
Theory of spin torque due to spin-orbit coupling

A. Manchon and S. Zhang
Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

�Received 23 December 2008; published 23 March 2009; publisher error corrected 30 March 2009�

The combined effect of spin-orbit coupling and exchange interaction in a single ferromagnetic layer is
investigated. It is shown that, in nonequilibrium regime, the spin-orbit interaction �SOI� gives rise to a trans-
verse spin density that exerts a torque on the local magnetization. The spin torque depends on the symmetry
properties of the SOI. For the inversion-symmetry-preserved SOI such as the impurity SOI and the Luttinger
spin-orbit band, the spin torque is a high-order effect too small to lead to a reasonable critical switching current
density. For the inversion-symmetry-broken SOI, e.g., Rashba and Dresselhaus SOIs, the torque is on the first
order of the SOI parameter and can be effectively used to control the magnetization direction using critical
switching current densities as low as 104–106 A /cm2. We also address the relation between the spin torque
and the anisotropic magnetoresistance. Finally, a number of systems are proposed for the experimental obser-
vation of the SOI-induced torque.
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I. INTRODUCTION

Manipulating the magnetization direction of a ferromag-
net without the use of an external magnetic field has been
made possible by the theoretical prediction of the spin-
transfer torque �STT� effect by Slonczewski1 and Berger2 in
1996. The STT, which is now usually observed in metallic3

and tunneling spin valves,4 as well as magnetic domain
walls,5 comes from the transfer of the transverse spin current
of conduction electrons to the background magnetization and
requires the noncollinear configuration of the magnetic struc-
ture. In these studies, the spin-orbit interaction �SOI� is usu-
ally considered unimportant in the role of the spin transfer.

However, the importance of SOI has been emphasized in
other studies, for example, the experimental and theoretical
researches of anisotropic magnetoresistance �AMR�,6
anomalous Hall effect �AHE�,7 and spin Hall effect �SHE�.8
It is only recently that the effect of the spin-orbit coupling on
the spin torque has been considered in the domain-wall
motion.9,10

We have11 proposed that by using the Rashba SOI along
with the ferromagnetic exchange interaction, the electric cur-
rent can induce a spin torque on the magnetization even in a
uniformly magnetized single layer, without any noncollinear-
ity of the magnetization. Physically, the Rashba SOI creates
a nonequilibrium spin density whose direction is perpendicu-
lar to the current flow and to the potential confinement �nor-
mal to the layer�. The nonequilibrium spin density interacts
with the magnetization via the ferromagnetic exchange cou-
pling and ultimately rotates the magnetization for a suffi-
ciently high current density. Thus, the torque generated by
the Rashba SOI is equivalent to an effective magnetic field;
this is very different from the STT which involves the trans-
fer of the spin current.11

In the present paper, we extend our study of the current-
induced spin torque in other spin-orbit coupled systems. We
find that the different forms of the SOI give rise to different
orders of magnitude of the spin torque, depending on the
symmetry of the interaction. For some forms of the SOI, we
show that the spin torque only exists in the higher orders

with respect to the spin-orbit coupling parameter. Since we
are interested in torques that can induce magnetization
switching for reasonable critical current densities
��107 A /cm2�, we will only focus on first-order terms and
will not explicitly calculate the form of higher-order compo-
nents.

The paper is organized as follows. In Sec. II, we present
the principle of such a torque based on the spin continuity
equation. We also propose a simple physical picture to un-
derstand the combined effect of exchange interaction and
SOI. The spin torque is then investigated for different forms
of the spin-orbit interaction in Sec. III. After discussing the
case of three-dimensional systems we derive the form of the
torque for two-dimensional systems with Rashba and
Dresselhaus spin-orbit couplings. In Sec. IV, we first sum up
our results by emphasizing the importance of the SOI sym-
metries and address the relation between the AMR and the
SOI-induced torque in the different cases. We then stress out
the differences between the usual STT and our SOI-induced
torque and finally discuss the experimental observation of
such a torque. The conclusion is given in Sec. V.

II. PRINCIPLE OF SPIN-ORBIT-INDUCED TORQUE

The coupling between the electron spin and its orbital can
be derived from the Dirac equation for a relativistic electron,
expanded to the lowest order in �v /c�2 �v and c are the elec-
tron and light velocities, respectively�. In a ferromagnetic
layer in the presence of spin-orbit coupling, the one-particle
Hamiltonian is

Ĥ = Ĥ0 + Ĥso, �1�

Ĥ0 =
p̂2

2m
− JexM̂ · �̂ , �2�

Ĥso =
�

2mc2 ��V � p̂� · �̂ , �3�

where m is the carrier mass, � is the reduced Planck’s con-

stant, and c is the light velocity. Ĥ0 represents the free-
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electron Hamiltonian in a ferromagnetic layer with magneti-

zation direction M̂ and with an exchange coupling Jex
between the carriers’ spin and the background magnetization.

