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Abstract. We formulate a density functional theory ( DF) to describe non-collinear magne- 
tism. Self-consistent, spin-polarised energy-band calculations based on the local approxi- 
mation to DF theory are presented in which the magnetisation associated with different 
atoms in  a unit cell is allowed to point along different, non-collinear directions, 
Non-self-consistent calculations employing non-collinear quantisation axes have been 
presented before; the present calculations are. we believe. distinguished by: first, being 
self-consistent; second, providing the total energy; and third. providing the spin- 
quantisation axes. In our first applications we deal with the non-collinear antiferromagnets 
7-FeMn, RhMn,, and PtMn, and show that their total energies are minimised in  the 
tetrahedral (FeMn) or triangular (RhMn,. PtMn,) magnetic structures first proposed by 
Kouvel and Kasper. 

1. Introduction 

Numerous spin-density functional calculations of the energy band structure and 
related electronic properties of ferromagnetic and antiferromagnetic materials have 
appeared in the recent literature. Koelling (1981) has compiled a listing of papers on 
band structure calculations which also contains work on magnetic systems and covers 
the field up to about 1980. Since then some 50 more papers on this subject were 
published-far too many to deal with here. Yet, a small selection must be made to 
illustrate the field. Thus very recent and representative examples are the work by 
Wang et a1 (1985) and Moruzzi et a1 (1986) on magnetic and structural ordering in Fe, 
CO and Ni. Binary intermetallics and compounds were studied among many others by 
Malozemoff er a1 (1984) and Coehoorn et a1 (1985). Work on ternary compounds is 
reviewed by one of the authors (Kiibler 1984) and by de Groot and Buschow (1986) 
and a discussion of transition-metal oxides can be found in a paper by Kiibler and 
Williams (1986). 

Common to all of these theories and calculations is the treatment of the magnetic 
moment as having only two directions, namely up and down, as in the Ising model. 
We call these moment arrangements collinear. 

It was first in work on disordered magnetic moments in the CPA approximation 
(Oguchi et ul 1983, Pindor er ul 1983) and in models using spin spirals (You and Heine 
1982, Haines et a1 1985) that the magnetic moment was treated as a vector observable 
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and non-collinear arrangements were admitted. Non-collinear order was also con- 
sidered by Cade (1981) in an attempt to understand the antiferromagnetism of Mn 
and, very recently, Sandratskii and Guletskii (1986) obtained the non-self-consistent 
band-structure of a spin spiral in Fe and deduced the energy of a ‘frozen’ spin wave. 

Starting from density functional theory (Kohn and Sham 1965, von Barth and 
Hedin 1972) we here derive the effective single-particle equations for non-collinear 
magnets; i.e. in the crystalline systems which we have in mind the spin-quantisation 
axis is allowed to vary from site to site. However, we shall see that the orientation of 
the axes with respect to some frame of reference is not arbitrary; rather it is a property 
of the ground state and thus, in contrast to other work on non-collinear magnets, it is 
an output quantity. Although the theory predicts well defined sets of directions for the 
spins. it does not couple the latter to the underlying crystal lattice, all that is important 
is their relative orientation. This changes when spin-orbit coupling (soc) is added to 
the Hamiltonian. Except perhaps for the lanthanides and actinides, a typical energy 
implied by soc is an order of magnitude smaller than the spin-spin interaction 
energies in non-collinear arrangements; still, soc effectively supplies the coupling of 
the magnetic moments to the crystal lattice thus giving rise to anisotropy. Hence, this 
theory is a prerequisite to calculations of magnetic anisotropy (Sticht 1988). 

Using the local approximation to density functional theory, the effective single- 
particle equations can be solved self-consistently and the total energy thereby 
obtained. The latter is used to single out the correct ground state in those cases where 
more than one set of spin-quantisation axes is possible. We implement the theory 
using the ASW method (Williams et a1 1979) and apply it  to calculations of non- 
collinear antiferromagnets which are characterised by an order parameter having a 
wave vector q = 0; examples of these are ’tetrahedral’ (y-FeMn) and ‘triangular’ 
(RhMn? and PtMn,) antiferromagnetic systems (Endoh and Ishikawa 1971, Kouvel 
and Kasper 1965. Kren et ul 1967). 

