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In a single nanomagnet with spin-orbit interactions, the electrical current can generate a nonequilibrium spin
density that gives rise to a spin torque on the magnetization. This spin torque does not involve spin transfer
mechanism and originates from the band structure itself. We show that this spin torque can be effectively used
to switch the direction of the magnetization and the critical switching current density could be as low as
104–106 A /cm2 for a number of magnetic systems. Several magnetic systems for possible experimental
realization are discussed.
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The manipulation of magnetization in submicronic de-
vices is an important topic related to data storage and mag-
netic memory technology.1 Besides field-induced magnetiza-
tion switching, which is known to be a size and power
consuming technique,2 a current-driven switching based on
the spin transfer effect has been realized.3 This mechanism
requires a noncollinear magnetization structure such as spin
valves, tunnel junctions, and domain walls. The current den-
sity observed in transition-metal-based materials is on the
order of 107 A /cm2, which is higher than the current break-
down of semiconductor-based transistors.2

In this Brief Report, we propose another current-driven
mechanism for the manipulation of the magnetization of a
single magnetic two-dimensional electron gas �2DEG� when
a Rashba spin-orbit coupling4 is present. Contrary to the con-
ventional spin-valve structures, this spin torque arises from
the band structure of the nanomagnet without the need for
noncollinear ferromagnetic layers and does not involve the
usual spin transfer mechanism. The transport properties with
Rashba interactions in two-dimensional electron gas have
been widely studied mainly for paramagnetic systems where
there is no spontaneous ferromagnetic magnetization. Inoue
et al.5 showed that the presence of an in-plane charge current
induces an out-of-equilibrium transverse spin accumulation.
This spin accumulation can then exert a torque on neighbor-
ing ferromagnetic contacts.6,7 In contrast, we consider here a
single ferromagnetic 2DEG sandwiched between two dis-
similar materials, so that the electric potential is highly
asymmetric, leading to the presence of the Rashba interac-
tion at the interfaces or within the ferromagnetic layer. The
Hamiltonian is thus

H =
p2

2m
+

�R

�
�p � ẑ� · � − Jsd� · M̂ , �1�

where we confine the electron motion in two dimensions

�x ,y�, M̂=cos �x̂+sin �ŷ is the unit vector for the direction
of the local magnetization, Jsd is the exchange coupling
strength between the conduction electron and the magnetiza-
tion, and �R is the Rashba parameter. To immediately see the
current-driven effect due to the Rashba term, let us first con-

sider a large Jsd such that the conduction-electron spin and M̂
are parallel and the Rashba term is equivalent to the Zeeman
energy with the magnetic field Heff=−��R /����p�� ẑ�. In

equilibrium, Heff=0 because �p� is zero. In the presence of
the current, �p� is proportional to the current je and thus the
average magnetic field on the magnetization is proportional
to �R�je� ẑ�; it is this current-driven effect that can be used
to switch the direction of the magnetization. We now carry
out the rigorous calculation below.

The one-electron eigenenergy and wave function are

Ek
� =

�2k2

2m
� ��R�k � ẑ� − JsdM̂� �2�

and

�k
� =

1
�2A

��ei	k

1
�exp�ik · r� , �3�

where tan 	k= ��Rkx+Jsd sin �� / ��Rky −Jsd cos �� and A is
the area of the film.

To calculate the nonequilibrium spin density and the spin
torque in the presence of the current, we use the Boltzmann
equation for the two bands,

eEx�−
� f0




�kx
� = 	


�

 d2k�Wkk�



��fk

 − fk�


�� , �4�

where Ex is the electric field in the x direction, f0

 is the

equilibrium distribution of the two bands �
=��, and the
scattering probability is

Wkk�


� = 	

i

���k

�Vsc�r − Ri���k�


���2��Ek

 − Ek�


��

=
2�ni

�
V2�1 + 

� cos�	k − 	k�����Ek


 − Ek�

�� , �5�

where Vsc�r�=V��r� is the impurity scattering potential, Ri is
the impurity position, and ni is their concentration. The
above definition accounts for both intraband �
=
�� and in-
terband �
=−
�� scatterings, so that Eq. �4� may be solved
numerically. However in the limiting case considered below
�EFJsd�RkF�, cos�	k−	k��=1+o��R

2�, so that interband
transitions can be neglected to the first order in �R. This

yields to an isotropic scattering probability Wkk�


�=�niV

2 /�,
which is equivalent to a constant relaxation-time approxima-
tion. In this case, the Boltzmann distribution in Eq. �4� has a
simple solution,
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fk
� = f0

� − eEx��−
� f0

�

�kx
� , �6�

where � is the relaxation time �e�0�. With the above distri-
bution, the spin density �m and the spin current js can be
readily evaluated; i.e.,

