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Introduction

This monogram is written with the graduate student in mirftd in mind to write a short, crisp book that
would introduce my students to the basic ideas and concepisid many body physics. At the same time,
| felt very strongly that | should like to share my excitemauith this field, for without feeling the thrill of
entering uncharted territory, | do not think one has the watitin to learn and to make the passage from
learning to research.

Traditionally, as physicists we ask “what are the microscdgwvs of nature ?”, often proceeding with the
brash certainty that once revealed, these laws will havie prafound beauty and symmetry, that the proper-
ties of the universe at large will be self-evident. This basiilosophy can be traced from the earliest atomistic
philosophies of Democritus, to the most modern quests ty goiantum mechanics and gravity.

The dreams and aspirations of many body physics interwimatibmistic approach with a complimentary
philosophy- that olemergent phenomen@rom this view, fundamentally new kinds of phenomena emerg
within complex assemblies of particles which can not becigdted from ara priori knowledge of the mi-
croscopic laws of nature. Many body physics aspires to &gtk from the microscopic laws, new principles
that govern the macroscopic realm, asking

What new principles and laws emerge as we make the journeytfrermicroscopic to the macroscopic?

This is a comparatively new scientific philosophy. Darwirswlae perhaps the first to seek an understand-
ing of emergent laws of nature. Following in his footsteps/tBnann was probably the first physicist to
appreciate the need to understand how emergent principdmked to microscopic physics, From Boltz-
mann’s biography[1], we learn that he was strongly influenaed inspired by Darwin. In more modern
times, a strong advocate of this philosophy has been Philgeeson, who first introduced the phrase “emer-
gent phenomenon” into physics[2]. In an influential artielgitled “More is diterent” written in 1967,[2]
P.W. Anderson captured the philosophy of emergence, \gritin

“The behavior of large and complex aggregations of elemsnparticles, it turns out, is not to be under-
stood in terms of a simple extrapolation of the propertiea ééw particles. Instead, at each level
of complexity entirely new properties appear, and the usteding of the new behaviors requires
research which | think is as fundamental in its nature as amgd

P. W. Anderson from “More is Dierent” , 1967.

In an ideal world, | would hope that from this short course ryknowledge of many body techniques
will grow hand-in-hand with an appreciation of the motivatiphilsophy. In many ways, this dual track
is essential, for often, one needs both inspiration andvissrto steer one lightly through the formalism,
without getting bogged down in mathematical quagmires.

| have tried in the course of the book to mention aspects ohistery of the field. We often forget that
act of discovering the laws of nature is a very human and vasgipnate one. Indeed, the act of creativity in
physics research is very similar to the artistic procesm&imes, scientific and artistic revolution even go
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hand in hand - for the desire for change and revolution oftesses between art and sciences[3]. | think it
is important for students to gain a feeling of this passidnit the science, and for this reason | have often
included a few words about the people and the history beliiaddeas that appear in this text. There are
unfortunately, very few texts that tell the history of marmdy physics. Pais’ book “Inward Bound” has some
important chapters on the early stages of many body phyifesy additional references are included at the
end of this chapter[4, 5, 6, 7]

There are several texts that can be used as reference bgudksaltel with this monogram, of which a few
deserve special mention. The student reading this bookwesit! to consult standard references on condensed
matter and statistical mechanics. Amongst the variouseetes let me recommend “Statistical Physics Part
II” by Landau and Pitaevksii[8]. For a conceptual undemindf the to Anderson’s classic “Basic Notions
in Condensed Matter Physics”[9]. For an up-to-date petspeon Solid State physics from a many body
physics perspective, may | refer you to “Advanced Solide&SRitysics” by Philip Phillips [10]. Amongst the
classic references to many body physics let me also menAiGD"[11], Methods of Quantum Field Theory
by Abrikosov, Gork’ov and Dzyaloshinski. This is the texattdrove the quantum many body revolution
of the sixties and seventies, yet it is still very relevarday if rather terse. Other many body texts which
introduce the reader to the Green function approach to mady physics include “Many Particle Physics”
by G. Mahan[12], notable for the large number of problemsrogigdes, “Green Functions for “Green’s func-
tions for Solid State Physics” by Doniach and Sondheimérgh8l the very light introduction to the subject
“Feynman diagrams in Solid State Physics” by Richard M&{itL#]. Amongst the more recent treatments, let
me note Alexei Tsvelik's “Quantum Field Theory” in Condedddatter Physics”[15], provides a wonderful
introduction to many of the more modern approaches to ca®tematter physics, including an introduction
to bosonization and conformal field theory. As a referendfécearly developments of many body physics,
| recommend “The Many Body Problem”, by David Pines[16], ethcontains a compilation of the classic
early papers in the field. Lastly, let me recommend the readeumerous excellent online reference sources,
in addition to the online physics archive hifprXiv.org, let me mention writing include online lecturetes
on many body theory by Ben Simon and Alexander Atlund[17] keature notes on Solid State Physics and
Many Body Theory by Chetan Nayak[18].

Here is a brief summary of what we will cover:

1 Scales and complexity, where we discuss the gulf of timel€Rgth-scale (L), particle number (N) and
complexity that separates the microscopic from the maopisc

2 Second Quantization. Where make the passage from the watiefu, to the field operator, and introduce
the excitation concept.

3 Introducing the fundamental correlator of quantum fields:Green’s functions. Here we develop the tool
of Feynman diagrams for visualizing and calculating mangyborocesses.

4 Finite temperature and imaginary time. By replacding- 7, e ™"t — 7, we will see how to extend

quantum field theory to finite temperature, where we will findttthere is an intimate link between fluctu-

ations and dissipation.

The disordered metal. Second quantized treatment of wel@drdered metals: the Drude metal, and the

derivation of “Ohm’s law” from first principles.

Opening the door to Path Integrals, linking the partitiondtion and S-matrix to an integral over all

possible time-evolved paths of the many-body sys@ma. fp ATH e S/,

The concept of broken symmetry and generalized rigidgyllastrated by superconductivity and pairing.

A brief introduction to the physics of local moment systems

[5)]

(2]

o ~

2
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Finally, some notes on the conventions used in this bools Aok uses standard Sl notation, which means
abandoning some of the notational elegance of cgs unitshimgs the book into line with international
standards. Following a convention followed in the early ®as texts on physics and many body physics, and
by Mahan’s many body physics[12], | use the convention thaicharge on the electron is

e=-1602---x 107*°C (1.1)

In other wordse = —|ef denotes the magnituded the sign of the electron charge. This convention minimizes
the number of minus signs required. With this notation, tieenfftonian of an electron in a magnetic field is
given by

Ho oA oy

2m

whereA is the vector potential and the electric potential. The magnitude of the electron ohasglenoted
by |e| in formulae, such as the electron cyclotron frequengy= ‘%B. Following a tradition started in the
Landau and Lifschitz series, the book uses the notation

(1.2)

F=E-TS-uN (1.3)

for the “Landau Free energy” - the Grand Canonical versidhefraditional Helmholtz Free energg{TS),
for simplicity, this quantity will be refered to as the Fraeeegy. One of the more fliicult choices in the book
concerns the notation for the density of states of a FermiGadeal with the dierent conventions used in
Fermi liquid theory, in superconductivity and in local mamghysics | have adopted the notation

N(0) = 2N(0)

to denote the total density of states at the Fermi energyrenkgD) is the density of states per spin. The
alternate notatioMN(0) = p is used in Chapters 15 and 16, in keeping with traditionahtiah in the Kondo
effect.
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Scales and Complexity

We do infact know the microscopic physics that governs allatse chemistry, materials and possibly life
itself. In principle, all can be determined from the manytjoée wavefunction

WX, %o .. X, 1), (2.1)
which in turn, is governed by the Satlinger equation[1, 2], written out for identical partisles
2, oW
—E;Vj+;V(%—Yj)+2U(Yj) ¥ =i (2.2)

[ Schibdinger, 1926]

There are of course many details that | have omitted- forims, if we're dealing with electrons th&f{x)
is the Coulomb interaction potential,

& 1
V= g @3)
ande = —|¢ is the charge on the electron. In an electromagnetic field wstrfgauge” the derivatives

V - V—i(e/h)A, U(X) = U(X) + ed(X), whereA is the vector potential and(X) is the electric potential.
Also, to be complete, we must discuss spin, the antisymnuétiy under particle exchange and if we want
to be complete, we can not treat the background nucleii dioiséay, and we must their locations into the
wavefunction. With these provisos, we have every reasoelieve that this is the equation that governs the
microsopic behavior of materials.

Unfortunately this knowledge is only the beginning. Why? &8ese at the most pragmatic level, we are
defeated by the sheer complexity of the problem. Even the dasolving the Schidinger equation for
modest multi-electron atoms proves insurmountable witthald approximations. The problem facing the
condensed matter physicist, with systems involving®Xioms, is qualitatively more severe. The amount
of storage required for numerical solution of Schrodinggunagion grows exponentially with the number
of particles, so with a macroscopic number of interactingiglas this becomes far more than a technical
problem- it becomes one of principléndeed, we believe that the gulf between the microscopit the
macroscopic is something qualitative and fundamental, sohnso that new types of property emerge in
macroscopic systems that we can not anticipate a priori lygusrute-force analyses of the Sédinger
equation.

The “Hitchhiker’s guide to the Galaxy” [3] describes a supemputer called “Deep Thought” that after
millions of years spent calculating ‘the answer to the wtienquestion of life and the universe’, reveals it
to be 42. Adams’ cruel parody of reductionism holds a cersaimy in physics today. Our "forty two”, is
Schroedinger's many body equation: a set of relations thase complexity grows so rapidly that we can'’t
trace its full consequences to macroscopic scales. All & finovided we wish to understand the workings
of isolated atoms or molecules up to sizes of about a nanonbetsbetween the nanometer and the micron,
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wonderful things start to occur that severely challengeundgerstanding. Physicists, have coined the term
“emergence” from evolutionary biology to describe thesergimena(4, 5, 6, 7, ].

The pressure of a gas is an example of emergence: it's a cateeproperty of large numbers of particles
which can not be anticipated from the behavior of one partadbne. Although Newton’s laws of motion
account for the pressure in a gas, a hundred and eighty ylepsed before Maxwell developed the statistical
description of atoms needed to understand pressure.

Let us dwell a little more on this gulf of complexity that sepiges the microscopic from the macroscopic.
We can try to describe this gulf using four main catagoriesoale:

o T.Time 10°.

e L.Length 1G.

o N. Number of particles. 8
e C Complexity.

2.1 Time scales

We can make an estimate of the characteristic quantum tiale bg using the uncertainty principlerAE ~
7, so that

h h
T eV T 1079
Although we know the physics on this timescale, in our mazwp& world, the the characteristic timescale
~ 1s, so that

At ~ 10 %, (2.4)

ATmacro

~ 10, (2.5)

A'I'Quantum

To link quantum, and macroscopic timescales, we must makemdomparable with an extrapolation from
the the timescale of a heart-beat to the age of the univei8éil(ion yrs ~ 1017 s.)

2.2 L: Length scales

1, 2011

An approximate measure for the characteristic length seale quantum world is the de Broglie wavelength
of an electron in a hydrogen atom,

Lquantum~ l(rmm, (2.6)

so
L .
Macroscopic - 105 (2'7)
LQuantum
At the beginning of the 20th century, the leading philosopsteysicist Mach argued to Boltzmann that the
atomic hypothesis was metaphysical as one could neveragrezsmachine with the resolution to image any-
thing so small. Today, this incredible gulf of scale can §oba spanned by scanning tunneling microscopes,
able to resolve electronic details on the surface of masaniah sub-Angstrom resolution.

6
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Matter wave

Fig. 2.1 The typical size of a de Broglie wave is 10-1°m, to be compared with a typical scale

1cm of a macroscopic crystal.

2.3 N: particle number
|

To visualize the number of particles in a single mole of sambse, it is worth reflecting that a crystal con-
taining a mole of atoms occupies a cube of roughdytl From the quantum perspective, this is a cube with
approximately 100million atoms along each edge. Avagaduosber

Niacroscopic= 6 % 107% ~ (100 million)* (2.8)

a number which is placed in perspective by reflecting thahtivaber of atoms in a grain of sand is roughly
comparable with the number of sand-grains in a 1 mile beaokicl however that we are used to dealing
with inert beaches, where there is no interference betweendnstituent particles.

