins can be arranged to give
a total spin of S = 2, S = 1 and S = 0. The representation for the fully sym-
metric (α1α2α3α4) state, which appears in Table 17.5 as Γperm.(ψ1ψ1ψ1ψ1),
has S = 2 and clearly transforms as Γ s

1 . The S = 1 state is formed from a com-
bination (α1α2α3β4) with MS = 1 and the product wave-function is of the
form (ψ1ψ1ψ1ψ2), which from the extended character table in Table 17.5 trans-
forms as Γ s

1 +Γ3. But MS = 1 also contributes to the S = 2 state which trans-
forms as Γ s

1 . Thus by subtraction, S = 1 transforms as Γ3. Likewise, the S = 0

Table 17.5. Extended character table for group P (4)

P (4) (14) 8(3, 1) 3(22) 6(2, 12) 6(4)

Γ s
1 1 1 1 1 1

Γ a
1 1 1 1 −1 −1

Γ2 2 −1 2 0 0

Γ3 3 0 −1 1 −1

Γ3′ 3 0 −1 −1 1

Γperm.(ψ1ψ1ψ1ψ1) 1 1 1 1 1 ⇒ Γ s
1

Γperm.(ψ1ψ1ψ1ψ2) 4 1 0 2 0 ⇒ Γ s
1 + Γ3

Γperm.(ψ1ψ1ψ2ψ2) 6 0 2 2 0 ⇒ Γ s
1 + Γ2 + Γ3

Γperm.(ψ1ψ1ψ2ψ3) 12 0 0 2 0 ⇒ Γ s
1 + Γ2 + 2Γ3 + Γ3′

Γperm.(ψ1ψ2ψ3ψ4) 24 0 0 0 0 ⇒ Γ s
1 + Γ a

1 + 2Γ2 + 3Γ3 + 3Γ3′
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Table 17.6. Transformation properties of four-electron states under permutations(a)

configu-
ration state irreducible representation allowed state

(↑↑↓↓) S = 0 Γ2

(↑↑↑↓) S = 1 Γ3

(↑↑↑↑) S = 2 Γ s
1

s4 L = 0 Γ s
1 –

1s32s L = 0 Γ s
1 + Γ3 –

1s22s2 L = 0 Γ s
1 + Γ2 + Γ3

1S
sp3 L = 0 Γ a

1 + Γ3′
3S, 5S

sp3 L = 1 Γ s
1 + Γ2 + 2Γ3 + Γ3′

1P , 3P
sp3 L = 2 Γ2 + Γ3 + Γ3′

1D, 3D
sp3 L = 3 Γ s

1 + Γ3 –
(2p)3(3p) L = 0 Γ s

1 + Γ2 + 2Γ3 + Γ3′
1S, 3S

(2p)3(3p) L = 1 Γ s
1 + Γ a

1 + 2Γ2 + 3Γ3 + 3Γ3′
1P , 1P , 3P , 3P , 3P , 5P

(2p)3(3p) L = 2 2Γ s
1 + 2Γ2 + 4Γ3 + 2Γ3′

1D, 1D, 3D, 3D
(2p)3(3p) L = 3 Γ s

1 + Γ2 + 2Γ3 + Γ3′
1F , 3F

(2p)3(3p) L = 4 Γ s
1 + Γ3 –

p4 L = 0 Γ s
1 + Γ2

1S
p4 L = 1 Γ3 + Γ3′

3P
p4 L = 2 Γ s

1 + Γ2 + Γ3
1D

p4 L = 3 Γ3 –
p4 L = 4 Γ s

1 –
d4 L = 0 Γ s

1 + 2Γ2
1S, 1S

d4 L = 1 2Γ3 + 2Γ3′
3P , 3P

d4 L = 2 2Γ s
1 + Γ a

1 + 2Γ2 + 2Γ3 + Γ3′
1D, 1D, 3D, 5D

d4 L = 3 Γ2 + 3Γ3 + 2Γ3′
1F , 3F , 3F

d4 L = 4 2Γ s
1 + 2Γ2 + 2Γ3 + Γ3′

1G, 1G, 3G
d4 L = 5 Γ s

1 + 2Γ3 + Γ3′
3H

d4 L = 6 Γ s
1 + Γ2 + Γ3

1I
d4 L = 7 Γ3 –
d4 L = 8 Γ s

1 –
f4 L = 0 2Γ s

1 + Γ a
1 + 3Γ3

5S
f4 L = 1 2Γ2 + 3Γ3 + 3Γ3′

1P , 1P , 3P , 3P , 3P
f4 L = 2 2Γ s

1 + Γ a
1 + 4Γ2 + 3Γ3 + 2Γ3′

1D, 1D, 1D, 1D, 3D, 3D, 5D
f4 L = 3 Γ s

1 + Γ a
1 + Γ2 + 5Γ3 + 4Γ3′

1F , 3F , 3F , 3F , 3F , 5F
f4 L = 4 3Γ s

1 + Γ a
1 + 4Γ2 + 4Γ3 + 3Γ3′

1G, 1G, 1G, 1G, 3G, 3G, 3G, 5G
f4 L = 5 Γ s

1 + 2Γ2 + 5Γ3 + 4Γ3′
1H , 1H , 3H , 3H , 3H

f4 L = 6 3Γ s
1 + Γ a

1 + 3Γ2 + 4Γ3 + 2Γ3′
1I , 1I , 1I , 3I , 3I , 5I

f4 L = 7 Γ s
1 + Γ2 + 4Γ3 + 2Γ3′

1J , 3J , 3J
f4 L = 8 2Γ s

1 + 2Γ2 + 2Γ3 + Γ3′
1K, 1K, 3K

f4 L = 9 Γ s
1 + 2Γ3 + Γ3′

3L
f4 L = 10 Γ s

1 + Γ2 + Γ3
1M

f4 L = 11 Γ3 –
f4 L = 12 Γ s

1 –

(a) The symmetries of the irreducible representations of the permutation group P (4)
label the various spin and orbital angular momentum states. To obtain the states
allowed by the Pauli Principle the direct product of the symmetries between the
orbital and spin states must contain Γ a

1
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state is formed from a configuration (α1α2β3β4) with MS = 0 which from the
extended character Table 17.5 is of the form (ψ1ψ1ψ2ψ2) and transforms as
Γ s

1 +Γ2+Γ3. Upon subtraction of the symmetry types for the S = 1 and S = 2
states (Γ3 +Γ s

1 ), we obtain the symmetry Γ2 for the S = 0 state, as shown in
Table 17.6. This completes the discussion for the spin entries to Table 17.6.

The allowed states resulting from the s4, 1s32s and 1s22s2 orbital states
follow from the discussion in Sect. 17.4.2. Some similarity is also found for
the sp3 states in Table 17.6. We now illustrate the four-electron problem with
the p4 electron configuration, assuming the same principal quantum number
for all four electrons as for example in a (2p4) state. Here we can have L =
4, 3, 2, 1 and 0 (see Table 17.6). Starting with the L = 4 multiplet, the
ML = 4 state p+p+p+p+ would have Γ s

1 symmetry. This state is forbidden
by the Pauli principle since the direct product of the orbital and spin states
Γ s

1 ⊗ (Γ s
1 + Γ2 + Γ3) does not contain Γ a

1 symmetry. To find the symmetry
for the L = 3 multiplet, we consider the ML = 3 states which arise from
a p+p+p+p0 configuration and from Table 17.5 (giving the character table
for P (4)), we see that (ψ1ψ1ψ1ψ2) contains the irreducible representations
Γ s

1 + Γ3. Thus subtracting Γ s
1 for the L = 4 state gives the symmetry Γ3 for

the L = 3 multiplet. The direct product of the orbital and spin states

Γ3 ⊗ (Γ s
1 + Γ2 + Γ3) = Γ s

1 + Γ2 + 3Γ3 + 2Γ3′

again does not contain Γ a
1 and therefore is not allowed by the Pauli principle.

However the L = 2 state is allowed and gives rise to a 1D level since ML = 2
arises from p+p+p0p0 or p+p+p+p− which, respectively, correspond to the
symmetries

(Γ s
1 + Γ2 + Γ3) + (Γ s

1 + Γ3) .

Thus subtracting the contributions of ML = 2 to the L = 3 and L = 4 states
gives (Γ a

1 + Γ2 + Γ3). Now taking the direct product between the orbital and
spin states

(Γ s
1 + Γ2 + Γ3) ⊗ (Γ s

1 + Γ2 + Γ3) = 3Γ s
1 + Γ a

1 + 4Γ2 + 5Γ3 + 3Γ3′

does contain the Γ a
1 symmetry arising from the direct product of Γ2 ⊗Γ2 and

corresponding to the S = 0 spin state which is a singlet state. Likewise the
symmetries of the 3P and 1S states for L = 1 and L = 0, respectively, can be
found, and the results are given in Table 17.6. Since a p4 electron configuration
is equivalent to a p2 hole configuration the allowed states for p4 should be the
same as for p2. This can be verified by comparing the allowed states for p2 in
Table 17.2 with those (1S, 3P , 1D) for p4 in Table 17.6.

It is left to the reader to verify the other entries in Table 17.6 and to explore
the symmetries of other four-electron combinations not listed. In finding these
entries it should be noted that

Γ2 ⊗ Γ2 = Γ s
1 + Γ a

1 + Γ2
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and
Γ3 ⊗ Γ3′ = Γ a

1 + Γ2 + Γ3 + Γ3′

so that the spatial functions with Γ a
1 , Γ2 and Γ3′ all can give rise to states

allowed by the Pauli principle.

17.4.4 Five-Electron States

The character table for the permutation group of five electrons is shown
in Table F.3 of Appendix F. Note that there are no 2D or 3D irreducible
representations, but rather there are four, five and six-dimensional irre-
ducible representations, yielding h =

∑
l2i = 120 = 5!, as required. Also

listed in Table F.3 of Appendix F are the characters for all possible dis-
tinct products of five functions considered within the equivalence represen-
tation. The irreducible representations of P (5) contained in the decompo-
sition of the reducible equivalence representation Γperm. are listed below
the character table for P (5) (Table F.3 of Appendix F). With the help
of these tables, the entries in Table 17.7 can be obtained for the spin
and orbital symmetries for a number of the five-electron states that are
listed in this table. The possible spin states are S = 1/2 which occurs ten
times, the S = 3/2 which occurs five times and the S = 5/2 which oc-
curs once. In making the antisymmetric combinations it should be noted
that

Γ4 ⊗ Γ4′ = Γ a
1 + Γ4′ + Γ5′ + Γ6 and

Γ5 ⊗ Γ5′ = Γ a
1 + Γ4 + Γ4′ + Γ5 + Γ5′ + Γ6 ,

so that the spatial functions with Γ a
1 , Γ4′ and Γ5′ may all give rise to states

that are allowed by the Pauli Principle. Five-electron states occur in a half-
filled d level. Such half-filled d levels are important in describing the magnetic
ions in magnetic semiconductors formed by the substitution of Mn2+ for Cd
in CdTe or CdSe.

17.4.5 General Comments on Many-Electron States

The Pauli-allowed states for n electrons in a more than half filled p shell
and for 6 − n holes are the same. For example, referring to Table 17.7,
the only Pauli-allowed state for p5 is an L = 1, 2P state. But this state
corresponds to a single hole in a p-shell, which has the same allowed an-
gular momentum states as a single p electron (S = 1/2) in a p-shell. We
can denote both of these states by p1 corresponding to the level designa-
tion 2P . Using the same arguments, we find that p2 and p4 have the same
allowed states. Similarly, the states for the d6 electron configuration are iden-
tical to those for the d4 hole configuration which are worked out in the
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Table 17.7. Transformation properties of five-electron states under permutations(a)

configuration state irreducible representation allowed state

(↑↑↑↓↓) S = 1/2 Γ5

(↑↑↑↑↓) S = 3/2 Γ4

(↑↑↑↑↑) S = 5/2 Γ s
1

s5 L = 0 Γ s
1 –

1s42s L = 0 Γ s
1 + Γ4 –

1s22s23s L = 0 Γ s
1 + 2Γ4 + 2Γ5 + Γ5′ + Γ6

2S

p5 L = 0 Γ6 –

p5 L = 1 Γ s
1 + Γ4 + Γ5 + Γ5′

2P

p5 L = 2 Γ4 + Γ5 + Γ6 –

p5 L = 3 Γ s
1 + Γ4 + Γ5 –

p5 L = 4 Γ4 –

p5 L = 5 Γ s
1 –

d5 L = 0 Γ a
1 + Γ4 + Γ5′ + Γ6

2S, 6S

d5 L = 1 Γ s
1 + 2Γ4 + Γ4′ + 3Γ5 + Γ5′ + 2Γ6

2P , 4P

d5 L = 2 2Γ s
1 + 3Γ4 + Γ4′ + 4Γ5 + 3Γ5′ + 2Γ6

2D, 2D, 2D, 4D

d5 L = 3 Γ s
1 + 4Γ4 + Γ4′ + 3Γ5 + 2Γ5′ + 4Γ6

2F , 2F , 4F

d5 L = 4 2Γ s
1 + 4Γ4 + Γ4′ + 4Γ5 + 2Γ5′ + 2Γ6

2G, 2G, 4G

d5 L = 5 Γ s
1 + 3Γ4 + 3Γ5 + Γ5′ + 3Γ6

2H

d5 L = 6 2Γ s
1 + 3Γ4 + 2Γ5 + Γ5′ + Γ6

2I

d5 L = 7 Γ s
1 + 2Γ4 + Γ5 + Γ6 –

d5 L = 8 Γ s
1 + Γ4 + Γ5 –

d5 L = 9 Γ4 –

d5 L = 10 Γ s
1 –

(a) The symmetries of the irreducible representations of the permutation group P (5)
label the various spin and orbital angular momentum states. To obtain the states
allowed by the Pauli Principle the direct product of the symmetries between the
orbital and spin states must contain Γ a

1

Table 17.6, etc. In this sense, the tables that are provided in this chapter
are sufficient to handle all atomic s, p and d levels. To treat the f levels
completely we would need to construct tables for the permutation groups
P (6) and P (7), and the character tables for P (6) and P (7) are found in Ap-
pendix F.

In solids and molecules where point group symmetry rather than full
rotational symmetry applies, the application of permutation groups to the
many-electron states is identical. Thus the 3d levels of a transition metal
ion in a crystal field of cubic symmetry are split into a Eg and a T2g level
(see Sect. 5.3) and the allowed d2 levels would be either a 1Eg or a 1T2g,
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3T2g level. In general, crystal field splittings are applied to the many-electron
states whose symmetries are given in Tables 17.2, 17.4, 17.6 and 17.7. The
d states in icosahedral symmetry do not experience any crystal field split-
ting and all the arguments of this chapter apply directly. Character ta-
bles for the groups P (3), P (4), P (5), P (6) and P (7) are found in Ap-
pendix F.

Selected Problems

17.1. Use the following character table for the permutation group P (5) given
in Table F.3.

(a) Using (17.10) find the number of symmetry elements in each of the classes
for the permutation group P (5), and check the entries to Table F.3.

(b) What are the characters for the equivalence transformation for a state
where three of the five electrons are in one state (e.g., a d-state) and
two electrons are in another state (e.g., a p-state)? Explain how you ob-
tained your result. What irreducible representations are contained in this
equivalence transformation (see Table F.3)?

(c) Multiply element

Pi =

(
1 2 3 4 5
3 2 1 4 5

)

by element

Pj =

(
1 2 3 4 5
4 2 5 1 3

)

to form PiPj and PjPi. Are your results consistent with the character
table?

(c) Referring to Table 17.7, what are the irreducible representations for the
spin configuration (↑↑↓↓↓)? How did you obtain this result?

(e) What are the Pauli allowed states (as would be given in Table 17.7) with
the largest L value for the p3d2 configuration? Note that this calculation
would make a new entry to Table 17.7.

17.2. (a) Consider the addition of Mn2+ as a substitutional magnetic impu-
rity for CdTe. Since Mn2+ has five 3d electrons, use the permutation group
P (5) to find the Pauli-allowed states for the Mn2+ ion in CdTe (Table F.3
in Appendix F). Of these Pauli-allowed d5 states, which is the ground
state based on Hund’s rule?

(b) Using the electric dipole selection rule for optical transitions, find the
allowed transitions from the ground state in (a) to Pauli-allowed states in
the 3d34p2 configuration (see Problem 17.1(e)).
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17.3. Use the character table for the permutation group P (6) (Table F.4 in
Appendix F).

(a) Starting with q = 6 objects, show that there are 11 classes of the form
given in the character table for P (6) (see Sect. 17.2). Show that all 6!
symmetry elements are contained in these classes.

(b) Show that there are 45 symmetry elements in the class (22, 12) and 40
symmetry elements in class (3, 13).

(c) Show that the irreducible representations Γ
′′′
5 and Γ9 as given in the char-

acter table are orthogonal. (This is a check that the entries in the charac-
ter table in Table F.4 are correct.) Which of the four five-dimensional
irreducible representations correspond to the basis functions Ψ ′

Γn−1
in

(17.19)?
(d) What are the irreducible representations in P (6) that represent the spin

angular momentum states S = 3, 2, 1, 0? To solve this problem, you will
have to find the equivalence transformations corresponding to selected
permutations of spin configurations that are needed to construct the var-
ious spin angular momentum states (see Tables F.3 and F.4 for the per-
mutation group P (5) to provide guidance for solving this problem for
P (6)).

(e) According to Hund’s rule, what are the S, L and J values for placing six
electrons in a d6 electronic configuration. To which irreducible represen-
tations of P (6) do the spin and spatial parts of this Hund’s rule ground
state correspond?

17.4. In this chapter, we considered multielectron occupation of atomic states.
Consider both the case of no spin–orbit interaction and of including the spin–
orbit interaction for the following cases.

(a) What is the effect of time inversion on two 1s electrons in an atomic state?
What is the effect of time inversion symmetry on two 2p electrons?

(b) What is the effect of time inversion symmetry on three 2p electrons?
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Symmetry Properties of Tensors

In theories and experiments involving physical systems with high symmetry,
one frequently encounters the question of how many independent terms are
required by symmetry to specify a tensor of a given rank for each symme-
try group. These questions have simple group theoretical answers [75]. This
chapter deals with the symmetry properties of tensors, with particular atten-
tion given to those tensors of rank 2 and higher that arise in the physics of
condensed matter concerning nonlinear optics and elasticity theory. In this
analysis we consider the symmetry implied by the permutation group which
gives the number of independent components in the case of no point group
symmetry. We then consider the additional symmetry that is introduced by
the presence of symmetry elements such as rotations, reflections and inver-
sions. We explicitly discuss full rotational symmetry and several point group
symmetries.

18.1 Introduction

We start by listing a few commonly occurring examples of tensors of rank 2, 3,
and 4 that occur in condensed matter physics. Second rank symmetric tensors
occur in the constitutive equations of Electromagnetic Theory, as for example
in the linear equations relating the current density to the electric field intensity

J (1) =
↔
σe

(2)

· E , (18.1)

where the electrical conductivity
↔
σe

(2)

is a symmetric (σe
ij = σe

ji) second
rank tensor. We use the superscript (2) to distinguish the second rank linear
conductivity tensor from the nonlinear higher order tensor terms that depend
on higher powers of the electric field E discussed below. A similar situation
holds for the relation between the polarization and the electric field

P (2) =
↔
α

(2) · E , (18.2)
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where the polarizability
↔
α

(2)
is a symmetric second rank tensor, and where

↔
α

(2) ≡ ↔
χ

(2)

E is often called the electrical susceptibility. A similar situation also
holds for the relation between the magnetization and the magnetic field

M (2) =
↔
χ

(2)

H ·H , (18.3)

where the magnetic susceptibility
↔
χ

(2)

H is also a symmetric second rank tensor.

These relations all involve second rank symmetric tensors:
↔
σ

(2)
,

↔
α

(2)
and

↔
χ

(2)

H . Each second (3 × 3) rank tensor Tij has nine components but because
it is a symmetric tensor Tij = Tji only six coefficients (rather than nine) are
required to represent these symmetric second rank tensors. Thus, a symmetric
second rank tensor, such as the polarizability tensor or the Raman tensor, has
only six independent components. In this chapter we are concerned with the
symmetry properties of these and other tensors under permutations and point
group symmetry operations.

As an example of higher rank tensors, consider nonlinear optical phe-
nomena, where the polarization in (18.2) is further expanded to higher order
terms in E as

P =
↔
α

(2) · E +
↔
α

(3) · EE +
↔
α

(4) · EEE + · · · , (18.4)

where we can consider the polarizability tensor
↔
α to be field dependent

↔
α =

↔
α

(2)
+

↔
α

(3) · E +
↔
α

(4) · EE + · · · , (18.5)

because an increase in the magnitude of E will make the nonlinear terms in
(18.4) and (18.5) more important. More will be said about the symmetry of

the various
↔
α

(i)
tensors under permutations and point group operations in

Sect. 18.3. Similar expansions can be made for (18.1) and (18.3).
As another example, consider the piezoelectric tensor which is a third

rank tensor relating the polarization per unit volume P to the strain tensor,
↔
e , where P is given by

P =
↔
d

(3)

· ↔e , (18.6)

which can be rewritten to show the rank of each tensor explicitly

Pk =
∑
i,j

dkij
ui

xj
, (18.7)

in which the vector ui denotes the change in the length while xj refers to the

actual length. We note that there are 27 components in the tensor
↔
d

(3)

without
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considering any symmetry of the system under permutation operations. A fre-

quently used fourth rank tensor is the elastic constant tensor
↔
C

(4)

defined by
↔
σm=

↔
C

(4)

· ↔e , (18.8)

where the second rank symmetric stress tensor
↔
σm and strain tensor

↔
e (i.e.,

the gradient of the displacement) are related through the fourth rank elas-

tic constant tensor
↔
C

(4)

(or Cijkl), which neglecting permutation symmetry
would have 81 components. More will be said about the elastic constant tensor

below (see Sect. 18.6) where we will use
↔
σm to denote the mechanical stress

tensor, but it should be noted that σe
ij is used to denote the linear electrical

conductivity tensors (18.1). The superscripts m and e are used to distinguish
σm

ij for the stress tensor from σe
ij for the electrical conductivity tensor.

These tensors and many more are discussed in a book by Nye [57]. The
discussion of tensors which we give in this chapter is group theoretical, whereas
Nye’s book gives tables of the tensors which summarize many of the results
which we can deduce from our group theoretical analysis.

In this chapter we use group theory to find the smallest number of in-
dependent coefficients for commonly occurring tensors in condensed matter
physics, including permutation symmetry and point group symmetry. Let us

now consider the total number of tensor components. As stated above
↔
α

(2)

has 32 = 9 coefficients (six for the symmetric components, αij = αji). There

are 33 = 27 coefficients (10 symmetric) in
↔
α

(3)
, 34 = 81 coefficients (only 15

symmetric) in
↔
α

(4)
, and 35 = 243 coefficients (21 symmetric) in

↔
α

(5)
, etc. We

ask how many tensor components are independent? Which components are
related to one another? How many independent experiments must be carried
out to completely characterize these tensors? These are important questions
that occur in many areas of condensed matter physics and materials science.
We address these questions in this chapter.

In Sect. 18.2, we discuss the reduction in the number of independent
coefficients arising from symmetries associated with the permutation of
tensor indices while in Sect. 18.3 we discuss the corresponding reduc-
tion in the number of independent components of tensors obtained from
point group symmetry (rotations, reflections and inversion). The num-
ber of independent coefficients for the case of complete isotropy (full ro-
tational symmetry) is considered in Sect. 18.4, while lower point group
symmetries are treated in Sect. 18.5. The independent coefficients of the
elastic modulus tensor Cijkl are discussed in Sect. 18.6. Since the num-
ber of independent symmetry elements can be found by considering the
crystal symmetry group as a subgroup of the full rotation group with-
out making contact to translational symmetry, point group symmetry
is considered in finding the form of tensors in condensed matter sys-
tems.
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18.2 Independent Components of Tensors
Under Permutation Group Symmetry

In this section we consider the effect of permutation symmetry on reducing
the number of independent components of tensors. For example, second rank
symmetric tensors occur frequently in condensed matter physics. In this case,
the symmetry αij = αji implied by the term symmetric tensor restricts the
off-diagonal matrix elements to follow this additional permutation relation
ij = ji, thereby reducing the number of allowed off-diagonal elements from
six to three, since the symmetric combinations (αij + αji)/2 are allowed and
the combinations (αij − αji)/2 vanish by symmetry. Furthermore, the three
elements (αij − αji)/2 constitute the three components of an antisymmetric
second rank tensor, also called an axial vector; the angular momentum (listed
in character tables as Ri) is an example of an antisymmetric second-rank
tensor which has three components Lx, Ly, Lz.

Group theory is not needed to deal with the symmetry of a second-rank
tensor because of its simplicity. As the rank of the tensor increases, group
theory becomes increasingly helpful in the classification of symmetric tensors.
Just for illustrative purposes, we now consider the case of the second-rank
tensor from the point of view of permutation group symmetry. For this pur-
pose we have listed in Table 18.1 the permutation groups which are needed
to handle the tensors mentioned in Sect. 18.1. Referring to Table 18.1 (which
is constructed from tables in Chap. 17), we see that a second rank symmetric

tensor like the electrical conductivity tensor
↔
σe is represented in Table 18.1

by pp, which we can consider as the generic prototype of a second rank sym-
metric tensor. From the discussion of Chap. 17, we found that p2 could have
angular momentum states L = 0, 1, 2 with the indicated permutation group
symmetries labeled “irreducible representations” in Table 18.1, and yielding
a total number of states equal to the sum of (2L+ 1) to yield 1 + 3 + 5 = 9.
From the table, it is seen that the symmetric states (Γ s

1 ) arise from the L = 0
and L =2 entries, corresponding to 1+5=6 states. Thus we obtain six inde-
pendent coefficients for a symmetric second rank tensor based on permutation
symmetry alone. The number of independent coefficients for the second rank
antisymmetric tensor (transforming Γ a

1 ) is correspondingly equal to 3, and
the antisymmetric contribution arises from the L =1 state.

A third-rank symmetric tensor (such as
↔
α

(3)
) is more interesting from

a group theoretical standpoint. Here we need to consider permutations in
Table 18.1 of the type p3, so that p3 can be considered as the appropriate
basis function of the permutation group P (3) for the permutation symmetry

of
↔
α

(3)
. Referring to (18.4), we note that the EE fields are clearly symmetric

under interchange of E ↔ E; but since (18.5) defines the general nonlinear
polarizability tensor

↔
α, then all terms in the expansion of

↔
α must be symmet-

ric under interchange of αij → αji. From Table 18.1, we see that p3 consists of
L = 0, 1, 2, 3 angular momentum states. The entries for the p3 configuration
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Table 18.1. Transformation properties of various tensors under permutations(a)

tensor configuration state irreducible representations group

SS L = 0 Γ s
1 P (2)

SD L = 2 Γ s
1 + Γ a

1 P (2)

DD L = 0 Γ s
1 P (2)

C(ij)(kl) DD L = 1 Γ a
1 P (2)

DD L = 2 Γ s
1 P (2)

DD L = 3 Γ a
1 P (2)

DD L = 4 Γ s
1 P (2)

pS L = 1 Γ s
1 + Γ a

1 P (2)

di(jk) pD L = 1 Γ s
1 + Γ a

1 P (2)

pD L = 2 Γ s
1 + Γ a

1 P (2)

pD L = 3 Γ s
1 + Γ a

1 P (2)

p2 L = 0 Γ s
1 P (2)

α(2) p2 L = 1 Γ a
1 P (2)

p2 L = 2 Γ s
1 P (2)

p3 L = 0 Γ a
1 P (3)

p3 L = 1 Γ s
1 + Γ2 P (3)

α(3) p3 L = 2 Γ2 P (3)

p3 L = 3 Γ s
1 P (3)

p4 L = 0 Γ s
1 + Γ2 P (4)

p4 L = 1 Γ3 + Γ3′ P (4)

α(4) p4 L = 2 Γ s
1 + Γ2 + Γ3 P (4)

p4 L = 3 Γ3 P (4)

p4 L = 4 Γ s
1 P (4)

p5 L = 0 Γ6 P (5)

p5 L = 1 Γ s
1 + Γ4 + Γ5 + Γ5′ P (5)

α(5) p5 L = 2 Γ4 + Γ5 + Γ6 P (5)

p5 L = 3 Γ s
1 + Γ4 + Γ5 P (5)

p5 L = 4 Γ4 P (5)

p5 L = 5 Γ s
1 P (5)

p6 L = 0 Γ s
1 + Γ5′′′ + Γ9 P (6)

p6 L = 1 Γ5 + Γ5′′ + Γ10 + Γ16 P (6)

p6 L = 2 Γ s
1 + Γ5 + 2Γ9 + Γ16 P (6)

α(6) p6 L = 3 Γ5 + Γ5′′ + Γ9 + Γ10 P (6)

p6 L = 4 Γ s
1 + Γ5 + Γ9 P (6)

p6 L = 5 Γ5 P (6)

p6 L = 6 Γ s
1 P (6)

(a) The irreducible representations associated with the designated permutation
group, configuration and state are listed
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Table 18.2. Number of independent components for various tensors for the listed
group symmetries

number of independent coefficients

group repr.a angular momentum valuesb C(ij)(kl) dk(ij) α(2) α(3) α(4) α(5)

Rc
∞ Γ�=0 � = 0 2 0 1 0 1 0

Ih A1g � = 0, 6, 10, . . . 2 0 1 0 1 0

Oh A1g � = 0, 4, 6, 8, 10, . . . 3 0 1 0 2 0

Td A1 � = 0, 3, 4, 6, 7, 8, 9, . . . 3 1 1 1 2 1

D∞h A1g � = 0, 2, 4, 6, . . . 5 1 2 0 3 0

C∞v A1 � = 0, 1, 2, 3, 4, 5, . . . 5 4 2 2 3 3

D6h A1g � = 0, 2, 4, 6, . . . 5 1 2 0 3 0

C1 A1 � = 0, 1, 2, 3, 4, 5, . . .d 21 18 6 10 15 21

a The notation for the totally symmetric irreducible representation for each group
is given
b The angular momentum states that contain the A1 (or A1g) irreducible represen-
tation for the various symmetry groups (see Table 18.1)
c The full rotational symmetry group is denoted by R∞
d For this lowest point group symmetry, the A1 representation occurs 2�+ 1 times.
For the other groups in this table, there is only one occurrence of A1 for each listed
� value. However, for higher � values, multiple occurrences of A1 may arise (e.g., in
Oh symmetry, the � = 12 state has two A1g modes)

in Table 18.1 come from Table 17.4 which contains a variety of configurations
of the permutation group P (3) that can be constructed from three electrons
(or more generally from three interchangeable vectors). The total number of
states in the p3 configuration is found by multiplying the degeneracy (2L+1)
of each angular momentum state along with the corresponding number of ir-
reducible representations occurring for each of the L = 0, 1, 2, 3 multiplets
and then summing all of these products to get

(1)(1) + 3(1 + 2) + 5(2) + 7(1) = 27

which includes all 33 combinations. Of this total, the number of symmetric
combinations that go with Γ s

1 is only 3(1) + 7(1) = 10. Similarly Table 18.1
shows that there is only one antisymmetric combination (for L = 0). Of
interest is the large number of combinations that are neither symmetric nor

antisymmetric: 3(2) + 5(2) = 16 for
↔
α

(3)
for the P (3) permutation group.