2. Formulation of the problem 

Following von Barth and Hedin (1972) we write down density functional theory using 
as an external potential the 2 x 2 matrix with elements ~ ~ ~ , ~ ( r ) .  Let the elements of the 
density matrix be p ( J r ) .  The electron density is then Trp=n( r )  and the total energy 
becomes 

To is the kinetic energy of non-interacting electrons, and E,, is the exchange- 
correlation energy. The variational properties of E{P,~/~}  were proved exhaustively by 
von Barth and Hedin (1972) and, therefore, need not be discussed here any further. 
Next the effective single-particle equation is written as 
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whence the kinetic energy, TI,, is obtained 

where occ stands for the lowest occupied states, the q,,, are assumed to be normalised. 
and the single-particle density matrix is 

If we substitute equation (3) into equation ( l ) ,  we obtain the total energy E as a 
functional of pri,i and can determine w$ by using the variational properties of E{P(~,~}.  
One  easily obtains 

Now, E,L{p,L,i} is not known in general. But we know it for a gas of interacting 
electrons which can be spin polarised. This means for the homogeneous case we know 
E,, as a function of the eigenvalues of the density matrix, pI and p2,  

where n(r)  is the trace. t i ( r ) = p l ( r ) + p 2 ( r ) .  In the local approximation to density 
functional theory we admit inhomogeneous densities pI and p? and use equation (6) to 
approximate E,'. In this case, the density matrix is given by equation (4) and is not 
necessarily diagonal. but we may assume there is a unitary transformation. U, which 
diagonalises it locally. i . e . .  for i =  1 .  2 

implying an r dependence in all quantities. 
Using equation ( 7 )  and for U the well known spin-: rotation matrix. 

"=( exp({iq,)  cos{O, exp(  - iiq,) siniO, 
exp(  - $ U , )  cos@, - exp(iiy,)  sin@, 

we express ~3E,,/ap,,,~ in terms of aE,,lr3p, and the angles O , ,  q,? and obtain from 
equation ( 5 )  the effective single-particle 'potential matrix' 

~ ' " ( r )  = u, , (r) l  + Au(r)(T,. (8) 
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Here 15: is the z component of the Pauli spin matrix in a coordinate system which is 
rotated by the polar angles 8,. vl, with respect to a fixed coordinate system, 

cos 8, exp ( - iql,) sin 8,, 
- cos 8,. exp(iv,)  sin 8, 

6: = 

1 is the unit 2 x 2 matrix, the quantity ull(r) is given by 

u,,(r) = u(r) + 2 - n ( r ’ )  d’r’ +~(uyCl (r )  + u,,?(r)), I / r  - r’/ 

where u(r )  is the external potential, furthermore 

(9) 

The derivation so far in principle implies angles e,, and q, that are rdependent because 
of the local diagonalisation, equation (7). An essential simplification is achieved by 
the atomic sphere approximation (ASA) and the requirement that at each point within 
a given sphere the spin-quantisation axis is the same, but different spheres may have 
different axes. This way we basically exchange a fine-grained mesh for a coarse- 
grained one. The index v then labels a site defined by the vth atomic sphere (AS) and 
the angles e,,, q,, are obtained by diagonalising the integrated density matrix; i.e. we 
define for each site the ‘charge’ 

&;I = Pu$(r) d’r I, 
where S,, labels the vth AS, then 

up 

is diagonal as indicated provided the angles are 

2 A,. 
8, = tan-’ - 

a,, - d,, 

and 
Im {bJ q,, = - tan-‘ - 
Re {bl,} ’ 

where 
a,. = q‘,’;) 

b,. = q\!’ 

d, = q:;’ 

and 
A,, = Re{b,,} cos q,,- Im{b,,} sin qL,, 
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The matrix U"') is then used in equation (7) to obtain the eigenvalues p l ( r )  and p ( r )  of 
the density matrix in each atomic sphere. 