�m = 2
 d2k�fk
+ − fk

−��x̂ cos 	k − ŷ sin 	k� �7�

and

js = e
 d2k�vx
+fk

+ − vx
−fk

−��x̂ cos 	k − ŷ sin 	k� , �8�

where vx
�= �1 /���Ek

� /�kx is the velocity. Once �m is ob-

tained, the spin torque is T=−Jsd� m�M̂.
In the limiting case of Jsd�RkF, where kF is the Fermi

wave vector, one can analytically integrate out the momen-
tum in Eqs. �7� and �8�. Up to the first order in �R /Jsd,

cos 	k = − cos � +
�R

Jsd
�ky sin2 � + kx sin � cos �� �9�

and

sin 	k = sin � +
�R

Jsd
�kx cos2 � + ky sin � cos �� . �10�

By placing the above expressions into Eqs. �7� and �8� and
by noticing that the terms linear in ky average out after inte-
gration, we have

�m = 2
�Rm

�e

je

EF
�cos � sin �x̂ − cos2 �ŷ� �11�

and js= PjeM̂, where PJsd /EF is the spin polarization
of the current. Thus, the spin torque is
T=−ẑ�2�RmPje /�e�cos �. If one defines a current-driven
magnetic field via T=−	M�Hcd, we have

Hcd = 2
�Rm

�eMs
Pje�ẑ � ĵe� , �12�

where Ms is the saturation magnetization and ĵe represents
the unit vector in the direction of the current.

The current-driven magnetic field or torque discussed
above competes with other torques in a ferromagnet. Similar
to the current-driven spin torque in spin-valve structures, we
can write the dynamic equation of the magnetization by in-
cluding Hcd,

dM

dt
= − 	M � �Heff + Hcd� +

�

Ms
M �

dM

dt
, �13�

where Heff is the effective field due to other magnetic inter-
actions. If we consider a single domain ferromagnet with an
anisotropy field HK in ŷ direction, we obtain the critical
switching current density by setting Hcd=HK; i.e.,

jc =
�eHKMs

2�RmP
. �14�

If we take the Rashba constant �R=10−11 eV m for a typical
value of a two-dimensional electron gas with a spatial inver-
sion asymmetry, the spin polarization P=0.5, the saturation
magnetization Ms=104 �J /T m3�, the effective mass m�

=0.45 of heavy holes in GaMnAs,8 and an anisotropy field of
200 �Oe�, we estimate that jc is about 5�106 A /cm2, which
is comparable to the critical current in spin valves and tun-
neling junctions. Depending on the material parameters
�Rashba coupling, effective mass, etc.�, we estimate that the
current threshold can be as low as 104–106 A /cm2.

While the above limiting case Jsd�RkF is most interest-
ing and most relevant for observing the spin torque, we can
also consider a weak ferromagnet where Jsd is smaller than
�RkF. In this case, cos�	k−	k��=cos��−���+o�Jsd� �with k
=k�cos � , sin ���, and interband scattering is allowed at the
zeroth order. Note that, since the Rashba interaction is now
dominant, the zeroth order is sufficient to obtain the nonequi-
librium torque. In this case, we can use the formalism devel-
oped by Schliemann and Loss9 to solve Eq. �4�. Provided

that Wkk�


�=Wk�k


�
, the authors showed that the distribution
function can be expressed as a function of longitudinal �k

�

and transverse �k
� relaxation times �see Ref. 9 for details�,

fk
� = f0

� − eEx��k
��−

� f0
�

�kx
� + �k

��−
� f0

�

�ky
�� . �15�

Interestingly, we find that �k
� =� and �k

�=0 at the zeroth
order; then we can apply the relaxation-time approximation
and we find

�m = −
�Rm

�e

je

EF
ŷ �16�

and

T = − ẑ
�Rm

�e

Jsd

EF
je cos � . �17�

For an arbitrary ratio of �RkF /Jsd we show, in Fig. 1, the
numerical calculation of the torque efficiency defined as the
ratio between the spin torque and the current density �T� / je

FIG. 1. �Color online� Absolute ratio between the torque and the
current density as a function of the Rashba spin-orbit coupling �R.
For these simulations we took EF=10 meV.
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as a function of �R for different values of Jsd, maintaining
EFJsd ,�RkF. This numerical evaluation has been obtained
using the Schliemann and Loss formalism.9 Note that in the
case of weak Rashba spin-orbit coupling, the torque arises
from the small misalignment of the electron spin from the
local magnetization, whereas in the case of strong Rashba
coupling, it stems from the anisotropic electron velocity.

It is interesting to compare the present spin torque with
the conventional spin transfer torque.3 The spin transfer
torque comes from the absorption of the transverse spin cur-
rent by the magnetization and thus it requires a noncollinear
magnetization configuration in the direction of the spin cur-
rent. For the spin-valve structure, the current must be applied
perpendicular to the layers and the magnetization of the two
magnetic layers must not be collinear. Furthermore, the spin
transfer torque involves energy transfer since it competes
with the damping torque. The present spin torque is created
by the intrinsic spin-orbit coupling in the nonequilibrium
condition and thus it does not involve the transfer of the
conduction-electron spin to the magnetization. Then, this
torque exists for a uniformly magnetized layer with the cur-
rent in the plane of the layer and acts as an effective field;
reducing the magnitude of the anisotropy field to increase the
torque efficiency will limit the thermal stability of the mag-
netic layer. Since the torque does not compete with the
damping, it cannot excite current-driven steady magnetiza-
tion precessions, in contrast with the spin transfer torques.