Thus, Table 18.1 shows that on the basis of permutation symmetry, there are

only ten independent coefficients for
↔
α

(3)
, assuming no additional point group

symmetry. This result is summarized in Table 18.2.

As the next example, consider
↔
α

(4)
which is a fourth rank tensor that

couples P and EEE symmetrically. The generic tensor for this case is p4 in
Table 18.1 (taken from Table 17.6 for P (4) for four electrons) with 34 = 81
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coefficients neglecting permutational and point group symmetries, which is
also obtained from the entries in Table 18.1 for p4 as follows:

(1)(1 + 2) + (3)(3 + 3) + 5(1 + 2 + 3) + 7(3) + 9(1) = 81 .

Of these, 1 + 5 + 9 = 15 are symmetric (transforms as Γ s
1 ) and this entry is

included in Table 18.2. There are no antisymmetric combinations (i.e., there
is no Γ a

1 for p4 in P (4)).
Another commonly occurring tensor in solid state physics is the elastic

modulus tensor Cijkl = C(ij)(kl) which relates two symmetric tensors
↔
σm and

↔
e , each having six independent components, and thus leading to 6 × 6 = 36
components for the product. But C(ij)(kl) is further symmetric under inter-
change of ij ↔ kl, reducing the 30 off-diagonal components of the 6 × 6
matrix into 15 symmetric and 15 antisymmetric combinations, in addition to
the six diagonal symmetric components. This gives a total of 21 independent
symmetric coefficients, as is explained in standard condensed matter physics
texts. From a group theoretical standpoint, the (ij) and (kl) are each treated
as p2 units which form total angular momentum states of L = 0 (labeled S in
Table 18.1) and L = 2 (labeled D). Under the permutation group P (2), we
can make one SS combination (L = 0), one symmetric and one antisymmet-
ric SD combination (L =2), and finally DD combinations can be made with
L = 0, 1, 2, 3, 4. Adding up the total number of combinations that can be
made from C(ij)(kl) we get

(1)(1) + 5(1 + 1) + 1(1) + 3(1) + 5(1) + 7(1) + 9(1) = 36 ,

in agreement with the simple argument given above. Of these, 21 are sym-
metric (i.e., go with Γ s

1 ) while 15 are antisymmetric (i.e., go with Γ a
1 ), and

the number 21 appears in Table 18.2. If we had instead used p4 in Table 18.1
as the basis function for the permutation of the elastic tensor Cijkl, we would
have neglected the symmetric interchange of the stress and strain tensors
(ij) ↔ (kl).

The final tensor that we will consider is the piezoelectric tensor di(jk)

formed as the symmetric direct product of a vector and a symmetric second
rank tensor (3×6 = 18 components). The symmetries are calculated following
the pS and pD combinations, using the concepts discussed for the transfor-

mation properties of the
↔
α

(2)
and C(ij)(kl) tensors. This discussion yields 18

independent coefficients for di(jk) under permutation symmetry.
In summary, each second rank symmetric tensor is composed of irreducible

representations L = 0 and L = 2 of the full rotation group, the third rank
symmetric tensor from L = 1 and L = 3, the fourth rank symmetric tensor
from L = 0, L = 2 and L = 4, the elastic tensor from L = 0, 2L = 2 and
L = 4, and the piezoelectric tensor from 2L = 1, L = 2 and L = 3. We use
these results to now incorporate the various rotational symmetries to further
reduce the number of independent coefficients for each symmetry group.
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18.3 Independent Components of Tensors:
Point Symmetry Groups

In this section we discuss a very general group theoretical result for tensor
components arising from point group symmetry operations such as rotations,
reflections and inversions. These symmetry operations further reduce the num-
ber of independent coefficients that need to be introduced for the various
tensors in crystals having various point group symmetries.

Let us consider a relation between a tensor of arbitrary rank Jij... and
another tensor Fi′j′ . . . also of arbitrary rank and arbitrary form where the
two tensors in general will be of different ranks.

Jij... =
∑
i′j′...

{tij...,i′j′...}Fi′j′... . (18.9)

What we have in mind in (18.9) are relations such as are given in (18.1) to
(18.8), where Jij... appears as either a simple vector or as a second rank sym-
metrical tensor. Likewise Fi′j′... denotes either a simple vector, the product of
two vectors, the product of three vectors, or a symmetric second rank tensor
etc.

Theorem. The number of independent non-zero tensor components tij...,i′j′...
allowed by point group symmetry in (18.9) is determined by finding the irre-
ducible representations contained in both {ΓJij...} =

∑
αiΓi and {ΓFi′Fj′ ...} =∑

βjΓj.

Proof. Only coefficients tij...,i′j′... coupling {J}Γi and {F }Γj that correspond
to the same partner of the same irreducible representation contained in both
Γi and Γj can be nonzero, since

↔
t must be invariant under the symmetry

operations of the group. Thus the number of independent matrix elements
in the tensor tij...i′j′... is the number of times the scalar representation Γ+

1

occurs in the decomposition of the direct product

{ΓJ} ⊗ {ΓF ...} =
∑

i

αiΓi ⊗
∑

j

βjΓj =
∑

k

γkΓk , (18.10)

thus completing the proof. �

The only nonvanishing couplings between {J}Γi and {F}Γj are between part-
ners transforming according to the same irreducible representation because
only these lead to matrix elements that are invariant under the symmetry
operations of the group. We therefore transform (18.9) to make use of the
symmetrized form

{J}Γi = tΓ+
1
{F }Γi , (18.11)

where the {J}Γi and {F }Γi correspond to the same partners of the same
irreducible representation and tΓ+

1
transforms as a scalar which has Γ+

1 sym-
metry.
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In most cases of interest, permutation symmetry requirements on the prod-
ucts {F }Γi further limit the number of independent matrix elements of a ten-
sor matrix, as discussed below (Sect. 18.4).

Application of this theorem is given for the maximum amount of rotational
symmetry (the full rotation group) in Sect. 18.4 and for specific point group
symmetries in Sect. 18.5 and Sect. 18.6.

18.4 Independent Components of Tensors
Under Full Rotational Symmetry

The highest point group symmetry is the full isotropy provided by the full
rotation group R∞. In Sect. 18.3 we showed that the number of independent
coefficients in a tensor tij...i′j′... in (18.9) coupling two tensors is the number of
times the direct product in (18.10) contains Γ s

1 . For full rotational symmetry
we use in the fully symmetric irreducible representation L = 0. Thus we must
look for the occurrence of L = 0 in Table 18.1.

Referring to Table 18.1, we find ΓL=0 and that for the second rank tensor,
we have Γ1 contained once, giving only a single independent coefficient {Γj}⊗
{Γt}. Consequently, group theory tells us that the one independent coefficient
is α11 = α22 = α33 while the off-diagonal terms vanish α12 = α23 = α31 = 0
for a symmetric second rank tensor in a medium with full rotational symmetry.
This result for the number of independent components is given in Table 18.2.

Likewise Table 18.1 shows that there are no independent coefficients for
↔
α

(3)
in full rotational symmetry. Group theory thus tells us that this tensor

vanishes by symmetry for the case of full rotational symmetry. This analysis
further tells us that we cannot have any non-vanishing tensors of odd rank
given by (18.4).

With regard to the fourth rank tensor,
↔
α

(4)
, Table 18.1 shows that we can

have only one independent coefficient for full rotational symmetry. In contrast,
the C(ij)(kl) fourth rank tensor contains two independent coefficients in full
rotational symmetry and the components of di(jk) all vanish by symmetry.

This completes the discussion for the form of the various tensors in Ta-
ble 18.2 under full rotational symmetry. Also listed in the table are the number
of independent coefficients for several point group symmetries, including Ih,
Oh, Td, D∞h, C∞v, D6h, and C1. These results can be derived by consider-
ing these groups as subgroups of the full rotational group, and going from
higher to lower symmetry. Some illustrative examples of the various point
group symmetries are given in the following sections.

18.5 Tensors in Nonlinear Optics

In this section we consider polarizability tensors arising in nonlinear optics,
including symmetric second rank, third rank and fourth rank tensors, such
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as those appearing in (18.5). We now consider these tensors for groups with
symmetries lower than the full rotational group thereby filling in entries in
Table 18.2.

18.5.1 Cubic Symmetry: Oh

The character table for group Oh is shown in Table 10.2 using solid state
physics notation together with basis functions for each irreducible represen-
tation. We first consider the transformation properties of the linear response

tensor
↔
α

(2)
and the nonlinear polarizability tensors

↔
α

(3)
and

↔
α

(4)
(see (18.5)).

Consider for example the second rank tensor
↔
α

(2)
defined by

P =
↔
α

(2) · E (18.12)

in linear response theory. Both P and E transform as Γ−
15 (or Γ15 in Ta-

ble 10.2), which gives for the direct product:

ΓP ⊗ ΓE = Γ−
15 ⊗ Γ−

15 = Γ+
1 + Γ+

12 + Γ+
15 + Γ+

25 , (18.13)

in which we use a notation which explicitly displays the irreducible represen-
tations that are even (+) or odd (−) under inversion, as can immediately be
identified from the basis functions given in Table 10.2. But since the symmetry
elements in Γ+

15 are represented by a 3× 3 matrix for the angular momentum
Rij , this 3 × 3 matrix is antisymmetric under interchange of i ↔ j so that
Rij = −Rji and we have

Γ
(s)
↔
α

= Γ+
1 + Γ+

12 + Γ+
25 , Γ

(a)
↔
α

= Γ+
15 (18.14)

showing the symmetries of the six partners for the second rank symmetric
tensor, and the three partners for the second rank antisymmetric tensor. These
results can also be obtained starting from the full rotation group, considering
the decomposition of the L = 0 and L = 2 states for the symmetric partners
and the L = 1 states for the antisymmetric partners.

Since Γ+
1 is contained only once in the direct product Γ−

15 ⊗ Γ−
15 in cubic

Oh symmetry (18.13), there is only one independent tensor component for
↔
α

(2)
and we can write

↔
α

(2)
= α0

↔
1 , where

↔
1 is the unit tensor and α0 is

a constant. As a consequence of this general result, the electrical conductivity
in cubic symmetry (Oh or Td) is independent of the direction of the fields
relative to the crystal axes and only one experiment is required to measure
the polarizability or the conductivity of an unoriented cubic crystal.

In non-linear optics the lowest order non-linear term is
↔
α

(2) ·EE in (18.4)

where
↔
α

(2)
is a third rank tensor. Since (EE) is symmetric under interchange,

then (EE) transforms as
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Γ
(s)
EE = Γ+

1 + Γ+
12 + Γ+

25 , (18.15)

where we have thrown out the Γ+
15 term because it is antisymmetric under

interchange of EiEj −→ EjEi. Thus, we obtain the irreducible representations
contained in the direct product:

ΓP ⊗ Γ
(s)
EE = Γ−

15 ⊗ {Γ+
1 + Γ+

12 + Γ+
25}

= (Γ−
2 + 2Γ−

15 + Γ−
25)

(s)

+(Γ−
12 + Γ−

15 + Γ−
25) (18.16)

yielding 18 partners, ten of which are symmetric, in agreement with the gen-
eral result in Table 18.1. Of particular significance is the fact that none of
the ten symmetric irreducible representations have Γ+

1 symmetry. Thus there

are no nonvanishing tensor components for a third rank tensor (such as
↔
α

(3)
)

in Oh symmetry, a result which could also be obtained by going from full
rotational symmetry to Oh symmetry. The ten symmetric partners are found
from Table 18.1 and includes angular momentum states L = 1 (corresponding
to Γ−

15) and L = 3 (corresponding to Γ−
2 + Γ−

15 + Γ−
25) and the decomposi-

tion of these angular momentum states in full rotational symmetry yields the
irreducible representations of group Oh as shown in Table 5.6 in Chap. 5.

We will now use the symmetric partners of the third rank tensor to dis-
cuss the fourth rank tensors. The next order term in (18.4) for the nonlinear
response to a strong optical beam (e.g., multiple photon generation) is the

fourth rank tensor
↔
α

(4)
defined by

P (3) =
↔
α

(4) · EEE . (18.17)

If we consider the product EEE to arise from the symmetric combination for
a third rank tensor (see (18.16)), then

Γ
(s)
EEE = Γ−

2 + 2Γ−
15 + Γ−

25 (18.18)

in cubic Oh symmetry, and

ΓP ⊗ Γ
(s)
EEE = Γ−

15 ⊗ {Γ−
2 + 2Γ−

15 + Γ−
25}

= 2Γ+
1 + Γ+

2 + 3Γ+
12 + 3Γ+

15 + 4Γ+
25 . (18.19)

Referring to Table 18.1 we see that the symmetric partners for p4 correspond
to L = 0 (giving Γ+

1 ), L = 2 (giving Γ+
12 +Γ+

25) and L = 4 (giving Γ+
1 +Γ+

12 +
Γ+

15 + Γ+
25) yielding the 15 symmetric partners

(2Γ+
1 + 2Γ+

12 + Γ+
15 + 2Γ+

25)
(s) ,

showing which irreducible representations of (18.19) correspond to symmetric
tensors. Since Γ+

1 is contained twice among the 15 symmetric partners in cubic

Oh symmetry, the symmetric fourth rank tensor
↔
α

(4)
has two independent

coefficients that would need to be determined by experiments.
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18.5.2 Tetrahedral Symmetry: Td

The group Td has half the number of symmetry operations of the group Oh,
has slightly different classes from group O, and lacks inversion symmetry.
Since Γ−

2 (Oh) → Γ1(Td), the corresponding relations to (18.16) shows that
there exists one nonvanishing tensor component in Td symmetry for a third

rank tensor
↔
α

(3)
. This means that zinc-blende structures such as (GaAs and

InSb) can have nonvanishing nonlinear optical terms in
↔
α

(3)
because in Td

symmetry, the symmetric partners of the direct product transform as

(ΓP ⊗ Γ
(s)
EE)(s) = Γ1 + 2Γ25 + Γ15 (18.20)

and the Γ1 representation is contained once (see Table 18.2).

18.5.3 Hexagonal Symmetry: D6h

The character table for D6h (hexagonal symmetry) is shown in Table A.21. In
this subsection we will use the notation found in this character table. Vector
forces in hexagonal symmetry decompose into two irreducible representations

Γvector = A2u + E1u . (18.21)

Thus the second rank conductivity tensor requires consideration of

ΓP ⊗ ΓE = (A2u + E1u) ⊗ (A2u + E1u)

= 2A1g +A2g + 2E1g + E2g

= (2A1g + E1g + E2g)(s) + (A2g + E1g)(a) . (18.22)

Equation (18.22) indicates that there are two independent components for
a symmetric second rank tensor such as the conductivity tensor. Hence, one
must measure both in-plane and out-of-plane conductivity components to de-
termine the conductivity tensor, which is as expected because of the equiva-
lence of transport in the in-plane directions and along the c-axis. The sym-
metric tensor components (six partners) of (18.22) are

Γ
(s)
EE = 2A1g + E1g + E2g (18.23)

and the antisymmetric components (three partners) are (A2g + E1g). Hence
for the symmetric third rank tensor we can write

ΓP ⊗ Γ
(s)
EE = (A2u + E1u) ⊗ (2A1g + E1g + E2g)

= (A1u +A2u +B1u +B2u + 2E1u + E2u)(s)

+(2A2u + 4E1u + E2u)(a) (18.24)
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and there are thus no nonvanishing third rank tensor components in hexagonal
D6h symmetry because of parity considerations. For the fourth rank tensor
we have

ΓP ⊗ Γ
(s)
EEE = (A2u + E1u) ⊗ (A1u +A2u +B1u +B2u + 2E1u + 2E2u)

= (3A1g + B1g +B2g + 2E1g + 3E2g)(s)

+(3A2g + 2B1g + 2B2g + 4E1g + 3E2g)(a) (18.25)

and there are three independent tensor components. This result could also be
obtained by going from full rotational symmetry (L = 0, L = 2, and L = 4),
yielding the identical result

[A1g + (A1g + E1g + E2g) + (A1g +B1g +B2g + E1g + 2E2g)](s) .

The results forD6h andD∞h (see Table 18.2) show great similarity in behavior
between all the tensors that are enumerated in this table, and these similarities
stem from the angular momentum states to which they relate (see Table 5.6).

In lowering the symmetry from D6h to D3h which has no inversion sym-
metry, we get Γ±

i (D6h) → Γi(D3h) for the various irreducible representations.
The only difference between the tensor properties in D6h and D3d symmetries
involves odd rank tensors. Referring to (18.24) we can see that for D3h there
is a nonvanishing third rank tensor component and once again piezoelectric
phenomena are symmetry allowed.

18.6 Elastic Modulus Tensor

The elastic modulus tensor represents a special case of a fourth rank tensor
(see (18.8)). The elastic energy is written as

W =
1
2
Cijkleijekl , (18.26)

whereW transforms as a scalar, the eij strain tensors transform as second rank
symmetric tensors, and the Cijkl matrices transform as a fourth rank tensor
formed by the direct product of two symmetric second rank tensors. The
symmetry of Cijkl with regard to permutations was considered in Sect. 18.2.
With regard to point group symmetry, we have the result following (18.10)
that the maximum number of independent components of the Cijkl tensor is
the number of times the totally symmetric representation A1g is contained
in the direct product of the symmetric part of Γeij ⊗ Γekl

. In this section we
provide a review of the conventions used to describe the Cijkl tensor and then
give results for a few crystal symmetries.

To make a connection between the elastic constants as discussed from the
group theory perspective and in conventional solid state physics books, we
introduce a contracted notation for the stress tensor and the strain tensor [57]:
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σm
1 = σm

11

σm
2 = σm

22

σm
3 = σm

33

σm
4 = (σm

23 + σm
32)/2

σm
5 = (σm

13 + σm
31)/2

σm
6 = (σm

12 + σm
21)/2

ε1 = e11

ε2 = e22

ε3 = e33

ε4 = (e23 + e32)
ε5 = (e13 + e31)
ε6 = (e12 + e21) .

(18.27)

Since both the stress and strain tensors are symmetric, then Cijkl can have
no more than 36 components. We further note from (18.26) that the Cijkl are
symmetric under the interchange of ij ↔ kl, thereby reducing the number
of independent components to 21 for a crystal with no symmetry operations
beyond translational symmetry of the lattice. Crystals with non-trivial sym-
metry operations such as rotations, reflections and inversions will have fewer
than 21 independent coefficients. Using the notation of (18.27) for the stress
and strain tensors, the stress–strain relations can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σm
1

σm
2

σm
3

σm
4

σm
5

σm
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18.28)

where the contracted Cij matrix is symmetric, with the 21 independent coef-
ficients containing 15 off-diagonal components and six diagonal components.
In the most compact form, we write

σm
i = Cijεj , i, j = 1, . . . 6 , (18.29)

where the Cij components are normally used in the description of the mechan-
ical properties of solids. The introduction of additional symmetry operations
reduces the number of independent components from the maximum of 21 for
a monoclinic crystal group C1 with no symmetry to a much smaller num-
ber (e.g., two for the full rotational group R∞). We consider here the case
of full rotational symmetry, icosahedral symmetry, cubic symmetry, full axial
symmetry, and hexagonal symmetry.

Fiber reinforced composites represent an interesting application of these
symmetry forms. If the fibers are oriented in three-dimensional space in the
six directions prescribed by icosahedral symmetry, then isotropy of the elas-
tic modulus tensor will be obtained. In the corresponding two dimensional
situation, if the fibers are oriented at 60◦ intervals, then isotropy is obtained
in the plane. It is standard practice in the field of fiber composites to use
fiber composite sheets stacked at 60◦ angular intervals to obtain “quasiplanar
isotropy”.
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18.6.1 Full Rotational Symmetry: 3D Isotropy

The highest overall symmetry for an elastic medium is the full rotation group
which corresponds to “jellium”. For the case of full rotational symmetry, the
rules for the addition of angular momentum tell us that a general second
rank tensor transforms according to the representations that can be written
as a sum of symmetric and an antisymmetric part

Γ = Γ (s) + Γ (a) , (18.30)

where the symmetric components for full rotational symmetry transform as
the irreducible representations

Γ (s) = Γ�=0 + Γ�=2 (18.31)

and the antisymmetric components transform as

Γ (a) = Γ�=1 , (18.32)

in which the irreducible representations of the full rotation group are denoted
by their total angular momentum values �, which are symmetric (antisym-

metric) if � is even (odd). Since the stress tensor ∇ · F ≡ ↔
σm and the strain

tensor
↔
e are symmetric second rank tensors, both σm

α and eij transform ac-
cording to (Γ�=0+Γ�=2) in full rotational symmetry, where σm

α denotes a force
in the x direction applied to a plane whose normal is in the α direction.

The fourth rank symmetric Cijkl tensor of (18.26) transforms according
to the symmetric part of the direct product of two second rank symmetric
tensors Γ (s)

↔
e

⊗ Γ
(s)
↔
e

yielding

(Γ�=0 + Γ�=2) ⊗ (Γ�=0 + Γ�=2) = (2Γ�=0 + 2Γ�=2 + Γ�=4)(s)

+(Γ�=1 + Γ�=2 + Γ�=3)(a) , (18.33)

in which the direct product has been broken up into the 21 partners that
transform as symmetric irreducible representations (s) and the 15 partners
for the antisymmetric irreducible representations (a). In the case of no crystal
symmetry eij is specified by six constants and the Cijkl tensor by 21 constants
because Cijkl is symmetrical under the interchange of ij ↔ kl. Since all the
symmetry groups of interest are subgroups of the full rotation group, the
procedure of going from higher to lower symmetry can be used to determine
the irreducible representations for less symmetric groups that correspond to
the stress and strain tensors and to the elastic tensor Cijkl .

As stated in Sect. 18.3 and in Sect. 18.4, the number of times the totally
symmetric representation (e.g., Γ�=0 for the full rotational group) is contained
in the irreducible representations of a general matrix of arbitrary rank deter-
mines the minimum number of independent nonvanishing constants needed
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to specify that matrix. In the case of full rotational symmetry, (18.33) shows
that the totally symmetric representation (Γ�=0) is contained only twice in
the direct product of the irreducible representations for two second rank sym-
metric tensors, indicating that only two independent nonvanishing constants
are needed to describe the 21 constants of the Cijkl tensor in full rotational
symmetry, a result that is well known in elasticity theory for isotropic media
and is discussed above (see Sect. 18.4).

We denote the two independent non-vanishing constants needed to spec-
ify the Cijkl tensor by C0 for Γ�=0 and by C2 for Γ�=2 symmetry. We then
use these two constants to relate symmetrized stresses and strains labeled
by the irreducible representations Γ�=0 and Γ�=2 in the full rotation group.
The symmetrized stress–strain equations are first written in full rotational
symmetry, using basis functions for the partners of the pertinent irreducible
representations (one for � = 0 and five for the � = 2 partners):

(Xx + Yy + Zz)=C0(exx + eyy + ezz) for � = 0,m = 0
(Xx − Yy + iYx + iXy)=C2(exx − eyy + iexy + ieyx) for � = 2,m = 2
(Zx +Xz + iYz + iZy)=C2(ezx + exz + ieyz + iezy) for � = 2,m = 1

(Zz − 1
2
(Xx + Yy))=C2(ezz − 1

2
(exx + eyy)) for � = 2,m = 0

(Zx +Xz − iYz − iZy)=C2(ezx + exz − ieyz − iezy) for � = 2,m = −1
(Xx − Yy − iYx − iXy)=C2(exx − eyy − iexy − ieyx) for � = 2,m = −2

(18.34)

in which X , Y and Z are the Cartesian components of the stress tensor
↔
σm

and the subscripts denote the shear directions. Since the basis functions in full
rotational symmetry are specified by angular momentum states, the quantum
numbers � and m are used to denote the irreducible representations and their
partners.

From the first, second, fourth and sixth relations in (18.34) we solve for
Xx in terms of the strains, yielding

Xx =
(
C0

3
+

2C2

3

)
exx +

(
C0

3
− C2

3

)
(eyy + ezz) . (18.35)

Likewise five additional relations are then written down for the other five
stress components in (18.34).

Yy =
(
C0

3
+

2C2

3

)
eyy +

(
C0

3
− C2

3

)
(ezz + exx) , (18.36)

Zz =
(
C0

3
+

2C2

3

)
ezz +

(
C0

3
− C2

3

)
(exx + eyy) , (18.37)

Zy + Yz = C2 (ezy + eyz) , (18.38)

Yx +Xy = C2 (eyx + exy) , (18.39)
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Zx +Xz = C2 (ezx + exz) . (18.40)

In the notation that is commonly used in elasticity theory, we write the stress–
strain relations as

σm
i =

∑
j=1,6

Cijεj , (18.41)

where the six components of the symmetric stress and strain tensors are writ-
ten in accordance with (18.27) as

σm
1 =Xx

σm
2 =Yy

σm
3 =Zz

σm
4 =

1
2
(Yz + Zy)

σm
5 =

1
2
(Zx +Xz)

σm
6 =

1
2
(Xy + Yx)

and

ε1=exx

ε2=eyy

ε3=ezz

ε4=(eyz + ezy)
ε5=(ezx + exz)
ε6=(exy + eyx)

(18.42)

and Cij is the 6 × 6 elastic modulus matrix. In this notation the 21 partners
that transform as (2Γ�=0 + 2Γ�=2 + Γ�=4) in (18.33) correspond to the sym-
metric coefficients of Cij . From the six relations for the six stress components
(given explicitly by (18.35) through (18.40)), the relations between the C0

and C2 and the Cij coefficients follow:

C11 =
1
3
(C0 + 2C2) = C22 = C33

C12 =
1
3
(C0 − C2) = C13 = C23

C44 =
1
2
C2 = C55 = C66

Cij = Cji (18.43)

from which we construct the Cij matrix for a 3D isotropic medium. Note that
the elastic modulus tensor for full rotational symmetry only two independent
constants C11 and C12

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
1
2
(C11 − C12) 0 0

1
2
(C11 − C12) 0

1
2
(C11 − C12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18.44)
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18.6.2 Icosahedral Symmetry

Any subgroup of the full rotation group for which the fivefold Γ�=2 level
degeneracy is not lifted will leave the form of the Cij matrix invariant. The
icosahedral group with inversion symmetry Ih, which is a subgroup of the
full rotation group, and the icosahedral group without inversion I, which is
a subgroup of both the full rotation group and the group Ih, are two examples
of groups which preserve the fivefold degenerate level of the full rotation group
and hence retain the form of the Cij matrix given by (18.44). This result
follows from at least two related arguments. The first argument relates to the
compatibility relations between the full rotation group and the Ih group for
which the basis functions follow the compatibility relations

Γ�=0 −→ (Ag)Ih
and Γ�=2 −→ (Hg)Ih

. (18.45)

Thus, for the icosahedral group, we have for a symmetric second rank tensor:

Γ
(s)
↔
e

= (Ag)Ih
+ (Hg)Ih

. (18.46)

From (18.46) we see that with respect to second rank tensors no lifting of
degeneracy occurs in going from full rotational symmetry to Ih symmetry
from which it follows that the number of nonvanishing independent constants
in the Cij matrix remains at 2 for Ih (and I) symmetry.

The same conclusion follows from the fact that the basis functions for Γ�=0

and Γ�=2 for the full rotation group can also be used as basis functions for the
Ag and Hg irreducible representations of Ih. Therefore the same stress–strain
relations are obtained in Ih symmetry as are given in (18.34) for full rotational
symmetry. It therefore follows that the form of the Cij matrix will also be the
same for either group Ih or full rotational symmetry, thereby completing the
proof.

Clearly, the direct product Γ (s)
↔
e

⊗ Γ
(s)
↔
e

given by (18.33) is not invariant
as the symmetry is reduced from full rotational symmetry to Ih symmetry
since the ninefold representation Γ�=4 in (18.33) splits into the irreducible
representations (Gg +Hg) in going to the lower symmetry group Ih. But this
is not of importance to the linear stress–strain equations which are invari-
ant to this particular lowering of symmetry. However, when nonlinear effects
are taken into account, and perturbations from (18.26) are needed to specify
the nonlinear stress–strain relations, different mechanical behavior would be
expected to occur in Ih symmetry in comparison to the full rotation group.

18.6.3 Cubic Symmetry

It should be noted that all symmetry groups forming Bravais lattices in con-
densed matter physics have too few symmetry operations to preserve the
fivefold degeneracy of the � = 2 level of the full rotation group. For exam-
ple, the Bravais lattice with the highest symmetry is the cubic group Oh.
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The � = 2 irreducible representation in full rotational symmetry corresponds
to a reducible representation of group Oh which splits into a threefold and
a twofold level (the T2g and Eg levels), so that in this case we will see below,
three elastic constants are needed to specify the 6× 6 matrix for Cij in cubic
Oh symmetry.

Since eij (where i, j = x, y, z) is a symmetric second rank tensor, the
irreducible representations for eij in cubic symmetry are found as

Γ
(s)
↔
e

= Γ+
1 + Γ+

12 + Γ+
25 . (18.47)

From the direct product we obtain

Γ
(s)
↔
e

⊗ Γ
(s)
↔
e

= (Γ+
1 + Γ+

12 + Γ+
25) ⊗ (Γ+

1 + Γ+
12 + Γ+

25)

= 3Γ+
1 + Γ+

2 + 4Γ+
12 + 3Γ+

15 + 5Γ+
25 , (18.48)

which has 21 symmetric partners (3Γ+
1 + 3Γ+

12 + Γ+
15 + 3Γ+

25) and 15
antisymmetric partners (Γ+

2 + Γ+
12 + 2Γ+

15 + 2Γ+
25) and three indepen-

dent Cij coefficients. These results could also be obtained by going
from higher (full rotational R∞) symmetry to lower (Oh) symmetry
using the cubic field splittings of the angular momenta shown in
Table 5.6.