2.4 C: Complexity and Emergence.

Real materials are like macroscopic atomvhere the quantum interference amongst the constituetitiea
gives rise to a range of complexity and diversity that causds the largest gulf of all. We can attempt to
quantify the "complexity” axis by considering the numberabdms per unit cell of a crystal. Whereas there
are roughly 100 stable elements, there are roughly’ $8ble binary compounds. The number of stable
tertiary compounds is conservatively estimated at mone 118, of which still only a tiny fraction have been

7
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explored experimentally. At each step, the range of dityeiscreases, and there is reason to believe that at
each level of complexity, new types of phenomenon begin tergm

But it is really the confluence of length and time scale, pathumber and complexity that provides
the canvas on which emergent properties develop. Whileickssatter develops new forms of behavior
on large scales, the potential for quantum matter to devetoprgent properties is far more startling. For
instance, similar atoms of niobium and gold, when scaleduhe micron-scale, form crystals with dramat-
ically different properties. Electrons roam free across gold crystafaing the conducting fluid that gives it
lustrous metallic properties. Up to about 30 nanometeesetls little to distinguish copper and niobium, but
beyond this scale, the electrons in niobium pair up into ‘@oairs” . By the time we reach the scale of a
micron, these pairs congregate by the billions into a paidensate transforming the crystal into an entirely
new metallic state: a superconductor, which conducts withesistance, excludes magnetic fields and has
the ability to levitate magnets.

Niobium is elemental superconductor, with a transition geratureT, =9.2K that is pretty typical of
conventional “low temperature” superconductors. When expmntalists began to explore the properties of
quaternary compounds in the 1980s, they came across thdetetypunexpected phenomenon of high tem-
perature superconductivity. Even today, two decades fesearch has only begun to explore the vast universe
of quaternary compounds, and the pace of discovery hasaekesied. In the two years preceeding publica-
tion of this book, physicists have discovered a new familyrafi-based high temperature superconductors,
and I'd like to think that before this book goes out of prinamy more families will have come to light.

Superconductivity is only a beginning. It is first of all, grone of a large number of broken symmetry
states that can develop in “hard” quantum matter. But inrab$ies of softer, organic molecules, a tenth of a
micron is already enough for the emergence of life. Selfegnmg microbes little more than 200 nanometers
in size have been recently been discovered. While we mokessrunderstand the principles that govern the
superconductor, we do not yet understand those that gdveremtergence of life on roughly the same spatial
scale[8].



9 2.4. C: COMPLEXITY AND EMERGENCE.

No. inequivalent 1 2 3 4

20
womsanicoi S ALy Complexity

Nb MgB:z CeColns YbBa:CusO7  Simplest Biological
9K SC 35KSC  Heavy Fermion SC g5k sG Molecules
Fe Sio
Ferromagnet Semiconductor LaOFeAs
He-4 55K SC
Superfluid
102 104 1068 108 # different types
Elements Binary Tertiary Quaternary compound

Fig. 2.2 Condensed matter of increasing complexity. As the number of inequivalent atoms per
“unit cell” grows, the complexity of the material and the potential for new types of
behavior grows.
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Quantum Fields

3.1 Overview

At the heart of quantum many body theory lies the concept®fjilantum field. Like a classical fie#{x),
a quantum field is a continuous function of position, exagptiow, this variable is an operata(x). Like
all other quantum variables, the quantum field is in genemstr@ngly fluctuating degree of freedom that
only becomes sharp in certain special eigenstates; itgifumis to add or subtract particles to the system.
The appearance of particles or “quanta” of enelfgy 7w is perhaps the greatest single distinction between
quantum, and classical fields.

This astonishing feature of quantum fields was first recaghtzy Einstein, who in 1905 and 1907 made
the proposal that the fundamental excitations of contisunadia - the electromagnetic field and crystalline
matter in particular, are carried by quanta[l, 2, 3, 4], eitlergy

E = hw.

Einstein made this bold leap in two stages - first by showirag Banck’s theory of black-body radiation
could be re-interpreted in terms of photons[1, 2], and ore Jegter generalizing the idea to the vibrations
inside matter[3] which, he reasoned must also be made upyfimave packets of sound that we now call
“phonons”. From his phonon hypothesis Einstein was ablexplain the strong temperature dependence
of the specific heat in Diamond - a complete mystery from as@tas standpoint. Yet despite these early
successes, it took a further two decades before the maghohguantum mechanics gave Einstein’s ideas a
concrete mathematical formulation.

Quantum fields are intimately related to the idea of secorhtization. First quantization permits us to
make the jump from the classical world, to the simplest quansystems. The classical momentum and
position variables are replaced by operators, such as

E — ino,

p— P =—ifidy (3.1)

whilst the Poisson bracket which relates canonical congugariables is now replaced by the quantum
commutator[5, 6]:

[x, p] =i 3.2)

The commutator is the key to first quantization, and it is tbe-nommuting property that leads to quantum
fluctuations and the Heisenberg uncertainty principlee @@mples). Second quantization permits us to take
the next step, extending quantum mechanics to

e Macroscopic numbers of particles.
o Develop an “excitation” or “quasiparticle” descriptionthie low energy physics.
o Describe the dynamical response and internal correlatiblasge systems.
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Quantum string.

Fig. 3.1 Contrasting a classical, and a quantum string.
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o To describe collective behavior and broken symmetry phasssitions.

In its simplest form, second quantization elevates clas$ields to the status of operators. The simplest
example is the quantization of a classical string, as showiig. 3.1. Classically, the string is described by
a smooth fields(x) which measures the displacement from equilibrium, plesdabnjugate fieldr(x) which
measures the transverse momentum per unit length. Theceleldamiltonian is

H:fdx

whereT is the tension in the string and the mass per unit length. In this case, second-quantizétion
accomplished by imposing the canonical commutation wtati

[6(). 7(Y)] = in6(x -y),

In this respect, second-quantization is néfefient to conventional quantization, except that the degoée
freedom are defined continuously throughout space. The basihod | have just described works for de-
scribing collective fields, such as sound vibrations, ordleetromagnetic field, but we also need to know
how to develop the field theory of identical particles, suslaa electron gas in a metal, or a fluid of identical
Helium atoms.

For particle fields, the process of second-quantizationasensubtle, for here we the underlying fields
have no strict classical counterpart. Historically, thetfsteps to dealing with such many particle systems
were made in atomic physics. In 1925 Pauli proposed his farf@xclusion principle”[7] to account for the
diversity of chemistry, and the observation that atomicsjaecould be understood only if one assumed there

TR A 33)

Canonical commutation relation 3.4)
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000000

Carbon without
Exclusion principle

Carbon with
Exclusion principle

Fig. 3.2 Without the exclusion principle, all electrons would occupy the same atomic orbital.

There would be no chemistry, no life.

was no more than one electron per quantum state. (Fig. 3.969ah later, Dirac and Fermi examined the
consequences of this principle for a gas of particles, wioclay we refer to as “fermions”. Dirac realized
that the two fundamental varieties of particle- fermionsl &osons could be related to the parity of the
many-particle wavefunction under particle exchange[8]

W(particle at A, particle at By €®¥(particle at B, particle at A) (3.5)

If one exchanges the particles twice, the total phas#9s If we are to avoid a many-valued wavefunction,
then we must have

bosons

fermions 6)

f9=1=6%= il{
The choice o® = 1 leads to a wavefunction which is completely antisymmairider particle exchange,
which immediately prevents more than one particle in a giygantum state-
In 1927, Jordan and Klein realized that to cast physics of myrbady system into a more compact form,
one needs to introduce an operator for the particle itbelffield operator. With their innovation, it proves
possible to unshackle ourselves from the many body wavemcThe particle field

g(x) (3.7)

operator can be very loosely regarded as a quantizatioreadrte-body Schrodinger wavefunction. Jordan
and Klein[9] proposed that the particle field, and its complenjugate are conjugate variables. With this
insight, the second-quantization of bosons is achievedtrpducing a non-zero commutator between the
particle field, and its complex conjugate. The new quantulddithat emerge play the role of creating, and

1 In dimensions below three, it is possible to have wavefunstimith several Reimann sheets, which gives rise to the comfep
fractional statistics and “anyons”.

13
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destroying particles (see below)

(). ¢' (] = 6(x-y) (3.8)

Y(X), v (%)
A
1 ptcle wavefunction

J(x), ¢ (xBosons

S——
destructiorycreation operator
For fermions, the existence of an antisymmetric wavefanctmeans that particle fields mustticommute
i.e

YY) = (%),

a point first noted by Jordan, and then developed by Jordaméger[10]. The simplest example of anti-
commuting operators, is provided by the Pauli matrices: meenaw going to have to get used to a whole

continuum of such operators! Jordan and Wigner realizettiigasecond-quantization of fermions requires
that the the non-trivial commutator between conjugatei@erfields must be replaced by an anticommutator

W, 4" M} = 6(x-)

(3.9)

Y(X), v (%)
o e
1 ptcle wavefunction

J(x),d" (xFermions (3.10)

destructior/creation operator

The operatiorja, b} = ab+badenotes the anticommutator. Remarkably, just as bosog&ighderives from
commutators, fermionic physics derives from an algebrani€ammutators.

How real is a quantum field and what is its physical signifieghto begin to to get a feeling of its meaning,
let us look at some key properties. The transformation fraaefunction, to operator also extends to more
directly observable quantities. Consider for example elleetron probability density(x) = ¢*(X)y(x) of a
one-particle wavefunctiop(x). By elevating the wavefunction to the status of a field ofmerave obtain

p(¥) = WO — 53 = &' (d(x),

which is the densityoperatorfor a many body system. Loosely speaking, the squared matgnivf the
quantum field represents the density of particles

Another aspect of the quantum field we have to understands igliationship to the many-body wave-
function. This link depends on a new concept, the “vacuunfiisTinique state, denoted ) is devoid of
particles, and for this reason it is the only state for whindre is no amplitude to destroy a particle so

¥(¥)I0) = 0.

We shall see that as a consequence of the canonical algebraeation operatdir' (x) increments the number
of particles by onecreatinga particle aix, so that

(3.11)

The vacuum (3.12)

x1) = ' (x1)[0) (3.13)
is a single particle at;,
X1, . %) = () - - 7 (%)I0) (3.14)
is theN-particle state with particles located»t. .. xy and
Ol = Ol ) - ()] = <O (x) - () (3.15)

is its conjugate “bra” vector. The wavefunction ofldrparticle statelN) is given by the overlap afxs, . .. X|
with [N):

Y(Xa, . Xn) = (X, XNIND = (O (X)) - ¢ (Xn)IN) (3.16)

14

11



(©2011 Piers Coleman Chapter 3.

P SN G

10) P03l 2y (1)]0)
1 particle 3 particles

Vacuum

Fig. 3.3 Action of creation operator on vacuum to create (i) a one particle and (i) a three

particle state

So many body wavefunctions correspond to matrix elementseofluantum fields. From this link we can
see that the exchange symmetry under particle exchangedlgilinked to the exchange algebra of the field
operators. For Bosons and Fermions respectively, we have

O (%) (K1) - - - IN) = 20 (Kes)r(Xe) - .. IN) (3.17)
(where+ refers to Bosons:to fermions), so that
WX (Xei1) = £ (X)W (%) (3.18)

From this we see that Bosonic operators commute, but feimaperators musanticommuteThus it is the
exchange symmetry of identical quantum particles thaatistthe commuting, or anticommuting algebra of
the associated quantum fields.

Unlike a classical field, quantum fields are in a state of @mdtuctuation. This applies to both collective
fields, as in the example of the string in Fig. 3.1, and to quanfiuids. Just as the commutator between
position and momentum gives rise to the uncertainty priecifx, p] = i — AxAp>1, the canonical
commutation, or anticommutation relations give rise torailsir relation between the amplitude and phase
of the quantum field. Under certain conditions the fluctusiof a quantum field can be eliminated, and in
these extreme limits, the quantum field begins to take ongililnclassical existence. In a bose superfluid for
example, the quantum field becomes a sharp variable, andmreally ascribe a meaning to the expectation
of the quantum field

W) = Vpse’ (3.19)

15

bk . pdf

December 1, 2011

Chapter 3. ©Piers Coleman 2011

whereps measures the density of particles in the superfluid condenaée shall see that there is a completely
parallel uncertainty relation between the phase and deofsguantum fields,

ANAGZ 1 (3.20)

whereé is the average phase of a condensate Mdritie number of particles it contains. Whéhis truly
macroscopic, the uncertainty in the phase may be madeailyitsmall, so that in a Bose superfluid, the
phase becomes ficiently well defined that it becomes possible to observefietence phenomenon! Sim-
ilar situations arise inside a Laser, where the phase ofldatremagnetic field becomes well-defined, or a
superconductor, where the phase of the electrons in theeosate becomes well defined.