�̂ is the operator of Pauli-spin matrices. Ĥso represents the
interaction between the carrier spin and the carrier momen-
tum. �V is the effective local electric field seen by the itin-
erant charge with momentum operator p̂. As we will see in
Sec. III, this potential arises from different sources, such as
impurities, host atoms, as well as the structural confinement.
We will consider a set of commonly used forms of spin-orbit
coupling later.

From the above Hamiltonian, we can deduce the spin-
density continuity equation for carriers and find

dm

dt
= − � · Js −

Jex

�
M � m +

1

2mc2 ���V � p̂� � �̂� ,

�4�

where m= ��̂� is the spin density and Js is the spin current
tensor. �¯� denotes quantum-mechanical averaging. In the
above equation of motion, we have treated the local magne-
tization vector M classically. The equation of motion for this
classical vector M is usually modeled by the Landau-
Lifshitz-Gilbert equation in addition to the spin torque due to
the presence of the nonequilibrium spin density m,

dM

dt
= − �M � H + �M �

dM

dt
+

Jex

�
M � m , �5�

where H is the effective field, � is the gyromagnetic ratio,
and � is the Gilbert damping. The last term is called the
current-induced spin torque T, which is the subject of our
calculations throughout the paper. Assuming a uniformly
magnetized single layer �� ·Js=0� in steady-state �d /dt=0�
condition, the out-of-equilibrium torque on the magnetiza-
tion is directly proportional to the spin density of the con-
duction electrons,

T �
Jex

�
M � m =

1

2mc2 ���V � p̂� � �̂� . �6�

Before we calculate Eq. �6� for various spin-orbit interac-
tions in the nonequilibrium condition, we consider a simple
case where the gradient of the potential in the spin-orbit
Hamiltonian is replaced with a constant vector in the direc-
tion normal to the layer z, i.e., �V�z. This is known as the
Rashba Hamiltonian12 and it is derived for the structure
inversion-asymmetric systems; we will further discuss the
Rashba Hamiltonian in Secs. III and IV. In this case, the spin
torque of Eq. �6� becomes

T =
	

�
��ẑ � p̂� � �̂� . �7�

To see how the above spin torque is estimated in the pres-
ence of the electric field, we illustrate the Fermi surfaces for
three cases. First, consider a ferromagnet without spin-orbit
coupling, the Fermi surfaces of majority and minority bands
are for the carrier spins pointing parallel and antiparallel to
the magnetization �see Fig. 1�a��. When applying an electric
field, the Fermi surface of each band is shifted �dashed

circles in Fig. 1�a��, but the amount of spins in excess is
exactly balanced by the amount of lacking spins. The net
spin density generated by the Fermi-surface shift for both
spin populations is then zero, i.e., there is no nonequilibrium
spin density and thus the spin torque is zero.

In the second case where there is only spin-orbit coupling
but without exchange interaction between the background
magnetization and the itinerant spins, the Fermi surfaces are
two spheres with the spin direction perpendicular to the elec-
tron momentum. When the electric field displaces the Fermi
surfaces in the direction of the current �see Fig. 1�b��, each
band gains a net spin density with an opposite sign. Since
these two Fermi spheres have different radius, the total spin
density is thus finite. However, these electric-field-induced
spin densities do not exert a torque the local magnetization
due to the absence of the exchange interaction.

Thus one needs both SOI and the exchange interaction to
generate the current-driven spin torque. The Rashba SOI pro-
duces the nonequilibrium spin density proportional to the
current density and the exchange interaction couples the
electron-spin density with the local magnetization. Figure
1�c� shows the spin configuration on the Fermi surface when
the Rashba SOI is small compared to the exchange interac-
tion. The detailed spin configuration depends on the form of
the SOI; we will discuss the various SOIs next.

III. SPIN TORQUES FOR VARIOUS SPIN-ORBIT
INTERACTIONS

While Eq. �3� is the general form of the SOI coupling, the
potential V in Eq. �3� includes all electric potentials in the
solids. In this section, we consider several special forms
which have been frequently used in model calculations for
AMR, AHE, and SHE. First, we analyze the impurity-
induced SOI in three-dimensional systems. Then, we will
study the spin torque for Luttinger SOI. In both cases, we
find the spin torque vanishes for the first order of the spin-
orbit coupling parameter; thus, the spin torque is a high-
order effect. Finally, we consider the SOI with bulk and
structure inversion asymmetries12,13 and find that the spin
torque exists in the first order of the spin-orbit coupling.