We now consider the possible realization of our predicted
effects in several systems. The essential materials issue is to
find a ferromagnet with a sizable Rashba interaction. First
note that Rashba spin-orbit coupling arises from a structure
inversion asymmetry that restricts the effect to 2DEG. How-
ever, a similar torque should exist in three-dimensional lay-
ers showing bulk inversion asymmetry leading to a
Dresselhaus10 spin-orbit coupling. Most of the studies on the
Rashba interaction have been carried out for nonmagnetic
two-dimensional semiconductors. The spatial inversion
asymmetry leads to a net potential gradient in the growth
direction �ẑ�, which generates the Rashba Hamiltonian due to
spin-orbit coupling HR� �p��V� ·
� �p� ẑ� ·
. For ex-
ample, InGaAs / In0.77Ga0.23As quantum well could produce a
Rashba parameter as large as 10−11 eV m �Ref. 11� and one
would expect that the Rashba parameter should be similar for

the Mn-doped dilute magnetic semiconductors �DMSs� in the
quantum wells. Recently, 2DEG-DMSs were grown by Bove
et al.12 and Teran et al.13 using GaMnAs and CdMnTe quan-
tum well, respectively.

Although Rashba spin-orbit coupling has not been inves-
tigated in magnetic 2DEG yet, a number of theoretical and
experimental studies have underlined the seminal role of in-
terfacial discontinuity of the potential gradient14 in the am-
plitude of the Rashba term. Whereas the confined 2DEG con-
duction electrons are almost insensitive to any
perpendicularly applied electric field,15 the interfacial dis-
continuity of the potential gradient is usually very strong and
gives rise to a sizable contribution.14 Consequently, the po-
tential discontinuity responsible for the Rashba spin-orbit in-
teraction should arise in every 2DEG �conventional semicon-
ductors, DMS, and metals� presenting a sufficiently high
potential gradient and especially a discontinuity of the band
structure at the interface.

Besides conventional semiconductor 2DEG, Rashba-in-
duced spin splitting at metallic surfaces has also been inten-
sively studied both theoretically and experimentally. Ag/
Au�111� �Refs. 16 and 17� interface exhibits Rashba interac-
tion of �R4�10−12–3�10−11 eV m, while Bi/Ag�111�
�Ref. 18� shows Rashba coupling even much stronger than in
semiconductors of up to �R3�10−10 eV m. Magnetic Gd/
GdO �Ref. 19� interface also displays a sizable Rashba inter-
action, depending on the spin projection ��R2.5�10−11 for
minority spins and �R1.5�10−11 for majority spins�.
Other systems, e.g., oxide/ferromagnetic interfaces, might
possess an important spin-orbit interaction, as shown by tun-
neling anisotropic magnetoresistance �TAMR� studies in Fe/
MgO/Fe junctions20,21 as well as by the analysis of magnetic
anisotropy at AlOx /Co interface.22 Recent investigations on
electronic reconstruction-induced quasi-2DEG at oxide
interfaces23,24 exhibit a sharp potential gradient25 that may be
asymmetrically designed in order to obtain a large Rashba
effective interaction.

These studies are of great interest for our topic since me-
tallic devices seem easier to control than DMS. Although no
transition-metals 2DEG have been grown yet, Bihlmayer et
al.26 and Henk et al.27 showed that the Rashba coupling ex-
tends considerably away from the interface �up to 5 ML for
Ag/Au�111��,26 suggesting that Rashba interaction can be
maintained in 2DEG over a few nanometers. Then, even if
the electron density is higher in metallic 2DEG than in semi-
conductor 2DEG, the higher Rashba interaction should lead
to a switching current density lower than that determined by
the Slowczewski torque.

Finally, we propose a way to probe and use this current-
driven magnetization switching. Figure 2 shows the schemat-
ics of a memory bit based on Rashba-induced magnetization
switching. This device is composed of a conventional mag-
netic tunnel junction whose free layer is a magnetic 2DEG
inserted between two thin insulators. The writing current is
injected in the plane of the free layer and can switch the
magnetization orientation in either direction depending on
the sign of V+−V−. The information contained in the free
layer magnetization can then be read by applying a bias volt-
age Vg−V− and measuring the corresponding resistance
across the bottom insulator using the usual tunneling magne-

FIG. 2. Schematics of a memory bit based on Rashba-induced
magnetization switching. The 2DEG-DMS is asymmetrically em-
bedded between two insulators and the writing current is injected in
the plane of the 2DEG. The readout is via the magnetic tunnel
junction based on the tunnel magnetoresistance.
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toresistance effect. In this device, the Rashba-induced mag-
netization switching can be controlled by both the perpen-

dicular applied electric field14 E� �through Vg� and the in-
plane flowing current density �through V+−V−�. As discussed
earlier, the interface between the magnetic 2DEG and the
tunnel barrier should have an important interfacial spin-orbit

coupling. Systems such as MgO/Fe, AlOx /Co, or even Au/Fe
should provide interesting preliminary results.
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