Forming basis functions for the irreducible representations of the stress
and strain tensors in cubic Oh symmetry, we can then write the symmetrized
elastic constant equations as

(Xx + Yy + Zz)=CΓ+
1

(exx + eyy + ezz) for Γ+
1

(Xx + ωYy + ω2Zz)=CΓ+
12

(exx + ωeyy + ω2ezz) for Γ+
12

(Xx + ω2Yy + ωZz)=CΓ+
12

(exx + ω2eyy + ωezz) for Γ+∗
12

(Yz + Zy)=CΓ+
25

(eyz) for Γ+
25x

(Zx +Xz)=CΓ+
25

(exz) for Γ+
25y

(Xy + Yx)=CΓ+
25

(exy) for Γ+
25z .

(18.49)

As in Sect. 18.6.1, we now solve for Xx, Yy and Zz in terms of exx, eyy and
ezz to connect the three symmetry-based elastic constants C+

Γ1
, C+

Γ12
and

C+
Γ25

and the C11, C12 and C44 in Nye’s book (and other solid state physics
books)

C11 = (C+
Γ1

+ 2C+
Γ12

)/3

C12 = (CΓ1 − C+
Γ12

)/3

C44 = C+
Γ25
/2 , (18.50)
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yielding an elastic tensor for cubic symmetry Oh in the form

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

C44 0
C44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.51)

18.6.4 Other Symmetry Groups

We briefly sketch results for Cijkl for several groups of lower symmetry.
One simple method for finding the irreducible representations for lower

symmetry groups is to make use of the compatibility relations between the
full rotation group and the lower symmetry groups. For example, for group
D∞h (see character Table A.34) we have

Γ�=0 −→ A1g

Γ�=1 −→ A2u + E1u

Γ�=2 −→ A1g + E1g + E2g

Γ�=3 −→ A2u + E1u + E2u + E3u

Γ�=4 −→ A1g + E1g + E2g + E3g + E4g . (18.52)

Since the symmetric second rank tensor eij transforms according to the sum
Γ�=0+Γ�=2, then we look for the irreducible representations contained therein.
For D∞h symmetry we would then obtain

Γ
(s)
↔
e

= A1g + (A1g + E1g + E2g) = 2A1g + E1g + E2g , (18.53)

and a similar procedure would be used for other low symmetry groups.
From the symmetric terms in (18.33) and (18.52), we find that the Cijkl

tensor transforms according to 2Γ�=0+2Γ�=2+Γ�=4 which for D∞h symmetry
becomes

ΓCijkl
= (2A1g) + (2A1g + 2E1g + 2E2g) + (A1g + E1g + E2g + E3g + E4g)

= 5A1g + 3E1g + 3E2g + E3g + E4g . (18.54)

The same result as in (18.54) can be obtained by taking the direct product
of (A1g +E1g +E2g)⊗ (A1g +E1g +E2g) which comes from Γ�=2 ⊗ Γ�=2 and
retaining only the symmetric terms. From (18.54), we see that there are only
five independent elastic constants remain for D∞h symmetry.

To find the form of the elasticity matrix Cij we go through the pro-
cess of finding the (6 × 6) stress=strain relations for � = 0,m = 0 and
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� = 2,m = 2, 1, 0,−1,−2 and then relate symmetry coefficients to obtain
the Cij coefficients and the relation between these to obtain the Cij matrix
for full axial D∞h symmetry:

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 0 0

C44 0
1
2
(C11 − C12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.55)

The symmetric combination of irreducible representations for the groupD6h is

Γ
(s)
↔
e

= 2A1g + E1g + E2g , (18.56)

which is isomorphic to D∞h. Using (18.33) and the irreducible representations
contained in the angular momentum states � = 0, � = 2, and � = 4 in D6h

symmetry, we get

Γ�=0 → A1g

Γ�=1 → A2u + E1u

Γ�=2 → A1g + E1g + E2g

Γ�=3 → A2u +B1u +B2u + E1u + E2u

Γ�=4 → A1g +B1g +B2g + E1g + 2E2g , (18.57)

which gives
ΓC(ij)(kl) = 5A1g +B1g +B2g + 3E1g + 4E2g (18.58)

yielding five independent Cij coefficients.
A similar analysis to that for the group D∞h, yields for D6h the same

form of Cij as for D∞h given by (18.55). As we go to lower symmetry more
independent coefficients are needed.

For D2h group symmetry which is the case of symmetry with respect
to three mutually orthogonal planes (called orthotropy in the engineering
mechanics literature), there remain nine independent components of Cij . The
Cij tensor in this case assumes the form

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.59)
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The lowest nontrivial symmetry group for consideration of the elastic tensor is
group C2h with a single symmetry plane. In this case Cij has 13 independent
components and assumes the form

Cij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
C55 0

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18.60)

Selected Problems

18.1. Consider the third rank tensor di(jk) in (18.6) and (18.7).

(a) Show from Table 18.1 that there are exactly 18 independent coefficients
after taking permutational symmetry into account.

(b) Find the number of independent coefficients for full rotational symmetry.
(c) Find the number of independent coefficients for Oh and Td symmetries.
(d) Finally find the number of independent coefficients for D4h symmetry.

18.2. Suppose that stress is applied to FCC aluminum Al in the (100) di-
rection, and suppose that the effect of the resulting strain is to lower the
symmetry of aluminum from cubic Oh symmetry to tetragonal D4h symme-
try. The situation outlined here arises in the fabrication of superlattices using
the molecular beam epitaxy technique.

(a) How many independent elastic constants are there in the stressed alu-
minum Al?

(b) What is the new symmetrized form of the stress–strain relations (see
(18.34))?

(c) What is the form of the Cijkl tensor for D4h symmetry (see (18.44))?

18.3. (a) Assume that the material in Problem 18.2 is a nonlinear elastic
material and the stress–strain relation is of the form

σm
ij = C

(2)
ijklεkl + C

(3)
ijklmnεklεmn + · · ·

Consider the symmetry of the nonlinear tensor coefficient C(3)
ijklmn explic-

itly. How many independent constants are there in C(3)
ijklmn assuming that

the point group symmetry is C1 (i.e., no rotational symmetry elements
other than the identity operation), but taking into account permutation
symmetry?
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(b) How many independent constants are there when taking into account both
permutation and crystal (Oh) symmetry? (Note: To do this problem, you
may have to make a new entry to Table 18.1.)

18.4. Suppose that we prepare a quantum well using as the constituents GaAs
and GaAs1−xPx. In bulk form GaAs and similar III–V compounds have Td

symmetry. The lattice mismatch introduces lattice strain and lowers the sym-
metry. Denote by ẑ the direction normal to the layer. Find the number of

independent coefficients in the polarizability tensor, including
↔
α

(2)
,
↔
α

(3)
, and

↔
α

(4)
, for

(i) ẑ ‖ (100)
(ii) ẑ ‖ (111)
(iii) ẑ ‖ (110)

Using these results, how can infrared and Raman spectroscopy be used to
distinguish between the crystalline orientation of the quantum well?
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Point Group Character Tables

Appendix A contains Point Group Character (Tables A.1–A.34) to be used
throughout the chapters of this book. Pedagogic material to assist the reader
in the use of these character tables can be found in Chap. 3. The Schoenflies
symmetry (Sect. 3.9) and Hermann–Mauguin notations (Sect. 3.10) for the
point groups are also discussed in Chap. 3.

Some of the more novel listings in this appendix are the groups with five-
fold symmetry C5, C5h, C5v, D5, D5d, D5h, I, Ih. The cubic point group
Oh in Table A.31 lists basis functions for all the irreducible representations
of Oh and uses the standard solid state physics notation for the irreducible
representations.

Table A.1. Character table for group C1 (triclinic)

C1 (1) E

A 1

Table A.2. Character table for group Ci = S2 (triclinic)

S2 (1) E i

x2, y2, z2, xy, xz, yz Rx, Ry, Rz Ag 1 1
x, y, z Au 1 −1

Table A.3. Character table for group C1h = S1 (monoclinic)

C1h(m) E σh

x2, y2, z2, xy Rz, x, y A′ 1 1
xz, yz Rx, Ry, z A′′ 1 −1
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Table A.4. Character table for group C2 (monoclinic)

C2 (2) E C2

x2, y2, z2, xy Rz, z A 1 1

xz, yz
(x, y)
(Rx, Ry)

B 1 −1

Table A.5. Character table for group C2v (orthorhombic)

C2v (2mm) E C2 σv σ′
v

x2, y2, z2 z A1 1 1 1 1
xy Rz A2 1 1 −1 −1
xz Ry, x B1 1 −1 1 −1
yz Rx, y B2 1 −1 −1 1

Table A.6. Character table for group C2h (monoclinic)

C2h (2/m) E C2 σh i

x2, y2, z2, xy Rz Ag 1 1 1 1
z Au 1 1 −1 −1

xz, yz Rx, Ry Bg 1 −1 −1 1
x, y Bu 1 −1 1 −1

Table A.7. Character table for group D2 = V (orthorhombic)

D2 (222) E Cz
2 Cy

2 Cx
2

x2, y2, z2 A1 1 1 1 1
xy Rz, z B1 1 1 −1 −1
xz Ry, y B2 1 −1 1 −1
yz Rx, x B3 1 −1 −1 1

Table A.8. Character table for group D2d = Vd (tetragonal)

D2d (42m) E C2 2S4 2C′
2 2σd

x2 + y2, z2 A1 1 1 1 1 1
Rz A2 1 1 1 −1 −1

x2 − y2 B1 1 1 −1 1 –1
xy z B2 1 1 −1 −1 1

(xz, yz)
(x, y)
(Rx, Ry)

E 2 −2 0 0 0

D2h = D2 ⊗ i (mmm) (orthorhombic)
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Table A.9. Character table for group C3 (rhombohedral)

C3(3) E C3 C2
3

x2 + y2, z2 Rz, z A 1 1 1

(xz, yz)
(x2 − y2, xy)

}
(x, y)
(Rx, Ry)

}
E

{
1
1

ω
ω2

ω2

ω

ω = e2πi/3

Table A.10. Character table for group C3v (rhombohedral)

C3v (3m) E 2C3 3σv

x2 + y2, z2 z A1 1 1 1
Rz A2 1 1 –1

(x2 − y2, xy)
(xz, yz)

}
(x, y)
(Rx, Ry)

}
E 2 −1 0

Table A.11. Character table for group C3h = S3 (hexagonal)

C3h = C3 ⊗ σh (6) E C3 C2
3 σh S3 (σhC

2
3 )

x2 + y2, z2 Rz A′ 1 1 1 1 1 1
z A′′ 1 1 1 −1 −1 −1

(x2 − y2, xy) (x, y) E′
{

1
1

ω
ω2

ω2

ω
1
1

ω
ω2

ω2

ω

(xz, yz) (Rx, Ry) E′′
{

1
1

ω
ω2

ω2

ω
−1
−1

−ω
−ω2

−ω2

−ω
ω = e2πi/3

Table A.12. Character table for group D3 (rhombohedral)

D3 (32) E 2C3 3C′
2

x2 + y2, z2 A1 1 1 1
Rz, z A2 1 1 −1

(xz, yz)
(x2 − y2, xy)

}
(x, y)
(Rx, Ry)

}
E 2 −1 0

Table A.13. Character table for group D3d (rhombohedral)

D3d = D3 ⊗ i (3m) E 2C3 3C′
2 i 2iC3 3iC′

2

x2 + y2, z2 A1g 1 1 1 1 1 1
Rz A2g 1 1 −1 1 1 −1

(xz, yz),(x2 − y2, xy) (Rx, Ry) Eg 2 −1 0 2 −1 0

A1u 1 1 1 −1 −1 −1
z A2u 1 1 −1 −1 −1 1
(x, y) Eu 2 −1 0 −2 1 0
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Table A.14. Character table for group D3h (hexagonal)

D3h = D3 ⊗ σh (6m2) E σh 2C3 2S3 3C′
2 3σv

x2 + y2, z2 A′
1 1 1 1 1 1 1

Rz A′
2 1 1 1 1 −1 −1

A′′
1 1 −1 1 −1 1 −1

z A′′
2 1 −1 1 −1 −1 1

(x2 − y2, xy) (x, y) E′ 2 2 −1 −1 0 0
(xz, yz) (Rx, Ry) E′′ 2 −2 −1 1 0 0

Table A.15. Character table for group C4 (tetragonal)

C4 (4) E C2 C4 C3
4

x2 + y2, z2 Rz, z A 1 1 1 1
x2 − y2, xy B 1 1 −1 −1

(xz, yz)
(x, y)
(Rx, Ry)

}
E

{
1
1

−1
−1

i
−i

−i
i

Table A.16. Character table for group C4v (tetragonal)

C4v (4mm) E C2 2C4 2σv 2σd

x2 + y2, z2 z A1 1 1 1 1 1
Rz A2 1 1 1 −1 −1

x2 − y2 B1 1 1 −1 1 −1
xy B2 1 1 −1 −1 1

(xz, yz)
(x, y)
(Rx, Ry)

}
E 2 −2 0 0 0

C4h = C4 ⊗ i (4/m) (tetragonal)

Table A.17. Character table for group S4 (tetragonal)

S4 (4) E C2 S4 S3
4

x2 + y2, z2 Rz A 1 1 1 1
z B 1 1 −1 −1

(xz, yz)
(x2 − y2, xy)

}
(x, y)
(Rx, Ry)

}
E

{
1
1

−1
−1

i
−i

−i
i

Table A.18. Character table for group D4 (tetragonal)

D4 (422) E C2 = C2
4 2C4 2C′

2 2C′′
2

x2 + y2, z2 A1 1 1 1 1 1
Rz, z A2 1 1 1 −1 −1

x2 − y2 B1 1 1 −1 1 −1
xy B2 1 1 −1 −1 1

(xz, yz)
(x, y)
(Rx, Ry)

}
E 2 −2 0 0 0

D4h = D4 ⊗ i (4/mmm) (tetragonal)
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Table A.19. Character table for group C6 (hexagonal)

C6 (6) E C6 C3 C2 C2
3 C5

6

x2 + y2, z2 Rz, z A 1 1 1 1 1 1
B 1 −1 1 −1 1 −1

(xz, yz)
(x, y)

(Rx, Ry)

}
E′

{
1
1

ω
ω5

ω2

ω4
ω3

ω3
ω4

ω2
ω5

ω

(x2 − y2, xy) E′′
{

1
1

ω2

ω4
ω4

ω2
1
1

ω2

ω4
ω4

ω2

ω = e2πi/6

Table A.20. Character table for group C6v (hexagonal)

C6v (6mm) E C2 2C3 2C6 3σd 3σv

x2 + y2, z2 z A1 1 1 1 1 1 1
Rz A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 −1 1
B2 1 −1 1 −1 1 –1

(xz, yz)
(x, y)
(Rx, Ry)

}
E1 2 −2 −1 1 0 0

(x2 − y2, xy) E2 2 2 −1 −1 0 0

C6h = C6 ⊗ i (6/m) (hexagonal); S6 = C3 ⊗ i (3) (rhombohedral)

Table A.21. Character table for group D6 (hexagonal)

D6 (622) E C2 2C3 2C6 3C′
2 3C′′

2

x2 + y2, z2 A1 1 1 1 1 1 1
Rz, z A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1

(xz, yz)
(x, y)
(Rx, Ry)

}
E1 2 −2 −1 1 0 0

(x2 − y2, xy) E2 2 2 −1 −1 0 0

D6h = D6 ⊗ i (6/mmm) (hexagonal)

Table A.22. Character table for group C5 (icosahedral)

C5 (5) E C5 C2
5 C3

5 C4
5

x2 + y2, z2 Rz, z A 1 1 1 1 1

(xz, yz)
(x, y)

(Rx, Ry)

}
E′

{
1
1

ω
ω4

ω2

ω3
ω3

ω2
ω4

ω

(x2 − y2, xy) E′′
{

1
1

ω2

ω3
ω4

ω
ω
ω4

ω3

ω2

ω = e2πi/5. Note group C5h = C5 ⊗ σh = S10(10)
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Table A.23. Character table for group C5v (icosahedral)

C5v (5m) E 2C5 2C2
5 5σv

x2 + y2, z2, z3, z(x2 + y2) z A1 1 1 1 1
Rz A2 1 1 1 −1

z(x, y), z2(x, y), (x2 + y2)(x, y)
(x, y)
(Rx, Ry)

}
E1 2 2 cosα 2 cos 2α 0

(x2 − y2, xy), z(x2 − y2, xy),
[x(x2 − 3y2), y(3x2 − y2)] E2 2 2 cos 2α 2 cos 4α 0

α = 2π/5 = 72◦. Note that τ = (1 +
√

5)/2 so that τ = −2 cos 2α = −2 cos 4π/5
and τ − 1 = 2 cosα = 2 cos 2π/5

Table A.24. Character table for group D5 (icosahedral)

D5 (52) E 2C5 2C2
5 5C′

2

x2 + y2, z2 A1 1 1 1 1
Rz, z A2 1 1 1 −1

(xz, yz)
(x, y)
(Rx, Ry)

}
E1 2 2cosα 2cos 2α 0

(x2 − y2, xy) E2 2 2cos 2α 2cos 4α 0

Table A.25. Character table for D5d (icosahedral)

D5d E 2C5 2C2
5 5C′

2 i 2S−1
10 2S10 5σd (h = 20)

A1g +1 +1 +1 +1 +1 +1 +1 +1 (x2 + y2), z2

A2g +1 +1 +1 −1 +1 +1 +1 −1 Rz

E1g +2 τ − 1 −τ 0 +2 τ − 1 −τ 0 z(x+ iy, x− iy)
E2g +2 −τ τ − 1 0 +2 −τ τ − 1 0 [(x+ iy)2, (x− iy)2]

A1u +1 +1 +1 +1 −1 −1 −1 −1
A2u +1 +1 +1 −1 −1 −1 −1 +1 z
E1u +2 τ − 1 −τ 0 −2 1−τ +τ 0 (x+ iy, x− iy)
E2u +2 −τ τ − 1 0 −2 +τ 1−τ 0

Note: D5d = D5 ⊗ i, iC5 = S−1
10 and iC2

5 = S10. Also iC′
2 = σd

Table A.26. Character table for D5h (icosahedral)

D5h (102m) E 2C5 2C2
5 5C′

2 σh 2S5 2S3
5 5σv (h = 20)

A′
1 +1 +1 +1 +1 +1 +1 +1 +1 x2 + y2, z2

A′
2 +1 +1 +1 −1 +1 +1 +1 −1 Rz

E′
1 +2 τ − 1 −τ 0 +2 τ − 1 −τ 0 (x, y), (xz2, yz2),

[x(x2 + y2), y(x2 + y2)]
E′

2 +2 −τ τ − 1 0 +2 −τ τ − 1 0 (x2 − y2, xy),
[y(3x2 − y2), x(x2 − 3y2)]

A′′
1 +1 +1 +1 +1 −1 −1 −1 −1

A′′
2 +1 +1 +1 −1 −1 −1 −1 +1 z, z3, z(x2 + y2)

E′′
1 +2 τ − 1 −τ 0 −2 1−τ +τ 0 (Rx, Ry), (xz, yz)

E′′
2 +2 −τ τ − 1 0 −2 +τ 1−τ 0 [xyz, z(x2 − y2)]

D5h = D5 ⊗ σh



A Point Group Character Tables 485

Table A.27. Character table for the icosahedral group I (icosahedral)

I (532) E 12C5 12C2
5 20C3 15C2 (h = 60)

A +1 +1 +1 +1 +1 x2 + y2 + z2

F1 +3 +τ 1−τ 0 −1 (x, y, z); (Rx, Ry , Rz)
F2 +3 1−τ +τ 0 −1
G +4 −1 −1 +1 0

H +5 0 0 −1 +1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2z2 − x2 − y2

x2 − y2

xy
xz
yz

Table A.28. Character table for Ih (icosahedral)

Ih E 12C5 12C2
5 20C3 15C2 i 12S3

10 12S10 20S6 15σ (h = 120)

Ag +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 x2 + y2 + z2

F1g +3 +τ 1−τ 0 −1 +3 τ 1 − τ 0 −1 Rx, Ry, Rz

F2g +3 1−τ +τ 0 −1 +3 1 − τ τ 0 −1
Gg +4 −1 −1 +1 0 +4 −1 −1 +1 0

Hg +5 0 0 −1 +1 +5 0 0 −1 +1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2z2 − x2 − y2

x2 − y2

xy
xz
yz

Au +1 +1 +1 +1 +1 −1 −1 −1 −1 −1
F1u +3 +τ 1−τ 0 −1 −3 −τ τ − 1 0 +1 (x, y, z)
F2u +3 1−τ +τ 0 −1 −3 τ − 1 −τ 0 +1
Gu +4 −1 −1 +1 0 –4 +1 +1 −1 0

Hu +5 0 0 −1 +1 –5 0 0 +1 −1

τ = (1 +
√

5)/2. Note: C5 and C−1
5 are in different classes, labeled 12C5 and 12C2

5

in the character table. Then iC5 = S−1
10 and iC−1

5 = S10 are in the classes labeled
12S3

10 and 12S10, respectively. Also iC2 = σv and Ih = I ⊗ i

Table A.29. Character table for group T (cubic)

T (23) E 3C2 4C3 4C′
3

x2 + y2 + z2 A 1 1 1 1

(x2 − y2, 3z2 − r2) E

{
1
1

1
1

ω
ω2

ω2

ω

(Rx, Ry , Rz)
(x, y, z)
(yz, zx, xy)

}
T 3 −1 0 0

ω = e2πi/3; Th = T ⊗ i, (m3) (cubic)
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Table A.30. Character table for group O (cubic)

O (432) E 8C3 3C2 = 3C2
4 6C′

2 6C4

(x2 + y2 + z2) A1 1 1 1 1 1
A2 1 1 1 −1 −1

(x2 − y2, 3z2 − r2) E 2 −1 2 0 0

(Rx, Ry , Rz)
(x, y, z)

}
T1 3 0 −1 −1 1

(xy, yz, zx) T2 3 0 −1 1 −1

Oh = O ⊗ i, (m3m) (cubic)

Table A.31. Character table for the cubic group Oh (cubic)†

repr. basis functions E 3C2
4 6C4 6C′

2 8C3 i 3iC2
4 6iC4 6iC′

2 8iC3

A+
1 1 1 1 1 1 1 1 1 1 1 1

A+
2

⎧⎨
⎩
x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)

1 1 −1 −1 1 1 1 −1 −1 1

E+

{
x2 − y2

2z2 − x2 − y2 2 2 0 0 −1 2 2 0 0 −1

T−
1 x, y, z 3 −1 1 −1 0 −3 1 −1 1 0

T−
2 z(x2 − y2) . . . 3 −1 −1 1 0 −3 1 1 −1 0

A−
1

⎧⎨
⎩
xyz[x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)]

1 1 1 1 1 −1 −1 −1 −1 −1

A−
2 xyz 1 1 −1 −1 1 −1 −1 1 1 −1

E− xyz(x2 − y2). . . 2 2 0 0 −1 −2 −2 0 0 1

T+
1 xy(x2 − y2). . . 3 −1 1 −1 0 3 −1 1 −1 0

T+
2 xy, yz, zx 3 −1 −1 1 0 3 −1 −1 1 0

† The basis functions for T−
2 are z(x2 − y2), x(y2 − z2), y(z2 − x2), for E− are

xyz(x2 − y2), xyz(3z2 − s2) and for T+
1 are xy(x2 − y2), yz(y2 − z2), zx(z2 − x2)

Table A.32. Character table for group Td (cubic)a

Td (43m) E 8C3 3C2 6σd 6S4

x2 + y2 + z2 A1 1 1 1 1 1
A2 1 1 1 −1 −1

(x2 − y2, 3z2 − r2) E 2 −1 2 0 0

(Rx, Ry , Rz)
yz, zx, xy)

}
T1 3 0 −1 −1 1

(x, y, z) T2 3 0 −1 1 −1

a Note that (yz, zx, xy) transforms as representation T1
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Table A.33. Character table for group C∞v

C∞v (∞m) E 2Cφ σv

(x2 + y2, z2) z A1(Σ
+) 1 1 1

Rz A2(Σ
−) 1 1 −1

(xz, yz)
(x, y)
(Rx, Ry)

}
E1(Π) 2 2 cosφ 0

(x2 − y2, xy) E2(Δ) 2 2 cos 2φ 0
...

...
...

...

Table A.34. Character table for group D∞h

D∞h (∞/mm) E 2Cφ C′
2 i 2iCφ iC′

2

x2 + y2, z2 A1g(Σ
+
g ) 1 1 1 1 1 1

A1u(Σ−
u ) 1 1 1 −1 −1 −1

Rz A2g(Σ
−
g ) 1 1 −1 1 1 −1

z A2u(Σ+
u ) 1 1 −1 −1 −1 1

(xz, yz) (Rx, Ry) E1g(Πg) 2 2 cosφ 0 2 2 cosφ 0
(x, y) E1u(Πu) 2 2 cosφ 0 −2 −2 cosφ 0

(x2 − y2, xy) E2g(Δg) 2 2 cos 2φ 0 2 2 cos 2φ 0
E2u(Δu) 2 2 cos 2φ 0 −2 −2 cos 2φ 0
...

...
...

...
...

...
...
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Two-Dimensional Space Groups

We include in this appendix a summary of the crystallographic symmetries
for all 17 of the 2D space groups, taken from the “International Tables for
X-ray Crystallography” [58].

Table B.1. The two-dimensional oblique space group p1 or #1 (p1)

p1 No. 1 p1 1 Oblique

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

1 a 1 x, y General: No conditions
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Table B.2. The two-dimensional oblique space group p2 or #2 (p2111)

p2 No. 2 p2 1 1 2 Oblique

2 e 1 x, y; x̄, ȳ General: No conditions

1 d 2 1
2
, 1

2
Special: No conditions

1 c 2 1
2
, 0

1 b 2 0, 1
2

1 a 2 0, 0

Table B.3. The two-dimensional rectangular space group pm or #3 (p1m1)

pm No. 3 p 1m 1 m Rectangular

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

2 c 1 x, y; x̄, y General:
No conditions

1 b m 1
2
, y Special:

1 a m 0, y No conditions
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Table B.4. The two-dimensional space group pg or #4 (p1g1)

pg No. 4 p 1 g 1 m Rectangular

2 a 1 x, y; x̄, 1
2

+ y General:
hk: No conditions
0k: k = 2n

Table B.5. The two-dimensional rectangular space group cm or #5 (c1m1)

cm No. 5 c 1m 1 m Rectangular

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry (0, 0; 1
2
, 1

2
)+

4 b 1 x, y; x̄, y General:
hk: h+ k = 2n

2 a m 0, y Special:
as above only
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Table B.6. The two-dimensional rectangular space group pmm or #6 (p2mm)

pmm No. 6 p 2mm mm Rectangular

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

4 i 1 x, y; x̄, y; x̄, ȳ; x, ȳ General:
no conditions

2 h m 1
2
, y; 1

2
, ȳ Special:

2 g m 0, y; 0, ȳ No condition

2 f m x, 1
2
; x̄, 1

2

2 e m x, 0; x̄, 0

1 d mm 1
2
, 1

2

1 c mm 1
2
, 0

1 b mm 0, 1
2

1 a mm 0, 0

Table B.7. The two-dimensional rectangular space group pmg or #7 (p2mg)

pmg No. 7 p 2mg mm Rectangular

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

4 d 1 x, y; x̄, ȳ; 1
2

+ x, ȳ; 1
2
− x, y General:

hk: No conditions
h0: h = 2n

Special: as above, plus

2 c m 1
4
, y; 3

4
, ȳ no extra conditions

2 b 2 0, 1
2
; 1

2
, 1

2

2 a 2 0, 0; 1
2
, 0

}
hk: h = 2n
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Table B.8. The two-dimensional rectangular space group pgg or #8 (p2gg)

pgg No. 8 p 2 g g mm Rectangular

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

4 c 1 x, y; x̄, ȳ; 1
2

+ x, 1
2
− y; 1

2
− x, 1

2
+ y General:

hk: no conditions
h0: h = 2n
0l: k = 2n

Special: as above, plus

2 b 2 1
2
, 0; 0, 1

2

2 a 2 0, 0; 1
2
, 1

2

}
hk: h+ k = 2n

Table B.9. The two-dimensional rectangular space group cmm or #9 (c2mm)

cmm No. 9 c 2mg mm Rectangular

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry (0, 0; 1
2
, 1

2
)+

8 f 1 x, y; x̄, y; x̄, ȳ; x, ȳ General:
hk: h+ k = 2n

Special: as above, plus

4 e m 0, y; 0, ȳ

4 d m x, 0; x̄, 0

}
no extra conditions

4 c 2 1
4
, 1

4
; 1

4
, 3

4
hk: h = 2n; (k = 2n)

2 b mm 0, 1
2

2 a mm 0, 0

}
no extra conditions
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Table B.10. The two-dimensional square space group p4 or #10 (p4)

p4 No. 10 p4 4 Square

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

4 d 1 x, y; x̄, ȳ; y, x̄; ȳ, x General:
No conditions

Special:

2 c 2 1
2
, 0; 0, 1

2
hk: h+ k = 2n

1 b 4 1
2
, 1

2

1 a 4 0, 0

}
No conditions
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Table B.11. The two-dimensional square space group p4m or #11 (p4mm)

p4m No. 11 p 4mm 4mm Square

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

8 g 1 x, y; x̄, ȳ; y, x̄; ȳ, x; x̄, y; x, ȳ; ȳ, x̄, y, x General:
No conditions

Special:

4 f m x, x; x̄, x̄; x̄, x; x, x̄

4 e m x, 1
2
; x̄, 1

2
; 1

2
, x; 1

2
, x̄

4 d m x, 0; x̄, 0; 0, x; 0, x̄

}
no conditions

2 c mm 1
2
, 0; 0, 1

2
hk: h+ k = 2n

1 b 4mm 1
2
, 1

2

1 a 4mm 0, 0

}
no conditions
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Table B.12. The two-dimensional square space group p4g or #12 (p4gm)

p4g No. 12 p 4 gm 4mm Square

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

General:

8 d 1 x, y; y, x̄; 1
2
− x, 1

2
+ y; 1

2
− y, 1

2
− x hk: No conditions

x̄, ȳ; ȳ, x; 1
2

+ x, 1
2
− y; 1

2
+ y, 1

2
+ x h0: h = 2n (0k: k = 2n)

hh: No conditions

Special: as above, plus

4 c m x, 1
2

+ x; x̄, 1
2
− x; 1

2
+ x, x̄; 1

2
− x, x no extra conditions

2 b 4mm 1
2
, 0; 0, 1

2

2 a 4 0, 0; 1
2
, 1

2

}
hk: h+ k = 2n

Table B.13. The two-dimensional hexagonal space group p3 or #13 (p3)

p3 No. 13 p 3 3 Hexagonal

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

3 d 1 ȳ, x− y; y − x, x̄ General:
No conditions

Special:

1 c 3 1
3
, 1

3
no conditions

1 b 3 1
3
, 1

3

1 a 3 0, 0
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Table B.14. The two-dimensional hexagonal space group p3m1 or #14 (p3m1)

p 3m 1 No. 14 p3m1 3m Hexagonal

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

General:

6 e m x, y; ȳ, x− y; y − x, x̄ No conditions

ȳ, x̄; x, x− y; y − x, y

Special:

3 d m x, x̄; x, 2x; 2x̄, x No conditions

1 c 3m 2
3
, 1

3

1 b 3m 1
3
, 2

3

1 a 3m 0, 0

Table B.15. The two-dimensional hexagonal space group p31m or #15 (p31m)

p31m No. 15 p 3 1m 3m Hexagonal

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

6 d 1 x, y; ȳ, x− y; y − x, x̄ General:

y, x; x̄, y − x; x− y, ȳ No conditions

Special:

3 c m x, 0; 0, x; x̄, x̄ no conditions

2 b 3 1
3
, 2

3
; 2

3
, 1

3

1 a 3m 0, 0
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Table B.16. The two-dimensional hexagonal space group p6 or #16 (p6)

p 6 No. 16 p 6 Hexagonal 6

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

General:

6 d 1 x, y; ȳ, x− y; y − x, x̄ No conditions

x̄, ȳ; y, y − x; x− y, x

Special:

3 c 2 1
2
, 0; 0, 1

2
; 1

2
, 1

2
No conditions

2 b 3 1
3
, 2

3
; 2

3
, 1

3

1 a 6 0, 0

Table B.17. The two-dimensional hexagonal space group p6m or #17 (p6mm)

p6m No. 17 p 6mm 6mm Hexagonal

Number of positions Co-ordinates of Conditions limiting

Wyckoff notation, equivalent positions possible reflections

and point symmetry

12 f 1 x, y; ȳ, x− y; y − x, x̄; y, x; x̄, y − x; x− y, ȳ General:

x̄, ȳ; y, y − x; x− y, x; ȳ, x̄; x, x− y; y − x, y No conditions

Special:

6 e m x, x̄; x, 2x; 2x̄, x̄; x̄, x; x̄, 2x̄; 2x, x No conditions

6 d m x, 0; 0, x; x̄, x̄; x̄, 0; 0, x̄; x, x

3 c mm 1
2
, 0; 0, 1

2
; 1

2
, 1

2

2 b 3m 1
3
, 2

3
; 2

3
, 1

3

1 a 6mm 0, 0
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Tables for 3D Space Groups

In this appendix, selected tables and figures for 3D space groups in real space
and in reciprocal space are presented. The real space tables1 and figures given
in the first part of the appendix (Sect. C.1) pertain mainly to crystallographic
information and are used for illustrative purposes in various chapters of this
book. The tables which pertain to reciprocal space appear in the second part
of the appendix (Sect. C.2) and are mainly for tables for the group of the
wave vector for various high symmetry points in the Brillouin zone for var-
ious cubic space groups and other space groups selected for illustrative pur-
poses.