This completes the specificaton of the effective single-particle equations for non- 
collinear magnetic systems (collinear systems obviously are just a special case) and the 
physics is very much like that described by You and Heine (1982). The  electron 
travelling through the crystal experiences exchange-correlation forces that vary from 
site to site. These polarise the electron system resulting, in general, in a non-diagonal 
density and 'charge' matrix. Its diagonalisation defines quantisation axes locally (i.e. 
for each atomic sphere) and hence a local direction of magnetisation. As normal with 
density functional theory the calculation needs to be made self-consistent. a require- 
ment which besides charge and magnitude of the local magnetisation now applies also 
to  the directions of the local magnetic moments. However, as You and Heine (1982) 
pointed out,  there may be occasions when strict self-consistency is not desirable, as for 
instance in functional-integral theories where the local spin-quantisation axes are 
treated as parameters. 

We  close this section by giving a convenient expression for the total energy for 
those cases where the calculation is self-consistent. It is easily verified that,  starting 
with equations (1) and ( 3 ) ,  the total energy can be written as 

where A U , , , ~ = ~ ( U , , ,  - uJU: see equations (9) and (12). We  may use the trans- 
formation given by equation (7) to eliminate pij" from equation (16) even in cases 
where the quantity U"'pU"' is not strictly diagonal. 

The result is 

n( r)ti (r' ) a&,, 
E = 2 E ,  -1 1 d'r d'r' - I d'rn(r) - pli(r) 

I E i l i i  Ir- r'I ,( a P.f 

where we used that at self-consistency (where input angles are equal to output angles) 
we have 

One  sees that the total energy is entirely expressed in terms of the density, n ,  the 
diagonal elements of the transformed density matrix, P , ~ ,  and the single-particle 
energies, F , .  Thus it is as easy to evaluate as for the usual collinear cases. 

3. Implementation 

The effective single-particle equation (2) can be solved numerically without great 
effort if one  is willing to use a linearised scheme together with the atomic sphere 
approximation; examples are the L m - o  method (Andersen 1975) or  the ASW method 
(Williams et a1 1979. henceforth referred to as W K G ) .  We use the latter and begin by 
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defining the basis functions. These are chosen to be made up of numerical solutions of 
the Schrodinger equation, 

The  notation is such that the index v implies r to lie in the atomic sphere (AS) v ;  L 
denotes both the angular momentum and the magnetic quantum number, L = ( I ,  m), 
and u,,(r) is the spin-independent part of the effective potential as given by equation 
(10). It is constructed to be spherically symmetric in each AS. The radial parts of 
*:)are required to satisfy Hankel function boundary conditions, X =  H ,  and those of 
hf,=’) Bessel function boundary conditions (see WKG) at r =  S,,, where S,. is the radius 
of the A S  v. The basis functions can now be specified; at r within the AS v centred at t,, 
in the unit cell they are 

The  coefficients C,, , , , (k) ,  U = 1, 2, are obtained from a variational treatment of 
equation (2 ) ;  k is a vector in the Brillouin zone and k implies both k and the band 
index. The quantities B , . l , ( t , . -  r,,, k )  are the K K K  structure constants for a system with 
basis vectors {t,,}. The first term in the brackets on the right-hand side of equation (19) 
represents augmented Hankel functions centred at  the AS v in which r lies and 
the second represents the augmented tails of all Hankel functions centred at AS other 
than 1-1. 

Next. the overlap and Hamiltonian matrices. S and 2,  are set up. With the spinor 
notation. 

where the right-hand side is defined by equation (19). the overlap matrix, S, is easily 
seen to be block diagonal with two identical blocks which are exactly the ones of the 
standard ASW treatment of W K G .  The Hamiltonian matrix can be written as a sum of a 
block diagonal one, zll. plus XI. &,consists, like S, of two identical parts, which have 
exactly the form of the usual ASW Hamiltonian matrix, XASW. see equation (29) of 

_ _  
- 

W K G .  