FIG. 1. Schematics of the Fermi surface for majority �top� and
minority �bottom� electrons �a� in a ferromagnet without Rashba
SOI, �b� in a layer with Rashba SOI and without exchange interac-
tion, and �c� in a ferromagnet with small Rashba SOI.
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A. Impurity spin-orbit interaction

In bulk ferromagnetic systems, the SOI has two origins:
intrinsic �related to the band structure of the host elements�
and extrinsic �related to the impurities�. They both contribute
to the spin asymmetry in the electronic transport, giving rise
to AMR, AHE, and SHE. The extrinsic SOI gives rise to both
an anomalous velocity14 �extrinsic skew scattering� and to a
displacement in the electron average position15,16 �side jump
scattering�. We consider below the spin torque for the impu-
rity SOI.

The impurity Hamiltonian including the spin-orbit inter-
action is

Ĥimp = �
j

V�r − R j� +

so

�
„�V�r − R j� � p̂… · �̂ , �8�

where V�r−R j� is the potential of the impurity R j and 
so is
the spin-orbit coupling parameter. It is noted that 
so is usu-
ally a factor of 1000 larger than the bare spin-orbit parameter
��2 /2mc2� due to the influence of Bloch states.17

The treatment of spin transport for the above impurity
SOI has been carried out, for instance, by Potter18 to address
the issue of AMR and by Crepieux and Bruno16 to study the
AHE. These treatments required either second- or third-order
perturbation theory and yielded effects proportional to at
least 
so

2 . Performing a similar calculation, we show that the
spin torque up to first order of 
so vanishes as well.

The Fourier transform of the above Hamiltonian is

Ĥimp = �
j

�
k�

Vkk�e
i�k−k���r−Rj�	1 + i


so

�
��k − k�� � p̂� · �̂
 .

�9�

The scattering states are described using the Lippman-
Schwinger equation

�k,s�sc = �k,s�0 +
1

�k
s − H0 + i0

Himp�k,s�sc. �10�

This state can be developed up to the desired order to obtain
the anisotropic effect within the conductance and the spin
accumulation. The scattering rate is then obtained from the
usual Fermi golden rule,

Wkk�
ss� =

2�

�
�

j

�sc�k,s�V�r − R j��k�,s��sc�2��k
s − �k�

s�� .

�11�

Up to the second order in the impurity potential, assuming
that V�r��V�r�, the relaxation rate reads

Wkk
ss �

2�N�V�2

�
ss�„1 + 8�2�V�2�

k�s�

��k
s − �k�

s��

��ss� + 
so
2 �k � k�� · �ss����k � k�� · �s�s��� ,

�12�

where N is the impurity concentration and �k
s is the electron

energy. The anisotropic magnetoresistance can be obtained
using the Boltzmann formalism. By using an unperturbed

electron velocity v=�k /m �the anisotropic scattering essen-
tially lies in the scattering rate6�, we find that the AMR is on
the form �
so

2 �V�2. To calculate the spin torque, we use Eq.
�6� as follows:

Tk
s =


so

� sc�k,s���V�r� � p̂� · �̂�k,s�sc. �13�

Up to the second order in the impurity potential and the first
order in 
so, the spin torque is

Tk
s = 4�N
so �

k�,s�

��k
s − �k�

s���Vkk��
2�k � k�� � �ss�.

�14�

As long as the potential Vkk� is an even function of k−k�,
the spin torque is zero when we integrate k� in Eq. �14�. We
conclude that the spin torque vanishes up to the first order in
the impurity spin-orbit parameter. The calculation of the spin
torque to the second order is rather cumbersome; we will not
give the explicit expression here.

B. Luttinger spin-orbit Hamiltonian

A number of III-V Mn-doped semiconductors are known
to become ferromagnetic at low temperature,19 e.g.,
�In,Mn�As, �Ga,Mn�As, or �Ga,Mn�N, due to the coupling
between Mn impurities mediated by the holes.20 The band
structure of these materials shows fourfold degenerates at the
K point of the valence bands, usually modeled by the Lut-
tinger Hamiltonian.21 Thus our effective Hamiltonian con-

sists of the Luttinger Hamiltonian ĤL of s=3 /2 holes and the
exchange interaction,

Ĥ = ĤL − Jpdŝ · M̂ , �15�

where Jpd is the effective exchange energy between the Mn
cations and the itinerant p-type holes, such that Jpd
=JiNMnSMn, where Ji is the exchange integral, NMn is the
concentration of the Mn cations, and SMn=5 /2 is the spin of
the acceptors.20 The magnetization direction of the Mn im-

purities is M̂= ẑ. The Luttinger Hamiltonian in Eq. �15� is
defined as

ĤL =
�2

2m
��1 +

5

2
�2�k2 − 2�2�k · Ĵ�2� �16�

and Ĵ= r̂� p̂+ ŝ is the total angular-momentum operator.
Note that the spin operator ŝ for 3/2 spins is now a 6�6
matrix accounting for heavy holes, light holes, and split-off
bands �see Ref. 22 for example�. In the following, we neglect
the role of the split-off bands and focus on heavy holes and
light holes, reducing the Hamiltonian �16� to a 4�4 matrix.
We explicitly show below that the spin torque vanishes in the
first order of the spin-orbit coupling parameter for both
strong- and weak-coupling limits.