C.1 Real Space

A list of the 230 space groups and their Hermann–Mauguin symmetry des-
ignations (Sect. 3.10) is given in Table C.1, taken from the web [54]. Most
of the current literature presently follows the notation of reference [58]. The
reader will find Table C.1 to differ in two ways from entries in the Interna-
tional Tables for X-ray Crystallography [58]. Firstly, a minus sign (−n) is used
in [54] rather than n̄ in [58] to denote improper rotations (see Sect. 3.9) for
many of the groups, including #81-82, #111-122, #147-148, #162-167, #174,
#187-190, #215-220. Secondly, a minus sign (−n) is used in [54], rather than
n itself [58] to denote other groups, including #200-206 and #221-230. Some
of the special space groups referred to in the book text are the rhombohe-
dral space group #166, the hexagonal space group #194, the simple cubic
space group #221, the face-centered cubic space group #225, the space group
#227 for the diamond structure, and the body-centered cubic space group
#229.

Space groups have in addition to translational symmetry, point group sym-
metries which single out special high symmetry points. Tables C.2, C.3, and

1The notation for these tables is discussed in Chap. 9.
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Table C.1. Listing of the Hermann–Mauguin symmetry space group symbol desig-
nations for the 230 space groups. The table is taken from the web [54] (see text)

1 P1 2 P − 1 3 P2 4 P21 5 C2
6 Pm 7 Pc 8 Cm 9 Cc 10 P2/m

11 P21/m 12 C2/m 13 P2/c 14 P21/c 15 C2/c
16 P222 17 P2221 18 P21212 19 P212121 20 C2221

21 C222 22 F222 23 I222 24 I212121 25 Pmm2
26 Pmc21 27 Pcc2 28 Pma2 29 Pca21 30 Pnc2
31 Pmn21 32 Pba2 33 Pna21 34 Pmn2 35 Cmm2
36 Cmc21 37 Ccc2 38 Amm2 39 Abm2 40 Ama2
41 AbA2 42 Fmm2 43 Fdd2 44 Imm2 45 Iba2
46 Ima2 47 Pmmm 48 Pnnn 49 Pccm 50 Pban
51 Pmma 52 Pnna 53 Pnna 54 Pcca 55 Pbam
56 Pccn 57 Pbcm 58 Pnnm 59 Pmmn 60 Pbcn
61 Pbca 62 Pnma 63 Cmcm 64 Cmca 65 Cmmm
66 Cccm 67 Cmma 68 Ccca 69 Fmmm 70 Fddd
71 Immm 72 Ibam 73 Ibca 74 Imma 75 P4
76 P41 77 P42 78 P43 79 I4 80 I41

81 P − 4 82 I − 4 83 P4/m 84 P42/m 85 P4/n
86 P42/n 87 I4/m 88 I41/a 89 P422 90 P4212
91 P4122 92 P41212 93 P4222 94 P42212 95 P4322
96 P43212 97 I422 98 I4122 99 P4mm 100 P4bm

101 P42cm 102 P42nm 103 P4cc 104 P4nc 105 P42mc
106 P42bc 107 I4mm 108 I4cm 109 I41md 110 I41cd
111 P − 42m 112 P − 42c 113 P − 421m 114 P − 421c 115 P − 4m2
116 P − 4c2 117 P − 4b2 118 P − 4n2 119 I − 4m2 120 I − 4c2
121 I − 42m 122 I − 42d 123 P4/mmm 124 P4/mcc 125 P4/nbm
126 P4/nnc 127 P4/mbm 128 P4/mnc 129 P4/nmm 130 P4/ncc
131 P42/mmc 132 P42/mcm 133 P42/nbc 134 P42/nmm 135 P42/mbc
136 P42/mmm 137 P42/nmc 138 P42/ncm 139 I4/mmm 140 I4/mcm
141 I41/amd 142 PI1/acd 143 P3 144 P31 145 P32

146 R3 147 P − 3 148 R− 3 149 P312 150 P321
151 P3112 152 P3121 153 P3212 154 P3221 155 R32
156 P3m1 157 P31m 158 P3c1 159 P31c 160 R3m
161 R3c 162 P − 31m 163 P − 31c 164 P − 3m1 165 P − 3c1
166 R− 3m 167 R− 3c 168 P6 169 P61 170 P65

171 P62 172 P64 173 P63 174 P − 6 175 P6/m
176 P62/m 177 P622 178 P6122 179 P6522 180 P6222
181 P6422 182 P6322 183 P6mm 184 P6cc 185 P63cm
186 P63mc 187 P − 6m2 188 P − 6c2 189 P − 62m 190 P − 62c
191 P6/mmm 192 P6/mcc 193 P63/mcm 194 P63/mmc 195 P23
196 F23 197 I23 198 P213 199 I213 200 Pm− 3
201 Pn− 3 202 Fm− 3 203 Fd− 3 204 Im− 3 205 Pa− 3
206 Ia− 3 207 P432 208 P4232 209 F432 210 F4132
211 I432 212 P4332 213 P4132 214 I4132 215 P − 43m
216 F − 43m 217 I − 43m 218 P − 43n 219 F − 43c 220 I − 43d
221 Pm− 3m 222 Pn− 3n 223 Pm− 3n 224 Pn− 3m 225 Fm− 3m
226 Fm− 3c 227 Fd− 3m 228 Fd− 3c 229 Im− 3m 230 Ia− 3d
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Table C.2. Symmetry positions for space group #221 denoted by O1
h and

(Pm3m) using the Schoenflies and Hermann–Mauguin notations, respectively (see
Fig. 9.7) [58]
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Fig. C.1. Crystal structure of hexagonal graphite, space group #194

Fig. C.2. Crystal structure of rhombohedral graphite showing ABC stacking of
the individual sheets, space group #166 R3̄m. Also shown with dashed lines is the
rhombohedral unit cell

Fig. C.3. (a) Diamond structure Fd3m (O7
h, #227) showing a unit cell with two

distinct atom site locations. For the zinc blende structure (see Fig. 10.6) the atoms
on the two sites are distinct and belong to group F 4̄3m #216. (b) The screw axis
in the diamond structure shown looking at the projection of the various atoms with
their z-axis distances given
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C.4 taken from the International Crystallographic Tables [58] list these site
symmetries for high symmetry points for a few illustrative 3D space groups
in analogy to the Tables in Appendix B which pertain to two-dimensional
space groups. For example in Table C.2 for the simple cubic lattice (#221),
the general point n has no additional symmetry (C1), while points a and
b have full Oh point group symmetry. The points c through m have more
symmetry than the general point n, but less symmetry than points a and
b. For each symmetry point a through n, the Wyckoff positions are listed
and the corresponding point symmetry for each high symmetry point is
given.

To better visualize 3D crystal structures, it is important to show ball
and stick models when working with specific crystals. Figure C.1 shows
such a model for the crystal structure of 3D hexagonal graphite (space
group #194), while Fig. C.2 shows the crystal structure of 3D rhombohedral
graphite (space group #166). Both hexagonal and rhombohedral graphite
are composed of the same individual 2D graphene layers, but hexagonal
graphite has an ABAB stacking sequence of these layer planes, while rhom-
bohedral graphite has an ABCABC stacking of these layers. Because of
the differences in their stacking sequences, the structure with the ABAB
stacking sequence is described by a nonsymmorphic space group #194,
while the structure with the ABCABC stacking sequence is described by
a symmorphic space group #166. Figure C.3(a) shows the crystal struc-
ture for diamond together with a diagram showing the diamond screw axis
(Fig. C.3(b)) that explains the non-symmorphic nature of the diamond struc-
ture.

Table C.3 gives a listing similar to Table C.2, but now for the hexago-
nal non-symmorphic space group P63/mmc (D4

6h) which is the appropriate
space group for 3D graphite, while Table C.4 gives a similar listing for the
rhombohedral symmorphic space group #166 which describes rhombohedral
graphite. Group #166 is unusual because it can be specified either within
a rhombohedral description or a hexagonal description, as seen in Table C.4.
The information provided in the International Crystallographic Tables [58],
as exemplified by Table C.4 for group #166, can also be found on the web.
Table C.5 taken from the web-site [58] gives the same information on the
Wyckoff positions and point symmetries as is contained in Table C.4. The no-
tation in Table C.5 which is taken from the web [54] differs from the notation
used in the International Tables for X-ray Crystallography [58] insofar as −x,
−y, −z in [54] are used to denote x̄, ȳ, z̄ in [58], and some of the entries are
given in a different but equivalent order.

C.2 Reciprocal Space

In this section character tables are presented for the group of the wave vector
for a variety of high symmetry points in the Brillouin zone for various space
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Table C.3. International Crystallography Table for point group symmetries for the
hexagonal space group #194 (P63/mmc) or D4

6h (see Fig. C.1)
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Table C.4. Stereographs for space group #166 R-3m, along with the Wyckoff
positions and point symmetries for each high symmetry point a through l, listed for
both the rhombohedral and hexagonal systems
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Table C.5. Wyckoff positions for space group #166 R3̄m (taken from the website
given in [54]

Multi- Wyckoff Site Coordinates

plicity letter sym- (0, 0, 0)+ (2/3, 1/3, 1/3)+ (1/3, 2/3, 2/3)+

metry

36 i 1 (x, y, z) (−y, x− y, z) (−x+ y,−x, z) (y, x,−z)
(x− y,−y,−z) (−x,−x+ y,−z) (−x,−y,−z)
(y,−x+ y,−z) (x− y, x,−z) (−y,−x, z)
(−x+ y, y, z) (x, x− y, z)

18 h m (x,−x, z) (x, 2x, z) (−2x,−x, z) (−x, x,−z)
(2x, x,−z) (−x,−2x,−z)

18 g 2 (x, 0, 1/2) (0, x, 1/2) (−x,−x, 1/2) (−x, 0, 1/2)
(0,−x, 1/2) (x, x, 1/2)

18 f 2 (x, 0, 0) (0, x, 0) (−x,−x, 0) (−x, 0, 0)
(0,−x, 0) (x, x, 0)

9 e 2/m (1/2, 0, 0) (0, 1/2, 0) (1/2, 1/2, 0)

9 d 2/m (1/2, 0, 1/2) (0, 1/2, 1/2) (1/2, 1/2, 1/2)

6 c 3m (0, 0, z) (0, 0,−z)
3 b −3m (0, 0, 1/2)

3 a −3m (0, 0, 0)

groups. Diagrams for the high symmetry points are also presented for a few
representative examples. The high symmetry points of the Brillouin zone for
the simple cubic lattice are shown in Fig.C.4, and correspondingly, the high
symmetry points for the FCC and BCC space groups #225 and #229 are
shown in Fig. C.5(a), C.5(b), respectively. Table C.6 gives a summary of space
groups listed in this appendix, together with the high symmetry points for the
various groups that are considered in this appendix, giving the road-map for
three symmorphic cubic groups (#221 for the simple cubic lattice, #225 for
the FCC lattice, and #229 for the BCC lattice). For each high symmetry point
and space group that is listed, its symmetry and the table number where the
character table appears is given.

When the tables for the group of the wave vector are given (as for example
in Tables C.7, C.8 and C.10), the caption cites a specific high symmetry point
for a particular space group. Below the table are listed other high symmetry
points for the same or other space groups for which the character table ap-
plies. Following Table C.8 which applies to point group C4v, the multiplication
table for the elements of group C4v is given in Table C.9. Some high symmetry
points which pertain to the same group of the wave vector may have classes
containing different twofold axes. For this reason, when basis functions are
given with the character table, they apply only to the high symmetry point
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given in the caption to the table. Sometimes a high symmetry point is within
the Brillouin zone such as point Λ in Table C.10, while point F for the BCC
structure is on the Brillouin zone boundary. Many of these issues are illus-
trated in Table C.11 which gives the character table for point group C2v (see
Table A.5), but the symmetry operations for the twofold axes can refer to
different twofold axes, as for example for points Σ and Z. A similar situation
applies for Table C.15 for the X and M points for space group #221 regarding
their twofold axes. With regard to Table C.12 for the W point for the FCC
lattice, we see that the group of the wave vector has C4v symmetry, but in
contrast to the symmetry operations for the Δ point in Table C.8 which is
an interior point in the Brillouin zone with C4v symmetry, only four of the
symmetry operations E, C2

4 , iC2
4 , and iC2′ take W into itself while four other

symmetry operations 2C4, iC2
4 , and iC2′ require a reciprocal lattice vector to

take W into itself (Table C.12).
Also included in Table C.6 is a road-map for the character tables provided

for the group of the wave vector for the nonsymmorphic diamond structure
(#227). For this structure, the symmetry operations of classes that pertain to
the Oh point group but are not in the Td point group, include a translation
τd = (a/4)(1, 1, 1) and the entries for the character tables for these classes
includes a phase factor exp (ik · τ d) (see Table C.17 for the Γ point and Ta-
ble C.18 for the L point). The special points X , W , and Z on the square face
for the diamond structure (#227) do not correspond to Bragg reflections and
along this face, and the energy levels stick together (see Sect. 12.5) at these
high symmetry points (see Tables C.19 and C.20). Additional character tables
for the group of the wave vector at high symmetry points Λ, Σ, Δ, and X for
the diamond structure are found in Sect. 10.8 (Tables 10.9–10.12).

Next we consider the group of the wave vector for crystals with hexago-
nal/rhombohedral symmetry as occurs for graphite with ABCABC stacking
(symmorphic space group #166) which has high symmetry points shown in
Fig. C.6(a) and (b). Since the space group #166 is symmorphic, the group of
the wave vector at high symmetry points is simply found. Explicit examples
are given in Tables C.21–C.23 for three points of high symmetry for space
group #166. From Figure C.6 it can be seen that the group of the wave vec-
tor for the Γ point k = 0 has the highest symmetry of D3d, which is shared
by point Z at the center of the hexagonal face in Fig. C.6(b) (see Table C.21).
The point Δ has a twofold axis with C2 symmetry (Table C.23) and leads to
the point X with C3v point group symmetry at the center of the rectangular
face (see Table C.22). The compatibility of the Δ point with the Γ and X
points can be verified.

Finally, we present in Tables C.24–C.29 the character tables for the group
of the wave vector for selected high symmetry points for the nonsymmorphic
hexagonal structure given by space group #194, which is descriptive of 3D
graphite with ABAB layer stacking. The high symmetry points in the Bril-
louin zone for the hexagonal structure are shown in Fig. C.7. Specific character
tables are given for the high symmetry points Γ (k = 0) in Table C.24, a Δ
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Table C.6. Group of the wave vector at various symmetry points in the Brillouin
zone for some specific space groups

lattice point k symmetry Table

#221a Γ (0,0,0) Oh C.7

R [(2π/a)(1, 1, 1)] Oh C.7

X [(2π/a)(1, 0, 0)] D4h C.15

M [(2π/a)(1, 1, 0)] D4h C.15

Λ [(2π/a)(x, x, x)] C3v C.10

Σ [(2π/a)(x, x, 0)] C2v C.11

Δ [(2π/a)(x, 0, 0)] C4v C.8

S [(2π/a)(1, z, z)] C2v C.11

T [(2π/a)(1, 1, z)] C4v C.8

Z [(2π/a)(1, y, 0)] C2v C.11

#225b Γ (0,0,0) Oh C.7

X [(2π/a)(1, 0, 0)] D4h C.15

W [(π/a)(2, 1, 0)] C4v C.12

L [(π/a)(1, 1, 1)] D3d C.16

Λ [(π/a)(x, x, x)] C3v C.10

Σ [(2π/a)(x, x, 0)] C2v C.11

Δ [(2π/a)(x, 0, 0)] C4v C.8

K [(2π/a)(0, 3/4, 3/4)] C2v C.11

U [(2π/a)(1, 1/4, 1/4)] C2v C.11

Z [(2π/a)(1, y, 0)] C2v C.11

#227c Γ (0,0,0) Oh C.17

X [(2π/a)(1, 0, 0)] D2 10.12

W [(π/a)(2, 1, 0)] C4v C.19

L [(π/a)(1, 1, 1)] D3d C.18

Λ [(2π/a)(x, x, x)] C3v 10.11

Σ [(2π/a)(x, x, 0)] C2v 10.10

Δ [(2π/a)(x, 0, 0)] C4v 10.9

Z(V ) [(2π/a)(1, y, 0)] C2v C.20

Q [(4π/a)(1/4, 1/2 − y, y)] C2v A.5

#229d Γ (0,0,0) Oh C.7

Λ [(π/a)(x, x, x)] C3v C.10

Σ [(π/a)(x, x, 0)] C2v C.11

Δ [(2π/a)(x, 0, 0)] C4v C.8

H [(2π/a)(1, 0, 0)] D4h C.15

P [(π/a)(1, 1, 1)] Td C.13

F [(π/a)(1 + 2x, 1 − 2x, 1 − 2x)] C3v C.10

G [(π/a)(1 + 2x, 1 − 2x, 0)] C2v C.11

aSee Fig. C.4; bSee Fig. C.5(a); cSee Figs. C.3 and C.5(a); dSee Fig. C.5(b)
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Table C.6 (continued)

lattice point k symmetry Table

D [(π/a)(1, 1, z)] C2v C.11

N [(π/a)(1, 1, 0)] D2h C.14

#166e Γ (0,0,0) D3d C.21

Λ [(2π/c)(0, 0, z)] D3 C.22

Δ [(2π/a)(x, 0, 0)] C2 C.23

Z [(2π/c)(0, 0, 1)] D3d C.21

X [(2π/a)(1, 0, 0)] D3 C.22

#194f Γ (0,0,0) D6h C.24

A [(2π/c)(0, 0, 1)] D3h C.26

K [(2π/a)(1/3, 1/3, 0)] D3h C.27

H [(2π)(1/3a, 1/3a, 1/c)] D3h C.28

Δ [(2π/c)(0, 0, z)] C6v C.25

P [(2π)(1/3a, 1/3a, z/c)] C3v C.29

M [(π/a)(1,−1, 0)] D2h C.30

T [(π/a)(1 − x, 1 + x, 0)] C2v C.31

Σ [(π/a)(x,−x, 0)] C2v C.32

U [(2π)(1/3a,−1/3a, x/c)] C1h C.33

eSee Fig. C.6; fSee Fig. C.7

point in Table C.25, an A point in Table C.26 together with some compati-
bility relations, a K point in Table C.27, an H point in Table C.28 and a P
point in Table C.29.

In the character Table C.24 for the Γ point (k = 0), the six classes which
are in D6h but not in D3d have a translation vector τ = (c/2)(0, 0, 1) in
their symmetry operations {R|τ}. Phase factors are seen in Table C.25 for
the Δ point which is at an interior k �= 0 point in the Brillouin zone. The
phase factors TΔ = exp(ikΔ · τ ) appear in the character table for the classes
containing a translation vector τ . Points A and H are special high symmetry
points where energy levels stick together because the points in reciprocal space
associated with this plane do not correspond to a true Bragg reflection, i.e.,
the calculated structure factor for these points is zero. Character Tables for
other high symmetry points for group #194 are also given in Table C.30 for
point M , Table C.31 for point T , Table C.32 for point Σ, Table C.33 for
point U while Table C.34 gives pertinent compatibility relations for group
#194. Appendix D gives further character tables for double groups based on
group #194 where the spin on the electron is considered in formulating the
symmetry for the electronic energy band structure (Tables D.10–D.14).
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Table C.7. Character table (for group Oh) for the group of the wave-vector at a Γ
point for various cubic space groups

representation basis functions E 3C2
4 6C4 6C2 8C3 i 3iC2

4 6iC4 6iC2 8iC3

Γ1 1 1 1 1 1 1 1 1 1 1 1

Γ2

⎧⎪⎨
⎪⎩
x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)

1 1 −1 −1 1 1 1 −1 −1 1

Γ12

{
x2 − y2

2z2 − x2 − y2
2 2 0 0 −1 2 2 0 0 −1

Γ15 x, y, z 3 −1 1 −1 0 –3 1 −1 1 0

Γ25 z(x2 − y2), etc. 3 −1 −1 1 0 –3 1 1 −1 0

Γ ′
1

⎧⎪⎨
⎪⎩
xyz[x4(y2 − z2)+

y4(z2 − x2)+

z4(x2 − y2)]

1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′
2 xyz 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′
12 xyz(x2 − y2), etc. 2 2 0 0 −1 −2 −2 0 0 1

Γ ′
15 xy(x2 − y2), etc. 3 −1 1 −1 0 3 −1 1 −1 0

Γ ′
25 xy, yz, zx 3 −1 −1 1 0 3 −1 −1 1 0

Γ = (0, 0, 0) [SC (#221), FCC (#225), BCC (#229)]. R = (2π/a)(1, 1, 1) [SC
(#221)]. The partners for Γ25 are z(x2 − y2), x(y2 − z2), y(z2 − x2), for Γ ′

12 are
xyz(x2 − y2), xyz(2z2 − x2 − y2), for Γ ′

25 are xy(x2 − y2), yz(y2 − z2), zx(z2 − x2)

Table C.8. Character table (for group C4v) for the group of the wave-vector at a Δ
point for various cubic space groups

representation basis functions E C2
4 2C4 2iC2

4 2iC′
2

Δ1 1; x; 2x2 − y2 − z2 1 1 1 1 1

Δ2 y2 − z2 1 1 −1 1 −1

Δ′
2 yz 1 1 −1 −1 1

Δ′
1 yz(y2 − z2) 1 1 1 −1 −1

Δ5 y, z;xy, xz 2 −2 0 0 0

Δ = (2π/a)(x, 0, 0) (SC, FCC, BCC). T = (2π/a)(1, 1, z) (SC)
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Fig. C.4. Brillouin zone for a simple cubic lattice (#221) showing the high sym-
metry points and axes

Fig. C.5. Brillouin zones for the (a) face-centered (#225) and (b) body-centered
(#229) cubic lattices. Points and lines of high symmetry are indicated

Table C.9. Multiplication table for group C4v

class operation designation E α β γ δ ε ζ η

E x y z E E α β γ δ ε ζ η

C2
4 x −y −z α α E γ β ε δ η ζ

2C4

{
x

x

−z

z

y

−y
β

γ

β

γ

γ

β

α

E

E

α

ζ

η

η

ζ

ε

δ

δ

ε

2iC2
4

{
x

x

−y
y

z

−z
δ

ε

δ

ε

ε

δ

η

ζ

ζ

η

E

α

α

E

γ

β

β

γ

2iC2

{
x

x

−z
z

−y
y

ζ

η

ζ

η

η

ζ

δ

ε

ε

δ

β

γ

γ

β

E

α

α

E

The rule for using the multiplication table is αβ = (x,−y,−z)(x,−z, y) =
[x,−(−z),−(y)] = (x, z,−y) = γ, βδ = (x,−z, y)(x,−y, z) = (x, z, y) = η, where
the right operator (β) designates the row and the left operator (α) designates the
column.
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Fig. C.6. Brillouin zones for a rhombohedral lattice shown in (a) for rhombohedral
axes and in (b) for hexagonal axes as presented in Table C.4 where the site symme-
tries corresponding to (a) and (b) are both presented for one of the rhombohedral
groups

Fig. C.7. Brillouin zone for a hexagonal Bravais lattice showing high symmetry
points for hexagonal structures
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Table C.10. Character table for group C3v for point Λ for various cubic space
groups

representation basis E 2C3 3iC2

Λ1 1; x+ y + z 1 1 1

Λ2 x(y2 − z2) + y(z2 − x2) + z(x2 − y2) 1 1 −1

Λ3 2x− y − z, y − z 2 −1 0

Λ = (2π/a)(x, x, x) (SC, FCC, BCC). F = (π/a)(1 + 2x, 1 − 2x, 1 − 2x) (BCC)

Table C.11. Character table for the group C2v of the wave vector Σ for various
cubic space groups

Z E C2
4 iC2

4 iC2
4⊥

Σ E C2 iC2
4 iC2

represen- G,K,U, S E C2 iC2
4 iC2

tation D E C2
4 iC2 iC2⊥

Σ1 1 1 1 1

Σ2 1 1 −1 −1

Σ3 1 −1 −1 1

Σ4 1 −1 1 −1

Σ = (2π/a)(x, x, 0) (SC, FCC, BCC) G = (π/a)(1 + 2x, 1 − 2x, 0) (BCC). K =
(2π/a)(0, 3

4
, 3

4
) (FCC) U = (2π/a)(1, 1

4
. 1
4
) (FCC) D = (π/a)(1, 1, z) (BCC) Z =

(2π/a)(1, y, 0) (SC, FCC) S = (2π/a)(1, z, z) (SC)

Table C.12. Character table for group C4v of the wave vector for W for a sym-
morphic FCC lattice (#225)

representation E C2
4 2C4 2iC2

4 2iC2′

W1 1 1 1 1 1

W2 1 1 −1 1 −1

W3 1 1 −1 −1 1

W4 1 1 1 −1 −1

W5 2 −2 0 0 0

W = (π/a)(2, 1, 0) (FCC)

Table C.13. Character table for group Td for the group of the wave vector for the
P point in the BCC lattice

representation E 3C2
4 8C3 6iC4 6iC2

P1 1 1 1 1 1

P2 1 1 1 −1 −1

P3 2 2 −1 0 0

P4 3 −1 0 −1 1

P5 3 −1 0 1 −1

P = (π/a)(1, 1, 1) (BCC)
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Table C.14. Character table for group D2h = D2 ⊗ i for the group of the wave
vector for point N (BCC)

representation E C2
4 C2‖ C2⊥ i iC2

4 iC2‖ iC2⊥
N1 1 1 1 1 1 1 1 1

N2 1 −1 1 −1 1 −1 1 −1

N3 1 −1 −1 1 1 −1 −1 1

N4 1 1 −1 −1 1 1 −1 −1

N ′
1 1 1 1 1 −1 −1 −1 −1

N ′
2 1 −1 1 −1 −1 1 −1 1

N ′
3 1 1 −1 −1 −1 −1 1 1

N ′
4 1 −1 −1 1 −1 1 1 −1

N = (π/a)(1, 1, 0) (BCC)

Table C.15. Character table for D4h for the group of the wave vector for point X
for various cubic space groups

representation basis E 2C2
4⊥ C2

4‖ 2C2
4‖ 2C2 i 2iC2

4⊥ iC2
4‖ 2iC4‖ 2iC2

X1 1; 2x2 − y2 − z2 1 1 1 1 1 1 1 1 1 1

X2 y2 − z2 1 1 1 −1 −1 1 1 1 −1 −1

X3 yz 1 −1 1 −1 1 1 −1 1 −1 1

X4 yz(y2 − z2) 1 −1 1 1 −1 1 −1 1 1 −1

X5 xy, xz 2 0 −2 0 0 2 0 −2 0 0

X ′
1 xyz(y2 − z2) 1 1 1 1 1 −1 −1 −1 −1 −1

X ′
2 xyz 1 1 1 −1 −1 −1 −1 −1 1 1

X ′
3 x(y2 − z2) 1 −1 1 −1 1 −1 1 −1 1 −1

X ′
4 x 1 −1 1 1 −1 −1 1 −1 −1 1

X ′
5 y, z 2 0 −2 0 0 −2 0 2 0 0

X = (2π/a)(1, 0, 0) (SC, FCC). M = (2π/a)(1, 1, 0) (SC). H = (2π/a)(1, 0, 0)
(BCC)

Table C.16. Character table for D3d for the group of the wave vector for point L
(FCC)

representation basis E 2C3 3C2 i 2iC3 3iC2

L1 1;xy + yz + xz 1 1 1 1 1 1

L2 yz(y2 − z2) + xy(x2 − y2) + xz(z2 − x2) 1 1 −1 1 1 −1

L3 2x2 − y2 − z2, y2 − z2 2 −1 0 2 −1 0

L′
1 x(y2 − z2) + y(z2 − x2) + z(x2 − y2) 1 1 1 −1 −1 −1

L′
2 x+ y + z 1 1 −1 −1 −1 1

L′
3 y − z, 2x− y − z 2 −1 0 −2 1 0

L = (π/a)(1, 1, 1) (FCC)
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Table C.19. Character table for group C4v for the group of the wave vector for the
W point for the diamond structure (#227)

representationa {E|0} {C2
4 |0} 2{C4|τd} 2{iC2

4 |τd} 2{iC2′ |0}
W1 2 2 0 0 0

W2 2 −2 0 0 0

a Note τd = (a/4)(1, 1, 1) W = (π/a)(2, 1, 0). Note the W point is not a point with
Bragg reflections, so energy levels stick together at this point.