- 
X ,  alone comprises the spin-dependent part of the problem. I t  consists of the matrix 
elements 
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using equations (8) and (9) and suppressing the wave-vector index, k ,  we find for the 
diagonal blocks 

( l v L ~ X , ~ L ' v ' l ) =  - ( 2 v L l X , l L ' v ' 2 )  

= d / /  h , ,  COS@, f : ' , " + B i / ( t , - r , . k ) ~ ~ s B ,  f$': 
+ c ~ ~ H , f : / , / B / / ( t , - r , , k )  

where 

f " . , " =  ? dr I ? ~ ~ ! ( r ) A ~ ~ ( r ) I ? ~ , ~ " ( r )  (23) 
.5 , 

1.1 J 
with X =  H or J .  I?);"' being the radial parts of x!?;' discussed at the beginning of this 
paragraph. and A o ( r )  given by equation (12). 

The off-diagonal block is ( l v L ~ ' J , ~ L ' v ' 2 ) .  I t  follows from the right-hand side of 
equation ( 2 2 )  by replacing cos 8, by exp( - iv,,) sin e,,. Having defined %! and S, we 
numerically diagonalise 

- 
X-ES 

which gives the desired eigenvalues E and eigenvectors 

These quantities enable us to construct partial state densities, N l v n B ( ~ ) ,  and from these 
charge and spin densities. Generalising the procedure of WKG slightly we write 

where k implies wave vector and band index. and q,l,cl!j(k), for equal spin indices, 
a = p ,  is the decomposed single-electron norm for angular momentum 1 and site v. In 
all cases, spin diagonal or not, q/ , , , Jk )  is obtained from 

ql l , , ( , { (k)  = (C~~/ . , . ( k ) (HL~ , IHLv)C , , , , ( k )  + C:~~/ . , . (k ) (HLv /JLv)A , , , , . ( k )  
/ 

, I 1  - - /  

where 

and the vectors appearing in the matrix elements are those implied by equation (18). 
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Figure I .  ( U )  Magnet unit cell of y-FeMn having simple cubic primitive translations. 
Arrows shown detinc ii  non-collincar moment arrangement. ( h )  An alternative possible 
arrangemcnt for y-FeMn. Primitive translations here are ( I .  0. I ) .  ( I ,  I .  0)  and (0, I. A )  in 
terms of the axes shown. The magnetic unit cell is trigonal. Fe: B. ‘right’: 0. ‘left’. Mn: 0. 
’right‘: 0. ‘left’. 

Now, the ’charge’ defined by equation (13) is obtained by integrating the state 
density up to the Fermi energy E ~ :  

and the matrices U’”  are those which diagonalise q$ for each site Y .  The  density-of- 
states matrix N,,<(,{(F) is subsequently transformed by means of U‘”) 

for i = 1 , 2 .  The  quantity Nip, (&)  represents the state density in the local (atomic) frame 
of reference for spin up, i = 1, and spin down, i =  2. Finally, the moment analysis 
described by WKG is carried out for NI”,{&) which yields the local-frame charge density 
p, ( r ) ,  i =  1, 2 .  for each site. 

4. Results 

4.1. Atitiferromagnetic y -FeMn 

Experimentally antiferromagnetic y-FeMn alloys have been investigated extensively 
in the past, two important references being Kouvel and Kasper (1963) and Endoh and 
Ishikawa (1971). For the first time, we can now examine critically the magnetic order 
that was proposed for these alloys. Restricting ourselves to the ordered FeMn 
compound in the one-to-one stoichiometry (which may be fictitious since real FeMn 
alloys always seem to be disordered), we consider the two crystal structures depicted 
in figure 1. In  the case of figure l(a) the primitive translations are simple cubic, in the 
case of figure l ( h )  these are the vectors (1,0, l ) ,  (1, 1 , O ) .  and ( O , i , j )  in terms of the 
axes shown. Open symbols stand for Mn, closed ones for Fe ,  and circular and square 
symbols denote different spin directions. If, in the case of figure l (a) ,  ‘right’ and ‘left’ 
are strictly taken to be parallel to the y-axis-which is not the case drawn-then the 
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magnetic order is antiferromagnetic collinear (AF-COL): the order implied by the 
figure l(a) with arrows pointing at each other as shown is obviously antiferromagnetic 
non-collinear (AF-N-COL). The same applies to figure l (6 )  which also admits an 
obvious collinear and non-collinear antiferromagnetic order. 