In the next two chapters we shall go back and see how all tleeseres appear systematically in the context
of “free field theory”. We shall begin with collective bosorfields, which behave as a dense ensemble of
coupled Harmonic oscillators. In the next chapter, we simalVe to conserved particles, and see how the
exchange symmetry of the wavefunction leads to the comipataand anticommutation algebra of bose
and Fermi fields. We shall see how this information enable® eempletely solve the properties of a non-
interacting Bose, or Fermi fluid.

Itis the non-commuting properties of quantum fields thategete their intrinsic §raininess Because of
this, quantum fields, though nominally continuous degrééeeedom, can always be decomposed in terms
of a discrete particular content. The action of a collediigkel involves the creation of a wavepacket centered
atx by both the creation, and destruction of quanta, schentigtica

5% = Z [ boson creation,+ 3.21)
K

momentum k

boson destructio ik
momentum -k ’

Examples of such quanta, include quanta of sound, or phorosquanta of radiation, or photons. In a
similar way, the action of a particle creation operator t#e@ wavepacket of particlesxatschematically,

ACEDY
k

When the underlying particles develop coherence, the guoafigld begins to behave classically. It is the
ability of quantum fields to describe continuous classiedidvioranddiscrete particulate behavior in a uni-
fied way that makes them so very special.

(3.22)

particle creation ik
momentum k ’

Example By considering the positivity of the quantit(1)’ A(1)), whereA = X+ iip andJ is a real
number, prove the Heisenberg uncertainty relaiochp > 2.

Example How does the uncertainty principle prevent the collapse of the Hydragen. Is the uncer-
tainty principle enough to explain the stability of matter?

3.2 Collective Quantum Fields
|

Here, we will begin to familiarize ourselves with quantumdgby developing the field theory of a free,
bosonic field. It is important to realize that a bosonic quanfield is fundamentally nothing more than a set

16
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0D

Fig. 3.4 Family of zero, one and three-dimensional Harmonic crystals.

of linearly coupled oscillators, and in particular, so lagthe system is linear, the modes of oscillation can
always be decomposed into a linear sum of independent nonodés. Each normal mode is nothing more
than a simple harmonic oscillator, which provides the bhsittling block for bosonic field theories.

Our basic strategy for quantizing collective, bosonic figlthus consists of two basic parts. First, we
must reduce the Hamiltonian to its normal modes. For tréinslally invariant systems, this is just a matter
of Fourier transforming the field, and its conjugate mome8t&cond, we then quantize the normal mode
Hamiltonian as a sum of independent Harmonic oscillators.

dq~(aqg+a’q)

H(g,m) 11 Normal Co-ords e 'y — Zhwq(nq +1) (3.23)
q

The first part of this procedure is essentially identicalfoth quantum, and classical oscillators. The second-
stage is nothing more than the quantization of a single Haimascillator. Consider the family of lattices
shown in Figure 3.4. We shall start with a single oscillatbome site. We shall then graduate to one and
higher dimensional chain of oscillators, as shown in Fig 3.4

17
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3.3 Harmonic oscillator: a zero-dimensional field theory

Although the Schrodinger approach is most widely used indirantization, it is the Heisenberg approach[11,
5] that opens the door to second-quantization. In the@thger approach, one solves the wave-equation

1202 1
me + émwzxz) Yn = Entn (3.24)
from which one finds the energy levels are evenly spaceddicepto
En=(n+ %)hw, (3.25)

wherew is the frequency of the oscillator.

The door to second-quantization is opened by re-intermyeliese evenly spaced energy levels in terms of
“quanta”, each of energiw. The nth excited state corresponds to the addition of n qutarthe ground-state.
We shall now see how we can put mathematical meat on thesesvsgrohtroducing an operatoa®™ that
creates these quanta, so that the n-th excited state imebtay actingh times on the ground-state with the
creation operator.

- 1 TN
) \/ﬁ(a )"0). (3.26)

Let us now see how this works. The Hamiltonian for this probievolves conjugate position and momentum
operators as follows

o= G dmots | @3.27)
[xpl = in,

In the ground-state, the particle in the Harmonic potentialergoes zero-point motion, with an uncertainty
in position and momentump and Ax which satisfyAxAp ~ #. Since the zero-point kinetic and potential
energies are equalp?/2m = mw?Ax?/2, S0

AX = ,/l Ap = Vmwh
mw

define the scale of zero-point motion. It is useful to defimaatisionless position and momentum variables
by factoring out the scale of zero-point motion

(3.28)

X - P
&= X p: = Ap (3.29)
One quickly verifies thatq, p;] = i are still canonically conjugate, and that now
hw
H= ?[gz + pﬁ]. (3.30)
Next, introduce the “creation” and “annihilation” opereto
.01 ’ .
a' = —(&-ips)s “creation operator”
\:{é (3
a=—(&+ipe), “annihilation operator” 3.31
\&(s‘ Pe) p (3.31)
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Since p,a’] = (& pe] = [p:. €]) = 1, these operators satisfy the algebra

[aa=[a"a] = 0
canonical commutation rules (3.32)
[aa] = 1
Itis this algebra which lies at the heart of bosonic physiesbling us to interpret the creation and annihila-
tion operators as the objects which add, and remove quarthration to and from the system.

To follow the trail further, we rewrite the Hamiltonian inrtes of a anda’. Since¢ = (a + a’)/ V2,
p: = (a—a')/ V2i, the core of the Hamiltonian can be rewritten as

g+pi=aa+ad (3.33)
Butaa' = a'a+ 1, from the commutation rules, so that
B 1
H = hwla’a + é]. (3.34)

This has a beautifully simple interpretation. The secomchtis just the zero-point enerdsy = 7iw/2 The
first term contains the “number operator”
A=a'a

"number operator” (3.35)

which counts the number of vibrational quanta added to thargf state. Each of these quanta carries energy
hw.
To see this, we need to introduce the concept of the vacuuimedeas the unique state such that
a0y = 0. (3.36)
From (12.133), this state is clearly an eigenstatkl pfvith energyE = 7iw/2. We now assert that the state

1 .
IN) = ——@)"[0) (3.37)
N

wherely is a normalization constant, contaiNsquanta.
To verify thatri counts the number of bosons, we use the commutation algelstzotv that fi;a’] = a'
and [i,a] = —a, or
fa =a'(h+1)

fa=a(f-1) (3.38)

which means that whea' or a act on a state, they respectively add, or remove one quanteneogy.

Suppose that
AIN) = N|N) (3.39)
for someN, then from (3.38),
A afN)y = a' (A + 1)[N) = (N + 1) a'|N)y (3.40)

so thata’|N) = |N + 1) containsN + 1 quanta. Since (3.39) holds fbr = 0, it holds for allN. To complete
the discussion, let us fixy by noting that from the definition dN),

2 2

(3.41)
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n quanta
— o000 00—
hw1
lllustrating the excitation picture for a single harmonic oscillator.

December 1, 2011

but sinceaa’ = A+ 1, (N - 1jaa’[N — 1) = N(N - 1|N — 1) = N. Comparing these two expressions, it follows
thatin/An-1 = VN, and sincelp = 1, Ay = VNI
Summarizing the discussion

H = ho+3)
i o= aa “number operator” (3.42)
Ny = ﬁ(aT)N\O) N-Boson state

Using these results, we can quickly learn many things alleuijiantum fields anda’. Let us look at a
few examples. First, we can transform all time dependerara fhe states to the operators by moving to a
Heisenberg representation, writing

a(t) = éht/igg /i Heisenberg representation (3.43)

This transformation preserves the canonical commutatgebaa, and the form dfi. The equation of motion
of a(t) is given by

da i .
i g[H,a(t)] = —iwa(t) (3.44)
so that the Heisenberg operators are given by
a(t) = e—iu;ta
al(t) = e“ta’ (3.45)

Using these results, we can decompose the original momeantdndisplacement operators as follows

K(t) = AxE(t) = %(a(t) +a(t) = ,I%(ae’i“‘ +a'dh)

Pt = App(t) = —i \/@(ae*i“1 —a'd
2

0

(3.46)
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Notice how the displacement operator- a priori a continwauible, has the action of creating and destroying
discrete quanta.
We can use this result to compute the correlation functidtiseodisplacement.

wherep, = e#&/Z is the Boltzman distribution, witf = 1/ksT, andkg is Boltzmann’s constant. Let
us now apply this to our problem, where

A=n=a'a (3.54)
is the number operator. In this case,
Example 1. Calculate the autocorrelation functi@ft — t') = 2(0|{x(t). x(t')}|0) and the “response” Ay = Z(e"‘E" JZ)(nlfAlny = % Z ne#En (3.55)
functionR(t — t') = (i/7){0[[x(t), x(t")]|0) in the ground-state of the quantum Harmonic oscillator. n n

. . . . To normalize the distribution, we must h =1, so that
SolutionWe may expand the correlation function and response function as follows 3R P

1 Z= Z e (3.56)
S(ts - t2) = S(0X(t2)X(t2) + X(t2) X(t2)I0) ™
R(ts — t2) = (i/m)<0IX(te)X(tz) — X(t2)X(t1)[0) (3-47) Finally, sinceE, = fiw(n + 1),
But we may expand(t) as given in (3.46). The only term which survives in the ground-siatéhe i o
term proportional t@a', so that _ 2n€ 2n _ Yhe'n _
(fy==""—— = = A= fhw. (3:57)
i >, el 3) Y€
, _ 10y @ iw(ti—t2)
OXOX(T)I0) 2mw<0|aa w3 (CL8) The sum in the denominator is a geometric series
Now using (3.47) we obtain
>en= S (3.58)
1 7 ) ) 1-ed
=(0l{x(t), x(t")}|0) = =— codw(t - t')] “Correlation function” n
2 2mw N
- 1 . X and the numerator is given by
—i(O[x(t), x(t")]|0) = e~ sinw(t —t')] "Response function” .
a e
. __ 9 ~An _
o \We shall later see th&(t —t") gives the response of the ground-state to an applied f(ttg so that Z TS En T (1-e)? (3.59)
at a timet, the displacement is given by " "
q so that
(X(t)) = f R(t — t')F(t')dt (3.49) _r 1
L. (ny o1 P 1 (3.60)
which is the famous Bose-Einstein distribution function.
Remarkably, the response function is identical with a classical Harmeniliator.
Example 2. Calculate the number of quanta present in a Harmonic oscillator with dbasiic
frequencyw, at temperaturé .
To calculate the expectation value of any operator at temperatuse need to consider an ensemble . .
of systems in dierent quantum statg¢®) = > c,In). The expectation value of operataiin state|'¥) 3.4 CO”eCtIVE mOdeS- phonons
is then -]

A = (H¥) = ) crenmAIny (3.50)
(0 We now extend the discussion of the last section from zeragteeh dimensions. Let us go back to the lattice
In a position basis, this would be shown in Fig 3.4 . To simplify our discussion, let imaginetthtieach site there is a single elastic degree of

A ) . freedom. For simplicity, let us imagine we are discussirgltimgitundinal displacement of an atom along a
= %; Cmc"fdw’“(x)A(x)w"‘(x) CED one-dimensional chain that runs in the x-direction. Forjtieatom,
But now we have to average over the typical st@fein the ensemble, which gives Xj = X‘J) + ;. (3.61)
A =" CemAIN) = 3" e mAIn) (3:52) If x; is the conjugate momentum ig, then the two variables must satisfy canonical commutatitations
mn mn
wherepmn = GG, is the “density matrix”. If the ensemble is in equilibrium with an incoherent hath, [¢i, mj] = ihdij. (3.62)
at temperaturd, quantum statistical mechanics asserts that there are no residualqoinasations . . . . - . . . .
between the dierent energy levels, which acquires a Boltzmann distribution Notice how variables at fierent sites are fully independent. We'll imagine that oue-diimensional lattice
—TE =R 3.53) hasN; sites, and we shall make life easier by working with peridibandary conditions, so that.n, = ¢;
(e o : andr; = 7j,n,. Suppose nearest neighbors are connected by a “springhithwase, the total total energy
21 22
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is then a sum of kinetic and potential energy

2
3 T, me? 2
H= Z m + T(¢j = j+1) (363)

j=1Ns
wheremis the mass of an atom.