Table C.20. Character table for group C2v of the group of the wave vector for the
Z (or V ) point for the diamond structure (#227)

representationa {E|0} {C2
4 |0} {iC2

4 |τd} {iC2
4⊥|τd}

Z1 2 2 0 0

Z2 2 −2 0 0

Z = (2π/a)(1, y, 0) and τd = (a/4)(1, 1, 1). Note that the Z (or V ) point is not a
point with Bragg reflections, so energy bands stick together at this point

Table C.21. Character table with point group symmetry D3d (3m), for the group
of the wave vector at the Γ point (k = 0) for the space group #166 R3̄m

D3d (3m) representation E 2C3 3C2′ i 2iC3 3iC2′

Γ+
1 1 1 1 1 1 1

Γ+
2 1 1 −1 1 1 −1

Γ+
3 2 −1 0 2 −1 0

Γ−
1 1 1 1 −1 −1 −1

Γ−
2 1 1 −1 −1 −1 1

Γ−
3 2 −1 0 −2 1 0

Γ = (0, 0, 0). Z = (2π/c)(0, 0, 1)

Table C.22. Character table with point group symmetry C3v(3m) for group of the
wave vector for a point Λ for the space group #166 R3̄m

C3v(3m) E 2C3 3σv

Λ1 1 1 1

Λ2 1 1 −1

Λ3 2 −1 0

Λ = (2π/c)(0, 0, z). X = (2π/a)(1, 0, 0)

Table C.23. Character table with point group symmetry C2(2) for the group of
the wave vector for a point Δ for the space group #166 R3̄m

C2 (2) E C2′

Δ1 1 1

Δ2 1 −1

Δ = (2π/a)(x, 0, 0)
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Table C.25. Character table with point group symmetry C6v for the group of the
wave vector for a point Δ for the space group #194

C6v {E|0} {C2|τ} 2{C3|0} 2{C6|τ } 3{σd|0} 3{σv|τ }
Δ1 1 1 · TΔ 1 1 · TΔ 1 1 · TΔ

Δ2 1 1 · TΔ 1 1 · TΔ −1 −1 · TΔ

Δ3 1 −1 · TΔ 1 −1 · TΔ 1 −1 · TΔ

Δ4 1 −1 · TΔ 1 −1 · TΔ −1 1 · TΔ

Δ5 2 −2 · TΔ −1 1 · TΔ 0 0

Δ6 2 2 · TΔ −1 −1 · TΔ 0 0

The symmetry operations with translations for point Δ = (2π/c)(0, 0, z), where
0 ≤ z ≤ 1 are consistent with those in Table C.24 for k = 0. The translation
here is τ = (c/2)(0, 0, 1) and the phase factor is TΔ = exp(ik · τ ) so that at the
dimensionless z end points we have TΔ = 1 at z = 0 and TΔ = −1 at z = 1. See
Table C.34 for compatibility relations.

Table C.26. Character table with point group symmetry C3v for the group of the
wave vector for point A for the space group #194

C3v {E|0} {2C3|0} 3{σd|0} compatibility relations

A1 2 2 2 A1 → Δ1 +Δ3

A2 2 2 −2 A2 → Δ2 +Δ4

A3 4 −2 0 A3 → Δ5 +Δ6

Point A = (2π/c)(0, 0, 1). At the A point in the Brillouin zone, the structure factor
vanishes so that Bragg reflections do not occur. Therefore the compatibility relations
given on the right side of Table C.26 show that at the A point the Δ point bands
stick together.

Table C.27. Character table with point group symmetry D3h for the group of the
wave vector for a point K for the space group #194{

C
′A
2 |0

} {
σA

v |τ
}

{
C+

3 |0
} {

C
′B
2 |0

} {
S−

3 |τ
} {

σB
v |τ

}
{E|0}

{
C−

3 |0
} {

C
′C
2 |0

}
{σh|τ}

{
S+

3 |τ
} {

σC
v |τ

}
K+

1 1 1 1 1 1 1 x2 + y2, z2

K+
2 1 1 −1 1 1 −1 Rz

K+
3 2 −1 0 2 −1 0 (x2 − y2, xy) (Rx, Ry)

K−
1 1 1 1 −1 −1 −1

K−
2 1 1 −1 −1 −1 1 z

K−
3 2 −1 0 −2 1 0 (x, y)

compatibility relations

K+
1 → P1; K

+
2 → P2; K

+
3 → P3; K

−
1 → P2; K

−
2 → P1; K

−
3 → P3

K = (2π/a)(1/3, 1/3, 0)
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Table C.28. Character table with point group symmetry D3h for the group of the
wave vector for point H for the space group #194

compatibility

D3h(6m2) {E|0} 2{C3|0} 3{C2′ |0} {σh|τ} 2{S3|τ}a 3{σv |τ} relations

H1 2 −1 0 0 −√
3i

√
3i 0 H1 → P3

H2 2 −1 0 0
√

3i −√
3i 0 H2 → P3

H3 2 2 0 0 0 0 0 H3 → P1 + P2

H4 1 −1 i i i −i 1 H4 → P1

H5 1 −1 i −i −i i −1 H5 → P1

H6 1 −1 −i −i −i i 1 H6 → P2

H = 2π(1/3a, 1/3a, 1/c)
a Note that the two columns under class 2{S3|τ} refer to two symmetry operations
in this class which have characters that are complex conjugates of one another.

Table C.29. Character table with point group symmetry C3v for the group of the
wave vector for point P for the space group #194

C3v {E|0} 2{C3|0} 3{σv|τ}
P1 1 1 1 · Tp

P2 1 1 −1 · Tp

P3 2 −1 0

P = 2π(1/3a, 1/3a, z/c). Tp = exp ikp · τ where 0 < z < 1 and τ = (c/2)(0, 0, 1)

Table C.30. Character table with point group symmetry D2h for the group of the
wave vector of the M point of space group #194

{E|0} {C2|τ}
{
C

′A
2 |0

} {
C

′′A
2 |τ

}
{i|0} {σh|τ}

{
σA

d |0
} {

σA
v |τ

}
M+

1 1 1 1 1 1 1 1 1 x2, y2, z2

M+
2 1 1 −1 −1 1 1 −1 −1 xy

M+
3 1 −1 1 −1 1 −1 1 −1 xz

M+
4 1 −1 −1 1 1 −1 −1 1 yz

M−
1 1 1 1 1 −1 −1 −1 −1

M−
2 1 1 −1 −1 −1 −1 1 1 z

M−
3 1 −1 1 −1 −1 1 −1 1 y

M−
4 1 −1 −1 1 −1 1 1 −1 x

compatibility relations

M+
1 → Σ1; M

+
2 → Σ3; M

+
3 → Σ4; M

+
4 → Σ2;

M−
1 → Σ2; M

−
2 → Σ4; M

−
3 → Σ3; M

−
4 → Σ1

M = (π/a)(1,−1, 0)
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Table C.31. Character table for the group of the wave vector for point T for space
group #194

{E|0}
{
C

′A
2 |0

}
{σh|τ}

{
σA

v |τ
}

T1 1 1 1 1 y x2, y2, z2

T2 1 1 −1 −1 xz

T3 1 −1 1 −1 x xy

T4 1 −1 −1 1 z yz

T = (π/a)(1 − x, 1 + x, 0)

Table C.32. Character table for Σ point for space group #194 (C3
s , Cm, #8)

{E|0}
{
C

′′A
2 |τ

}
{σh|τ}

{
σA

d |0
}

Σ1 1 1 1 1 x x2, y2, z2

Σ2 1 1 −1 −1 zy

Σ3 1 −1 1 −1 y xy

Σ4 1 −1 −1 1 z zx

Σ = (π/a)(x,−x, 0)

Table C.33. Character table with point group C1h for the group of the wave vector
for point U for space group #194

{E|0} {σh|τ}
U1 1 1 x, y x2, y2, z2, xy

U2 1 −1 z zy, zx

U = 2π(1/3a,−1/3a, p/c)

Table C.34. Compatibility relations for Γ , Δ, Σ, and T

Γ Δ Σ T

Γ+
1 Δ1 Σ1 T1

Γ+
2 Δ2 Σ3 T3

Γ+
3 Δ3 Σ4 T2

Γ+
4 Δ4 Σ2 T4

Γ+
5 Δ5 Σ2 +Σ4 T2 + T4

Γ+
6 Δ6 Σ1 +Σ3 T1 + T3

Γ−
1 Δ2 Σ2 T2

Γ−
2 Δ1 Σ4 T4

Γ−
3 Δ4 Σ3 T1

Γ−
4 Δ3 Σ1 T3

Γ−
5 Δ5 Σ1 +Σ3 T1 + T3

Γ−
6 Δ6 Σ2 +Σ4 T2 + T4



D

Tables for Double Groups

In this appendix we provide tables useful for handling problems associated
with double groups. Many of these tables can be found in two references, one
by Koster et al. [48] and another by Miller and Love [54]. The first reference
book “Properties of the Thirty-Two Point Groups,” by G.F. Koster, J.O.
Dimmock, R.G. Wheeler, and H. Statz gives many tables for each of the 32
point groups, while the second gives many character tables for the group of
the wave vector for each of the high symmetry points for each of the 230 space
groups and many other kinds of related space groups.

The tables in the first reference for the 32 point groups include:

1. A character table including the double group representations (see, for
example Table D.1 for groups O and Td).

2. A table giving the decomposition of the direct product of any two irre-
ducible representations (an example of such a table is given in Table D.2).

3. Tables of coupling coefficients for the product of any two basis functions.
Two examples of tables of coupling coefficients are given in Tables D.3
and D.4.1

4. Compatibility tables between point groups (e.g., Table D.7).
5. Compatibility tables with the Full Rotation Group (e.g., Table D.8).

We now illustrate some examples of these tables. Table D.1 shows the double
group character table for the groupO, which is tabulated together with Td and
includes classes, irreducible representations and basis functions for the double
group. For example, the basis functions for Γ4(Γ15) are Sx, Sy, Sz which refer
to the three Cartesian components of the angular momentum (integral values
of angular momentum)1 [47]. The basis functions for the Γ6 and Γ8 irreducible
representations are written in the basic form φ(j,mj) for the angular momen-
tum and all the mj partners are listed. Koster et al. use the notation E for R
(rotation by 2π) and the notation C3 for class RC3. The meaning of the time

1Table 83 of [47] is continued over 10 pages of the book pages 90–99. We have
reproduced some of the sections of this complete compilation.
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Table D.1. Character table and basis functions for double groups O and Td

O E E 8C3 8C3
3C2

3C2
6C4 6C4

6C′
2

6C
′
2

Td E E 8C3 8C3
3C2

3C2
6S4 6S4

6σd

6σd
time
inversion

bases
for O

bases
for Td

Γ1 1 1 1 1 1 1 1 1 a R R or xyz

Γ2 1 1 1 1 1 −1 −1 −1 a xyz SxSySz

Γ3(Γ12) 2 2 −1 −1 2 0 0 0 a (2z2−x2−y2),√
3(x2 − y2)

(2z2−x2−y2),√
3(x2 − y2)

Γ4(Γ15) 3 3 0 0 −1 1 1 −1 a Sx, Sy, Sz Sx, Sy, Sz

Γ5(Γ25) 3 3 0 0 −1 −1 −1 1 a yz, xz, xy x, y, z

Γ6 2 −2 1 −1 0
√

2 −√
2 0 c φ(1/2, −1/2),

φ(1/2, 1/2)
φ(1/2, −1/2),
φ(1/2, 1/2)

Γ7 2 −2 1 −1 0 −√
2

√
2 0 c Γ6 ⊗ Γ2 Γ6 ⊗ Γ2

Γ8 4 −4 −1 1 0 0 0 0 c φ(3/2,−3/2),
φ(3/2,−1/2),
φ(3/2, 1/2),
φ(3/2, 3/2)

φ(3/2,−3/2),
φ(3/2,−1/2),
φ(3/2, 1/2),
φ(3/2, 3/2)

inversion (Time Inversion) entries a, b and c are explained in Chap. 16 where
time inversion symmetry is discussed.

Table D.2 for groups O and Td gives the decomposition of the direct prod-
uct of any irreducible representation Γi labeling a column with another ir-
reducible representation Γj labeling a row. The irreducible representations
contained in the decomposition of the direct product are Γi ⊗ Γj entered in
the matrix position of their intersection.

The extensive tables of coupling coefficients are perhaps the most use-
ful tables in Koster et al. [48] These tables give the basis functions for the
irreducible representations obtained by taking the direct product of two irre-
ducible representations. We illustrate in Table D.3 the basis functions obtained
by taking the direct product of each of the two partners of the Γ12 represen-
tation (denoted by Koster et al. as u3

1 and u3
2) with each of the three partners

of the Γ15 representation (denoted by v4
x, v

4
y , v

4
z) to yield three partners with

Γ15 symmetry (denoted by ψ4
x, ψ

4
y, ψ

4
z) and 3 partners with Γ25 symmetry (de-

noted by ψ5
yz, ψ

5
zx, ψ

5
xy). This is Table 83 on p. 91 of Koster et al. [48]. From

Table D.3 we see that the appropriate linear combinations for the ψ4 and ψ5

functions are (see Sect. 14.8)
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Table D.3. Coupling coefficients for selected basis functions for single group O

u3
1v

4
x u3

1v
4
y u3

1v
4
z u3

2v
4
x u3

2v
4
y u3

2v
4
z

ψ4
x −1/2 0 0

√
3/2 0 0

ψ4
y 0 −1/2 0 0 −√

3/2 0

ψ4
z 0 0 1 0 0 0

ψ5
yz −√

3/2 0 0 −1/2 0 0

ψ5
xz 0

√
3/2 0 0 −1/2 0

ψ5
xy 0 0 0 0 0 1

Table D.4. Coupling coefficient tables for the indicated basis functions for double
group Oh

u4
xv

6
−1/2 u4

xv
6
1/2 u4

yv
6
−1/2 u4

yv
6
1/2 u4

zv
6
−1/2 u4

zv
6
1/2

ψ6
−1/2 0 −i/√3 0 −1/

√
3 i/

√
3 0

ψ6
1/2 −i/√3 0 1/

√
3 0 0 −i/√3

ψ8
−3/2 i/

√
2 0 1/

√
2 0 0 0

ψ8
−1/2 0 i/

√
6 0 1/

√
6 i

√
2/

√
3 0

ψ8
1/2 −i/√6 0 1/

√
6 0 0 i

√
2/

√
3

ψ8
3/2 0 −i/√2 0 1/

√
2 0 0

Table D.5. Coupling coefficient table for coupling the basis functions of
Γ3 ⊗ Γ+

6 to Γ8 where Γ3 ⊗ Γ+
6 = Γ8 in the double group for Oh

u3
1v

6
−1/2 u3

1v
6
+1/2 u3

2v
6
−1/2 u3

2v
6
+1/2

ψ8
−3/2 0 0 0 1

ψ8
−1/2 1 0 0 0

ψ8
+1/2 0 −1 0 0

ψ8
+3/2 0 0 −1 0

ψ4
x = −(1/2)u3

1v
4
x + (

√
3/2)u3

2v
4
x

ψ4
y = −(1/2)u3

1v
4
y − (

√
3/2)u3

2v
4
y

ψ4
z = u3

1v
4
z

ψ5
yz = −(

√
3/2)u3

1v
4
x − (1/2)u3

2v
4
x

ψ5
xz = (

√
3/2)u3

1v
4
y − (1/2)u3

2v
4
y

ψ5
xy = u3

2v
4
z .

Note that the basis functions for the ψ4 and ψ5 functions depend on the choice
of basis functions for u and v. Journal articles often use the notation

Γ15 ⊗ Γ12 = Γ15 + Γ25 , (D.1)
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Table D.6. Coupling coefficient table for coupling the basis functions of Γ5 ⊗ Γ+
6

to the basis functions Γ7 and Γ8 in the double group for Oh

u5
xv

6
−1/2 u5

xv
6
+1/2 u5

yv
6
−1/2 u5

yv
6
+1/2 u5

zv
6
−1/2 u5

zv
6
+1/2

ψ7
−1/2 0 −i/√3 0 −1/

√
3 i/

√
3 0

ψ7
+1/2 −i/√3 0 1/

√
3 0 0 −i/√3

ψ8
−3/2 −i/√6 0 1/

√
6 0 0 i

√
2/

√
3

ψ8
−1/2 0 i/

√
2 0 −1/

√
2 0 0

ψ8
+1/2 −i/√2 0 −1/

√
2 0 0 0

ψ8
+3/2 0 i/

√
6 0 1/

√
6 i

√
2/

√
3 0

where Γ4 ↔ Γ15 and Γ3 ↔ Γ12. Thus taking the direct product between
irreducible representations Γ3 and Γ4 in O or Td symmetries yields:

Γ4 ⊗ Γ3 = Γ4 + Γ5 , (D.2)

where Γ5 ↔ Γ25.
We next illustrate the use of a typical coupling coefficient table relevant to

the introduction of spin into the electronic energy level problem. In this case
we need to take a direct product of Γ+

6 with a single group representation,
where Γ+

6 is the representation for the spinor (D1/2). For example, for a p-
level Γ−

15 ⊗ Γ+
6 = Γ−

6 + Γ−
8 and the appropriate coupling coefficient table is

Table D.4 (in Koster et al. Table 83, p. 92).
Table D.4 gives us the following relations between basis functions:

ψ6
−1/2 =

∣∣∣∣12 ,−
1
2

〉
= −(i/

√
3)(u4

x − iu4
y) ↑ +(i/

√
3)u4

z ↓

ψ6
1/2 =

∣∣∣∣12 ,
1
2

〉
= −(i/

√
3)(u4

x + iu4
y) ↓ −(i/

√
3)u4

z ↑

ψ8
−3/2 =

∣∣∣∣32 ,−
3
2

〉
= (i/

√
2)(u4

x − iu4
y) ↓

ψ8
−1/2 =

∣∣∣∣32 ,−
1
2

〉
= (i/

√
6)(u4

x − iu4
y) ↑ +(i

√
2/
√

3)u4
z ↓

ψ8
1/2 =

∣∣∣∣32 ,
1
2

〉
= −(i/

√
6)(u4

x + iu4
y) ↓ +(i

√
2/
√

3)u4
z ↑

ψ8
3/2 =

∣∣∣∣32 ,
3
2

〉
= −(i/

√
2)(u4

x + iu4
y) ↑ , (D.3)

and v6
−1/2 =↓. The relations in (D.3) give the transformation of basis functions

in the |�sm�ms〉 representation to the |j�smj〉 representation, appropriate to
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Table D.8. Full rotation group compatibility table for the group O

S D+
0 Γ1

P D−
1 Γ4

D D+
2 Γ3 + Γ5

F D−
3 Γ2 + Γ4 + Γ5

G D+
4 Γ1 + Γ3 + Γ4 + Γ5

H D−
5 Γ3 + 2Γ4 + Γ5

I D+
6 Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5

D±
1/2

Γ6

D±
3/2

Γ8

D±
5/2

Γ7 + Γ8

D±
7/2

Γ6 + Γ7 + Γ8

D±
9/2 Γ6 + 2Γ8

D±
11/2

Γ6 + Γ7 + 2Γ8

D±
13/2

Γ6 + 2Γ7 + 2Γ8

D±
15/2

Γ6 + Γ7 + 3Γ8

energy bands for which the spin–orbit interaction is included. These linear
combinations are basically the Clebsch–Gordan coefficients in quantum me-
chanics [18]. We make use of (D.3) when we introduce spin and spin–orbit
interaction into the plane wave relations of the energy eigenvalues and eigen-
functions of the empty lattice.

Tables similar to Table D.4, but allowing us to find the basis functions for
the direct products Γ±

12 ⊗Γ+
6 and Γ±

25 ⊗Γ+
6 , are given in Tables D.5 and D.6,

respectively, where Γ±
12 and Γ±

25 are denoted by Γ±
3 and Γ±

5 , respectively, in
the Koster tables [47].

Table D.7 gives the point groups that are subgroups of groups Td and
O, and gives the decomposition of the irreducible representations of Td and
O into the irreducible representations of the lower symmetry group. Note in
Table D.7 that E refers to the electric field and H to the magnetic field.
The table can be used for many applications such as finding the resulting
symmetries under crystal field splittings as for example Oh → D3.

The notation for each of the irreducible representations is consistent with
that given in the character tables of Koster’s book [47,48]. The decompositions
of the irreducible representations of the full rotation group into irreducible
representations of groups O and Td are given, respectively, in Tables D.8 and
D.9. Note that all the irreducible representations of the full rotation group
are listed, with the ± sign denoting the parity (even or odd under inversion)
and the subscript giving the angular momentum quantum number (j), so
that the dimensionality of the irreducible representation D±

j is (2j + 1). In
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Table D.9. Full rotation group compatibility table for the group Td

D+
0 Γ1 D−

0 Γ2

D+
1 Γ4 D−

1 Γ5

D+
2 Γ3 + Γ5 D−

2 Γ3 + Γ4

D+
3 Γ2 + Γ4 + Γ5 D−

3 Γ1 + Γ4 + Γ5

D+
4 Γ1 + Γ3 + Γ4 + Γ5 D−

4 Γ2 + Γ3 + Γ4 + Γ5

D+
5 Γ3 + 2Γ4 + Γ5 D−

5 Γ3 + Γ4 + 2Γ5

D+
6 Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5 D−

6 Γ1 + Γ2 + Γ3 + 2Γ4 + Γ5

D+
1/2

Γ6 D−
1/2

Γ7

D+
3/2

Γ8 D−
3/2

Γ8

D+
5/2

Γ7 + Γ8 D−
5/2

Γ6 + Γ8

D+
7/2

Γ6 + Γ7 + Γ8 D−
7/2

Γ6 + Γ7 + Γ8

D+
9/2 Γ6 + 2Γ8 D−

9/2 Γ7 + 2Γ8

D+
11/2

Γ6 + Γ7 + 2Γ8 D−
11/2

Γ6 + Γ7 + 2Γ8

D+
13/2

Γ6 + 2Γ7 + 2Γ8 D−
13/2

2Γ6 + Γ7 + 2Γ8

summary, we note that the double group character table shown in Table D.1 is
applicable to a symmorphic space group, like the Oh point group (Oh = O⊗i)
which applies to the group of the wave vector at k = 0 for cubic space groups
#221, #225, and #229. A double group character table like Table D.1 is also
useful for specifying the group of the wave vector for high symmetry points of
a nonsymmorphic space group where the double group has to be modified to
take into account symmetry operations involving translations. For illustrative
purposes we consider the nonsymmorphic space group #194 that applies to
3D graphite (P63/mmc) or D4

6h with ABAB layer stacking (see Fig. C.1).
The simplest case to consider is the group of the wave vector for k = 0

(the Γ point) where the phase factor is unity. Then the character table for
this nonsymmorphic space group looks quite similar to that for a symmorphic
space group, the only difference being the labeling of the classes, some of
which include translations. This is illustrated in Table D.10 where eight of the
classes require translations. Those classes with translations τ = (c/2)(0, 0, 1)
correspond to symmetry operations occuring in group D6h but not in D3d,
and are indicated in Table D.10 by a τ symbol underneath the class listing
(see also Table C.24 for the corresponding ordinary irreducible representations
for which spin is not considered).

As we move away from the Γ point in the kz direction, the symmetry
is lowered from D6h to C6v and the appropriate group of the wave vector is
that for a Δ point, as shown in Table D.11. The corresponding point group
is C6v which has nine classes, as listed in the character table, showing a com-
patibility between the classes in C6v and D6h regarding which classes contain
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Table D.10. Character table for the double group D6h [48] appropriately modified
to pertain to the group of the wave vector at the Γ point(k = 0) for space group
#194 D4

6h(P63/mmc)
a

D6h E E
C2

C2 2C3 2C3 2C6 2C6

3C′
2

3C′
2

3C′′
2

3C′′
2 I I

σh

σh 2S6 2S6 2S3 2S3

3σd

3σd

3σv

3σv time

τ τ τ τ τ τ τ τ

Γ+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a

Γ+
2 1 1 1 1 1 1 1 −1 −1 1 1 1 1 1 1 1 −1 −1 a

Γ+
3 1 1−1 1 1 −1 −1 1 −1 1 1−1 1 1 −1 −1 1 −1 a

Γ+
4 1 1−1 1 1 −1 −1 −1 1 1 1−1 1 1 −1 −1 −1 1 a

Γ+
5 2 2−2 −1 −1 1 1 0 0 2 2−2 −1 −1 1 1 0 0 a

Γ+
6 2 2 2 −1 −1 −1 −1 0 0 2 2 2 −1 −1 −1 −1 0 0 a

Γ−
1 1 1 1 1 1 1 1 1 1−1−1−1 −1 −1 −1 −1 −1 −1 a

Γ−
2 1 1 1 1 1 1 1 −1 −1−1−1−1 −1 −1 −1 −1 1 1 a

Γ−
3 1 1−1 1 1 −1 −1 1 −1−1−1 1 −1 −1 1 1 −1 1 a

Γ−
4 1 1−1 1 1 −1 −1 −1 1−1−1 1 −1 −1 1 1 1 −1 a

Γ−
5 2 2−2 −1 −1 1 1 0 0−2−2 2 1 1 −1 −1 0 0 a

Γ−
6 2 2 2 −1 −1 −1 −1 0 0−2−2−2 1 1 1 1 0 0 a

Γ+
7 2−2 0 1 −1

√
3−√

3 0 0 2−2 0 1 −1
√

3−√
3 0 0 c

Γ+
8 2−2 0 1 −1−√

3
√

3 0 0 2−2 0 1 −1−√
3

√
3 0 0 c

Γ+
9 2−2 0 −2 2 0 0 0 0 2−2 0 −2 2 0 0 0 0 c

Γ−
7 2−2 0 1 −1

√
3−√

3 0 0−2 2 0 −1 1−√
3

√
3 0 0 c

Γ−
8 2−2 0 1 −1−√

3
√

3 0 0−2 2 0 −1 1
√

3−√
3 0 0 c

Γ−
9 2−2 0 −2 2 0 0 0 0−2 2 0 2 −2 0 0 0 0 c

a For the group of the wave vector for k = 0 for the space group #194, the eight
classes in the double group D6h that are not in group D3d [namely (C2, C2), 2C6,
2C6, (3C′′

2 , 3C′′
2), (σh, σh), 2S3, 2S3, and (3σv , 3σv)] have, in addition to the point

group operations {R|0} or {R|0}, additional operations {R|τ} or {R|τ} involving
the translation τ = (0, 0, c/2). A phase factor T = exp(ik · τ ), which is equal to
unity at k = 0, accompanies the characters for the classes corresponding to {R|τ}
or {R|τ}. In listing the classes, the symbol τ is placed below the class symbol, such
as 2C6, to distinguish the classes that involve translations {R|τ}. For the special
classes containing both the {R|0} and {R|0} symmetry operations, the symbols are
stacked above one another, as in 3σd and 3σd

translations τ and which do not. All characters corresponding to symmetry
operations containing τ must be multiplied by a phase factor TΔ = exp[iπΔ]
which is indicated in Table D.11 by TΔ, where Δ is a dimensionless variable
0 ≤ Δ ≤ 1.

From Tables D.10 and D.11 we can write down compatibility relations
between the Γ point and the Δ point representations (see Table D.12), and
we note that in the limit k → 0 all the phase factors TΔ = exp[iπΔ] in
Table D.11 go to unity as Δ goes to zero.
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Table D.12. Compatibility relations between the irreducible representations of the
group of the wave vector at Γ (k = 0) and Δ [k = (2π/a)(0, 0, Δ)] for space group
#194

Γ point Δ point Γ point Δ point

representation representation representation representation

Γ+
1 → Δ1 Γ−

1 → Δ2

Γ+
2 → Δ2 Γ−

2 → Δ1

Γ+
3 → Δ3 Γ−

3 → Δ3

Γ+
4 → Δ4 Γ−

4 → Δ4

Γ+
5 → Δ5 Γ−

5 → Δ5

Γ+
6 → Δ6 Γ−

6 → Δ6

Γ+
7 → Δ7 Γ−

7 → Δ7

Γ+
8 → Δ8 Γ−

8 → Δ8

Γ+
9 → Δ9 Γ−

9 → Δ9

Table D.13. Character table for the group of the wave vector at the point A for
space group #194 from Koster [48]

E E 2C3 2C3

3C′
2

3C′
2

3σd

3σd time inversion

A1 2 2 2 2 0 2 a

A2 2 2 2 2 0 −2 a

A3 4 4 −2 −2 0 0 a

A4 2 −2 −2 2 2i 0 c

A5 2 −2 −2 2 −2i 0 c

A6 4 −4 2 −2 0 0 c

All classes have symmetry operations of the form {R|0} or {R|0} and do not involve
τ translations.