Our  calculations were carried out for these four different cases: (i) collinear, (ii) 
non-collinear based on figure l ( a ) ;  (iii) collinear and (iv) non-collinear based on figure 
l (b ) .  For the lattice constant we used a = 3 . 6 0 A ,  which we estimated from the 
thermal expansion coefficients given by Stamm (1987) to be the one  appropriate at  
T =  0 K. Attempts to calculate the equilibrium volume were begun but discontinued 
after it became clear that the calculated volumes tended to be much too small. We  see 
the reason for this in a local-density functional error which is largest in the case of Mn; 
this can already be seen in the results of Moruzzi et a1 (1978, p 6 ) .  Note that there the 
agreement between the measured and calculated quantities is good except for the 
cases with a half-filled shell. in particular manganese. This will not change when Mn is 
calculated including its magnetism. Our  calculated magnetic moments, in the local 
(atomic) frame of reference. and the total energies, referred to the total energy of 
calculation (ii) are collected in table 1, which also contains an estimate of an 
experimental value for the average magnetic moment. The  non-collinear magnetic 
order depicted in figure l (a )  has the lowest total energy and it can also be inferred 
from the work of Endoh and Ishikawa (1971) to be the probable ground-state order. 
But the antiferromagnetic collinear order (i) is seen to be only 13.5 meV higher in 
energy, corresponding to approximately 40 K per atom. (The NCel temperature is 
TN = 470 K (Endoh and Ishikawa 1971).) The other magnetic moment arrangements 
(calculations (iii) and (iv)) can be excluded in view of their high total energies. All 
arrangements were self-consistent, however. 

W e  now turn to the energy-band structure of the two cases having the lowest total 
energy. In  a first step i t  is convenient to simplify matters by omitting the exchange 
splitting. Thus figure 2 shows the band structure obtained with a self-consistent 
potential, but setting Au = 0 (equation (8)) in the calculation of the single-particle 
energies. Although i t  is clear from figure l ( a )  that the symmetry is lower than cubic, 
the band structure is, nevertheless. easily understood in terms of the one of an FCC 

transition metal folding its Brillouin zone into that of the simple cubic lattice. 
Referring, therefore. to the well known band structure of Cu,  e.g. .  we identify in 
figure 2 the bottom o f  the band as the r ,  s state, the nearly threefold degenerate state 
(marked 1 + 2 )  below the Fermi energy. F ~ ,  as the T2s. d state and the two states just 
above cF as the F,: state. The  two states in between r ,  and r25. are nearly threefold 

Table 1. Calculated magnetic moments for antiferromagnetic 1'-FeMn. m,,. mMn. magne- 
tic moments o f  Fc and M n .  respectively. i n  multiples ofpo; re. average moment; E,,,,. total 
energy per unit cell referred to total energy of calculation ( i i ) ;  mcxp is  an estimated 
experimental T =  0 K aterage magnetic moment (Endoh and Ishikawa 1971). 

( i )  A - C O L  (figure I ( u ) )  1.21 2.05 1.63 13.5 

( i i i )  AF-COL. (figure I ( h ) )  0.91 1.44 1.18 248.0 
( iv)  \ ~ - - h - < o ~ ( f i g u r e  l ( h ) )  0.73 1.32 1.03 249.0 

( t i )  AF+-C'OL. (figure I ( u ) )  1.41 2.09 1.75 0 - 1 . 5  
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F e  M n ,  AV.0  

Figure 2. Band structure of y-FeMn with exchange splitting set zero. The band labels on 
the right margin are those of an FC'C transition metal. k-point labels X, r, M, R 
appropriate for SC' Brillouin zone. 

degenerate each and originate from X1 and X , ,  respectively. Above E~ there are two 
non-degenerate states whose wavefunctions are either pure F e d  or pure Mnd  (so 
marked); these states originate from one member of the X 5  state which is commonly 
taken as the top of the d band. The remaining states at r in figure 2 originate from X,, 
the other member of Xi (the fourfold degenerate state marked 2,2)  and from X4,, the 
latter having p symmetry. 