Now the great simplifying feature of this model, is that tiigtossessegranslational symmetryso that
under the translation

71 - (3.64)

¢ = P

the Hamiltonian and commutation relations remain unchdnifieve shrink the size of the lattice to zero, this
symmetry will become a continuous translational symméthne generator of these translations is thestal
momentumoperator, which must therefore commute with the HamiltonBecause of this symmetry, it
makes sense to transform to operators that are diagonalrimemtom space, so we'll Fourier transform all
fields as follows:

_ 1 aR;
¢J’N&$¢m} R = ja. (3.65)

_ 1 jaR
3! _que' 171

The periodic boundary conditions; = ¢;.n,, 7j = 7j.n, Mean that the values gfentering in this sum must
satisfyqL = 27n, whereL = Nga is the length of the chain and n is an integer, thus

q:%m (ne[1,Ng) (3.66)
Notice thatq € [0, 2r/a] defines the range af. As in any periodic structure, the crystal momentum is only
defined modulo a reciprocal lattice vector, which in thisecss2r/a, so thatq + % = ¢, (you may verify
that @ + %)Rj = gR; + 2rm, which is why we restrich € [1, Ng]). The functionsx%Nfe‘qu = (jlg) form a
complete orthogonal basis, so that in particular

L 1 i(aqr
D1l = 5 5 TIR = (qg) = dqq-
]

ST

orthogonality (3.67)

is one ifq = ¢, but zero otherwise (see exercise 3.2). This result is inselgruseful, and we shall use it
time and time again. Using the orthogonality relation, we caeck that the inverse transformations are

— 1 —igR,;
¢q = TNSZJ e g,
— 1 iR,
”Q*\/Nigqeqlﬂl

Notice that sincep; andr; are Hermitian operators, it follows thatq = ¢_q andzx’q = 7_q. Using the
orthogonality, we can verify the transformed commutatielations are

(3.68)

indi;
1 o o —

[0-0.7ma] = - >, €I i ]
S i

in (O '

N Zi:é(q DR = 60y

We shall now see thaty and¢, are quantized version of “normal co-ordinates” which briing Hamilto-

nian back into the standard Harmonic oscillator form. Tooktteat the Hamiltonian is truly diagonal in these
variables we

(3.69)
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1 expandp; andz; in terms of their Fourier components,

2 regroup the sums so that the summation over momenta is autbiele,

3 Eliminate all but one summation over momentum by carryiuigtioe internal sum over site variables. This
will involve terms likeNg? 3, €@ %R = 54, which constraing/ = —q and eliminates the sum ovf.

With a bit of practice, these steps can be carried out vergkipuiln transforming the potential energy, it is
useful to rewrite it in the form

mz
V= D 0126~ djua— 1), (370)
i
The term in brackets can be Fourier transformed as follows:
42 sin?(qa/2)=w2
1 —_—— .
2(2¢; — pjs1 — bj1) = —— 2[2 — % — g9 x ¢, &I
(2~ $j1— ¢y-1) qu)w[ 1% ¢q
- 1 2 jqR
:Vﬁ;%%ég (3.71)
where we have definedﬁ = 4w sir?(ga/2). Inserting this into (3.70), we obtain
Sqq
m — R
V= > Z W -qdq Nslz CAR
aq i
Mg
=3 0 e (372)
q
Carrying out the same procedure on the kinetic energy, waimbt
1 mwj
H=>" (%”qﬂ—q + %‘ﬁq‘ﬁ—q] (3.73)
q

which expresses the Hamiltonian in terms of “normal co-watks”,¢q andzq. So far, all of the transfor-
mations we have preserved the ordering of the operators$,is@o surprise that the quantum and classical
expressions for the Hamiltonian in terms of normal co-catks are formally identical.

Now before we go on, it is perhaps useful to note that at0, wq = 0, so that there is no contribution to
the potential energy from ttge= 0 mode, which corresponds to a uniform translation of theesystem. To
separate the uniform motion from the oscillatory modes itseful to split the) = 0 part of the Hamiltonian
off from the remainder,

Hewm
1 1 mwi
q
H= fn”g + Z (%nqn,q + Tqbng,q]
q#0

where the first term is just the center of mass energy.
The next step merely repeats the procedure carried outéasitiyle harmonic oscillator. We define a set
of conjugate creation and annihilation operators

V5 (Ga + fta)

MOT o NE S (2 a4l = 5[0 70l -l bal| =000 (374)
alq = 7 ($-a = mT-a)
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Note that the second expression &y is obtained by taking the complex conjugateagfand remembering
that¢'q = ¢_q andn’q = m_q, since the underlying fields are real.
The inversion of these expressions is

e al g
$a = | +ag)
Notice how the Fourier component of the field at waveveqteither destroys a phonon of momentgror

creates a phonon of momenturg. Both have reduce the total momentumdyy
From these expressions, it follows that

Tq

(3.75)

Mwqh
Tqll-q = 2q (8 qaq+8ga’q ~ @' qa'q ~ 8gaq)
Bab_q = 2T]wq(a",q&q +agalq+a’_qa’q +agaq) (3.76)
Adding the two terms inside the Hamiltonian then gives
1 N N
H=Hew+ Z:hwq(a‘qaq +aga’y), (3.77)
q#0
or using the commutation relations,
1
H = Hew + Z hwg(@gaq + =) (3.78)

q#0

Since each set @, anda’ 4 obey canonical commutation relations, we can immediatiggtify ng = a’qaq as
the number operator for quanta in the g-th momentum stateaRebly, the system of coupled oscillators can
be reduced to a sum of independent Harmonic oscillators, efiaracteristic frequenayg, energyiwy and
momentun. Each normal mode of the original classical system cormedpto particular phonon excitation.

We can immediately generalize all of our results from a singhrmonic oscillator. For example, the
general state of the system will now be an eigenstate of thagrthoccupancies,

1_[ (a'g)™
i V!
where the vacuum is the unique state that is annihilatedlinf tie a,. In this state, the occupation numbers

nq are diagonal, so this is an energy eigenstate with energy

E=Eo+ ) nefig
q

0) (3.79)

) = Ing,, N, N = [ [ Ing) =
®

(3.80)

whereE, = % Y.qhwq is the zero-point energy.
Remarks

e The quantized displacements of a crystal are called phoi@uentized fluctuations of magnetization in a
magnet are “magnons”.

e We can easily transform to a Heisenberg representatiorreabenag(t) = aqe"‘“n‘.

e We can expand the local field entirely in terms of phononsnt/$8.75), we obtain

1 )
(1) = —— qR;
#5(t) N Eq bq€
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L=14 Wy = 2sin(qa/2

2000 P -

P eeo—
= =
W, 2nL —eo0o0oo—
—-0—0-0-000—
0 q 21t /a
lllustrating the excitation picture for a chain of coupled oscillators, length L=14.
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(3.81)

1 h
= doul®) + = ;) \ /qu [aq(t) + & _q(t)] €97

wheregey = N{ Xj ¢; is the center of mass displacement.

e The transverse displacements of the atoms can be readilydedt by simply upgrading the displacement
and momentung; andz; to vectors. For “springs”, the energies associated withstrarse and longi-
tudinal displacements are not the same because ffieess associated with transverse displacements
depends on the tension. Nevertheless, the Hamiltonian rhédeatical form for the one longitudinal
and two transverse modes, provided one insertfferdnt stifness for the transverse modes. The initial
Hamiltonian is then simply a sum over three degenerate igatansa € [1, 3]

=2 2

A=13 <IN

2 mw?
L > . ($ja— ¢J+1/l)2 (382)

2m

wherew? = w? for the longitudinal mode, an@? , = T/a, whereT is the tension in the spring, for the

two transverse modes. By applying the same procedure threk tmodes, the final Hamiltonian then

becomes
1
H= T y 2).
4:21:3; wa(a il 2)

wherewy = 2w,sin(ga/2). Of course, in more realistic crystal structures, thergiee of the three
modes will no longer be degenerate.

e We can generalize all of this discussion to a 2 or 3 dimensismaare lattice, by noting that the orthogo-
nality relation becomes

NGt Z gleaRi 5. (3.83)
i
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where now,
9= (iiz...ip)

andR; is a site on the lattice. The general form for the potentiargnis slightly more complicated, but
one can still cast the final Hamiltonian in terms of a sum owagltudinal and transverse modes.

e The zero-point energl, = % Yqliwq is very important irHe — 4 andHe - 3 crystals, where the lightness
of the atoms gives rise to such large phonon frequenciestteatrystalline phase is unstable and melts
at ambient pressure under the influence of quantum zero paition. The resulting “quantum fluids”
exhibit the remarkable property of superfluidity.

(3.84)

3.5 The Thermodynamic Limit L — oo

In the last section, we examined a system of coupled osmifiain a finite lattice. By restricting a system to a
finite lattice, we impose a restriction on theaximiumwavelength, and hence, the excitation spectrum. This
is known as an “infra-red” cutff. When we takd. — oo, the allowed momentum states become closer and
closer together, and we now have a continuum in momentunespac

What happens to the various momentum summations in the tligmmaamic limit,L — «o? When the al-
lowed momenta become arbitrarily close together, the eisgummations over momentum must be replaced
by continuous integrals. For each dimension, the incremembmentum appearing inside the discrete sum-
mations is

(3.85)

) thaﬂ_% = 1. Thus in one dimension, the summation over the discreteesaifq can be formally rewritten

as
Aq
Z{.H]:L;Z{...]

aj

(3.86)

whereq; = 27(% and] € [1,Ns]. When we takel — oo, g becomes a continuous variates [0, 27/a],
wherea = L/Ns is the lattice spacing, so that the summation can now beceglay a continuous integral:

Zn/adq
Zq:{...]—mfo S

Similarly, in in D-dimensions, we can regard the D-dimensiosum over momentum as a sum over tiny
hypercubes, each of volume

(3.87)

(Aq)P® = (2330 (3.88)
S0 thatLD% =1and
_D (Aq)° D d°q
Zq:{..,}fL Zq:(zn)D {...)-L Lq,dn/a(zn)D{”" (3.89)

where the integral is over a hypercube in momentum spack sides of length 2/a.
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Fig. 3.7 lllustrating the grid of allowed momenta for a three-dimensional crystal of dimensions

December 1,

2011

L3. In the limit L — o, the grid becomes a continuum, with (L/27)® points per unit
volume of momentum space.

Once the momentum sums become continuous, we need to cHengermalization of our states. By
convention, we now normalize our plane wave basis per ufitwe, writing

(XIk) — dkx (3.90)
In a finite volume, this means that the orthogonality conditin these plane waves is
(k'Iky = f dPxd®KI* = | Bgy o, (3.91)

wheredy_i- is the discrete delta function on the grid of allowed wavéwes In the thermodynamic limit, this
becomes

f dPxd®* ) = (27)PsP (k — k') (3.92)
so that the continuum limit of the discrete delta-functisigiven by
LP6 — (2m)P6P(k — k") (3.93)

Example 4.Re-express the Hamiltoniah of a simplified three-dimensional Harmonic crystal in terms
of phonon number operators and calculate the zero-point energyewh

2 mw?
H=) oo+ D 2@ =)
]

}a=(%9.9 2
whereg; = ¢(x;) andr; = n(x;) denote canonically conjugate (scalar) displacement, and momenta at
site j, anda = (X, Y, 2) denotes the unit vector separating nearest neigbor atoms.

(3.94)
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Solution First we must Fourier transform the co-ordinates and the HarmoniajiteThe potential
can be re-written as

~ 1
V= E ;Vi—J¢l¢i (3-95)
where
Ve=mwd ' (268 = R a = Oria) (3.96)
a=(3.2)

The Fourier transform of this expression is

Vo= Vee R
R
=mw ) (2-e'4e-din)
a=(3.2)
= mw? Z [2 - cosga)] (3.97)

I=xy.z
so that writingVq = m(wq)?, it follows that the normal mode frequency are given by
wq = 2wo[sin?(0xa/2) + sir(aya/2) + sinz(qza/Z)]% (3.98)

Fourier transforming the fields
4= Z%é“*
VN
Mj= — » M€ 3.99
j ms; . (3.99)

whereq = (i, j, k) are the discrete momenta of a cubic crystal of voluriewith periodic boundary
conditions, we find

Tqm_q  Mw?
H= Z[ L9 4 D geddl (3.100)
Defining the creation and annihilation operator
\/ (g + w/ (pq - (3.101)
we reduce the Hamiltonian to its standard form
o
H= Zq:hu)q(nq +3) (3.102)
whereriy = bf4by is the phonon number operator.
In the ground-statey, = 0, so that the zero-point energy is
hawqg d®q hwq
B=27 V) erz )
whereV = L. Substituting fokw,, we obtain
8 ) .
Eo=V ]_[f qhwu > sif(aa/2)
1=13 1=13
= Nfiwol3 (3.104)
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where

d®u !
| :f = | sirf(u) = 119 3.105
3 0<uy,Up,ug<m ”3 Jﬁ;{ﬁ ( )

andN; is the number of sites.