Table D.14. Compatibility relations between the irreducible representations of the
group of the wave vector at A [k = (2π/c)(001)] and Δ [k = (2π/c)(00Δ)] for space
group #194

A point representation Δ point representation

A1 → Δ1 + Δ3

A2 → Δ2 + Δ4

A3 → Δ5 + Δ6

A4 +A5 → 2Δ9

A6 → Δ7 + Δ8

At the A point (D6h symmetry) we have six irreducible representations,
three of which are ordinary irreducible representations ΓA

1 , ΓA
2 , ΓA

3 and three
of which are double group representations (ΓA

4 , ΓA
5 , ΓA

6 ). There are only six
classes with nonvanishing characters (see Table D.13) for the A point. We
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note that all the characters in the group of the wave vector are multiples
of 2, consistent with bands sticking together. For example, the compatibility
relations given in Table D.14 show Δ point bands sticking together in pairs
at the A point. In the plane defined by Δ = 1, containing the A point and the
H point among others (see Fig.C.7), the structure factor vanishes and Bragg
reflections do not occur.



E

Group Theory Aspects of Carbon Nanotubes

In this appendix we provide information needed for solving problems related to
carbon nanotubes (see Sect. 9.4). Carbon nanotubes in general exhibit com-
pound rotation-translation operations and therefore belong to nonsymmor-
phic space groups. From the symmetry point of view, there are two types
of carbon nanotubes, namely chiral and achiral tubes. We here discuss the
structure of carbon nanotubes and provide the character tables for the group
of the wavevectors at k = 0 and k �= 0, for both chiral and achiral tubes [8].

Fig. E.1. An unrolled carbon nanotube projected on a graphene layer (a single layer
of crystalline graphite). When the nanotube is rolled up, the chiral vector Ch turns
into the circumference of the cylinder, and the translation vector T is aligned along
the cylinder axis. R is the symmetry vector (Sect. E.4) and θ is the chiral angle. The
unit vectors (a1,a2) of the graphene layer are indicated in the figure along with the
inequivalent A and B sites within the unit cell of the graphene layer [64]
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E.1 Nanotube Geometry and the (n, m) Indices

A single wall carbon nanotube (SWNT) is constructed starting from
a graphene layer (see Fig. E.1) by rolling it up into a seamless cylinder.
The nanotube structure is uniquely determined by the chiral vector Ch which
spans the circumference of the cylinder when the graphene layer is rolled up
into a tube. The chiral vector can be written in the form

Ch = na1 +ma2 , (E.1)

where the vectors a1 and a2 bounding the unit cell of the graphene layer
contain two distinct carbon atom sites A and B, as shown in Fig. E.1, while n
and m are arbitrary integer numbers. In the shortened (n,m) form, the chiral
vector is written as a pair of integers. The (n,m) notation is widely used to
characterize the geometry of each distinct (n,m) nanotube [63, 64].

The nanotube can also be characterized by its diameter dt and chiral
angle θ, which determine the length Ch = |Ch| = πdt of the chiral vector and
its orientation on the graphene layer (see Fig. E.1). Both dt and θ are expressed
in terms of the indices n and m by the relations dt = a

√
n2 + nm+m2/π and

tan θ =
√

3m/(2n+m), as one can derive from Fig. E.1, where a =
√

3aC−C =
0.246nm is the lattice constant for the graphene layer and aC−C = 0.142nm is
the nearest neighbor C–C distance. As an example, the chiral vector Ch shown
in Fig.E.1 is given by Ch = 4a1 + 2a2, and thus the corresponding nanotube
can be identified by the integer pair (4, 2). Due to the sixfold symmetry of the
graphene layer, all nonequivalent nanotubes can be characterized by the (n,m)
pairs of integers where 0 ≤ m ≤ n. It is also possible to define nanotubes with
opposite handedness, for which 0 ≤ n ≤ m [65]. The nanotubes are classified
as chiral (0 < m < n) and achiral (m = 0 or m = n), which in turn are known
as zigzag (m = 0) and armchair (m = n) nanotubes (see Figs. 9.11 and E.1).

E.2 Lattice Vectors in Real Space

To specify the symmetry properties of carbon nanotubes as 1D systems, it
is necessary to define the lattice vector or translation vector T along the
nanotube axis and normal to the chiral vector Ch defined in Fig. E.1. The
vectors T and Ch define the unit cell of the 1D nanotube. The translation
vector T , of a general chiral nanotube as a function of n and m, can be
written as

T = (t1a1 + t2a2) = [(2m+ n)a1 − (2n+m)a2]/dR , (E.2)

with a length T =
√

3Ch/dR, where d is the greatest common divisor of (n,m),
and dR is the greatest common divisor of 2n+m and 2m+n. Then d and dR

are related by
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dR =

{
d if n−m is not a multiple of 3d

3d if n−m is a multiple of 3d .
(E.3)

For the (4, 2) nanotube shown in Fig.E.1, we have dR = d = 2 and (t1, t2) =
(4,−5). For armchair and zigzag achiral tubes, T = a and T =

√
3a, respec-

tively. The unit cell of an unrolled nanotube on a graphene layer is a rectangle
bounded by the vectors Ch and T (see the rectangle shown in Fig. E.1 for the
(4, 2) nanotube). The area of the nanotube unit cell can be easily calculated
as a vector product of these two vectors, |Ch×T | =

√
3a2(n2 +nm+m2)/dR.

Dividing this product by the area of the unit cell of a graphene layer
|a1 × a2| =

√
3a2/2, one can get the number of hexagons in the unit cell

of a nanotube,

N =
2(n2 + nm+m2)

dR
. (E.4)

For the (4, 2) nanotube we have N = 28, so that the unit cell of the (4, 2) nan-
otube (see the rectangle shown in Fig.E.1) contains 28 hexagons, or 2×28 = 56
carbon atoms. For armchair (n, n) and zigzag (n, 0) nanotubes, N = 2n.

E.3 Lattice Vectors in Reciprocal Space

The unit cell of a graphene layer is defined by the vectors a1 and a2. The
graphene reciprocal lattice unit vectors b1 and b2 can be constructed from a1

and a2 using the standard definition ai ·bj = 2πδij , where δij is the Kroneker
delta symbol. In Fig. E.2, we show a diagram for the real space unit cell of
a graphene sheet (Fig. E.2(a)) and its corresponding reciprocal lattice unit cell

Fig. E.2. (a) Real space structure of a graphene layer. The gray rhombus represents
the graphene unit cell with the lattice vectors denoted by a1 and a2 delimiting it.
Note that this area encloses a total of two atoms, one A atom and one B atom.
(b) Reciprocal space unit cell of the graphene layer denoted by the unit vectors b1

and b2. Note also that the reciprocal space structure has two inequivalent points K
and K′ [8]
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is shown in Fig. E.2(b). Note the rotation by the angle 30◦ of the hexagons in
real space (Fig. E.2(a)) with respect to those in reciprocal space (Fig. E.2(b)).

In a similar fashion, the reciprocal space of a nanotube can be constructed,
if we consider the nanotube as a 1D system with an internal structure that is
composed of the 2N atoms in its unit cell and with a translational symmetry
given by the translation vector T . The reciprocal space of the nanotube can be
constructed by finding a pair of reciprocal lattice vectors K1 and K2 which
satisfy: Ch ·K1 = T ·K2 = 2π and Ch ·K2 = T ·K1 = 0. Due to the spatial
confinement of the nanotube in the radial direction, the vector Ch does not
play the role of a translation vector but rather of a generator of pure rotations,
and the relation Ch · K1 = 2π can only be satisfied for integer multiples of
2π/dt, where dt is the diameter of the nanotube.

E.4 Compound Operations and Tube Helicity

All multiples of the translation vector T will be translational symmetry op-
erations of the nanotube [73]. However, to be more general, it is necessary to
consider that any lattice vector

tp,q = pa1 + qa2 , (E.5)

with p and q integers, of the unfolded graphene layer will also be a symmetry
operation of the tube. In fact, the symmetry operation that arises from tp,q

will appear as a screw translation of the nanotube. Screw translations are
combinations of a rotation (Rφ) by an angle φ and a small translation of τ in
the axial direction of the nanotube, and can be written as {Rφ|τ}, using the
notation common for space group operations [8, 64].

Any lattice vector tp,q can also be written in terms of components of the
nanotube lattice vectors, T and Ch, as

tp,q = tu,v = (u/N)Ch + (v/N)T , (E.6)

where u and v are negative or positive integers given by

u =
(2n+m)p+ (2m+ n)q

dR
(E.7)

and
v = mp− nq . (E.8)

The screw translation of the nanotube which is associated with the graphene
lattice vector tu,v can then be written as

tu,v = {Cu
N |vT/N} , (E.9)

where Cu
N is a rotation of u(2π/N) around the nanotube axis, and {E|vT/N}

is a translation of vT/N along the nanotube axis, with T being the magnitude
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of the primitive translation vector T , and E being the identity operation. It
is clear that if a screw vector {Cu

N |vT/N} is a symmetry operation of the
nanotube, then the vectors {Cu

N |vT/N}s, for any integer value of s, are also
symmetry operations of the nanotube. The number of hexagons in the unit-
cell N assumes the role of the “order” of the screw axis, since the symmetry
operation {Cu

N |vT/N}N = {E|vT }, where E is the identity operator, and vT
is a primitive translation of the nanotube.

The nanotube structure can be obtained from a small number of atoms
by using any choice of two noncolinear screw vectors {Cu1

N |v1T/N} and
{Cu2

N |v2T/N}. The two vectors will be colinear if there exists a pair of integers
s and l different from 1, for which lu1 = su2 +λN , and lv1 = sv2 +γT , where,
λ and γ are two arbitrary integers. The area of the nanotube cylindrical sur-
face delimited by these two noncolinear vectors can be regarded as a reduced
unit cell. Note that the number of atoms in this reduced unit cell is given by
the ratio between the area delimited by these vectors (|tu1,v1 × tu2,v2 |) and
the area of the unit cell of a graphene sheet (|a1×a2|) multiplied by 2, which
is the number of carbon atoms in the graphene unit cell. Thus the number of
atoms in the reduced unit cell defined by tu1,v1 and tu2,v2 is given by

2
|tu1,v1 × tu2,v2 |

|a1 × a2| = 2
|v2u1 − u2v1|

N
. (E.10)

It is important to point out that, in this case, the nanotube ceases to be
described as a quasi-1D system, but as a system with two quasitranslational
dimensions, which are generated by the two screw vectors.

There are many combinations of screw vectors which can be used to con-
struct the structure of the nanotube. These combinations can be divided
into four categories: helical–helical, linear–helical, helical–angular, and linear–
angular, as described below. Either one of these constructions can be used
to obtain the nanotube structure. The helical–helical construction is char-
acterized by choosing two general screw vectors, for the construction of the
nanotube structure (see Fig. E.3(a)). Although this scheme permits the defi-
nition of a 2-atom unit cell, the unit cell does not exhibit the full symmetries
of the nanotube, and thus is inadequate for representing the nanotube. The
linear–helical scheme is characterized by using the translation vector T and
a general screw vector as unit vectors (see Fig. E.3(b)). This scheme main-
tains the translational symmetry of the nanotube, but not the point group
operations, and it also permits the definition of a two-atom unit cell. In the
helical–angular construction, a general screw vector is used along with a vec-
tor in the circumferential direction of the nanotube (see Fig.E.3(c)). This
construction also permits the definition of a 2-atom unit cell. However, the
2-atom unit cell does not exhibit many of the symmetries of the nanotube.
Instead it is convenient to define a 2d-atom unit cell, where the integer d is
given by d = gcd(n,m), and this unit cell will exhibit all the point group
symmetry operations of the nanotube, but not the translational symmetry.
The linear–angular construction uses as unit vectors the translational vector
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Fig. E.3. The 2-atom reduced unit cell for the: (a) helical–helical, (b) linear–helical,
and (c) helical–angular construction for a (4, 2) nanotube. In (b) the deformed
rhombus, which delimits the reduced unit cell that connects points both inside and
outside the nanotube unit cell, had to be truncated to stay within the figure [8]

T and a vector in the circumferential direction, and thus parallel to Ch. The
linear–angular construction does not permit the definition of a 2-atom unit
cell. However, by choosing the vector in the circumferential direction to be
Ch, the total unit cell of the nanotube, which exhibits all the translational
and point symmetries of the nanotube, is restored.

E.5 Character Tables for Carbon Nanotubes

In this section we present the character tables for dealing with carbon nan-
otubes. Tables E.1 and E.2 give the character tables for the group of the
wavevectors for chiral carbon nanotubes, at k = 0, π/T and 0 < k < π/T ,
respectively. Tables E.3 and E.4 give the character tables for the group of the
wavevectors for achiral carbon nanotubes, at k = 0, π/T and 0 < k < π/T ,
respectively. Some of the point symmetry operations in these tables are shown
in Fig.E.4.
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Fig. E.4. (a) Unit cell of the chiral (4,2) nanotube, showing the Cd rotation around
the nanotube axis, with d = 2, and one of the C′

2 rotations perpendicular to the
nanotube axis. A different class of two-fold rotations (C′′

2 ), which is present for
both chiral and achiral nanotubes, is not shown here. (b) A section of an achiral
armchair (3,3) nanotube is shown emphasizing the horizontal mirror plane σh and
the symmetry operation Cd, with d = 3. (c) The same (3,3) armchair nanotube is
shown but now emphasizing of the vertical mirror planes σv [8]

Table E.2. Character table for the group of the wavevector 0 < k < π/T for chiral
nanotubes

CN {E|0} {Cu
N |vT/N}1 {Cu

N |vT/N}2 · · · {Cu
N |vT/N}� · · · {Cu

N |vT/N}N−1

A 1 1 1 · · · 1 · · · 1

B 1 –1 1 · · · (−1)� · · · –1

E±1

{
1

1

ε

ε∗
ε2

ε∗2
· · · ε�

ε∗� · · · εN−1

ε∗(N−1)

}

E±2

{
1

1

ε2

ε∗2
ε4

ε∗4
· · · ε2�

ε∗2� · · · ε2(N−1)

ε∗2(N−1)

}

...
...

...
...

...
...

...
...

E±( N
2 −1)

{
1

1

ε
N
2 −1

ε∗
N
2 −1

ε2(
N
2 −1)

ε∗2(
N
2 −1)

· · · ε�(
N
2 −1)

ε∗�( N
2 −1)

· · · ε(N−1)( N
2 −1)

ε∗(N−1)( N
2 −1)

}

This group is isomorphic to the point group CN . The ± signs label the different
representations with characters which are complex conjugates of each other. These
irreducible representations are degenerate due to time reversal symmetry. The com-
plex number ε is e2πi/N .
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F

Permutation Group Character Tables

In this appendix we provide tables to be used with permutation groups.
Tables F.1 and F.2 are the extended character tables for the permutation
groups of 3 and 4 objects P (3) and P (4), respectively, and are discussed
in Sects. 17.4.2 and 17.4.3, respectively. The discussion in these sections can
also be used to understand the extended character tables for the permuta-
tion groups P (5), P (6), and P (7) which have many more symmetry elements,
namely 5! = 120, 6! = 720, and 7! = 5, 040, respectively (see Tables F.3
and F.4). These character tables are sufficient to describe the permutation
groups arising for the filling of s, p, d, and f electron states, as discussed in
Chap. 17. In Table F.5 for the group P (7) only a few entries are made. The
corresponding entries can also be made for permutation groups P (n) of higher
order.

When one considers a wave function of n identical particles (e.g., per-
mutation groups in Chap. 17) then the interchange of identical particles is
a symmetry operation that must be included. The number of irreducible rep-
resentations is equal to the number of classes. Table F.6 contains the number
of classes and the dimensionalities of the irreducible representations where
P (n) labels the permutation group of n objects.

Table F.1. Extended character table for permutation group P (3)

χ(E) χ(A,B,C) χ(D,F)

P (3) (13) 3(2, 1) 2(3)

Γ s
1 1 1 1

Γ a
1 1 –1 1

Γ2 2 0 –1

χperm.(ψ1ψ1ψ1) 1 1 1 ⇒ Γ s
1

χperm.(ψ1ψ1ψ2) 3 1 0 ⇒ Γ s
1 + Γ2

χperm.(ψ1ψ2ψ3) 6 0 0 ⇒ Γ s
1 + Γ a

1 + 2Γ2
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Table F.2. Extended character table for the permutation group P (4)

P (4) (14) 8(3, 1) 3(22) 6(2, 12) 6(4)

Γ s
1 1 1 1 1 1
Γ a

1 1 1 1 −1 −1
Γ2 2 −1 2 0 0
Γ3 3 0 −1 1 −1
Γ3′ 3 0 −1 −1 1

χperm.(ψ1ψ1ψ1ψ1) 1 1 1 1 1 ⇒ Γ s
1

χperm.(ψ1ψ1ψ1ψ2) 4 1 0 2 0 ⇒ Γ s
1 + Γ3

χperm.(ψ1ψ1ψ2ψ2) 6 0 2 2 0 ⇒ Γ s
1 + Γ2 + Γ3

χperm.(ψ1ψ1ψ2ψ3) 12 0 0 2 0 ⇒ Γ s
1 + Γ2 + 2Γ3 + Γ3′

χperm.(ψ1ψ2ψ3ψ4) 24 0 0 0 0 ⇒ Γ s
1 + Γ a

1 + 2Γ2 + 3Γ3 + 3Γ3′

Here the Γn−1 irreducible representation is Γ3 (see Sect. 17.3)

Table F.3. Extended character table for permutation group P (5)

P (5)or S5 (15) 10(2, 13) 15(22, 1) 20(3, 12) 20(3, 2) 30(4, 1) 24(5)

Γ s
1 1 1 1 1 1 1 1
Γ a

1 1 –1 1 1 –1 –1 1
Γ4 4 2 0 1 –1 0 –1
Γ4′ 4 –2 0 1 1 0 –1
Γ5 5 1 1 –1 1 –1 0
Γ5′ 5 –1 1 –1 –1 1 0
Γ6 6 0 –2 0 0 0 1
χperm.(ψ1ψ1ψ1ψ1ψ1) 1 1 1 1 1 1 1
χperm.(ψ1ψ1ψ1ψ1ψ2) 5 3 1 2 0 1 0
χperm.(ψ1ψ1ψ1ψ2ψ2) 10 4 2 1 1 0 0
χperm.(ψ1ψ1ψ1ψ2ψ3) 20 6 0 2 0 0 0
χperm.(ψ1ψ1ψ2ψ2ψ3) 30 6 2 0 0 0 0
χperm.(ψ1ψ1ψ2ψ3ψ4) 60 6 0 0 0 0 0
χperm.(ψ1ψ2ψ3ψ4ψ5) 120 0 0 0 0 0 0

S5 irreducible representations

χperm.(ψ1ψ1ψ1ψ1ψ1) ⇒ Γ s
1

χperm.(ψ1ψ1ψ1ψ1ψ2) ⇒ Γ s
1 + Γ4

χperm.(ψ1ψ1ψ1ψ2ψ2) ⇒ Γ s
1 + Γ4 + Γ5

χperm.(ψ1ψ1ψ1ψ2ψ3) ⇒ Γ s
1 + 2Γ4 + Γ5 + Γ6

χperm.(ψ1ψ1ψ2ψ2ψ3) ⇒ Γ s
1 + 2Γ4 + 2Γ5 + Γ5′ + Γ6

χperm.(ψ1ψ1ψ2ψ3ψ4) ⇒ Γ s
1 + 3Γ4 + Γ4′ + 3Γ5 + 2Γ5′ + 3Γ6

χperm.(ψ1ψ2ψ3ψ4ψ5) ⇒ Γ s
1 + Γ a

1 + 4Γ4 + 4Γ4′ + 5Γ5 + 5Γ5′ + 6Γ6

Here the Γn−1 irreducible representation of P (5) is Γ4”
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Table F.4. Extended character table for permutation group P (6)

P (6) 1 15 45 15 40 120 40 90 90 144 120
(16) (2, 14) (22, 12) (23) (3, 13) (3, 2, 1) (32) (4, 12) (4, 2) (5, 1) (6)

Γ s
1 1 1 1 1 1 1 1 1 1 1 1
Γ a

1 1 –1 1 –1 1 –1 1 –1 1 1 –1
Γ5 5 3 1 –1 2 0 –1 1 –1 0 –1
Γ5′ 5 –3 1 1 2 0 –1 –1 –1 0 1
Γ5′′ 5 1 1 –3 –1 1 2 –1 –1 0 0
Γ5′′′ 5 –1 1 3 –1 –1 2 1 –1 0 0
Γ9 9 3 1 3 0 0 0 –1 1 –1 0
Γ9′ 9 –3 1 –3 0 0 0 1 1 –1 0
Γ10 10 2 –2 –2 1 –1 1 0 0 0 1
Γ10′ 10 –2 –2 2 1 1 1 0 0 0 –1
Γ16 16 0 0 0 –2 0 –2 0 0 1 0
χperm.(ψ1ψ1ψ1ψ1ψ1ψ1) 1 1 1 1 1 1 1 1 1 1 1
χperm.(ψ1ψ1ψ1ψ1ψ1ψ2) 6 4 2 0 3 1 0 1 0 1 0
... · · ·
χperm.(ψ1ψ2ψ3ψ4ψ5ψ6) 720 0 0 0 0 0 0 0 0 0 0

S6 irreducible representations

Γperm.(ψ1ψ1ψ1ψ1ψ1ψ1) ⇒ Γ s
1

Γperm.(ψ1ψ1ψ1ψ1ψ1ψ2) ⇒ Γ s
1 + Γ5

...
...

Γperm.(ψ1ψ2ψ3ψ4ψ5ψ6) ⇒ Γ s
1 + Γ a

1 + 5Γ5 + 5Γ5′ + 5Γ5′′ + 5Γ5′′′+
9Γ9 + 9Γ9′ + 10Γ10 + 10Γ10′ + 16Γ16

Here the Γn−1 irreducible representation of P (6) is Γ5e
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Table F.5. Character table (schematic) for group P (7)

P (7)or S7 (17) · · ·
Γ s

1 1 · · ·
Γ a

1 1 · · ·
Γ6 6 · · ·
Γ6′ 6 · · ·
Γ14 14 · · ·
Γ14′ 14 · · ·
Γ14′′ 14 · · ·
Γ14′′′ 14 · · ·
Γ15 15 · · ·
Γ15′ 15 · · ·
Γ21 21 · · ·
Γ21′ 21 · · ·
Γ35 35 · · ·
Γ35′ 35 · · ·
Γ20 20 · · ·
χperm.(ψ1ψ1ψ1ψ1ψ1ψ1ψ1) 1 · · ·
χperm.(ψ1ψ1ψ1ψ1ψ1ψ1ψ2) 7 · · ·
...

...
...

χperm.(ψ1ψ2ψ3ψ4ψ5ψ6ψ7) 5,040 · · ·
S7 irreducible representations

Γperm.(ψ1ψ1ψ1ψ1ψ1ψ1ψ1) ⇒ Γ s
1

Γperm.(ψ1ψ1ψ1ψ1ψ1ψ1ψ2) ⇒ Γ s
1 + Γ6

...
...

Γperm.(ψ1ψ2ψ3ψ4ψ5ψ6ψ7) ⇒ Γ s
1 + Γ a

1 + 6Γ6 + 6Γ6′ + 14Γ14

+14Γ14′ + 14Γ14′′ + 14Γ14′′′ + 15Γ15 + 15Γ15′

+21Γ21 + 21Γ21′ + 35Γ35 + 35Γ35′ + 20Γ20
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71. M. Vujicić, I.B. Bozović, and F. Herbut, Construction of the symmetry groups
of polymer molecules. J. Phys. A: Math. Gen. 10, 1271 (1977)

72. S.A. Werner, R. Colella, A.W. Overhauser, and C.F. Eagen, Observation of the
phase shift of a neutron due to precession in a magnetic field. Phys. Rev. Lett.
35, 1053 (1975)

73. C.T. White, D.H. Roberston, and J.W. Mintmire, Helical and rotational sym-
metries of nanoscale graphite tubules. Phys. Rev. B 47, 5485 (1993)

74. P.A. Wolff, Matrix elements and selection rules for the two-band model of bis-
muth. J. Phys. Chem. Solids 25, 1057–1068 (1964)

75. W.A. Wooster, Tensors and Group Theory for Physical Properties of Crystals.
(Clarendon Press, Oxford 1973)

76. R.W.G. Wyckoff, Crystal Structures. 2nd Edn. (Krieger, New York 1981) Also
available on the web: http://www.cryst.ehu.es/
and http://www.crystallography.net/

77. Y. Yafet, Space groups and their representations. (Solid State Physics, vol. 14)
(Academic Press, New York 1963) pp. 1–98



Index

A3B3 molecule 54

Abelian group 3, 9, 44, 211–213

commuting operator 211

cyclic group 212
irreducible matrix representations
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Abelian subgroup 7
achiral nanotubes 541, 542

characters for group D2nh 541

characters for group D2nv 542

α-quartz 262, 268–273, 275

combined normal modes for Si and O
atoms 270–272

comparsion to tellurium 268, 269

crystal structure 268, 269

effect of stress on symmetry of crystal
273

lattice modes 268–274

mixing of normal modes by stress
272

nonsymmorphic 268

normal modes 269–272, 275

normal modes for oxygen atoms
270–272

normal modes for Si and for O 275

normal modes for Si atoms 270

orientational effect 273

polarizability tensor 273, 274

Raman spectra 274

site symmetries 269
space group 262

stress effects in normal modes
272–275

angular momentum 433
orbital states 433
spin states 433
state degeneracy 433
state symmetry 433
transformation of Hamiltonian 433

angular momentum states 127, 128
characters in Td symmetry 127, 128
irreducible representation 128

antiunitary matrix 21
antiunitary operator 406
associative law 3, 4
axial point group 204

improper rotations 204
inversion 204
rotations 204

axial stress effects on phonons 272,
273

example of α-quartz 273
orientational effect 272, 273
polarizability tensor 273
stress effect 273
symmetry lowering 272
symmetry of strain tensor 272, 273

axial vectors 161

B12H12 molecule 144
basis functions 57–59, 72–75, 150,

355–358
arbitrary function 63
basis function table 59, 60
basis vectors 57–59, 61–75
Clebsch–Gordan coefficients 355–

358
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definition 57–59, 61–75
derivation of Γ+

6 (Γ+
15) 356, 357

derivation of Γ+
8 (Γ+

15) 355, 356
examples in cubic symmetry 73
k · p matrix elements 359
generalization of basis functions

358, 359
generating irreducible representations

58–63
irreducible representations 57–75

irreducible representations of double
group 355

matrix elements of a symmetry
operator 58–63

matrix representation 57, 61, 62
orthogonality of basis functions 357
partners 57, 64
projection operators 64
raising and lowering operator 355,

357
splitting of j = 3/2 level in cubic

symmetry 356
square symmetry 73
symmetry operations 57–75
tables for coupling coefficients 358
trace 63
transformation from |�sm�ms〉 >

representation to |jm〉 355–357,
359

wave functions 57, 58, 62–65, 67–75
basis functions for double group

353–362
matrix representation 353
matrix representation for spin

components 354
notation for double groups based on

single group 354
Pauli spin matrices 353, 354
spin raising and lowering operators

354
unit matrix 354

basis functions of permutation groups
437–439

first excited state 438
for many electron system 437
ground state 438
(n−1) dimensional 439
P (2) basis functions 439
P (3) basis functions 439

Pauli principle 438

phase factors 438

transforms as Γ a
1 antisymmetric state

438

transforms at totally symmetric state
438

BaTiO3 247–250, 256–258

basis functions 258

equivalence transformation 256, 258

irreducible representations 258

normal mode patterns 258

normal mode patterns at X point
256–258

Bloch function 215, 217, 220

basis functions 217

effect of point group operations 215

effect of symmetry operation 217

effect of translation 215, 217

eigenfunction 215

irreducible representation for group
of the wave vector 215

orthonormality relation 217

periodic part 215, 217

plane wave factor 217

transformation properties 215

Bloch theorem 212, 213, 216

Bloch function 213, 214

eigenfunction 212

eigenvalue of translation 213

periodic boundary conditions 213

phase factor 213

quantum number of translations
213

reciprocal lattice vector 213

translation group 212

translational symmetry 213

wave vector 213

body centered cubic lattice 222–227

basis functions 224

Brillouin zone 222

character table k = 0 224

character table for Δ point 224

character tables at high symmetry
points 224, 225, 232

compatibility relations 227

group #229 222

group of the wave vector along the Λ
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group of the wave vector at high
symmetry points 226, 227

bonding 114, 115
antibonding states 115
atomic orbital 115
bonding states 115
charge overlap 114, 115
chemical bond 114, 115
concept of equivalence 115
diatomic molecule 115
directed valence bond 114, 115
exchange interaction 114, 115

braids 434
Bravais lattice 45, 188–190, 192, 196,

199, 207, 209, 210, 241
14 space lattices 192
2D lattices 199, 210, 211
3D space groups 192
acoustic modes 241
allowed wave vector states 241
Bloch theorem 209
body centered 191
body centered cubic lattice 209
centered 210
crystallographic lattices 190
cubic 191, 196, 209
definition 188
degrees of freedom 241
dispersion relation 209
examples 192
face centered 191
face centered cubic lattice 209
fivefold axis 207, 208
fourfold axis 207
hexagonal 191, 210
holohedral group 190
invariance under translation 188
lattice constants 211
lattice vectors 210, 220
monoclinic 191
oblique 210
orthorhombic 191
periodic boundary conditions 211
periodic potential 209
primitive 210
primitive translation vectors 189,

190, 210
reciprocal lattice vector 210
reciprocal space 209

rectangular 210
restriction on symmetries 114, 207,

208
restrictions on possible rotations

191
simple cubic lattice 209
space groups 190, 192
square 210
subgroup 190
tetragonal 191
threefold axis 207
translational symmetry 207, 209
triclinic 191

Brillouin zone 213, 218, 219, 235, 245,
280

body-centered cubic lattice (#229)
511

compatibility relations 219
essential degeneracy 218
extended 213, 280
extended Brillouin zone 213, 280
face-centered cubic lattice (#225)

511
first Brillouin zone 213
general point 219
graphite lattice 512
hexagonal lattice 512
high symmetry points 218, 219, 235
reciprocal lattice vector 213, 218
reduced Brillouin zone 280
rhombohedral lattice 512
simple cubic lattice (#221) 511

bromine 276
crystal structure 276
infrared activity 275, 276
lattice modes 276
Raman activity 275, 276
space group 276
Wyckoff positions 276