The band structure of hypothetical non-magnetic FeMn now helps enormously to 
clarify the real band structure. Figure 3 applies to antiferromagnetic collinear y- 
FeMn. ( U )  showing the local, spin-up and spin-down, d-state density of Fe, ( c )  that for 
Mn and ( b )  giving the band structure. Figure 4 similarly applies to the antiferromagne- 
tic non-collinear structure. the state densities shown here are defined by equation (28) 
and thus the arrows and .1 refer to the atomic, local frames of reference which 
have the orientations of the arrows in figure l(a). Figures 3 and 4, on first sight, are 
quite similar. The state densities (DOS) are not rigidly shifted DOS as in ferromagnetic 

FeMn ( A F - C O L )  
4 

5 0  
L 

P 
E - L  
W 

-8 

2 1 0 1  2 1 0 1 2  
D O S  (eV-  1 o c s  ( e v - ' )  X r M R  r 

l o )  (61 ( C )  

Figure 3. ;,-FeMn. antiferromagnetic collinear based on unit cell shown in figure l (a ) .  
( a )  Partial density of states (DOS) of spin-up ( t ) and spin-down ( ) Fe d electrons 
(per a tom).  ( h )  Band structure using same k-point labels as in figure 2.  (c) Partial DOS of 
spin-up ( T ) and spin-down ( 1 ) Mn d electrons (per atom). 
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Figure 4. y-FeMn non-collinear structure. orientation of local frames of references a s  
shown by iirrows in ligure I ( u )  (‘tetrahedral‘). ( U )  Partial DOS of spin-up ( T ) and 
spin-down ( 1 ) Fe d electrons (per  a tom) in the local frame of reference. ( h )  Band 
5tructure using s i m e  k-point labels as in tigure 2.  ( c j  Partial DOS of spin-up ( T j and 
spin-down ( 4 ) Mn d electronb (per  atom) in the Iociil frame of reference. 

metals. but are best described by shifted spectral weight and the notion of covalency 
(Williams etul 1981, 1982). Most features of the band structures, figure 3(b)  and figure 
4(b), are easily traced back to the appropriate states shown in figure 2 where 
degeneracies are lifted and states shifted. The  amounts by which states are split or 
shifted are obviously different for the two magnetic structures. This is, e.g.  quite 
pronounced for the very flat band 1.5 eV above in figure 2 at X- r which is split by 
-0.5 e V  in figure 3(6). but 1.2 eV in figure 4(b).  I t  is interesting to note that in the 
case of FC‘C‘ Fe it is precisely this flat band that. if occupied, is believed to  give rise to its 
high-spin state (Bagayoko and Callaway 1983). Furthermore, a gap is quite pro- 
nounced at F~ half-way between X and in figure 4(b),  but is not present in the case of 
figure 3(b) .  I t  is not clear, however. if these different features can be identified 
experimentally. 

4.2. Antiferromagnetic RhMn 

From the experimental work of Kouvel and Kasper (1965) as well as Kren et a1 (1967) 
it is known that RhMn, has the Cu?Au structure and orders antiferromagnetically with 
a Nee1 temperature of TN = 855 K in a structure that is sometimes called ‘triangular‘ 
and is shown in figure 5(b) .  Bertaut and Fruchart (1972) analysed group theoretically 
the transformation properties of this magnetic moment arrangement, calling it T, and 
describing another one ,  T2. depicted in figure 5(a). Other antiferromagnetic moment 
arrangements are shown in figure 5(c ) .  which is obviously collinear, and in figure 5 ( d )  
which is non-collinear. The four cases shown were investigated and found to be self- 
consistent moment arrangements. Again we had to use an experimental lattice 
constant instead of the calculated one (see $ 4 . 1 )  and estimated from the published 
data (Kren er a1 1967) a=3 .8  A to be appropriate for T = O K .  Our  calculated 
magnetic moments in the local frame of reference and the total energies, referred to  
the total energy of the T, state are collected in table 2 which also contains an estimate 
of the experimental Mn moment. The total energy is lowest for T ,  or T?, both 
structures giving identical results. This is not a failure of the theory but must, indeed, 
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be so. The reason for this is that our theory does not couple the magnetic moments to 
the underlying crystal lattice. all that is important is the relative orientation of the 
moments. and in this respect, TI and T1 can be seen to be equal. Bertaut and Fruchart 
(1972) discussed the same facts when they pointed out that in the Heisenberg model T ,  
and T,  are identical as long as anisotropy is not included. This changes when 
spin-orbit coupling (soc') is considered. i.e. soc effectively supplies a coupling of the 
magnetic moments to the crystal structure thus giving rise to anisotropy. 