1. Weak spin-orbit coupling

We first examine the weak spin-orbit coupling, i.e., �2
��1 ,Jpd /�F ��F is the Fermi energy�. In this limiting case,
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we assume that the orbital angular momentum is negligible
so that the total angular momentum essentially reduces to the
spin angular momentum. Then, the unperturbed Hamiltonian

Ĥ0=�1p̂2 /2m−Jpdŝz has four nondegenerate eigenstates and
eigenenergies for the fixed wave vector k,

�hh,↑�↓��, �hh
↑�↓� = �1�2k2/2m � Jpd/2, �17�

�lh,↑�↓��, �lh
↑�↓� = �1�2k2/2m � Jpd/6. �18�

Here, �hh and �lh is a notation that does not necessarily refer
to heavy and ligh holes. Using the first-order perturbation
theory, up to the first order in up to the first order in �2, the
eigenstates are

�hh,+� = �hh,↑� +
3�3�2

Jpd

�2k2

2m
�0,

sin2 �

2
e2i�,sin 2� ei�,0�T

,

�19�

�hh,− � = �hh,↓�

−
3�3�2

Jpd

�2k2

2m
�0,sin 2� e−i�,

sin2 �

2
e−2i�,0�T

,

�20�

�lh,+� = �lh,↑� +
3�3�2

Jpd

�2k2

2m
�sin 2� e−i�,0,0,−

sin2 �

2
e2i��T

,

�21�

�lh,− � = �lh,↓� −
3�3�2

Jpd

�2k2

2m
�sin 2� ei�,0,0,

sin2 �

2
e−2i��T

,

�22�

where the superscript T denotes the matrix transposition and
k=k�sin � cos � , sin � sin � , cos ��. Thus the transverse
spin densities of these states are

��+�hh
+ = ��+�hh

− =
3�2

Jpd

�2k2

2m
sin 2� ei�, �23�

��+�lh
+ = ��+�lh

− = −
3�2

Jpd

�2k2

2m
sin 2� ei�. �24�

Within the Boltzmann formalism, the nonequilibrium trans-
verse spin density is then

m = − eE�0�
j,s
� d3k

�2��3 ��+� j
svi�� j

s − �F� , �25�

where the electric field E is applied along the direction i
= �x ,y ,z�, j= �hh ,hl�, s=�, �0 is the relaxation time, and the
electron velocity is vi=�1�ki /m. As expected, the transverse
spin density vanishes after integration over k, for both heavy
holes and light holes, and thus there is no spin torque up to
the first order in �2.

2. Strong spin-orbit coupling

In the opposite limit where �1 ,�2�Jpd /�F, we treat Ĥ�

=−Jpdŝ ·M̂ as a perturbation. In the following, we consider
only the spin torque arising from heavy holes since the spin
transport in DMS is generally dominated by these holes.20

The eigenenergies of the unperturbed Luttinger Hamiltonian
are �L= �2k2

2m ��1−2�2� for heavy holes and the corresponding
eigenstates are

� + � = 1/2�e−2i� sin �,�3 sin �,0,− 2ei� cos �� , �26�

�− � = 1/2�2e−i� cos �,0,�3 sin �,e2i� sin �� . �27�

When the exchange interaction Ĥ� is turned on as a pertur-
bation, the first-order correction to the energy is ��s

=sJpd /2 cos��−��sin � and the eigenstates become

��+� = �e−2i� cos3�

2
,�3 sin2�

2
cos

�

2
,�3e−i� cos2�

2

�sin
�

2
,ei� sin3�

2
�T

, �28�

��−� = �e−2i� sin3�

2
,�3 cos2�

2
sin

�

2
,− �3e−i� sin2�

2
cos

�

2
,

− ei� cos3�

2
�T

. �29�

The spin density for these wave functions is thus

m = ��̂� = sk/2k , �30�

i.e., the spin densities for majority and minority heavy holes
are opposite and equal, so that no effective torque is gener-
ated by the first-order term in Jpd. One has to develop the
perturbation theory one step further to obtain a spin torque.
Consequently, the SOI-induced torque arising from the Lut-
tinger band for the hole-mediated systems is not expected to
produce magnetization switching at a reasonable current den-
sity.