C2H2 molecule 143, 164
equivalence transformation 164
infrared activity 164
normal modes 164, 166, 177
optical polarization 164
Raman activity 164

C2H4 molecule 143, 178
normal mode displacement 178
normal modes symmetries 178
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carbon nanotubes 205, 208, 237, 276,
533

achiral 205, 208, 237
armchair 205
character tables 538
chiral 205, 208, 237, 539, 540
compatibility relations 237
1D Brillouin zone 237
2D Brillouin zone 208
factor group 237
graphene 205
helicity 536
infrared active modes 276
isogonal point groups 237
lattice vector 237
line groups 208, 237
metallic 208, 237
mode symmetries 276
notation 208, 534
phonon modes 276
physical properties 205
point groups operations 205
polarization effects 276
quantum numbers 208
Raman active modes 276
selection rules for Raman scattering

276
semiconducting 208, 237
space group 208
structure 205, 534
translation vector 205
tubular 205
unit cell 533, 537
zigzag 205, 237

CH4 molecule 125–129, 168–170, 178
basis functions 169
combination modes 169, 170
equivalence transformation 168
irreducible representation of angular

momentum 178
linear combination of 4 hydrogen

orbitals 168
normal modes 169
overtones 169, 170
polarization effects in rotational

interaction spectra 178
rotational levels 178
rotational–vibrational interaction

symmetries 178

character 29
definition 29
invariance under unitary transforma-

tion 29
character of a representation 29, 33

importance of 33
character tables 30, 31, 40, 43, 86, 89,

104, 110
carbon nanotubes 538
cubic group 86
cyclic groups 44
definition 30
direct product of groups 110
example 110
example of P (3) 30
group C4h 104, 110
group D3(32) 63
group D3h 137
group Td 126
higher to lower symmetry 86
irreducible representation 110
matrix representation 40–43
point groups 44
setting them up 40–43
symmetry operations 86
tetragonal group 89

characters of direct product 103
direct product for two groups 103
direct product for two irreducible

representations 103
direct product representation 103

chiral carbon nanotubes 539, 540
characters for group DN 539, 540

class 9, 30, 31, 435–437
character of class elements 30
definition 9
example of D3 31
example of P (3) 31

classes of permutations 435–437
class structure 436
example of P (4) 436
example of P (5) 436
irreducible representations 436
isomorphic 436
number of classes 435–437
number of elements 435
number of elements in a class 436,

437
P (3) isomorphic to C3v 436
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CO molecule 120–122, 128, 162
equivalence transformation 162
molecular vibration 162
normal modes 162
symmetry operations 162

CO2 molecule 54, 164, 165, 177
atomic displacements 177
equivalence transformation 164
infrared active modes 164, 177
normal modes 164, 165
Raman active modes 164, 177
rotational modes 177
symmetries for electronic states 177
symmetries for normal modes 177
symmetry group 177
use of blocks of atoms 165

combination modes 156, 157, 159, 161
CH4 molecule 156, 157, 169
direct product 156
effect of inversion symmetry 159
infrared active 156, 157, 159
irreducible representation 156
Raman active 156, 157, 159, 161

compatibility between tetragonal (Td)
and cubic (O) representations
526

compatibility relations 219, 227–229
along Λ axis for cubic groups 228
around a circuit 229
basis functions 227, 229
Brillouin zone 227
connectivity 227
degeneracy 227
high to lower symmetry 229
labeling energy bands 229
level anticrossings 230
level crossings 230
lower to higher symmetry 230

compatibility relations for space group
#194 520, 531

Γ , Δ, Σ, T 520, 531
complex conjugation 16
conjugation 9
coset 7–10

definition 7
example 8
left coset 7, 10
multiplication 10
right coset 7, 10

coupling coefficient table for double
group basis functions 525

coupling coefficients for selected basis
functions for single group O 524

crystal double groups 341–365
additional irreducible representations

of full rotation group 344
additional symmetry classes 344
additional symmetry elements 344
bands sticking together 363, 364
basis functions 353, 359, 360
Bloch function with spin 344
character for rotation by an angle α

and α+2π for half integral j 341
character for rotation for j = 1/2 for

rotation group 345
character table for O double group

346, 347
character table for the point group

D6 364
character tables 341, 359, 360
character tables from the literature

347
characters for symmetry operations

343
Clebsch–Gordan coefficients 360
compatibility relations 360, 363
dimensionality of each representation

345, 348, 364
direct product of double group 347
direct product of irreducible repre-

sentation with spinor D1/2 344,
347

even-dimensional irreducible repre-
sentations of full rotation group
341, 343, 348

example of double group for O cubic
symmetry point group 344

experimental verification of 4π
periodicity for Fermions 342

half integral angular momentum
341

history 342
identity element 342
irreducible representation for spinor

D1/2 346
irreducible representation notation

Γ+
8 (Γ+

12) 348, 349
irreducible representations 344
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Kramers degeneracy 348
matrix elements 359
matrix representation 353
new symmetry element for rotation

by 2π 342
nonsymmorphic groups 362, 363
notation for double group 341, 343
number of classes 343, 345
number of elements 342, 343
number of irreducible representations

345
odd-dimensional irreducible repre-

sentations of full rotation group
341, 343

orthogonality requirements of
irreducible representations 346

plane wave basis functions for double
group representations 360–362

rotation by 4π 341
space group 363, 364
special role of C2 operation 343
splitting of six-fold levels in cubic

symmetry 348
states for spinor 353
symmetry operation RAk 343
symmorphic groups 361, 362
time reversal symmetry 364
vanishing structure factor 362, 364
wonderful orthogonality theorem on

character 346
crystal field level splitting 79, 80, 85,

88, 90, 92–94, 349
angular momentum state 88, 92
axial field 90
basis functions 90
bonding orbitals 94
character tables 85, 350–352
crystal field > spin–orbit interaction

349
crystal potential 79, 81, 85
cubic field 85, 88, 90–92, 94
direct product 85, 349, 353
hexagonal field 95
higher to lower symmetry 85, 88, 90,

91
icosahedral field 95
impurity levels 79, 80, 94
inversion symmetry 88
irreducible representations 92

Laplace equation 93
level degeneracy 85
notation for quantum number of

designations (s, l, j) 351
notation to label states 349
octahedral crystal field 88, 90, 91
optical transitions between crystal

field levels 352, 353
orthorhombic field 93
pertubation theory 79
quantum numbers for a transition

metal ion 349
rare earth ions 349
reducible representation 88
spherical harmonics 88, 91–95
spin–orbit interaction 80
splitting of sixfold level in a cubic

field 349
splitting of spin–orbit levels in a

crystal field 352
substitutional impurity 94
symmetry operation 85
tetragonal field 88, 90
two-electron states 353
weak field 90

crystal field theory 79–92, 452
Coulomb interaction 80
crystal field 452
Dy3+ ion in D4h crystal field 365
effect of application of stress along

two fold axis 365
Er3+ ion in D4h crystal field 365
Er3+ ion in Ih crystal field 365
hyperfine interaction 80
spin–orbit interaction 80, 349–351
strong field case 80, 81
transition metal ions 452
weak field case 81

crystal structure determination
examples 206
experimental techniques 206
references 206
symmetry 206

cubic point groups 87, 88
character table 86
characters 87
classes 87
cubic field 88
decomposition theorem 87



Index 559

irreducible representation 86, 88

reducible representation 86–88
site symmetries 196

cubic space group #221 501
Hermann–Mauguin notation 501

Schoenflies notation 501
Wyckoff positions 501

cubic space groups 194, 196, 222
basis functions 223
BCC #229 195, 196

Bravais lattice 196
character table 223
diamond structure #227 195
equivalence transformation 194
example of space group #221 195

example of space group #223 195
example of space group #225 195
example of space group #227 195
FCC #225 195, 196
irreducible representation 223

simple cubic #221 222, 501
site symmetries 196
zinc blende structure #203 195, 196

cyclic group 211

commuting elements 211
cyclic permutation 434

decomposition into cycles 434
definition 434
equivalence transformation 434

1D line groups
line groups 183
translations 183

2D Bravais lattice 235
translation vectors in real space 235
translation vectors in reciprocal space

235

2D hexagonal space groups 203
group p31m 203
group p3m1 203
group p6 203
group p6mm 203

symmorphic 207
2D oblique space groups 200, 201

general point 201
group P1 200
group p2 201

group p211 200

International Crystallography Tables
201

motif 200
notation 200
oblique lattices 200
site symmetry 201
special points 201
twofold axis 200
Wyckoff letter 201
Wyckoff position 201

2D rectangular space groups 201, 202
c1m1 202
centered lattice 201, 202
full rectangular point symmetry 201
general point 201
glide planes 202
group 2mm 201
group c1m1 202
group c2mm 202
group p1g1 202
group p1m1 201, 202
group p2gg 202
group p2mg 202, 294, 295
group p2mm 202
lower symmetry motif 201
Miller indices 202
mirror planes 202
nonsymmorphic 202
notation 201
primitive lattice 201, 202
site symmetry 202
symmorphic 201, 202
Wyckoff position 202

2D space groups 183, 198–203, 207,
489–498

2D square space groups 207
Brillouin zone 294, 295
2D oblique space groups 200, 201
2D rectangular space groups 201
full point group symmetry 202
group p4gm 203, 207
line groups 183
nonsymmorphic 183
symmetry operations 183, 294, 295

2D square space groups 203, 207
centered 207
combining translation vectors with

glide planes 203
full point group symmetry 203
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glide planes 203
group p3 203
group p4mm 202, 203
nonsymmorphic 203, 207
notation 203, 207
symmorphic 203

3D space groups 183–198, 205–208
D2d point group 193

combined with tetragonal Bravais
lattice 193

rotation axes 193
symmetry operations 193

d6 configuration for P (6) 454
decomposition theorem 34, 35, 39

crystal field splitting 35
example 35
proof 34
uniqueness 34

degeneracy 218
accidental degeneracy 218
essential degeneracy 218
non-essential degeneracy 218

degenerate second order k · p perturba-
tion theory 316–324

Brillouin–Wigner degenerate
perturbation theory 318

coupling of Γ−
15 to states outside NDS

318
coupling of Γ−

15 to states within NDS
318

coupling strength of the Γ−
15 level to

other levels 324
cyclotron resonance experiments

323, 324
determination of number of equivalent

matrix elements 319
energy bands throughout the

Brillouin zone 324
evaluation of non-vanishing elements

319
for a cubic Γ+

25 level 317
intermediate states coupling to Γ−

15

319
matrix element coupling to states

outside NDS 319
matrix element coupling to states

within NDS 319
matrix elements of k · p Hamiltonian

coupling to Γ−
15 319, 320

nearly degenerate set of states (NDS)
317, 318

off-diagonal contribution 322

secular equations 317, 319

states outside the NDS 317

symmetries coupling to Γ−
15 band

319

Taylor expansion along high
symmetry directions 323

Taylor expansion of secular equation
322

vanishing terms 316, 317

diamond structure 207, 231, 232, 234,
236, 250–252, 296–303, 508, 515,
516

8 atoms per cubic unit cell 232

basis functions at the X point 300,
301

Bragg reflection at X point 299

character tables for high symmetry
points 232, 233

characters for the equivalence
transformation 231

classes for the diamond structure
231

compatibility relations 233, 234, 251

connection to zinc blende structure
#216 231

effect of symmetry operations on
basis functions at X point 303

electronic band structure 232, 299

empty lattice calculations along ΓL
and ΓX 298

energy bands for Ge 299

energy bands sticking together 298,
300, 302

energy dispersion about the X point
299, 302

equivalence transformation 231, 250

equivalence transformation for
symmetry operations and classes
236

essential degeneracies 298

extra degeneracy at X point 234

form of symmetry operators 232

group of the wave vector at high
symmetry points 232–234, 236,
296, 303
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group of the wave vector on the
square face 234

Hermann–Mauguin notation 502
high symmetry points on the square

face 234, 235
irreducible representation of group of

the wave vector at high symmetry
points 232, 251

LA branch 251
lattice modes 250
LO branch 251
multiplication of symmetry elements

232
nonsymmorphic 250, 296
phase factor 232–234
phonon dispersion relations 232,

251, 252
phonon modes 251, 252
primitive unit cell 232
product of symmetry operations at

high symmetry points 236
Raman activity 250, 252
Raman tensor 252
screw axis 250
space group #227 502, 508, 515, 516
structure factor vanishes at X point

299
symmetry interchange at X point

301
TA branch 251
TO branch 251
translation vectors 232, 296
two atoms per unit cell 232
two sublattices 232
vanishing structure factor on square

face of Brillouin zone 300
Wyckoff positions 502

diatomic molecules 117–124, 142
antibonding 119–123, 143
bonding 119–123, 142
character table 119
directed valence bonding 120, 123
electron energy level 123
equivalence transformation 119, 123
evenness 118
group C∞v 118
group D∞h 118, 119
group of Schrödinger’s equation 119
heteronuclear 117, 120–123

HOMO 122
homonuclear 117–121
homopolar 117
inversion symmetry 118
irreducible representation 119
linear combination of atomic orbitals

119, 121
LUMO 122
matrix Hamiltonian 124
mirror plane 118
molecular energy levels 122, 124
oddness 118
Pauli principle 120
secular equation 123
selection rules 120
singlet states 120, 122
triplet states 120, 122
unitary transformation 120

diffraction pattern 45
direct product 98, 100, 101, 104, 109,

158–161, 170, 172, 175, 189, 204
definition 189
electron–photon scattering 160
for groups 98, 100, 101, 109
for representations 98, 101, 102
infrared selection rules 158, 159
selection rules for CH4 molecule 169
selection rules for Raman tensor

160
semi-direct product 189, 204
two vectors 172
vibrational and rotational an-

gular momentum irreducible
representation 175

weak direct product 204
direct product of groups 100, 101, 109

definition 100, 101
examples 100, 101, 109
notation 101

direct product of irreducible representa-
tions 101, 102

definition 101
direct product group 101, 102
irreducible representations 102
matrix multiplication 102
notation 101
proof 101, 102

direct product of matrices 109
direct product representations 104
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character table 104
decomposition theorem 104
example 104
irreducible representation 104
notation 104

directed valence bonding 113,
117–120, 128, 129

antibonding 117
bond strengths 113, 129
bonding 117, 128
diatomic molecule 117–119, 121
directed valence representation 118
equivalence transformation 118
example 128
linear combination of atomic orbitals

117, 118
molecular orbitals 118
sp3 bonds 128

dispersion relations 209
Brillouin zone 209
degeneracy 209
group of the wave vector 209
high symmetry points 209
symmetry of wave function 209
symmetry operator 209

double groups see crystal double
groups

effect of time reversal operator on
energy dispersion relations 407,
408

action of time reversal operator 407
action on Bloch wave function 407
bands sticking together 408
degeneracies imposed by 407
equal and opposite slopes for E(k) at

zone boundary 408
Herring’s rules 408
time reversal symmetry pair 408
zero slope of E(k) at zone boundary

408
effective g-factor 378–383, 385–387,

389, 400
anticommutator of wave vector

components 380
antisymmetric part of secular

equation 380, 381
basis functions for Γ+

7 (Γ+
25) 385

basis functions for Γ−
7 (Γ−

2 ) 383

basis functions for Γ+
8 (Γ+

25) 383
Bohr magneton 381
commutation relation 380
commutator of wave vector compo-

nents 380, 381
conduction band effective mass 386
connection of spin and orbital

effective mass tensors 388
contribution from Γ+

7 (Γ+
25) levels

385
contribution from Γ+

8 (Γ+
25) levels

385
contribution to effective magnetic

moment 385
cyclotron resonance transitions 387
effective g-factor for germanium at

k = 0 383, 385
effective g-factor formula 386
effective g-factor sum 385
effective magnetic moment 382, 385
effective mass approximation in

a magnetic field 378
effective mass tensor 380, 382
effective mass wave functions 381
eigenvalues 379
energy levels of a free electron in

a magnetic field 382
evaluate effective magnetic moment

383
evaluate effective mass 383
for germanium conduction electrons

in Γ−
7 levels 386

for InSb conduction electrons 386
generalized momentum vector 382
Hamiltonian for electron in a mag-

netic field 378
identification of double group with

single group of origin 383
interband Landau level transitions

388
k as noncommuting operator 379,

380
Kohn–Luttinger transcription 379
Landau level separation 387
Landau level separation and spin

splitting 388
Landau level separation larger than

spin splitting 388
matrix elements for px, py 385
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matrix elements for evaluating
effective magnetic moment 383

nearly degenerate set of levels 379
noncommuting wave vector compo-

nents 381
nondegenerate valence band for

hexagonal symmetry (group
#191) 400

secular equation for k · p Hamiltonian
379

spin effective mass 387
spin resonance experiments 388
spin splitting 387
symmetrized plane waves for various

irreducible representations 389
symmetrized secular equation 380
transformation properties of antisym-

metric part of secular equation
381

transformation properties of commu-
tator of wave vector components
381

two-band model 388
Zeeman effect 382

elastic modulus tensor 467
direct product of stress and strain

tensors 467
form of elastic modulus tensor 467
notation as 6 × 6 matrix 468

elastic modulus tensor under full
rotational symmetry 469, 471

antisymmetric irreducible representa-
tions 469

effect of full rotational symmetry
469

effect of permutation symmetry 469
evaluation of elastic constants 6 × 6

471
nonvanishing constants 470
symmetric irreducible representations

469
symmetrized stress–strain relations

470
elastic modulus tensor under lower

symmetry groups 472–476
evaluation from direct product of

stress and strain tensors 472
going from full rotational symmetry

to icosahedral symmetry 472

electromagnetic interaction 97, 98,
157, 158, 327

connection to k · p perturbation
theory 327

electromagnetic interaction Hamilto-
nian 97, 98, 157, 158, 327

matrix element of momentum 327
relation of electromagnetic interaction

to effective mass tensor 327
selection rules 158
transformation properties 157, 158
vector potential 98

electron–photon scattering 160
electronic energy levels 279, 291

BCC lattice 293, 294
Brillouin zone for simple cubic

structure 279, 288
compatibility relations between X

point and Δ point 289
diamond structure 299
dispersion of E(k) near X point 299
electronic dispersion relations 279
empty lattice along Γ–R for simple

cubic structure 293, 294
empty lattice along Γ–X for simple

cubic structure 293, 294
empty lattice at Δ point cubic lattice

286, 288
empty lattice at X point for simple

cubic group 288–294
empty lattice at high symmetry

points 286
empty lattice for BCC structure at

high symmetry points 293
empty lattice for diamond structure

at high symmetry points 297
equivalence transformation 290, 291
FCC lattice 294
for simple cubic 302
group of the wave vector 302
lifting degeneracies 294
linear combinations of plane waves

forming basis functions 302
nearly free electron model 279
nonsymmorphic structures 294–301
symmetrized plane waves 286, 288,

290–292
symmetrized plane waves at X point

289
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symmorphic structures 293, 294
weak periodic potential with BCC

symmetry 294
electronic states 113–115

basis functions 114
block diagonal form 114
eigenfunctions 114, 279
eigenvalues 114, 279
energy eigenvalues 113
equivalence concept 114
free atomic orbitals 114
many electron states 114, 115
one-electron potential 113
Pauli principle 114, 115
secular equation 114
valence electrons 114
wavefunctions 115

electronic–rotational level interactions
(λ-doubling) 175, 176

electronic–vibrational level interactions
(vibronic levels) 175, 176

empty lattice 279–281, 303
2D hexagonal lattice #17 p6mm at

k = 0 302
diamond structure at k = 0 303
diamond structure at X point 303
for 2D hexagonal lattice #17 p6mm

at Γ point 303
for BCC structure at k = 0 303
for FCC structure at L point 302
for FCC structure at X point 302
for simple cubic structure 302
lifting deneracy by periodic potential

303
linear combinations of plane waves

forming basis functions 302
symmetry operations on diamond

structure wave functions at X
point 303

empty lattice at k = 0 282–284, 286
basis functions for irreducible

representations 285
BCC structure #229 286
Brillouin zone for simple cubic lattice

288
character table for symmetry opera-

tions of group of the wave vector
290

compatibility relations 288, 289

cubic symmetry operations 282, 284
degeneracy symmetry 283
diagonalizing matrix Hamiltonian

286
diamond structure #227 at high

symmetry points 297
eigenfunctions at X point 289–292
energy eigenvalues 282, 283, 286,

293
equivalence transformation 282,

284, 289, 292
group of the wave vector 282, 288,

290
Hamiltonian in block diagonal form

282, 284, 286
irreducible representations 282, 284,

291
level symmetry 282, 284
lifting level degeneracies 286, 289,

303
linear combination of plane wave

states 282–286, 288–293, 302
notation 290
reciprocal lattice vector 282, 283,

286
simple cubic lattice #221 286, 287,

302
standard references 288
structure factor 297
weak periodic potential 286

empty lattice with spin–orbit interaction
368, 399

direct product of spinor 368
double group at high symmetry

points 399
double group irreducible representa-

tions 368
double group representation related

to single group origin 368
Kramers degeneracy 368, 369

energy bands with spin–orbit interac-
tion 367, 368, 376–383, 385–387,
389–399

bands sticking together 399
basis functions 375
connection between the Slater–Koster

method and k · p perturbation
theory 389, 396, 397

double groups 367



Index 565

effect of screw axes 399

effective g-factor 378–383, 385–387,
389

Hamiltonian 367

secular equation for valence band of
group IV semiconductor 375–377

secular equation into block diagonal
form 368

wave functions 367
equilateral triangle 4, 6, 67

matrix representation 5

symmetry operations 4
equivalence concept 113, 115

atomic sites 115

equivalence representation 115
linear combination of atomic orbitals

114
equivalence representation 36, 115,

116
characters 116

equivalent sites 116

linear combination of atomic orbitals
116

matrix representation 115, 116
equivalence transformation 17, 117,

221
characters 117, 150, 221

decomposition into irreducible
representations 221

equivalent atoms (sites) 221

for H2O molecule 154
irreducible representations 221

phase factor for translations 221

reducible representation 221

F 4̄3m (diamond structure, group #227)
230

effect of symmetry operation on A
and B atoms 230

effect of symmetry operation on basis
function of diamond structure
230

factor group 231
phase factor 231

primitive unit cell 231

screw axis 231
two interpenetrating FCC sublattices

231

face centered cubic lattice (FCC, group
#225)

basis functions 224
character tables 223–227
compatibility relations 227

factor group 7, 11, 13, 110, 189, 190,
231

cosets 188, 189
definition 11
example 11, 13
form of symmetry operations 231
group properties 189
irreducible representations 190
isomorphic to point group 189, 231
multiplication of cosets 189
multiplication table 13
multiplier algebra 190
multiplier groups 190
multiplier representation 190
self-conjugate subgroup 11

five-electron states 451–454
allowed states 452
antisymmetric irreducible representa-

tion 451
character table for P (5) 451, 453
classes of P (5) 451, 453
d5 configuration for P (5) 453, 454
direct product 452
equivalence transformation 453
irreducible representations 451, 452
multiplication of elements 453, 454
p3d2 configuration 453, 454
Pauli allowed states 453, 454
symmetries 452
table of transformation properties

452
fivefold symmetry body centered cubic

(BCC) structure 45, 46, 50, 53,
191, 207, 208

Fm3m (O5
h) group 223

Brillouin zone 223
high symmetry axes and points 223

four-electron states 448–451
1s32s configuration 449
allowed states 450, 451
character table for P (4) 449
classes 448
equivalence between p4 electron and

p2 hole states 450, 451
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irreducible representations 448–450
P (4) permutation group 448
p4 configuration 449, 451
s4 configuration 449
spin configurations 448
table of transformation properties

449
free electron energy bands 279–281

Bloch function 279–281
empty lattice 279–281
FCC structure 280, 281
first Brillouin zone 280
full rotation group 280
glide planes 280
group of the wave vector 280
high symmetry points 280, 281
irreducible representations 280
level degeneracies 280, 281
lifting level degeneracy 281
periodic potential 280, 281
phase factor 281
plane waves 279, 280
reduced Brillouin zone 280
screw axes 280
simple cubic crystal 280
wave vector 280

full rotation group 80–90, 95, 172
addition of angular momentum 172,

173
addition theorem for spherical

harmonics 82
angular momentum 81, 82, 84, 172
axis of quantization 82
azimuthal angle 82
basis functions 80–84
characters for inversion 83
characters for rotation 80–84, 95
compatibility to group O 527
compatibility to group Td 528
compound operation 84
continuous group 81
dimensionality of representations 84
direct product 84, 172
eigenfunctions 80–84
higher to lower symmetry 80, 84
inversion operation 84
irreducible representation 80–86
Legendre polynomials 81
level degeneracy 84, 85

matrix representation 82, 83
odd-dimensional representations 82
polar angle 82
polar coordinate system 82
reducible representation 84
rotation operator 82
selection rules 172
spherical harmonics 80–84, 95
Wigner coefficient 172
Wigner–Eckart theorem 172

glide planes 186, 187, 198
axial glide 187
definition 187
diagonal glide 187
diamond glide 187, 198
examples 186
n-glide 187

graphene 258–262, 427
eigenvector 262
equivalence transformation 260, 261
group of the wave vector 259, 260
hexagonal Bravais lattice 259
high symmetry points 259
lattice distortion 262
lattice modes at K point 261, 262
lattice vector 259
mode degeneracy 261
normal mode displacements 261,

262
phase factor 262
projection algebra 262
real space vector 260
reciprocal lattice vector 259–261
symmetry group #191 (D1

6h)
P6/mmm 258

symmetry operations 260
time reversal symmetry effects 427,

428
graphite 237, 303, 427

electron band structure 237
equivalence transformation for 4

atoms per unit cell 236
structure factor at various high

symmetry points 303
symmetry operations of the group of

the wave vector 237
time reversal symmetry 427

graphite space group #166 505
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Hermann–Mauguin notation 505
Schoenflies notation 505
Wyckoff positions 505

group 3, 10, 11, 15
abstract group 15
commuting 3
definition 3
element 3
group of Schrödinger’s equation 11,

12, 71, 149, 160
simple group 10
substitution group 15

group C2v 154, 155
application to H2O molecule 154
character table 154, 155

group C∞v 162
application to CO molecule 162
heterogenous linear molecule 162
homogenous linear molecule 162
molecular vibrations 162
symmetry operations 162

group D∞h 162–165
application to CO2 molecule 164,

165
eigenvalue transformation 163
for linear homogeneous molecule

164, 165
for O2 molecule 163
infrared active 163
molecular vibrations 163
Raman active 163
symmetry operations 163
to C2H2 molecule 164, 165

group element 3, 4
commuting 3

group of Schrödinger’s equation 12,
71, 149, 160

definition 12
eigenfunctions 12
Hamiltonian 12
higher to lower symmetry 71
irreducible representations 71
matrix representation 12

group of the wave vector 209, 214–237
2D hexagonal lattice 215, 235
2D square lattice 214, 215
at general point 215
at high symmetry point 215,

222–237

basis functions 217–219, 223

BCC lattice 210, 225
Bloch functions 219

character tables 223–226, 234, 235,
237

classes 231

compatibility relations 225, 235
cubic groups at k = 0 223
definition 215

degeneracy 215
diamond structure 210, 230–235
equivalence transformation 231

factor group 218, 219
FCC lattice 210, 225
higher to lower symmetry 225

irreducible representation of group of
the wave vector at high symmetry
points 215, 219, 232, 235

large representations 219, 220
lower to higher symmetry 225
matrix representation 219

multiplication tables 224
multiplier algebra 219, 220
nonsymmorphic structures 218, 220,

232–234
phase factor 234
phonon dispersion relations 232

point group 209, 219, 220
reciprocal lattice vector 214
references 235

simple cubic lattice 209, 222–230
small representation 219, 220
special high symmetry points 235

star of a wave vector 214, 218
subgroup 219
symmetry elements 215

translations 209, 214, 215, 219

H−
2 ion 120, 142, 143

Hamiltonian for vibrations 148
eigenfunctions 148

eigenvalues 148
kinetic energy 148
matrix elements 148

potential energy 148
helium molecule He2 142
Hermann–Mauguin symmetry notation

47, 479, 500
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complete 230 space groups listing of
3D groups 500

Hermitian matrix 16, 21
Herring’s rules 408

band sticking together 410
example with group C4 409, 410
time reversal 409, 410

hexagonal space group #194 502, 504
Hermann–Mauguin notation 502,

504
Schoenflies notation 502, 504
Wyckoff positions 502, 504

higher to lower symmetry 17, 55, 74,
110

icosahedron and dodecahedron 74
polarization effects 110
selection rules 110

homomorphic 15, 16
hydrogen molecular ion 120, 142, 143
hydrogen molecule 119, 120
hydrogenic impurity problem 328

crystal potential of periodic lattice
329, 330

donor states 329
effective Bohr radius 329
effective mass Hamiltonian 328
effective mass theorem 328, 329
hydrogenic impurity levels 329
lost symmetry information 328, 329
screened Coulomb potential 329
substitutional impurity 329
valley–orbit interaction 329

icosahedral molecule 144, 178
equivalence transformation 178
infrared activity 178
normal modes 178
polarization selection rules 178
Raman activity 178
rotational–vibrational interaction

symmetries 178
symmetries of rotational levels 178

icosahedron symmetry 142, 144
identity element 3
independent components of tensors

application of irreducible repre-
sentation L = 0 to all tensors
463

cubic Oh symmetry 464, 465

direct evaluation from theorem
464–467

for nonlinear optic tensors 464–467
full rotational symmetry 463
going from full rotational to D6h

symmetry 467
going from higher to lower symmetry

from full rotational group 464
hexagonal D6h symmetry 466, 467
nonvanishing third rank tensor 467
tetrahedral Td symmetry 466

index of a subgroup 11
infrared activity 157–160

combination modes 158, 159
complementary to Raman activity

160
direct product 158, 159
H2O molecule 158
oscillating dipole moment 157, 158
perturbation Hamiltonian 157
selection rules 158–160

inverse element 3
irreducible representation for space

groups 224
basis functions 224
character table 224
even function 224
notation 223
odd function 224

irreducible representations 17, 18, 22,
28, 31–33, 35

definition 17
dimensionality 31
examples 28
number of representations 35
orthogonality 31
primitive characters 31–33
uniqueness 33
vector space 35

irreducible representations for permuta-
tion groups 438

antisymmetric Γ s
1 438

(n−1) dimensional representation
Γn−1 438

phase factors 438
symmetric Γ a

1 438
isomorphic 15, 16

Jahn–Teller effect 141, 142
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definition 141
dynamic 141
example 142
geometric distortion 141
linear effect 142
Renner–Teller effect 142
static 141
symmetry-lowering 141
time reversal symmetry 142

k · p perturbation theory 305–312,
316–327, 335, 336, 369–378, 399,
400

antibonding bands 306
bonding bands 306
connection to valley–orbit interaction

in semiconductors 327–335
coupling to intermediate states in sec-

ond order degenerate perturbation
theory 335, 336

degenerate second order k · p
perturbation theory 324

effect of small periodic potential to
split degeneracy of BCC empty
lattice energy band at H point
336

effective mass formula 310
equivalence transformation 306
extrapolation method 305, 324
for hybridized s-bands and p-bands