We investigated numerically the changes of the total energy which are brought 
about by SO<'. To d o  this one first goes over to using a different wave equation: the 
Schrodinger equation, equation ( 12), is replaced by the scalar-relativistic approxima- 
tion to the Dirac equation (Koelling and Harmon 1977). Next one can show that the 
effective single-particle potential wc", equation (8), contains an additional term, vLs, 
which describes SOC' and has the form given by MacDonald et al(1980). The quantity 
v , . ~  is not spin diagonal and is. therefore. added to E ,  ($3); this way both the exchange 
splitting, AV and so[ are treated on the same footing. i.e. in particular, both terms are 
effective in the formation of the self-consistent single-particle potential. Full details 
will be published elsewhere (Sticht 1988). Numerically i t  was found that spin-orbit 
coupling favours the TI state by the small but definitive amount of 1.5 meV per unit 
cell. 

The  energy-band structure of the T ,  or  T. states is, as before, most conveniently 
studied by first omitting the exchange splitting. The  role of relativistic effects and soc 
will not be considered at all here. Figure 6 shows the band-structure of hypothetical 
non-magnetic (Ao-0) RhMn:. 

Since RhMn? without magnetic order (in contrast to y-FeMn) is cubic its band 
structure is unambiguously described by a folded, FCC transition-metal band structure, 
e .g .  that of Cu.  In figure 6 we therefore indicate the origin of the various states at r by 
again using the state labels of Cu. All states at r, except for the bottom of the band, 
which is non-degenerate. are at least threefold degenerate. not counting spin. 

The  antiferromagnetic order TI (or  T.) now breaks the symmetry resulting in a 
band structure with split and shifted states as depicted in figure 7(b ) .  Figure 7(a )  
shows the local state densities (DOS) of the d states of R h ,  and figure 7 ( c )  those of Mn.  
As before, the DOS are detined by equation (28). therefore. the arrows t and 1 
refer t o  the atomic. local frames o f  reference which have the orientations of the arrows 
in either figure 5 ( a )  or  ( h ) .  Although figure 7 ( b )  is quite involved. one can, 

la) T,  lb) T. lcl Collinear ( d )  Non-col l inear 

Figure 5. Po\sible magnetic moment arrangements lor the Cu,Au structure. ( U )  and ( h )  
are 'triangular' o r  non-collinear. based on the chemical unit cell. (c)  and  ( d )  are based on 
the doubled cell. 
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Table 2. Calculated magnetic moments for antiferromagnetic RhMn?. inhi , , .  i n R h .  magnetic 
moments of Mn a n d  Rh. reqwcti\elq.. in inultiples of!(,,: E,,,,. total energ! per unit cel l  
referred to total energ! of ( h )  7, . ~ ) i , , , ~  _,,, is an estimated T =  0 K experimental magnetic 
moment ( K r i n  er ( I /  1967). 

-;. Average \iilue\ 

nevertheless. determine the origin of most states by comparison with figure 6.  One  
detail deserves mentioning and this is the splitting of the flat band which was discussed 
for FeMn in $4.1.  I t  is seen in figure h at 1.2 eV above EF-for k vectors between X and 
r and gives rise to more than t ivo  bands in figure 7 ( h ) .  one set being below F ~ .  