C. Inversion asymmetry

There are a number of systems in solids that do not have
spatial inversion symmetries, i.e., the potential V�−r��V�r�.
In these cases, the spin-orbit Hamiltonian �Eq. �3�� is not
invariant under the spatial inversion. We discuss three com-
monly studied systems. First, if a crystal has a bulk inversion
asymmetry �BIA�, e.g., zinc-blende structure, such as GaAs
or InSb, Dresselhaus13 showed that the spin-orbit coupling
has the following form:

ĤC = ��kx�ky
2 − kz

2��x + ky�kz
2 − kx

2��y + kz�kx
2 − ky

2��z� .

�31�

When such a crystal is subjected to strain at the interface,23

this introduces a structure inversion asymmetry �SIA� which
yields a simpler form of the spin-orbit coupling as follows:
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ĤD = ���xkx − �yky� . �32�

In the case of a thin layer embedded between two asymmet-
ric interfaces, Bychkov and Rashba12 introduced a different
form of SIA spin-orbit coupling,

ĤR = 	�ẑ � k̂� · �̂ . �33�

The Rashba Hamiltonian postulates that the potential is
highly dependent on the growth direction ẑ, which is usually
the case for the dimensional confinement potential in layered
structures. An interesting characteristic of the SIA and BIA
interactions is that they can be tuned by applying an external
electric field across the two-dimensional electron gas
�2DEG�.24,25

The above three SOIs have been intensively studied both
experimentally and theoretically. The relative amplitude of
	, �, and � is very material dependent and will be addressed
in Sec. IV. We will first present the method we used to obtain
the spin torque and then we will derive the spin torque in the
presence of the k-linear Dresselhaus and Rashba SOIs. The
case of cubic Dresselhaus effect will be addressed at the end
of the section.

The Hamiltonian of a single ferromagnetic two-
dimensional electron gas in the presence of both Rashba and
Dresselhaus spin-orbit couplings is the combination of Eqs.
�32� and �33�,

Ĥ = Ĥ0 + 	��xky − �ykx� + ���xkx − �yky� , �34�

where we confine the electron motion in two dimensions

�x ,y� and Ĥ0 is defined by Eq. �2�. We choose the magneti-

zation direction at M̂=cos �x̂+sin �ŷ and find that the elec-
tron eigenenergy and wave function are

�k
s =

�2k2

2m
+ sk, �35�

k = ��− Jsd cos � + 	ky + �kx�2 + �Jsd sin � + 	kx + �ky�2�1/2,

�36�

and

�k
s =

1
�2A

�sei�k

1
�exp�ik · r� , �37�

where tan �k= �Jsd sin �+	kx+�ky� / �−Jsd cos �+	ky +�kx�,
s=�, and A is the area of the film. Then, the velocity and
spin density are

vk
s =

��k
s

� � k
=

�k

m
+ s��

�
cos �k +

	

�
sin �k�x

+ s��

�
sin �k +

	

�
cos �k�y , �38�

ms = 2se−i�k. �39�

To calculate the nonequilibrium spin density and the spin
torque in the presence of the current, we use the Boltzmann
equation for the two bands,

eE · vk
s�−

� f0
s

��F
� = �

s�
� d2k �Wkk�

ss��fk
s − fk�

s�� , �40�

where E=E�cos �0 x+sin �0 y� is the electric field in the
�x ,y� plane, f0

s is the equilibrium distribution of the two
bands �s=��, and the scattering probability is

Wkk�
ss� =

2�

�
�

j

���k
s�Vsc�r − R j���k�

s���2��k
s − �k�

s��

=
�ni

�
V2�1 + ss� cos��k − �k�����k

s − �k�
s�� , �41�

where Vsc�r�=V�r� is the impurity scattering potential, R j is
the impurity position, and ni is their concentration. The
above definition accounts for both intra- �s=s�� and inter-
band �s=−s�� scattering, so that Eq. �40� may be solved nu-
merically.

However, Schliemann and Loss26 proposed a formalism to

exactly solve Eq. �40� in 2DEG provided that Wkk�
ss� =Wk�k

s�s .
The authors showed that the deviation from the equilibrium
distribution gk

s = fk
s − f0

s can be decomposed into longitudinal
and transverse contributions gk

s =gk
s� +gk

s� written as

gk
s� = − e�−

� f0
�

��F
� �k

s�

1 + � �k
s�

�k
s��2E · vk

s , �42�

gk
s� = − e�−

� f0
�

��F
� �k

s�

1 + � �k
s�

�k
s� �2 �z � E� · vk

s . �43�

The longitudinal and transverse relaxation times �k
s� and �k

s�

are

��
s�k� = �

s�
� d2k�

�2��2Wkk�
ss��1 −

�vk�
s��

�vk
s�

cos��k
s − �k�

s��� ,

�44�

��
s �k� = �

s�
� d2k�

�2��2Wkk�
ss�

�vk�
s��

�vk
s�

sin��k
s − �k�

s�� , �45�

and cos �k
s =E ·vk

s /E�vk
s� and sin �k

s = �z�E� ·vk
s /E�vk

s�. This
method allows us to evaluate both currents and spin density
in the general case.