Remarks

o The zero point energy per unit cell of the crystakis,(1s/7%), a finite number.
o Were we to take the “continuum limit", taking the lattice separation to zero, them@int energy
would diverge, due to the profusion of ultraviolet modes.

3.6 Continuum Limit: a— 0
|

In contrast to the thermodynamic limit, when we take the icontm limit we remove the discrete character
of the problem, allowing fluctuations of arbitrarily smalhwelength, and hence arbitrarily large energy. For a
discrete system with periodic boundary conditions, the etoim in any one direction can not exceeqda@

By takingato zero, we remove the ultra-violet cuffdn momentum.

As a simple example, we shall consider a one-dimensioriagsfFhe important lesson that we shall learn,
is that both the discrete model, and the continuum model tawesame long-wavelength physics. Their
behavior will only diter on very short distances, at high frequencies and shoestiffhis is a very simple
example of the concept of renormalization. Provided werterésted in low energy properties, the details of
the string at short-distances- whether it is discrete, atinaous don’t matter.

Of course, in many respects, the continuum model is morsfgiaty and elegant. We shall see however, that
we always have to be careful in going to the continuum limétzdwuse this introduces quantum fluctuations
on arbitrarily short length scales. These fluctuations tafféct the low energy excitations, but they do mean
that the zero-point fluctuations of the field become arhigréarge.

Let us start out with a discrete string, as shown in fig 3.8 9Reall displacements, the Hamiltonian for this
discrete string is identical to that of the last section, ascan see by the following argument. If a string is
made up of point particles of mass m, separated by a distanveigh a tensile forcél acting between them,
then for small transverse displacemepisthe link between th¢ th andj + 1th particle is expanded by an

amountAs; = (¢; — ¢j41)?/2a, raising the potential energy by an amoiits;. The Hamiltonian is then
H= nLT 3.106
= ]; o+ 55 (1~ #i) (3.106)
which reverts to (3.63) with the replacemdhia — mw?.
To take the continuum limit, we let — 0, preserving = m/a. In this limit, we may replace
az — fd)g
i
(@; - ¢12)*
e e () (3107)
30
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T X

Fig. 3.8 lllustrating a (a) discrete and a (b) continuous string. By taking the length between

units in the string to zero, maintaining the density per unit length and the tension, we
arrive at the continuum limit.

Making the replacement

wj/a— n(X;) (3.108)
we obtain
_ T w6024 L (02
H= fdx[z(vxd)) +2pn(X) (3.109)
On the discrete lattice, the commutation relations
[600). 7(X))] = ihd(x; - X)), (3.110)

Wherefi()q -Xj) = a’léij. In the limita — 0, S()q - X;j) behaves as a Dirac delta function, so that in this limit,

[6(x), 7(Y)] = ih(x - y)

Unfortunately, the delta function in this expression imed arbitrarily high spatial frequencies, and if we
work with it as it is, we will encounter “ultraviolet” diveences. To regulate these divergences we will need
to introduce a cut5. One way to do this is to start in momentum space, using thenteal commutation
relation

(3.111)

[0, 7] = i x (alq) = if x 215(a - ) (3.112)
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Now were we to writep(x) = f%éqxrﬁq and the corresponding expression #¢x), we recover the unreg-
ulated commutation algebra (3.111). Instead, to regukaentld high-momentum physics, we introduce a
small exponential convergence factor into the Fourierstiam, definingthe real-space fields by

dq - dq .
d(X) = fg%éqxe lal/2, a(x) = fgﬂqeque /2, (3.113)
If we now repeat the calculation of the commutation relative find
dqdd 2nin6(g-qf)
[¢(x), n(y)] = fWe'(qH’*) [pq, 7_q] € 2094190
. dq X oo . 0 o
=in | —=gax)de = % lf e (e-i=x)q +f e(sﬂ(x—x))qj
f (2n) A R
“Oe(x—X)"
in 1 1 ) €
o E_i(X—X’)+e+i(x—x’)]:'hx;(m)’ (3.114)

showing that the removal of the ultra-violet modes smeargi#ita function into a Lorentzian of finite width
€.

Now it is just a question of repeating the same steps of theéaion, but for the continuous fielgg and
7q- When we transform the Hamiltonian, we obtain

_ (darmerq PG -elal
”-fz[ 2 2 Yat-al®

where nowwg = clgl, andc = /T/p is the velocity of the phonons. Notice how this has almosttya
the same form as the the discrete lattice, but now the higmentum modes are cufdy the exponential
factor, rather than the finite size of the Brillouin zone. Defg the creation and annihilation operator by the

relations
= 2 [ ' ]
¢q = 9 +a g

(3.115)

. | hpw, N
g =i 2%%—dﬂ] (3.116)
we find that the creation and annihilation operators satisfy
[ag, '] = 276(q ~ ). (3.117)
We may now rewrite the Hamiltonian as
* dqhwg t v
H= - 5. 5 @3+ aqa g al (3.118)
If we re-order the Boson operators, we obtain
*d = 1
——
H= f Shaq(al g + 210(0) )e 2 (3.119)

The first terms corresponds to the excitations of string veececognize the last term as the zero-point energy
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of the string. Had we been less ambitious, and started oufioite but long lattice , the term 25(0) would
be replaced by, which is merely the statement that the zero-point energlesanith the length,

dqg _ Lhc
Ezp=L | —hoqe = —
7P fZ clale e

is the total zero-point energy. Once we remove the momenturoft; the momentum sum is unbounded and
the zero-point energy per unit length becomes infinite inciitinuum limit. It often proves convenient to
remove this nasty infinity by introducing the conceptiebrmal ordering’ If we take any operatok, then we
denote its normal ordered count-part by the symbbl.: The operator A : is the same a8, excepting that
all the creation operators have been ordered to the leftl of #he annihilation operators. All commutators
associated with the ordering are neglected, so that thealamiered Hamiltonian is

‘H ::I %qhwqa"'qaq,

measures the excitation energy above the ground-state.
Finally, let us look at the displacement of the string. Thiglien co-ordinate space are given by

(3.120)

(wq = clql) (3.121)

_ (dd h F Axgeld/2
o0 = [ 511 sprla +al sl (3.122)
where, as in the case of the Harmonic oscillator
ag(t) = age™t,  alq(t) = age, (3.123)
Note:
e The generalization of the “quantum string” to higher dinmiens is written
(| T o2, 1 2
H= fd X[Z(V¢) +2p:r(x)
[¢(3), 7] = ih%(x ~y). (3.124)
Sometimes, it is useful to rescapéx) — ¢(X)/ v, 7(X) = n(x) 4/p, so that
H= f d'x[(cVe)*+(x)?]
[¢(¥. 7(y)] = Ihéd(x Y). (3.125)
In two dimensions, this describes a fluctuating quantum nmang
e In particle physics, the “massive” version of the above nhodgtten as
_1 d _2v2 mc\? 2
H_Efd x[q;( v +(7) p+r (3.126)

wherec is the speed of light, is called the “Klein-Gordon Hamiltani. In this model, the elementary
quanta have enerdy, = +/(icq)? + (mc)2. This also corresponds to a string where a uniform displace-
ment¢ costs an energy proportional na'¢?.
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Example 5. Calculate the the equal-time ground-state correlation function

S = 506 - 400 @3127)

for a one-dimensional string.

Solution:Let us begin by rewriting
S(X) = (0l(¢(0)* - $(x)¢(0))I0) (3.128)

where we have used translational and inversion symmetry to refln@)?0) = (0/¢(0)?0)y and
(0lp(x)¢(0)I0) = (0lp(0)¢(x)|0).-

When we expan@(x) and¢(0) in terms of creation and annihilation operators, only the terms of the
form (Ojaga’ ¢ 0) = (Ol[ag, a'_¢]10) = (21)5(q — q') will survive. Let us write this out explicitly:

dqdd n

(@0 2pc ol
dq ,‘q‘( 1-¢e%
= 2c f ] )

S(X) =

(Olfag + & gl[a-q +a'¢]I0)(1 ~ e¥)e ™

2
7(7)[4 e +") (3.129)
where to obtain the last step, we first calculate
s in dq_jox—qil
ChT [ Shevssang
dq g-le-ixiq _ f A9 jetigq
I
h 1
__47rpC[€—IX_ €+ix 27rpclm(e—ix) CES0)
and then then integrate the answenonoting thatS(0) = 0 to get
I * 1 T €—ix T €+ %2
S0 = ool | 0 = ZTpcRem( . ) et ( = ) (3.131)

Remarks

e Were we to send the cutfiee — 0, the fluctuations at a given distancéiverge logarithmically with
e: this is because the number of short-wavelength (ultra-violet) fluctuatiecsmes unbounded.

o We could have also obtained this result by working with a discrete stringtedmya — 0 at the
end of the calculation. Had we done this, we would have found that

S(x) = 2lm Zq:(l ;qéqx)

which has the same long-wavelength behavior.
e Had we repeated this calculation B dimensions, the integral ovey becomes a d-dimensional

integral. In this case,
1 e'qX 1
D,
S(x)~fd ~ o1

lal

In higher dimensions, the phase space for number of short-wavkléngtuations grows ag®,
which leads to stronger fluctuations at short-distances.

(3.132)

(3.133)
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Exercises

Exercise 3.1 In 1906, in what is arguably the first paper in theoreticaldmrsed matter physics[3] Albert
Einstein postulated that vibrational excitations of adealie quantized with energyw, just like the
photons in the vacuum. Repeat his calculation for diamoaltutate the energf(T) of one mole of
simple harmonic oscillators with characteristic frequenat temperatur@ and show that the specific
heat capacity is

dE hw
T)= — =RF|-—
&M= (kBT)
where
X/2 2

sinh(x/2)]
andR = Naykg the product of Avagadro’s numbéa, and Boltzmann's constatg. Plot C(T) and
show that it deviates from Dulong an Petit's l&@y = (R/2) per quadratic degree of freedom at tem-
perature§ << fiw/Kg.

Exercise 3.2 Consdier the orthogonality relation in equation (3.67)

T
DXl = 5 D €@ = G
i ST

F(x) :(

(3.134)

whereq, = nZ, q= n% = nN%a are the discrete wavevectoids = L/a is the number of sites in the
chain anda is the lattice spacing. By substitutifi®) = ja and treating this expression as a geometric
series, show that

1 sinf[t(tn—-m)] _

1 .
E i = E (Gh-amR; — =
i (Ol j)jlan) = Ne i ¢ I = Nssin[N{(n—m)] = Onm

thereby proving orthogonality.
Exercise 3.3 For the Harmonic oscillatdrl = ziw[a’a + %], we know that

M = n(w) = (3.135)

1
efho — 1’
whereg = 1/(ksT) andi = a’a is the number operator. In the ground-state, using the w@msat
of motion for the creation and annihilation operators, wevedd that the zero-point fluctuations in
position were described by the correlation function

1 7
é({x(t), x(0)) = e coswt. (3.136)

Generalize this result to finite temperatures. You shoulditirat there are two terms in the correlation
function. Pleasaive them a physical interpretation.
Exercise 3.4 (a) Show that ifais a canonical bose operator, the canonical transformation

b=ua+va,

b' = ua' +va (3.137)

(whereu andv are real), preserves the canonical commutation relatiposjdedu? — v2 = 1.
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(b) Using the results of (a), diagonalize the Hamiltonian

+ i
H=w(@a+ é) + EA(a‘a‘ + aa), (3.138)
by transforming it into the fornH = &(b'b + %). Find @, u andv in terms ofw andA. What happens
whenA = w?