Comparing with figure 3 ( h )  we recognise that this set of bands provides the additional 
states for the local up-direction that increase the manganese moment from - 2 , ~ ~  in 
y-FeMn to -3,u13 in RhMn?.  This is. indeed. similar to the high-spin state in FCC Fe 
(Bagayoko and Callaway 1983). 

4.3. Antiferrotnugrietic PrMn 

We close this section of applications by a brief discussion of the interesting system 
PtMn,. Kren er u l  (1967. 1968) investigated an entire series of alloys of composition 
P t , - ,Rh,Mn,  and Kren et ul ( 1971) presented an interesting phase diagram. According 
t o  this, at low temperatures the magnetic structure is triangular. but a first-order 
transition to a collinear state occurs at 365 K,  the Nee1 temperature being T% = 475 K 
and the magnetic moment of manganese nzxl,, = (3.0 k 0.3) pU at low temperatures. 

RhMn,, A V = O  
4 

- 0  
2 - 
m 
L 
01 
C w 

- 4  

-8 
X r M R r 

Figure 6. Band structure c l t  Rhkln: M i t h  exchange splitting set zero. The hand labels o n  
the right margin dre tho\c of a n  i c c  transition metal. X-point labels X. I-. M. R 
appropriate for v Brillouin zone 



4x2 J Kiihler et ul 

)r 

P 
C w 

Figure 7 .  RhMn, non-collinear structure; orientation of local frames of reference either as 
shown by arrows in figure S(a )  ( T2) or figure 5(b) ( T , ) .  ( a )  Partial DOS of spin-up ( t ) and 
spin-down ( 1 ) Kh d electrons, orientation of axis is arbitrary since moment is zero. ( b )  
Band structure using same k-point labels as in figure 6. ( c )  Partial DOS of spin-up ( 7 ) and 
spin-down ( 1 ) Mn d electrons (per a tom) in the local frame of reference. 

With an estimated T =  0 K lattice constant of a = 3.8 A we carried out calculations 
for assumed ferromagnetic PtMnl and two further sets of calculations for the different 
moment arrangements shown in figure 5. We discard the ferromagnetic ground state 
because its total energy is more than 1 eV higher than the antiferromagnetic ones. For 
the two sets of calculations with antiferromagnetic ground states we used the scalar 
relativistic equations, in the first neglecting spin-orbit coupling ( S O C ) ,  in the second, 
however. considering soc as described in Q 4.2. The calculated magnetic moments did 
not depend on SOC, at least not within the precision shown in table 3, which 
summarises our results. Column 3 gives the total energy without, column 4 with S O C .  

Both types of calculations predict either T ,  or T2 (no SOC) or T ,  (with SOC) to be the 
correct ground state, which is more stable than Tz  by 6 meV per cell. We may discard 
the collinear order shown in figure 5 ( c )  because of its high total energy, but the non- 
collinear order with a doubled unit cell shown in figure 5 ( d )  is only 123 meV per cell, 
or the equivalent of about 475 K per magnetic atom, higher than the ground state T , .  
The magnetic order proposed by Kren et a1 (1971) does have a doubled unit cell but is 
collinear with zero-magnetic moments for some Mn atoms. We have not been able to 
'prepare' such a magnetic moment arrangement. 

Table 3. Calculatcd magnetic moments f o r  antiferromagnetic PtMn,. mMo. mP,. magnetic 
moments of Mn and Pt. respectively. in multiples of pu. Column 3: E,,,, .  total energy per 
unit cell referred to the total energy of (b)  T ,  in the scalar relativistic approximation, but 
without \o( . Column 4: E,,,, iis column 3. but s o c  included. 

E,,,!  E!,,, 
Magnetic ordcr "1\11! t r ip ,  (meV)  (meV)  

( a )  T. 2.93 0 (1  - 265 
( h )  T ,  2.93 0 (1  - 271 
(c )  Collinc;ir 2.99 0.OX 432 - 
(d )  Non-colline;ir 2.931. 0.05 167 - I4X 
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