1. Large exchange coupling

We assume that �F�Jsd�	kF ,�kF, where kF

=�2m�F /�2. Then, interband transitions can be neglected to
a good approximation,11 yielding an isotropic scattering

probability Wkk�
���=�niV

2 /� at the first order; this is equiva-
lent to a constant relaxation-time approximation. Conse-
quently, the Boltzmann distribution in Eq. �40� has a simple
solution,
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fk
s = f0

s − eE · vk
s��−

� f0
s

�E
� , �46�

where � is the relaxation time �e�0�. The in-plane spin den-
sity is then

ms = �
k

gk
s��k

s ��̂ ��k
s �

= 2s� d2k

�2��2gk
s�cos �k x − sin �k y� . �47�

The calculation is straightforward and we can rewrite the
spin density m=m� +m�, where m� is along the magnetiza-
tion M and m� is transverse to it. This yields

m� =
e�0

�

2m

�3 �	 sin �� − �0� − � cos�� + �0��M , �48�

m� =
e�0

�

2m

�3 �	 cos�� − �0� + � sin�� + �0��M�, �49�

where M�=M�z. Then, the torque exerted on the local
magnetization is

T =
Jsd

�
M � m = 2Je

Jsd

�F

m

e�2 �	 cos�� − �0� + � sin�� + �0��z ,

�50�

where Je=�0E and �0=e2�0�F /��2 is the conductivity in the
absence of spin-orbit coupling. Interestingly, the Rashba-
induced torque ��	� only depends on the relative angle be-
tween the magnetization and the electric field ��−�0�,
whereas the Dresselhaus-induced torque ���� depends on
the absolute angles ��+�0�. This comes from the specific
form of the Dresselhaus coupling: whereas Rashba SOI
arises from the structure asymmetry, namely, the lack of
symmetry between the top and bottom interfaces, the
Dresselhaus effect comes from the lack of symmetry of the
crystal itself. Consequently, the Dresselhaus torque depends
on the relative orientation of the magnetization and the elec-
tric field with respect to the crystal axes, here �x ,y�, whereas
these axes do not play any role in the Rashba torque. Note
that these different angular dependences were used by Gan-
ichev et al.27 to separate the Dresselhaus contribution from
the Rashba contribution in zero-field spin-splitting studies.

We can also estimate the anomalous Hall effect and an-
isotropic magnetoresistance. To do so, we make the hypoth-
esis that the electron spin is aligned on the magnetization.
We use the formalism developed by Schliemann and Loss26

and find that the longitudinal and transverse conductivities
are

�� = �01 + �vD

vF
�2

sin2�� + �0� + �vR

vF
�2

cos2�� − �0�

−
vRvD

vF
2 �sin 2� + sin 2�0�� , �51�

�� =
�0

2 �vD

vF
�2

sin 2�� + �0� + � vR

�vF
�2

sin 2�� − �0�

− 2
vRvD

vF
2 cos 2�0� , �52�

where vF=�2�F /m is the Fermi velocity, vR=	 /�, and vD
=� /�. The corresponding AMR is then

AMR =
���� = �0 + �/2� − ���� = �0�

���� = �0�
= �vD

vF
�2

cos 4�0

− �vR

vF
�2

+
vRvD

vF
2 2 sin 2�0. �53�

Interestingly, in two-dimensional systems, the AMR is a
second-order effect ��	2 ,�2�, whereas the spin torque is a
first-order mechanism ��	 ,��. Furthermore, the AMR
changes its sign depending whether Rashba or Dresselhaus
SOI is stronger. The implications of this dependence on the
SOI will be discussed in Sec. IV.

2. Weak exchange coupling

Since we are only interested in the lowest-order contribu-
tion to the transport, we calculate the torque at the zeroth
order in s-d coupling.11 This is justified by the fact that the
torque is defined as proportional to the s-d coupling and
arises from the scattering anisotropy induced by the spin-
orbit coupling. However, we still have to assume either 	
�� or ��	 in order to find analytical formulas. Then, after
developing the energy and scattering matrix up to the zeroth
order in Jsd, but up to the first order in either � or 	, we
straightforwardly find

T = Je
Jsd

EF

m

e�
�vR

2
cos�� − �0� + vD sin�� + �0��z, � � 	 ,

�54�

T = Je
Jsd

EF

m

e�
�vR cos�� − �0� +

vD

2
sin�� + �0��z, 	 � � .