306
independent matrix elements 309
interpolation method 305, 324
interpretation of optical experiments

326, 327
longitudinal effective mass component

311
momentum matrix element 309–311
nondegenerate k · p perturbation

theory 308–311, 324, 326, 335,
336

oscillator strength 311
symmetry based energy band model

305
transformation properties of

perturbation Hamiltonian 308
transverse effective mass component

311
two-band model 311–314

k · p perturbation with spin–orbit
interaction 369–378, 399, 400

basis functions 372
Bloch functions with spin 369
coupling to intermediale states 371,

374
for valence band of group IV

semiconductor 374, 399
form of E(k) for Γ+

6 level 373
generalized momentum operator

371
independent matrix elements

370–372
irreducible representations 370
k · p expansion for nondegenerate Γ+

6

level in the simple cubic structure
371–374

k · p perturbation Hamiltonian with
spin and spin–orbit perturbation
370

nondegenerate perturbation theory
EΓi

n (k) 370, 399, 400
Schrödinger’s equation for periodic

part of Bloch function 369
transformation from |�sm�ms〉

representation to |j�smj〉 369

lattice modes 241–277
at high symmetry points 244, 253
at zone center 245–253
block diagonal form 241
compared to molecular vibrations

241, 244, 245
compatibility relations 244
degeneracies 244
degrees of freedom 245
dependence on wavevector 244
effect of symmetry operation on

normal modes 245
effect of translations 245
eigenvector 244
equivalence transformation 244,

245, 253
group of the wave vector 244, 245,

253
infrared activity 241, 244
irreducible representations 244
NaCl structure 253
nonsymmorphic space group 245
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normal modes 241, 244
number of phonon branches 245
phase factor 245, 253
phonon-assisted optical transitions

244
polarization effects 244
Raman activity 241, 244
secular determinant 241
selection rules 244
symmetry classification 244
symmorphic space group 245
transformation of the vector 244
zinc blende structure 253

line group 204, 205, 208, 237
axial point group 204
carbon nanotubes 204, 205, 208, 237
commutation 204
direct product 204
families 204, 205
identity operation 204
irreducible representations 237
symmetry elements 204
translational symmetry 204
weak direct product 204, 205

linear combinations of atomic orbitals
(LCAO) 67–70, 74

arbitrary functions 69
basis functions 69
example P (3) 67–70, 74
irreducible representations 67, 68
matrix representation 68, 70
projection operator 68
unitary representation 70

linear molecules 161–166, 173
application to C2H2 164–166
application to CO 161–163
application to CO2 164
application to H2 161
application to HCl molecule 171
application to O2 163
breathing mode 162, 163
dipole moment 173
equivalence transformation 164
infrared activity 162–164
molecular vibrations 161–166
permanent dipole moments 171
Raman activity 162–165
rigid rotator spectra 171
rotational selection rules 171, 173

magnetic point groups 416–426, 428,
429

antiferromagnetic ordering 420, 421,
424–426

antiunitary operators 418
chalcopyrite structure 429
chemical unit cell 424
classification of magnetic point

groups 420, 421
color groups 426
cosets 422
examples of magnetic structures

423–426, 428, 429
ferromagnetic ordering 420, 421,

423, 428
group D4h (D2h) 425
invariant unitary subgroup 422
inversion operator 423, 428
Jahn–Teller effect 419
magnetic Bravais lattices 418–421,

424, 425
magnetic field effect 428
magnetic phases of EuSe 425
magnetic subgroup 422, 423, 425
magnetic symmetry elements 418
MnF2 424
multiplication rules for symmetry

elements 418, 422
notation 420–423
orthorhombic structure D2h(C2h)

423
Rutile structure 424, 425
spin flipping operations 425
structural lattice distortion 419
symmetry elements 419, 422, 425,

426
tetragonal group D4h (D2d) 425
time reversal operator 416, 418, 419,

423, 428, 429
translation vector 426
type of magnetic point groups 418
unitary operators 418
zinc blende structure 429

matrix elements 359
for double groups 359
number of independent matrix

elements 359
matrix representation 15–18, 186

definition 15
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degeneracy 18
dimensionality 17
examples for P (3) 18
inverse 186
matrix algebra 16
multiplication 186
notation 185, 187
orthogonal matrices 17
orthonormal matrices 17
symmetric elements 18
trace 17
translations 185
uniqueness 17
unitary matrices 17

mirror planes 48
molecular bonding 121

antibonding 121
bonding 121
diatomic molecule 121

molecular electronic states 149
molecular energy levels 113

Born–Oppenheimer approximation
113

electronic motion 113
rotational motion 113
vibrational motion 113

molecular Hamiltonian 149
block diagonal form 149
eigenvalues 149
harmonic oscillator 149

molecular vibrations 154–156,
158–166, 168, 169

antisymmetric stretch mode 154,
156, 164

bending modes 164–166
blocks of atoms within a molecule

165
breathing mode 154–156, 162, 166,

167
C2H2 molecule 164, 166
CH4 molecule 157, 168–170
characters for irreducible representa-

tions 151
characters for pure rotations 150,

151
characters for the vector 150
characters for translation 151
CO molecule 162
CO2 molecule 164

combination modes 156–159, 161,
170

coupling between rotational and
vibrational states 171, 173, 174

coupling of modes with the same
symmetries 169

degrees of freedom 150

dynamical matrix 147

eigenvalues 149, 150

examples 151

H2O molecule 154–156, 158

Hamiltonian 147–149

infrared active 151, 157–159, 164,
169

linear molecule 161–166

NH3 molecule 165, 167, 168

normal modes 147–151, 157,
164–167

O2 molecule 163

overtones 156–158

phase related normal modes 168

polarization 158

potential function 147, 148

Raman active 151, 157, 159–161,
164, 169

reducible representation 150

restoring forces 147

rotations 155, 161

secular equation 148, 149

selection rules 147, 151, 160, 161,
171

symmetric stretch mode 154, 156,
164, 166

motion of center of mass 156

translations 155

multiatomic molecule 124–141

angular momentum states 127, 133,
143, 144

antibonding 125, 132, 145

bonding 125, 132, 145

configuration mixing 134

directed valence bonding 124, 125,
133, 134, 144

electron energy levels 123

electronic orbitals 126, 127

equivalence transformation 124,
126, 130, 133, 134, 143

hexagonal symmetry 129, 130
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irreducible representations 126, 127,
129, 135

linear combination of atomic orbitals
124, 126, 127, 129, 130, 132, 133,
144

matrix representation 126, 131
octahedral bonding 133
secular equation 131, 144
tetrahedral bonding 125

multiplication tables 4, 5, 7, 37, 43, 511
multiplier group 221

effect of symmetry operations 221
irreducible representation 221
multiplication rules 220, 221
multiplier algebra 221
phase factor 221

multivalley semiconductor impurity
problem 330, 331

central cell corrections 331
D∞h symmetry 330, 331
ellipsoidial constant energy surfaces

for donor impurities 330
Ge with 4 valleys 330
Si with 6 valleys 330
splitting of impurity levels due to

crystal field 330, 331

N2O molecule 177
atomic displacements 177
infrared active modes 177
Raman active modes 177
rotational modes 177
symmetry group 177

NaCl structure 246, 247, 254, 255
at high symmetry points 254
compatibility relations 247, 254
equivalence transformation 246, 254
infrared activity 247
lattice modes 246, 254
optical branches 247, 255
phase factor 255
phonon modes 246, 254, 255

nanotube see carbon nanotubes
Nb3Sn 207, 275

infrared activity 275
normal modes 275
polarization effect 275
Raman activity 275
structure 207

Wyckoff positions 207
NH3 molecule 124, 125, 165–168

breathing modes 166, 167
building blocks 166
3D crystal structure 165
equivalence transformation 166
linear combination of hydrogen

orbitals 167, 168
normal modes 168
polarization selection rules 168
Raman active 168
tetrahedral bonding 125

nondegenerate k · p perturbation
theory at a Δ point see k · p
perturbation theory, 324–326

carrier pockets for electrons and holes
324, 326

compatibility relations 325, 326
E(k) for cubic semiconductors at

high symmetry points 324
extrapolation method 324
group III–V semiconductors (GaAs,

InSb) 325
group IV semiconductors (Si, Ge)

325
interpolation method 324
longitudinal matrix elements 325,

326
transformation of p and k · p 325,

326
vanishing of first order term 326

nonsymmorphic groups 190, 220
multiplier algebra 220, 221
multiplier groups 220
phase factor 220
relevant representations 220
small representation 221

nonsymmorphic space groups 190,
196–198, 220, 221, 230, 294–298

definition 189
diamond structure #227 196, 198,

230–235, 294–296
energy bands sticking together

294–296, 298
essential degeneracies 298
factor group 190, 220
glide plane 198
glide plane translation 189
group p2mg 294–296
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group of the wave vector 294, 296
hexagonal close packed structure

group #194 294–296
point group operations 189, 230
screw axis 189, 197, 198
tetragonal space groups 197, 198
translation 220, 230

normal modes 147–154, 159–161,
163–168, 177

antisymmetric stretch mode 154
basis function 149, 150, 161
breathing mode 154, 163
C2H2 molecule 164–166
CH4 molecule 152, 153, 168
clusters of 3 hydrogen atoms at

corners of equilateral triangle
149, 152, 176

CO molecule 162, 164, 165
degeneracies 147
degrees of freedom 150
dimensionality 150
eigenfunction 149
equivalence transformation 154
for linear molecules 161
H2O molecule 153–156, 177
infrared active 149, 151, 153,

157–160, 176
irreducible representation 150
linear molecules 161–166, 177
mode mixing between modes with

same symmetry 168
molecular rotation 151
molecular translation 150, 151
NH3 molecule 166–168, 176, 177
normal mode amplitudes 148
normal mode frequencies 148
normal mode matrix 150
orthogonality 151
orthonormality 152
phase related normal modes 168
planar NH3 molecule 176
projection operators 152
Raman active 149, 151, 153,

159–161, 176
secular equation 148
selection rules 151, 158
symmetric stretch mode 154
symmetry 147–151, 163
tetrahedron 152, 153

O2 molecule 163
equivalence transformation 163
molecular vibration 163

one-electron Hamiltonian 183
invariant under symmetry operations

183
order of a class 10

definition 10
order of a group 6, 28, 40

example for P (3) 40
proof of theorem 40

order of a subgroup 8, 9
order of an element 6

definition 6
order of group 40
orthogonality of basis functions 99,

100
partners 99, 100
scalar product 100
selection rules 100

orthogonality theorem 19, see Won-
derful Orthogonality Theorem

orthonormality relation 28
overtones 156, 157

CH4 molecule 156, 157
direct product 156
infrared active 156, 157
irreducible representations 156, 157
Raman active 156, 157

P (3) 13, 16, 37, 42, 443–448, 543
P (4) 13, 448–451, 544
P (5) 451, 452, 544
P (6) 451–453, 545
P (7) 451–453, 546
period of an element 6, 7
periodic boundary conditions 211
permutation group of three objects

37, 42
permutation groups 3, 5, 13, 15, 16,

431–454
antisymmetric representation 433
antisymmetric states 432
basis functions 434, 437–440, 443
classes 434–437
classification of many electron states

431
commutation of permutation

operations with Hamiltonian 432
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cycle structure 434, 435
equivalent electron and hole

configuration 450, 451, 453
example 13
five-electron states 434, 451–454
four-electron states 434, 448–451
group operations 432
identity 432
inverse 432
irreducible representations 434, 436,

438, 439
multiplication 432
notation 432, 440
number of elements 432
orbital states 442
P (3) 13, 16
P (4) 13
Pauli principle 432, 433, 440, 442,

443
regular representation 439, 440
six-electron states 454
Slater determinant 433, 440
symmetric representation 433
symmetric states 432
symmetry properties of tensors 431,

458–463
three-electron states 434, 444, 445,

447, 448
two-electron states 434, 440–443

Perovskite structure 247–250
acoustic 242, 245
equivalence transformation 247
infrared activity 250
LA mode 245
LO mode 245
optical 245
phonon modes 247–250
TA mode 245
TO mode 245

phonon dispersion relations 242, 243
branches 244, 245
for germanium 243
high symmetry points 243
mode degeneracies 243
optical modes 242
phonon branches stick together 243

phonon modes see also lattice modes,
241–277

2D graphite at K point 258

α-quartz 262, 268, 269

diamond structure 250

graphene 262

NaCl structure 246, 247

nonsymmorphic structure 268
Perovskite structure 247–250, 256

tellurium 262, 268

π-bonding 113, 134–141

angular momentum states 137–139
bond direction 135

characters 135

directed valence bonds 135, 137–140

equilateral triangle 137, 138

equivalence transformation 137, 138
irreducible representation 135, 140

linear combination of atomic orbitals
135, 137

p-states 135

polarization 140

transformation of vector 139

piezoelectric third rank tensor under
various symmetries 476

plane wave basis functions for double
group representations 361, 362

Pm3m (O1
h) group #255 FCC 222

Pm3m (O11
h ) group 223

Brillouin zone 223

high symmetry axes and points 223

point group 29, 48, 49

C∞v and D∞h groups 53
classification 48–53

cubic groups 50, 52

cyclic groups 50

Hermann–Mauguin notation 48–50

hexagonal group 49, 481–483
horizontal planes 50

icosahedral groups 49, 52, 483–485

improper rotation 50

inversion symmetry 50
monoclinic group 49, 480

orthorhombic group 49, 480

proper rotation 50

rhombohedral group 49, 481

Schoenflies notation 48–50
stereogram 50, 52

tetragonal groups 49, 480, 482

triclinic groups 49, 479

vertical mirror planes 50
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point group character tables 29–55,
479–487

projection operators 64–67, 72, 117,
152

action on arbitrary function 64–67
action on irreducible representation

66, 67
definition 64
diagonal elements 65
matrix representation 65
partners 64

quantum mechanics 70–72
commuting operations 70
finding linear combination of wave

functions 72
group of Schrödinger’s equation 70
higher to lower symmetry 72
matrix representation 70

Raman effect 159–161
anti-Stokes component 159
basis functions 161
diagonal components 160, 161
electron–photon interaction 160
electron–photon scattering 160
first-order process 159
induced dipole moment 159
intermediate state 160
inversion symmetry 160
matrix elements 159, 160
off-diagonal components 160, 161
polarizability tensor 159–161
Raman Hamiltonian 159–161
second rank symmetric tensor

159–161
second-order process 159, 160
selection rules 160, 161
Stokes component 159
transformation properties 160

Rayleigh scattering 159
rearrangement theorem 7, 8, 21, 37
reciprocal space 210, 211, 503

bands sticking together 507
Brillouin zone 211
lattice vector 210
orthonormality relation 210
primitive translation vector 210
reciprocal lattice vectors 210

reducible representation 17, 18, 33, 34
regular octahedron 85
regular representation 37–40, 439

decomposition theorem 39
definition 37
dimensions 439, 440
example from P (3) 37, 40
irreducible representations of 39
multiplication of two elements 37
order of regular representation 40,

439, 440
Slater determinant 440

representation of translation group
211–213

Abelian groups 211, 212
Bloch theorem 212
commuting operators 211
crystal symmetry 212
number of group elements 212
number of irreducible representations

211, 212
periodic boundary condition 212
phase factors 212

representation theory 15, 19
basic theorem 15

representations 5, 15, 17, 28, 29
arbitrariness 29
by a matrix 5
definition 5, 15
dimensionality 28, 29
faithful 15
irreducible representation 17
reducible representation 17
unfaithful 15
vector space 28

restoring forces 147
rhombohedral graphite 502
rigid rotator 170–172

Hamiltonian 170, 171
linear HCl molecule 171, 172
optical transitions 171, 172
principal moments of inertia 171
selection rules 171
Wigner–Eckart theorem 171

rotational energy levels 170, 172
infrared spectra 171–173
Raman spectra 171–173
rigid rotator 170–172
selection rules 172, 173
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typical energy range 170
rotational spectra 170–173

circular polarization 173
polarization effect 171, 173
rotational–vibrational interaction

171, 173
Wigner–Eckart theorem 172, 173

Schoenflies symmetry notation 31, 44,
479

Schur’s lemma 19, 21–25
screw axis 186, 187, 197, 198

diamond screw 198
left-hand 186
n-fold 187, 198
notation 187
right-hand 186
unit cell translation 188

second orthogonality theorem 36, 37,
43, 55

secular equation for valence band
of group IV semiconductor
375–377, 399

k-dependent spin–orbit splitting
377

selection rules 97, 98, 105–107, 109,
110, 147, 173

cubic symmetry 98, 106, 109
definition 97
direct product 105, 107, 108
electric dipole 98, 106–110
electromagnetic interaction 97, 106,

108
group of Schrödinger’s equation

105, 106, 109
higher to lower symmetry 107, 108
infrared active 147, 173
linear diatomic molecule 173
momentum 106
odd parity 107
orthogonality 105
polarization effects 108, 109
Raman active 147, 173
rotational transitions 173
tetragonal symmetry 108
transformation properties of vector

106–109
self-conjugate 9
self-conjugate subgroup 10, 13

definition 10
left coset 10
right coset 10

setting up character tables 41–43
number of classes 41
number of irreducible representations

41
SF6 molecule 133, 134, 143
SH6 molecule 129, 143
σ-bonding 113, 134–139

characters 135
directed valence bonds 135, 137–139
equilateral triangle 137, 138
equivalence transformation 137, 138
example 136–139
irreducible representation 135
linear combination of atomic orbitals

135–137
p-states 135
s-states 135

silent modes 160
simple cubic lattice 225

basis functions 224
character tables at high symmetry

points 224, 225
compatibility relations 227
group of the wave vector at high

symmetry points 223, 226, 227
site symmetries 196
six-electron states 454, 545
Slater–Koster method 305, 306,

389–400
angular momentum matrices 391,

392
basis matrices 391, 392
Bloch functions 391
connection to k · p perturbation

theory 396
contributions to Fourier expansion

395–397
coupled bands 391
En(k) is periodic in k space 389
energy bands at high symmetry

points 389
energy dispersion for FCC structure

at high symmetry points 400
energy eigenvalues found at all k

values by diagonalizing the matrix
Hamiltonian 397
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evaluating expansion parameters
by comparsing energies to
experiments theory 397

expansion parameters 390, 391, 395,
397

Fourier expansion for E(k) bands
390, 394–399

germanium 389, 390, 399
Hamiltonian 391
interacting p-bands 394–398
interpolation method 389, 390
irreducible representations 395
matrices spanning space 391–394
neighbor distances 390, 394, 395
nondegenerate bands 391
overlap integrals 390
partners of irreducible representations

392, 394
reciprocal lattice vectors 394
scalar products of symmetrized

Fourier functions and basis
functions 394

secular determinant 391, 400
silicon 389, 399
solutions of matrix Hamiltonian 397
symmetrized basis matrices 391,

395–400
symmetrized Fourier functions

394–398
symmetry restricted number of

independent expansion coefficients
390

Taylor’s expansion at high symmetry
points 400

tight binding approximation 390
Slater–Koster model 305, 306
small representations 221

group of the wave vector 221
SnO2 275, 276

crystal structure 276
lattice modes 276

sp2 planar carbon bonding 136–139
space group 211, 214–216
space group determination 206, 208

carbon nanotubes 208
graphite 208
International Crystallography Tables

206
site symmetries 206

Wyckoff positions 206, 208
space group operations 183–186, 189,

190, 208
associative law 185
commutation 185
definitions 184, 185
glide plane 183, 187, 189
identity 185
inverse 185
inversion 185
matrix representation 185, 187
multiplication 184, 185
notation 183–185, 187, 189
point group operations 183, 184, 189
rotations 184
screw axes 183, 186, 189
translations 183, 184

space groups 29, 183, 184, 189, 190,
195, 198, 205, 206

Bravais lattice 190–198, 207
crystal structure determination

205–207
definitions 189
diamond structure 195, 207
direct product group 190
equivalence transformation 206
factor group 190
group of the wave vector 214–219
irreducible representations 190
line group 204
nonsymmorphic 183, 189, 190, 198,

207
point group operations 183, 190,

214, 215
semi-direct product 189
subgroups 189, 190
symmorphic 183, 189, 190, 198, 207
translations 214
two-dimensional 198–203, 207, 211
wave vector 215

space groups in reciprocal space 209
Bravais lattices 209
dispersion relations 209
group of the wave vector 209
nonsymmorphic 209
symmorphic 209

spherical harmonics 82
spin Hamiltonian 426, 427

magnetic field effect 426
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spin–orbit interaction 81, 337–339, 348
addition of angular momentum 338
band degeneracies 340
doubly degenerate 348
Dresselhaus spin–orbit term 340
expectation value of L · S 338
germanium along high symmetry axes

339, 340
good quantum numbers 338
half-integral spin 337, 338
Hamiltonian breaks into block

diagonal form 348
|j, �, s,mj〉 representation 338
Kramers degeneracy 340, 348
lifting degeneracy 338
linear k term in E(k) 348
magnitude 339
notation 340
relativistic corrections 348
spin and orbital wave functions 339
spin angular momentum and

magnetic moment 337
spin–orbit splitting in crystals 339,

340, 348
time reversal symmetry 340, 348
wave vector dependence 339, 340
Zeeman splitting in an external

magnetic field 338, 339
star of a wave vector 214, 215, 217, 235

2D space groups 215, 217, 235
at k = 0 215, 217
at general k point 215
at high symmetry points 217
at zone boundary 217
definition 215
effect of translations 214
reciprocal lattice vector 214
symmetry elements 218

structure of nanotube 205
achiral 205
armchair 205
chiral 205
line group symmetry 205
zigzag 205

subgroup 6–8, 10
definition 6
self-conjugate 10

symmetry based energy band models
305, 306, 316

k · p perturbation theory 305, 306
Slater–Koster model 305, 306

symmetry lowering 194
point group symmetry lowering 194

symmetry notation 44–48
abbreviated notation 47
compound rotation–inversion 45
dihedral plane 45
Hermann–Mauguin 44, 46, 47
identity operation 44
improper rotation 45, 48
mirror planes 47, 48
proper rotation 48
reflection in a plane 45
rotating about an axis 44, 47, 48
Schoenflies notation 44, 46, 47
semi-infinite groups 46
symmetry groups 46

symmetry properties of tensors
455–477

antisymmetric second rank tensor
458

complete isotropy 457
effect of crystal symmetry 457, 460
effect of permutations 460
elastic constant tensor 457, 459,

467–477
electrical conductivity tensor 455,

456
fourth rank tensor 455
full rotation group 457
fully symmetric irreducible represen-

tation L = 0 463
independent coefficients for various

tensors and symmetries 457,
460–466, 471–476

irreducible representation 459
momentum configuration 459
nonlinear elastic modulus under

permutation symmetry 476
number of times the totally symmet-

ric representation is contained in
the direct product of coupling
tensors 462

p2 configuration 458
p3 configuration 458
Pauli allowed state 459
permutation symmetry 455
piezoelectric tensor 456, 459, 476
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polarizability tensor 455, 456, 459
second rank tensor 455, 456
strain tensor 457
stress tensor 457
symmetric third rank tensor 455,

456, 458
tensor components equal to one

another 457
theory of independent components of

tensors 462
transformation properties of tensors

under permutations 458, 459
symmorphic space groups 189,

192–194, 196, 198–203
Bravais lattice 192, 194
equivalence transformation site

symmetry 196
International Crystallographic Tables

192

table of direct products for double
groups O and Td 523

table of group of the wave vector at
various symmetry points 508

space group #166 509
space group #194 509
space group #221 508
space group #225 508
space group #227 508
space group #229 508

tables for 3D space groups 499–520
character tables 510–520

tables of double groups 521–532
notation 521
references 521

tables of permutation groups 543–547
Td symmetry 125, 152
tellurium 262–268

Brilloun zone 264
character table 262
crystal structure 263
equivalence transformation zone

center mode 264–266
infrared activity 264, 265, 267
lattice modes 262, 264–267
nonsymmorphic 262
normal modes 265–268, 274
phonon dispersion relations 264
polarization 264–268

Raman activity 264–267
screw axis 262, 264, 265
space group 262
z-direction 265

tetrahedron 153
three-dimensional graphite 274

compare 2D and 3D graphite 274
compatibility relations 274
infrared activity 274
normal modes 274
number of lattice modes 274
symmetry operations 274

three-electron states 444–448
allowed states 446
antisymmetric irreducible representa-

tion Γ a
1 445

classes 444
direct products 445, 446
group P (3) 446
irreducible representations 444, 445
orbital angular momentum states

445
Pauli principle 445, 447, 448
permutations of three-electrons 444
spin states 445
symmetric irreducible representation

Γ s
1 445

time reversal operator 21, 403, 404
action on momenta 403
action on orbital angular momentum

404
action on spin angular momentum

404
action on velocities 403
action on wave function 403
antilinear operator 404
commutation with Hamiltonian

404, 405
complex conjugation of wave

functions 404
Pauli matrices 404, 405
properties of time reversal operator

404–407
spin–orbit interaction effects 404,

405
T̂ 2 = + or −1 405
time evolution 403, 404
time-reversed conjugate 403
unitary operator 405
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time reversal symmetry 403–418,
422–425, 427–429, 446

antiunitary operator 406
bands sticking together 408, 413
breaking time reversal symmetry

427
complex conjugation 404, 405
degeneracies 413
effect of inversion symmetry 413
effect of time reversal 406–413
examples 414–416
ferrites 429
Frobenius–Schur test 414–416
graphite space group #194 427
Hamiltonian 429
Herring’s rules 408–410, 412–415
Kramers degeneracy 407, 412
magnetic field effect 428
magnetic groups 403, 407, 416–418,

422–425, 429
notation 415, 416
operators (p,L,σ) odd under time

reversal symmetry 406
operators (H,r, V (r)) even under

time reversal symmetry 406
properties of time reversal operator

404–407
Raman effect probe 429
spin effects 403, 406, 411, 412, 425
spin Hamiltonian 403, 427
time evolution factor 404
time reversal operator 403, 405
zinc blende structure 429

trace 12, 29
invariance 12

Translation Group 188, 211–213, 217
Abelian group 211–213
basis function 213, 217
Bloch theorem 212, 213
commuting operator 211
cyclic subgroup 211
direct product 188
eigenfunction 212
eigenvalue of translation 213
factor group cosets 188
invariant subgroup 188
irreducible representation 211–213,

217
notation 188

periodic boundary condition 212
phase factor 213
quantum number 212
space group 188
three dimensions 212
wave vector 213

translation subgroup 188
translational symmetry of line groups

204
translations in molecular vibrations

151
transparent host crystal 79
transposition 16
two-band model 311–316

band edge wave function 312
degenerate first order perturbation

theory 311, 312
dependence of density of states on

energy 316
dependence of effective mass on

energy and wave vector 315, 316
Kane two-band model 314
Lax two-band model 314, 316
momentum matrix elements 314
nearly degenerate set (NDS) 311
nonparabolic effects 313–316
number of independent matrix

elements 313
secular equation 312, 313
Taylor expansion for small κ 313,

315
two-dimensional Bravais lattices 199,

200
two-dimensional space groups 198–

200, 236, 489–498
2D oblique space groups 200
allowed n-fold rotations 200
centered 200
contrast group #11 (p4mm) and

group #99 (P4mm) 236
glide planes 200
group of the wave vector at high

symmetry points in the 2D
Brillouin zone 236

hexagonal 199, 496–498
International Crystallography Tables

199
mirror planes 200
nonsymmorphic 236
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notation 199, 200, 236
oblique 199, 489, 490
primitive 200
rectangular 199, 490–493
sixfold rotations 200
space group numbers 199
special points 200
square 199, 494–496
symbols for rotation 200
symmorphic 199, 236

two-electron states 440–443
antisymmetric states 440, 441
classes 441
Γ a

1 representation 441
Γn−1 representation 441
ground state 440, 441
irreducible representations 441
notation 440
orbital state 441
Slater determinant 440
spin state 441
symmetric state 440
table of transformation properties

441

unit cell 210
unitarity of representation 19–22

theorem 19, 20

valley–orbit interaction 328, 331–336
donor states for multivalley semicon-

ductors 331, 332
ENDOR studies of impurity levels

334, 335
equivalence transformation for valley

sites 332
example of valley–orbit interactions

328
experimental spectrum for valley–

orbit splitting of phosphorous
donors in silicon 334, 335

importance of tetrahedral bonding
for s state 331, 332

linear combination of valley wave
function transforming as irre-
ducible representation of the
crystal field 331–335

lower symmetry group not a subgroup
of higher symmetry group 328

spatial dependence of wave functions
334, 335

symmetry of effective mass Hamilto-
nian for impurity perturbation for
one valley 328

transformatiom of a vector for Td

group 333–335
transition from 1s to transverse 2p

levels 334, 335
transitions between impurity levels

showing valley–orbit splitting
334, 335

vector space 28
vibration potential function 147

equilibrium coordinates 147
vibrational–rotational interaction

173–175
anharmonic term 174
combination modes 174, 175
experimental spectrum for HCl 175
harmonic restoring force 174
schematic spectrum for diatomic

molecule such as HCl 176
unperturbed energies 175

wave vector symmetry 214
group of the wave vector 214
star of a wave vector 214

Wigner–Eckart theorem 172
angular momentum states 172
electric dipole transitions 173
infrared activity 173
principal quantum numbers 172,

173
Raman activity 173
reduced matrix element 172, 173
selection rules 173
Wigner coefficient 172, 173

wonderful orthogonality theorem 21,
25–28, 31, 55

wonderful orthogonality theorem for
character 31, 32, 34–37, 41

Wyckoff positions 201, 206–208, 506
site symmetry 201, 206
special points 201

zinc blende space group #216
Hermann–Mauguin notation 502
Schoenflies notation 502
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Wyckoff positions 502
zinc blende structure 252, 502

LO–TO splitting 252, 253

phonon modes 252, 253
space group 252, 502
symmorphic group 252
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