(c) The Hamiltonian in (b) has a boson pairing term. Show thefground-state dfi can be written
as coherent condensate of paired bosons, given by

|6> _ e—a(a’a*) 0.

Calculate the value af in terms ofu andv. (Hint: |0) is the vacuum fob, i.ebl0) = (ua+ va')[0) = 0.
Calculate the commutator §d, e @] by expanding the exponential as a power series. Find a value
of a that guarantees thatannihilates the vacuutb). )

Exercise 3.5 (Harder) Find the classical normal mode frequencies anthalbco-ordinates for the one
dimensional chain with Hamiltonian

2
H=) 2% + 01002 (3.139)
where at even sitesp; = mand at odd sitesyj,1 = M. Please sketch the dispersion curves.
(i) What is the gap in the excitation spectrum?
(iii)Write the diagonalized Hamiltonian in second quantiZerm and discuss how you might arrive
at your final answer. You will now need two types of creatioemaor.

Exercise 3.6 (Harder) According to the “Lindeman” criterion, a crystaélts when the rms displacement
of its atoms exceeds a third of the average separation ofohesaConsider a three dimensional crystal
with separatiora, atoms of mass and a nearest neigbor quadratic interactioa "‘“‘Tz(cﬁR - <I3R+a)2.

(i) Estimate the amplitude of zero point fluctuations usimg tincertainty principle, to show that if

h

e (3.140)

where{ is a dimensionless number of order one, the crystal will betabie, even at absolute zero,
and will melt due to zero-point fluctuations. (Hint... whabwid the answer be for a simple harmonic
oscillator?)

(i) Calculate{; in the above model. If you like, to start out, imagine that #tems only move in
one direction, so thab is a scalar displacement at the site with equilibrium posiR. Calculate the
rms zero-point displacement of an atoy0|®(x)?|0). Now generalize your result to take account of
the fluctuations in three orthogonal directions.

(iii)Supposefiw/ks = 300K, and the atom is a Helium atom. Assuming thais independent of
atom separatiom, estimate the critical atomic separatianat which the solid becomes unstable to
quantum fluctuations. Note that in practieels dependent om, and rises rapidly at short distances,
with w ~ a™, wherea > 2. Is the solid stable foa < a. or fora > a.?

Exercise 3.7 (Harder) Find the transformation that diagonalizes the aman

H =" {h@iaa + Ho) + J(a'iaa + Ho) (3.141)
j

where the ith site is located & = aj. You may find it helpful to (i) transform to momentum space,
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writing aj = ﬁ Yq &9Riay and (ii) carrying out a canonical transformation of the fdumn= ugaq +
vga'_q, whereu? — v2 = 1. What happens whe = J,?

Exercise 3.8 (Harder) This problem sketches the proof that the displacgrof the quantum Harmonic

oscillator, originally in its ground-state (in the distgoatst), is given by

(X)) = fo "R - V) f ), (3.142)

where

RE-1) = LOIXO. X0)]10 (3.143)

is the “response function” anx(t) is the position operator in the Heisenberg representatidty. A
more detailed discussion can be found in chapter 10.
An applied forcef (t) introduces an additional forcing term to the harmonic ltestoir Hamiltonian

H(t) = Ho + V(t) = Ho - f(H)% (3.144)

whereHp = hw(@a'a + %) is the unperturbed Hamiltonian. To compute the displacernéthe Har-

monic oscillator, it is convenient to work in the “interamti representation”, which is the Heisenberg

representation foro. In this representation, the time-evolution of the wavefion is due to the force

term. The wavefunction of the harmonic oscillator in theeration representatiag (t)) is related to

the Schrodinger statés(t)) by the relatiorjy (t)) = €"oY|ys(t)).

1 By using the equation of motion for the Schrodinger sitadgws(t)) = (Ho + V(1))lvs(t)), show that
the time evolution of the wavefunction in the interactiopnesentation is

iddy (1) = Vi (1) = =T QRO 1)),

whereV (t) = eHot/ny(t)e-Hot/h = _x(t) f(t) is the force term in the interaction representation.
2 Show that ifiy(t)) = |0y att = —co, then the leading order solution to the above equation ofanot
is then

(3.145)

i (8)) = 10y + % ft dt’ f(t')X(t')[0y + O(f?), (3.146)

so that

Lot
W1 = <0l —%[ dt' f(t)OI() + O(?). (3.147)

3 Using the results just derived expand the expectationev@h(t)|x(t)l(t)) to linear order inf,
obtaining the above cited result.

37

bk . pdf

38

December 1, 2011

1]
[2]

3

[4

5

6]

7

8l
[0

[10]

[11]

References

A. Einstein, Concerning an heuristic point of view towards the emissiod tiansformation of light
Ann. Phys. (Leipzig)ol. 17, pp. 132, 1905.

A. B. Arons and M. B. Peppard Einstein’s Proposal of the Photon Concept - a Translatiothef
Annalen der Physik Paper of 1908merican Journal of Physi¢csol. 33, pp. 367, 1965.

A. Einstein, Planck’s theory of radiation and the theory of the specifath®nn. d. Physikvol. 22, pp.
180, 1907.

Abraham PaisSubtle is the Lord: the Science and the Life of Albert Einst®ixford University Press,
1982.

M. Born and P. JordanZur Quantenmechanifon Quantum Mechanics¥eitschrift fur Physikvol.
34, pp. 858, 1925.

P. A. M. Dirac, The fundamental Equations of Quantum Mauhs, Proc. Royal Soc. Avol. 109, pp.
642, 1925.

W. Pauli, Die Quantumtheorie und die Rotverschiebung der Spektré@antum Theory and the Red
Shift of Spectra) Zeitschrift fur Physikvol. 26, pp. 765, 1925.

P. A. M. Dirac, On the Theory of Quantum Mechani&spc. Royal Soc. Avol. 112, pp. 661, 1926.
P. Jordan and O. KleinZum Mehriérperproblem der QuantentheorigOn the Many Body Problem
of Quantum Theory)Zeitschrift fur Physikvol. 45, pp. 751, 1927, The second-quantization condition
for bosons appears in eqn. (14) of this paper.

P. Jordan and E. WignerUber das Paulische Aquivalenzvertf@n the Pauli Exclusion Principle),
Zeitschrift fur Physikvol. 47, pp. 631, 1928.

W. HeisenbergUber quanten theoretische Umdeutung kinematischer untianéscher Beziehungen
(Quantum theoretical reinterpretation of kinematic ancthaaical relations),Zeitschrift fur Physik
vol. 33, pp. 879, 1925.

23



39

Conserved Particles

The method we have just examined is fine for “collective etmns” of a medium, but it does not make it
self-evident how we should proceed for systems of consepeeticles, such as a gas of Helium-4 atoms, or
an electron gas inside a metal. Now we shall return to discoisserved patrticles.

First quantized quantum mechanicandeal with many body physics, through the introduction of aayna
particle wavefunction. This is the approach favored in fieddch as quantum chemistry, where the number
of electrons is large, but not macroscopic. The quantum &tgnapproach revolves around the many-body
wavefunction. ForN particles, this a function of I8 variables and\ spins. The Hamiltonian is then an
operator expressed in terms of these co-ordinates:

¥ — (X, X2 .. XN, 1)

+%ZV(><@ - %)) 4.2)

i<j

hz
H— Z [_ﬁvf +U(x))
J

With a few famous exceptions this method is cumbersome, laadiied to macroscopically large systems.
The most notable exceptions occur in low dimensional prablevhere wavefunctions of macroscopically
large ensembles of interacting particles have been oltaixamples include

e Bethe Ansatz solutions to interacting one dimensional,ianmlirity problems[1, 2, 3, 4].

e Laughlin’s wavefunction for interacting electrons in higlagnetic fields, at commensurate filling factors[5,
6].

Second-quantization provides a general way of approachangy body systems in which the wavefunction
plays a minor role. As we mentioned in chapter 3, the essefihwecond-quantization is a process of raising
the Schodinger wavefunction to the level of an operator which §iascertain “canonical commutation” or
“canonical anticommutation” algebras”. In first quantiz#g/sics physical properties of a quantum patrticle,
such as its density, Kinetic energy, potential energy camXpessed in terms of the one-particle wave-
function. Second quantization elevates each of these itjeartb the status of an operator by replacing the
one-particle wavefuncion by its corresponding field opmrat

vy o Uk
one particle wavefunction Field operat and Quantization @.2)
ow".v) - OU.)

For example, Born’s famous expression for the one-partfmiebability) density becems an operator as fol-
lows:

P = WP — A = " (i (x), (4.3)
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so that the potential energy associated with an externahiat is

V= f d*xUX)H(X). (4.4)

Similarly, the Kinetic energy in first-quantization

2
T ol = [ |- 5o @5)
becomes the operator
7= [aii|- v i 4.6)
B 2m ’ '
Finally
H= fd3xJ/"(x) —%Vz + U(x)]a//(x) + %fd3xd3>(V(x— X) : pOYP(X) 4.7)

is the complete many-body Hamiltonian in second-quantiaed. HereV(x — X') is the interaction potential
between the particles, and the symbol “:” reflects the faat tnder of the operators counts. “: ...:" is the
normal ordering operator denotes that all creation opesdtetween the two colons must be ordered to lie to
the left of all destruction operators.

4.1 Commutation and Anticommutation Algebras

December 1, 2011

In 1928, Jordan and Wigner[7] proposed that the microschigid operators describing identical particles
divide up into two types. These are axioms of quantum fieldrheFor identical bosons, field operators
satisfy a commutation algebra, whereas for Fermions, thibdijgerators satisfy aanticommutatioralgebra.
Since we will be dealing with many of their properties in plefait useful to introduce a unified notation for
commutators and anticommutators as follows

{a,b} =ab+ba=[ab].,
[a,b] =ab-ba=[ab]-, (4.8)
so that
[a,b], =ab+ba 4.9)
We shall adopt the-/— subscript notation in this chapter, while we are discusbitl) fermions and bosons

together.
The algebra of field operators is then

W@).v@). = [v' (2. v (D 0

Fermiony Bosons (4.10)

[w(@).¢" ().

When spin is involved, 1= (x,01) andd(1 — 2) = 6O (x; — X2)d,,0,- We shall motivate these axioms
in two ways: (i) by showing, in the case of Bosons, that theyanatural result of trying to quantize the
one-particle wavefunction. ; (ii) by showing that they le¢adhe first quantized formulation of many-body
physics, naturally building the particle exchange stassnto the mathematical framework.

s(1-2)
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Table. 5.1. First and Second Quantization treatment of coresved particles. one-particle state. If we time evolve the system we can biegihink of the single-particle wavefunction as

if itis a classical variable.
First Quantization Second Quantization Let us briefly recall one-particle quantum mechanics. Iffheticle is in a statéy), then we can always
expand the state in terms of a complete b§ajg, as follows:

Wavefn— Field

() = () W(x) o
Operator W)= 3 = 3 Imun (4.12)
Commutator kpl=in (%), 4 (X)]= = $°(x = X) " " A
so thatyn(t)[2 = pa(t) gives the probability of being in state Now applying Schrodinger's equatioid|y) =
. 2 R PN inoy) gives
Density p(X) = ()l (X)) = v (X)(¥) _
inin(®) = D (MIHIMYm(t)
. . -~ m
Arbitrary Basis W = (Ay) 75 ihn)/;(t) __ Z<m|H|n)lp;,(t) 4.12)
Change of Basis (S = Z(EAU) a5 = 3 (800 Now if we write the ground-state energy as a functional oftihgt), we get
Orthogonality (A7) = S Wy vls = Sar v = M) = ; Ymdn(mMHIN) (4.13)
5 ~ , N we see that the equations of motion can be written in Hamédtoform
One ptcle Energy Ly X w*(x)(—é’—m + U(X))w(x)
- OH(y,y*) . OH
A Ym = Thau (C.fq:a—p)
Interaction icj V(% = X)) V= %fxx V(X—=X):p(X)p(X) : _ 0H(¢Tw*) ] 9H
iy, = o (cfp= —a—q) (4.14)
= 1 S V(@)C €l o-qCk O o
so we can identify
Many Body - - i) = {Gn, 4.15
Wavefunction R{GRCRR ) O (X4a) - - - h(%n)I0) {¢m, iy} = (O, Pn} (4.15)

] as the canonical position and momentum co-ordinates.