�55�

Consequently, in the weak exchange coupling limit the
torque is proportional to 
so /2 �
so=	 ,��, whereas it is pro-
portional to 
so in the strong exchange coupling limit.

3. Cubic Dresselhaus SOI

Now that we have treated k-linear SOI in 2DEG, we turn
ourselves to the case of cubic Dresselhaus SOI. Similarly to
the previous calculations, we restrict the electron motion to a
two-dimensional plane for simplicity. This restriction simpli-
fies the treatment below and does not fundamentally modify
the results. Assuming a spin-orbit Hamiltonian in the form of
Eq. �31�, we find that the spin density is

mx
s = 2s	− cos � +

�

Jsd
�sin2 � kx�ky

2 − kz
2�

− cos � sin � ky�kz
2 − kx

2��
 , �56�
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my
s = − 2s	sin � +

�

Jsd
�cos � sin � kx�ky

2 − kz
2�

− cos2 � ky�kz
2 − kx

2��
 . �57�

Then, the corresponding spin torque is

Ts = − 2s��sin � kx�ky
2 − kz

2� − cos � ky�kz
2 − kx

2��z . �58�

The form of the torque is very different from the k-linear
Dresselhaus SOI case and involves symmetric terms �ky

2

−kz
2� and �kz

2−kx
2�. Assuming a relaxation-time approxima-

tion, we find that the angular summation cancels out due to
the isotropy of the interaction; �kx

2�= �ky
2�= �kz

2�. Then, no net
torque exists at the first order with pure cubic Dresselhaus
effect. To determine the form of the SOI-induced spin torque
in this case, one has to develop the spin density up to the
second order at least.

IV. DISCUSSIONS

A. Role of SOI symmetries

In Sec. III, we obtained two sorts of result: in the case of
impurity-induced SOI, cubic Dresselhaus effect and Lut-
tinger spin-orbit, the SOI-induced torque is at least on the
order of 
so

2 . In contrast, in the case of SIA systems �Rashba
and k-linear Dresselhaus SOIs�, the spin torque is on the
order of 
so.

The difference between these two types of systems comes
from the symmetry of the spin-orbit interaction. In the case
of a system with a spatial inversion symmetry �impurity-
induced SOI and Luttinger SOI�, V�r�=V�−r�⇒Hso�r�
=Hso�−r� and the spin torque is found to be zero at the first
order. In the case of cubic Dresselhaus SOI, although the
interaction possesses a BIA, Hso�k�=−Hso�−k�, it also pos-
sesses a rotational symmetry �the SOI is invariant under cir-
cular permutations over the x ,y ,z indices�. In the case of an
isotropic environment, the k integration vanishes and the
spin torque is found to be zero at the first order.

Interestingly, in all these systems, AMR�
so
2 .6 Since, the

amplitude of AMR is on the order of a few percent only �in
both transition-metal alloys and DMS�, the spin torque aris-
ing at higher order is expected to be too small to manipulate
the magnetization direction of a ferromagnet.

In the case of SIA, the spin-orbit interaction is linear in k
and depends on its sign, so that Hso�k�=−Hso�−k�. Further-
more, contrary to the three-dimensional cases �impurities,
Luttinger, and cubic Dresselhaus�, Hso does not depend on
the electron position r. This implies that the symmetry rules
do not apply here and a nonzero torque is found at the first
order in 
so. In such systems, the AMR is on the order of 
so

2 ,
which indicates that even if the AMR is only a few percent,
the spin torque is expected to be strong enough to control the
magnetization for a reasonable current density.

B. SOI spin torque versus spin-transfer torque

It is interesting to compare the present spin torque with
the conventional spin-transfer torque.1,2 First of all, the spin-

transfer torque comes from the absorption of the transverse
spin current by the magnetization and thus it requires a non-
collinear magnetization configuration in the direction of the
spin current �e.g., spin-valve structures or domain walls�.
The electrical current must flow perpendicular to the plane of
the layers. In general, the STT possesses two components,
referred to as in plane and out of plane. The former generally
dominates the latter and directly competes with the damping
torque. Consequently, the STT induces magnetization
switching3 as well as steady high-frequency magnetic
precessions.28 The out-of-plane component of the STT acts
as an effective field on the local magnetization and is respon-
sible for current-induced domain-wall motion.5

The present SOI-induced spin torque is created by the
intrinsic �or extrinsic, in case of impurity-induced SOI� spin-
orbit coupling in the nonequilibrium condition and thus it
does not involve the transfer of the conduction-electron spin
to the magnetization. Then, this torque exists for a uniformly
magnetized single layer with the current applied in the plane
of the layer and acts as an effective field. Since the torque
does not compete with the damping, it cannot excite current-
driven steady magnetization precessions, in contrary to the
STT.