Schivdinger Eqn (S H, + Ziej Vi) ¥ = in'¥ [HO + [ p)V(X = Q)]i(X) = iTujr(x) But suppose we don't have a macroscopic humber of particlasingle state. In this case, the amplitudes
¥n(t) are expected to undergo quantum fluctuations. Let us exawiirat happens if we “second-quantize”
these variables, making the replacement

Table 5.1 summarizes the main points of second-quantiziat we shall now discuss in detail. (o Pl = iGnm = iA[Yn, ¢ ) (4.16)

or

4.1.1 Heuristic Derivation for Bosons

[n,gm] = ['//A;‘n,w.rm] =0,

The name second-quantization derives from the notion thatrhody physics can be obtained by quantizing N (4.17)
the one-particle wavefunction. Philosophically, this &tricky, for surely, the wavefunction is already a Wng'ml = Onm

quantum object? Let us imagine however, a thought expetiméren we prepare a huge number of non-
interacting particles, prepared in such a way that they kie precisely the same quantum state. The fea-
sibility of this does not worry us here, but note that it catuatly be done for a large ensemble of bosons, H= Z 3w (MHI (4.18)
by condensing them into a single quantum state. In this eistance, every single particle lies in the same i

In terms of these operators, our second quantized Hamaltdmecomes

41 42
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If we now use this to calculate the time-evolution of the quanfields we obtain

i —Omjt
=gy = [H, wil = D (mHID [ i, ] (4.19)
ml
Eliminating the sum ovem, we obtain
—ihdu; == ) (iHI
|

=ihd' = A, whi] = ) w AHI), (4.20)

|

where the complex conjugated expression gives the timeutool of ;. Remarkably, the equations of
motion of the operators match the time evolution of the oagigle amplitudes. But now we have operators,
we have all the new physics associated with quantum fluctustf the particle fields.

4.2 What about Fermions?
|

Remarkably, as Jordan and Wigner first realized, we recosemigely the same time-evolution if second-
quantize the operators using anticommutators[7], ratfem tommutators, and it this is what gives rise to
fermions and the exclusion principle. But for fermions, vee mot dfer a heuristic argument, because they
don’t condense: as far as we know, there is no situation irchvinidividual fermi field operators behave
semi-classically (although of course, in a superconduptars of fermions that behave semi-classically).

In fact, all of the operations we carried out above work elguaéll with either canonical commutation or
canonicalanticomutatiorrelations:

[Yn. Ym] [¥ n ¥ mls =0,

‘ (4.21)
[‘/’n»WTmli = Onm

where thet refers to fermionfosons respectively.
To evaluate the equation of motion of the field operators, @edrto know the commutato[ ). Using
the relation
[ab,c] = a[b, c]. *[a.c].b (4.22)
we may verify that
0 A
—_——
W i il = ¢ mlvn il 9 m gl v
= —Smith (4.23)
so that
—Omji

=idw; = (A, wil = D (mHID [ i, ]
ml
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== > (jHIw (4.24)
|

independently of whether we use an anticommuting, or conmypaigebra.
Let us now go on, and look at some general properties of segoadtized operators that hold for both
bosons and fermions.

4.3 Field operators in different bases
|

Let us first check that our results don’'t depend on the ontiefmbasis we use. To do this, we must confirm
that the commutation or anticommutation algebra of bosaerfermions is basis independent. Suppose we
have two bases of one-particle states:{thg basis, and a neWs)} basis, where

W)= Inve = ) I9as (4.25)
r S
where(§y) = as, {rly) = ¢. Introducing the completeness relatios T, |r){r| into the first expression,
we obtain
as Vs
,—:\ ~ ——
@) = En (4.26)
r

If this is how the one-particle states transform betweenttiebases, then we must use the same unitary
transformation to relate the field operators that destrofigbes in the two bases

8= ) (&N (4.27)
r
The commutation algebra of the new operators is how
Sim
SN I S
(8,8 pl. = ) (&) [, o (mip) (4.28)
I,m

This is just the pre- and post-multiplication of a unit ofieraby the unitary matrixXJs = (§l) and its
conjugatel " mp = (MP). The final result, is unity, as expected:

(85, &"pl. = D (ENAIP) = (3P) = 65p (4.29)

In other words, the canonical commutation algebra is preseby unitary transformations of basis.
A basis of particular importance, is the position basis. ®he-particle wavefunction can always be de-
composed in a discrete basis, as follows

) = WD) = D X (4.30)

where(xin) = ¢n(x) is the wavefunction of the nth state. We now define the cpmeding destruction
operator

909 = Y (i (4.31)
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which defines the field operator in real space. Using commésteof the one-particle eigenstat%idelxxxl,
we can expand the orthogonality relatiém, = (njm) as

1= dPxix)(x
3 D
b= 1 m = [ oo,
By integrating (4.31) ovex with (n|x), we can then invert this equation to obtain

Yo = f PXOU, Y= f Ay (x)(xin) (4.32)

You can see by now, that so far as transformation laws arescoed, ~ (n| andy/(x) ~ (x| transforms like
“bra” vectors, whilst their conjugates transform like “ét

By moving to a real-space representation, we have tradedliscaete basis, for a continuous basis. The
corresponding “unit” operator appearing in the commutatifgebra now becomes a delta-function.

+ 6”"‘;
WO 0 W = ) IMY) [, ¢l
= D) (nly) = (xy)
= 6g(x -y) (4.33)

where we have assumed a three-dimensional system.
Another basis of importance, is the basis provided by thepamtcle energy eigenstates. In this basis
(I[H|m) = E;6im, so the Hamiltonian becomes diagonal

H= Z Bl = Z Eify (4.34)
|
The Hamiltonian of the non-interacting many-body systemsttivides up into a set of individual compo-
nents, each one describing the energy associated with tdupaicy of a given one-particle eigenstate. The
eigenstates of the many-body Hamiltonian are thus labéletie occupancy of thith one-patrticle state. Of

course, in a real-space basis the Hamiltonian becomes raorglicated. Formally, if we transform this back
to the real-space basis, we find that

H= f dPxdP Xy " (X)(XHIX Y (X') (4.35)
For free particles in space, the one-particle Hamiltongan i
hZ

MMMW{—EEW+UuﬁPwa (4.36)

so that the Hamiltonian becomes
2

H= f dew"'(x)[ - ;Lmvz + U(x)]w(x) .37

which despite its formidable appearance, is just a a tram&d version of the diagonalized Hamiltonian

(4.34).
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Example 4.1: By integrating by parts, taking care with the treatment of surface termgy gfat the
second quantized expression Hamiltonian (4.37) can be re-written iortime f

2
H = [[@x( J 7009 + U, (439
where we have taken a notational liberty common in field theory, denfSting)[? = V' (x) - V(%)

andly(3” = v ()y(x).
Solution: Let us concentrate on the kinetic energy term in the Hamiltonian, writinrgT + U, where

T- f ') (-%vz) w(x). (4.39)
Integrating this term by parts we can split it into a “bulk” and a “surfacerhteas follows:
Ts
T= iz f dPxVy T (X) - Vip(x) + i f d®xV - (y (Vi (x). (4.40)
2m 2m

Using the divergence theorem, we can rewrite the total derivative asacs integral

2
Ts = -Zh—m f S - (' ()Vu(x) (4.41)

Now it is tempting to just drop this term as a surface term that “vanishes aityfifiHowever, here
we are dealing with operators, so this brash step requires a little contempiafimre we take it for
granted. One way to deal with this term is to use periodic boundary conditiottss case there really
are no boundaries, or more strictly speaking, opposite boundarieelc@pds + deS = 0), so the
surface term is zero. But suppose we had used hard wall bounaladitions, what then?

Well, in this case, we can decompose the field operators in terms of theaotiele eigenstates of the
cavity. Remembering that under change of bagés), ~ (x| andy(x) ~ |x) behave as bras and kets
respectively, we write

on(x) (%)

—= o G
YO) =D M v, w09 =Dt <
n n
Substituting these expressions ifit (4.41), the surface term becomes
Ts= Ztﬁr{‘/’in#’/m
nm
s n? =
B3 | 45 6109%0n(0) (8.42)

Provided,(x) = 0 on the surface, it follows that the matrix elemetfts= 0 so thaffs = 0.
Thus whether we use hard-wall or periodic boundary conditions, welaap the surface contribution
to the Kinetic energy in (4.40), enabling us to write

T= h—zfd[’xﬁ X1
" 2m v

and when we add in the potential term, we obtain (4.38).
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4.4 Fields as particle creation and annihilation operators. From this expression, we are immediately led to identify
| 00X = v (Y (x) (4.52)
By analogy with collective fields, we now interpret the qugnby = "¢ as the number number operator, as the density operator. Furthermore, since
counting the number of particles in the one-particle dtafée total particle number operator is then [o(y) w(X)] = F[¢' (). w(X)] £ ¥(y) = —63(X - V) (y). (4.53)

N = Z A (4.43) we can we can identify(X) as the operator which annihilates a particle.at

Using relation (4.22), it is easy to verify that for both féams and bosons,
[Nl =[Pu] = -, [Now"] = [PLufi] =y (4.44)
In other wordsNy ™, =y (N + 1) so thaty’| adds a particle to stateSimilarly, sinceNy; = v (N — 1), g

Example 4.2: Usina the result (4 53) that if

N 13,
NR—LRd)’P(V)

destroysa particle from staté (4.54)
There is_however a vita_tl and essentidtelience bet\_/veen posons and fermions. For bosons, the nufber o measures the number of particles in some regiothat
particlesn, in thelth state is unbounded, but for fermions, since
A _f w0, (xeR) e
2 1o [N, 0] = 0 xR =)
Y= EW’ LyYhh=0 (4-45)
. . . X By localizing regionR aroundx, use this to prove that(x,) annihilates a particle at positiog.
the amplitude to add more than one particle to a given staaééwiays zeroWe can never add more than Solution: By directly commutingNg with ¢(x), we obtain
one particle to a given state: in otherwords, éxelusion principldollows from the algebra! The occupation . 0, (xeR)
number bases for bosons and fermions are given by [N, p(x)] = f Lo, y(x)] = —f Fx=yuy) = { 0 (x¢R)
yeR yeR
Supposeéng) is a state with a definite numbeg, of particles insideR. If the regionR is centered around
InL,n...n...y = ] ('%‘ 10y, (n,=0,1,2...) bosons oy G it leS e ~ ~
" (4.46) Nry/(Xo)Ing) = ¥/(Xo)(Ng — L)Ing) = (ng — 1) (Xo)Ing)
nLno...ny = )™ @™oy, (nr=0,1) fermions contains one less particle. In this way, we see if{zg annihilates a particle from inside regi@) no
matter how small that region is made, proving thét) annihilates a particle at positiog.
A specific example for fermions, is
123456 + + - +
1101101) = ' a3y "110) (4.47) Example 4.3: Supposeby destroys a boson in a cubic box of side lenbtivhereq = 2(i, j, k) is
. . . . . . . . the momentum of the boson. Express the field operators in real spatshaw they satisfy canonical
which contains particles in the 1st, 3rd, 4th and 6th on¢iglerstates. Notice how therderin which we add commutation relations. Write down the Hamiltonian in both bases.
the particles fiects the sign of the wavefunction, so exchanging particksd6 gives Solution The field operators in momentum space satisfyl§’q] = Jqy. We may expand the field
Lrsass operator in real space as follows
v a3y 110) = —u ey a3 110) = -] 101101) (4.48) W)= Y (RDby (4.56)
By contrast, a bosonic state is symmetric, for example N !
ow
| 8085A1) = ———— o')W DU )W )I0) (4.49) D = 55 (457)
V41215181 L3/2 '
To get further insight, let us transform the number opertatar real-space basis by writing is the one-particle wavefunction of a boson with momentiir€alculating the commutator between
the fields in real space, we obtain
5°(x-y)
A= [ @xy 30/ Gy uey) (4.50) L
: [, wi (] = > (RAA1y) [bg, bl = Y (Xaaly
aq q
so that _ é 3 D = (). (4.58)
R= [ /(900 (@51) g
47 48
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The last two steps could have been carried out by noting¥had)(q = 1, so that §(%).u'()] =

(Xy) = 6%(x — ).
The Hamiltonian for the bosons in a box is

hZ
il == f &y () V2 (X) (4.59)
We now Fourier transform this, writing
1 —ig-K|
wi(x) = B Ze Hbig
q
1 ‘
VAU = ~ 5 p, g (4.60)
q
Substituting into the Hamiltonian, we obtain
L.
1 Crax
H=5 > &byby f XX = 3 ebigby, (4.61)
q.q q
where
hZ
G = (2—;‘:) (4.62)

is the one-particle energy.