C. Material considerations

As stated in Sec. I, systems showing magnetoresistive ef-
fects �metallic spin valves, magnetic tunnel junctions, and
magnetic domain walls� all present a STT effect that can be
regarded as the reciprocal effect of the magnetoresistance.
Consequently, we also expect to observe a spin torque in
systems showing AMR effect.

The most promising devices to observe the SOI-induced
spin torque are the magnetic 2DEG. In Ref. 11, we estimated
that the current density needed to switch the magnetization
of a GaMnAs-type 2DEG, assuming 	=10−11 eV m, would
be about 5�106 A /cm2. Depending on the material charac-
teristics �SOI strength, carrier effective mass, carrier density,
etc.�, the critical current is expected to be on the order of
104–106 A /cm2.

The relative amplitude of Rashba and Dresselhaus SOIs
has been studied experimentally. Since the linear Dresselhaus
SOI arises from mechanical strains in the layers, the ratio
depends on the material. Then, ratios 	 /��1–7 have been
measured.29 As an example, Miller et al.25 measured the
three contributions of SOI in a GaAs/AlGaAs 2DEG: 	=4
�10−13 eV m, �=5�10−13 eV m, and �=3
�10−29 eV m3. Furthermore, Rashba spin-orbit coupling on
the order of 10−11 eV m has been found in
InGaAs / In0.77Ga0.23As �Ref. 30� and in HgCdTe.31 One
would expect that the Rashba parameter should be similar for
the Mn-doped dilute magnetic semiconductors in the quan-
tum wells.32

Besides conventional semiconductor 2DEG, SOI-induced
spin splitting has been studied at nonmagnetic metallic sur-
faces, where only Rashba SOI is present. Heavy-metal
interfaces33 have shown Rashba SOI on the order of
10−11 eV m or above. Very few experimental studies have
been published on magnetic interfaces, but recent investiga-
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tions suggest strong Rashba SOI in such systems also.34

Strong spin-orbit coupling due to the presence of interfacial
oxide has also been reported35,36 and could lead to significant
Rashba interactions.

The last system that may provide interesting results re-
garding the SOI-induced torque is the conductive interface
formed between two insulating oxides. The electronic recon-
struction at the interface between two dielectric perovskites,
such as LaAlO3 /SrTiO3 �Ref. 37� or LaTiO3 /SrTiO3,38 cre-
ates high-mobility quasi-two-dimensional electron gas �q2-
DEG�. This gas is generated through different mechanisms
depending on the structure: electron transfer between one
sublattice to another,39 oxygen vacancies, or polarity
discontinuity38 between the two perovskite insulators. This
suggests the presence of a sharp potential gradient40 that pro-
duces electrons in excess at the interface. This potential gra-
dient could be asymmetrically designed in order to obtain a
large Rashba effective interaction. The recent demonstration
of ferromagnetism at LaAlO3 /SrTiO3 interfaces41 is of great
interest for the present study, providing magnetic 2q-DEG
with tunable Rashba SOI.

V. CONCLUSION

The combined effect of spin-orbit coupling and exchange
interaction has been theoretically studied in a single homo-
geneous ferromagnetic layer. We showed that, in principle,
the spin-dependent scattering arising from the spin-orbit cou-
pling induces an out-of-equilibrium spin density when apply-
ing an external current. This spin density can be used to
manipulate the magnetization direction of the layer, without
the use of an additional polarizing layer.

We then addressed the form of this torque considering
several forms of the spin-orbit coupling. In the presence of
impurities, we find that the spin torque is present only at
higher order in spin-orbit coupling due to the symmetry of
the interaction. Consequently, we expect a critical switching
current larger than the one needed with the conventional STT
��107 A /cm2�.

In DMS, the transport is represented by a Luttinger
Hamiltonian and the spin-orbit arises from the band structure
itself. Again, due to the symmetry of the interaction, the spin
torque effect does not exist at the first order.

In systems showing linear spin-orbit interaction, such as
Rashba and Dresselhaus SOIs, the spin torque is on the first
order in SOI. The magnetization direction can be controlled
by the electrical current, using critical current densities on
the order of 104–106 A /cm2. The cubic Dresselhaus spin-
orbit coupling does not generate a spin torque at the first
order.

We finally discussed the possibility of observing the SOI-
induced spin torque in a number of systems, including me-
tallic and semiconductor-based magnetic 2DEG and oxide
interfaces. Up to now, the experimental studies have mainly
addressed the characteristics of Rashba SOI in nonmagnetic
2DEG, but the recent realization of magnetic 2DEG using
DMS �Ref. 32� or oxide interfaces41 constitutes a promising
step toward the observation of the SOI-induced spin torque.
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