4.5 The vacuum and the many body wavefunction
|

We are now in a position to build up the many-body wavefumcti®nce again, of fundamental importance
here, is the notion of the vacuum, the unique si@tevhich is annihilated by all field operators. If we work
in the position basis, we can add a particle at site make the one-particle state

1) = ¢ (x)[0), (4.63)
Notice that the overlap between two one-particle states is
XXy = Oy ()10 (4.64)

By using the (anti) commutation algebra to move the creatjperator in the above expression to the right-
hand side, where it annihilates the vacuum, we obtain

6O(x-x)
Ol (u" (x)[0) = Ol[w (), ¥ (X)].10) = 6P (x — x). (4.65)
We can equally well add many particles, forming tigoarticle state:
%1, %2 .. Xn) = T () - - o () (%) 10) (4.66)
Now the corresponding “bra” state is given by
X Xz Xl = (Ol (xa)e(Xe) . ¢(Xn) (4.67)
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The wavefunction of the N-particle statg(t) is the overlap with this state

Ws (X1, X, - - XN, 1) = (X, X X[ s (1) = O () (X2) - . . w(xn)IP's (1)) (4.68)

Remarks

¢ In the above expression, the time-dependence of the wastEanlies in the ket vectop¥(t)). We can
alternatively write the wavefunction in terms of the timepeéndent Heisenberg field operato(s, t) =
eht/hy,(x)e MU and the stationary Heisenberg ket vedy) = €M/ ws(t)) as follows

XN 1) = (Ol (Xa, (X, 1) - - (X, OIPH)-

e The commutatiofanticommutation algebra guarantees that the symmetryiofidvefunction under par-
ticle exchange is positive for bosons, and negative for ii@ns) so that if we permute the particles,
(12...N) = (P1P;...Py)

OO )W (x,) ... (e IWs (1)) = (F1)F O (xa)p (%) - ..y (xn)IF()

whereP is the number of pairwise permutations involved in making permutation. Notice that for
fermions, this hard-wires the Pauli Exclusion principléoithe formalism, and guarantees a node at
locations where any two position (and spin) co-ordinatésaide.

Y(Xq, X2, . - (4.69)

(4.70)

Example Two spinless fermions are added to a cubic box with sides of lengthmomentum states
ki andk,, forming the state

[¥) = [k1,kz) = €', €'y, [0) (4.71)
Calculate the two-particle wavefunction
W(X1, %) = (X1, Xo|'P) (4.72)
SolutionWritten out explicitly, the wavefunction is
(X2, %) = (O (Xa)¥(%2)C Tk, €k 10) (4.73)

To evaluate this quantity, we commute the two destruction operators to theuigihthey annihilate
the vacuum. Each time a destruction operator passes a creation apgeag@Enerate a “contraction”
term

53(x-y)

T .
W05 = [ Y095 I = (k) = L3k @.74)

Carrying out this procedure, we generate a sum of pairwise contracésriollows:

O (Xa) (%) C ki, C iy [0) = (XalK1)(XalK2) — (Xa[K2)(XolK1)
_ | (xalk1)  (xalkz)

(Xolk1)  (XalK2)
— Li;[é(h*ﬁh X2) _ é(kl’xz+k2‘xl)]
Note: the determinantal expression for the two particle wavefunction ig@nge of a “Slater deter-
minant”. The N dimensional generalization can be used to define the uventifn of the corresponding
N particle state.
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4.6 Interactions
|

Second-quantization is easily extended to incorporatraations. Classically, the interaction potential en-
ergy between particles is given by

V= %fd3xd3x’v(x - X)p(X)p(X) (4.75)
so we might expect that the corresponding second-quargigeession is
%fd%(d’)(V(x— X)p(X)p(X) (4.76)

This is wrong because we have not been careful about the ordering oftoprédvere we to use (4.76), then
a one-particle state would interact with itself! We requfrat the action of the potential on the vacuum, or a
one-particle state, gives zero

V|0) = VIx) = 0 4.77)

To guarantee this, we need to be careful that we “normalrbttie field operators, by permuting them so
that all destruction operators are on the right-hand-#tl@dditional terms that are generated by permuting
the operators are dropped, but the signs associated wiffetheutation process are preserved. We denote the
normal ordering process by two semi-colons. Thus

Sp(¥)p() 1 =T QY (YY) :

=7 10 (0 M) =1 ¢ (Y W (Yu ) : (4.79)
and the correct expression for the interaction potentitiés
V= % fd3xd3x’v(x— X) : p(YP(X) :
-3 3 [ VO X0 6005 (90009 @79
where we have written a more general expression for fields sgina, g € +1/2.
Example. Show that the action of the operatdon the many body state;, ... xy) is given by
VIX1, X, ... Xn) = ZV()q — X))I%0, X, - - - XD (4.80)
i<
Solution: To prove this, we first prove the intermediate result
[V, (0] = f dPYV(x -y ()p(y)- (4.81)

This result can be obtained by expanding out the commutator as follows:
Sy=Xuy' )£y =X)u(y)
0= [ V=)0 O ) 0.9 )
=0 ()y )

e e
=005 [ Vo £ 5 [ V- 08w 00w
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= f V(x =)y (x)o). (4.82)
y
where the lower sign choice is for fermions.
We now calculate
Ve, ... xw) = V' () . .. (x0)[0) (4.83)

by commutingV successively to the right until it annihilates with the vacuum. At each steggener-
ate a “remainder term”. When we commute it past the the “jth” creationadpewe obtain

h/—\ ~
P (@n)... Vii(z;) ... 91 (21)[0) = ¥i(an) .. VI (e;)V ... ¥ (@1)[0) +R; (4.84)
where the remainder is
R; = f Ay ) - VY = X)u ()P0 - - ¥ (x2)I0) (4.85)

Next, usingo(Y)y' (%) = ¢ (x)o(y) + ¥ (x)s(y— %), we commute the density operator to the right until
it annihilates the vacuum. The remainder terms generated by this parestsgen

-1

R = ) V0§ =X On) (%)) . (%) ... 0" (x)I0)
#
= V(X = Xj)I X1, X2 - . . Xn)- (4.86)
i=1
Our final answer is the sum of the remaindgs
W) W ()0 = Y R
2N
= ZV()Q — X)IXes Xa - - - X)- (4.87)

i<j

In other words, the stafg; ... xy) is an eigenstate of the interaction operator, with eigenvalue given by
the classical interaction potential energy.

To get another insight into the interaction, we shall nowriit in the momentum basis. This is very
useful in translationally invariant systems, where moraents conserved in collisions. Let us imagine we
are treating fermions, with spin. The transformation to amantum basis is then

Yo(X) = ka(ré(k'x),
K
Vo) = [ e, (4.89)
k
where{Cye, C'ior} = (27)36%(k — k’)é,.~ are canonical fermion operators in momentum space and we hav

used the short-hand notatio
f f d27'1k
k ( ) ’

52

(4.89)
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k1+q704 kQ_Q76

ko, B

kl,Oé

Fig. 4.1 Scattering of two particles, showing transfer of momentum. g.

We shall also Fourier transform the interaction

V(x-X) = f V(q)ed &), (4.90)
q

When we substitute these expressions into the interactiemeed to regroup the Fourier terms so that the

momentum integrals are on the outside, and the spatialraigegre on the inside. Doing this, we obtain

~ 1 -
V= 5 Zﬂ V(@) X €k C ka0 Ckro Ckyor» XSpatial integrals (4.91)
oo’ 1234
where the spatial integrals take the form
f dBxdx gikerdxgkeks-ax" — (97185 (k, — kg — )6 (k3 — ko + ), (4.92)

which impose momentum conservation at each scattering.evsing the spatial integrals to eliminate the
integrals oveks andkg, the final result is

~ 1 .
V= 3 Zf V(q)c{kﬁqac‘quﬂckzﬁcklw
kika.q

op

(4.93)

In other words, when the particles scatter at positioasadx’, momentum is conserved. Particle 1 comes in
with momentumk,, and transfers momentumto particle 2. Particle 2 comes in with momentlm and
thereby gains momentum

particle 1 Ky
particle 2 ko

- k1+q

- kp—g (4.94)

as illustrated in Fig. 4.1. The matrix element associateth Wiis scattering process is merely the Fourier

transform of the potentiaf(q).
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Example 4.4: Particles interact via a delta-function interactig(x) = Ua®6®(x). Write down the
second-quantized interaction in a momentum space representation.
Solution: The Fourier transform of the interaction is

V(q) = f d*xuas(x)e > = ua® (4.95)
so the interaction in momentum space is
N SES
V= Z - f [N LB Y (4.96)
& k1. k2.q
Example 4.5: A set of fermions interact via a screened Coulomb (Yukawa) potential
Ar
V() = A‘;r 4.97)
Write down the interaction in momentum space.
Solution: The interaction in momentum space is given by
~ 1
V=33 [ Vo wumin (4.98)
o p VK k2
where
Ar
V(@) = f dsxA%e-‘q-x (4.99)

To carry out this integral, we use Polar co-ordinates with the z-axis aligiwty the directiorq.
Writing g - X = gr cosf, thend®x = r2d¢d cosd — 2xrd cos#, so that

1 1
V() = f 4rr2drv(r) 3 f dcosg e cos” (4.100)
S
(erix)=2g
so that for an arbitrary spherically symmetric potential
V() = f PREV (L';rqr) (4.101)
0
In this case,
L _ _4A
V(q) = g jo‘ dre™" sin(gr) = Pt (4.102)
Notice that the Coulomb interaction,
V(r) = s 4.103
) T ( )
is the infinite range limit of the Yukawa potential, with= 0, A = €/4re,, so that for the Coulomb
interaction,
V(g) = & (4.104)
e

Example 4.6: If one transforms to a new one particle basis, writi(g) = Y. ®s(X)cs, Show that the
interaction becomes

.1
V=3 Z C11C7 menCo(IMIV]pn)

imnp

(4.105)
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where
(miVjpry = f D[ DH(IP(X)(X)V (X~ X) (4.106)

is the matrix element of the interaction between the two particle stateand|pn).

4.7 Equivalence with the Many Body Schr  6dinger Equation
|

In this section, we establish that our second-quantizediaerof the many body Hamiltonian is indeed
equivalent to the many-body Schroedinger equation. Letarswith the Hamiltonian for an interacting gas
of charged patrticles,

Ho %

H=3, f wfz"[—% S - e+ 5 f V=) 09500 -

(4.107)

Wherefx = fd3x, and by convention, we work in the Grand Canonical ensensblgtracting the termN
from the Schadinger HamiltoniarHs, H = Hs — uN. For a Coulomb interaction
&
Areo|x — X'|
but the interaction might take other forms, such as the bard-interaction between neutral atoms in liquid
He-3 and He-4.
The Heisenberg equation of motion of the field operator is

%

V(x=X) = (4.108)

= [¥e. H]. (4.109)

Using the relations

Wo (X, ¥ " (X)Oxtho ()] = 6(r(r 6%(x = X)Oxb (%),
Y (9. p(a)e0R)] = 1 [ (X). pOa)]p(2) < + 2 pO) [ (X, p(X2)] -
53(X1 = X)W (X) + 6> (%2 = () (¥)

we can see that the comutators of the one- and two-particte phthe Hamiltonian with the field operator
are

22
o0, Hol = -5+ U0 = o)
0oV = [ XV = 00009

The final equation of motion of the field operator thus resembl one-particle Schrodinger equation.

in%e —’;—V £UO) - o + f XV~ (X W ()

(4.110)

(4.111)
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If we now apply this to the many body wavefunction, we obtain

L 0P(L2,.. 0w(1)
'ET in le“N<0|.//(1)

-

" Z f XV = X)OD) .. p W) - (N

~y(N)I¥)

+U) - ¥

By commuting the density operator to the left, until it anlates with the vacuum, we find that

QWD) PO () . W (NI = )" 63X = X)OW(D)... v

I<j

(N)[w) (4.112)

so that the final expression for the time evolution of the mamyy wavefunction is precisely the same as we
obtain in a first quantized approach.

m‘L\P [Zw%Zv‘,]

I<j

(4.113)

Our second-quantized approach has the advantage thdtlg buthe exchange statistics, and it does not need
to make an explicit reference to the many body wavefunction.

4.8 Identical Conserved Particles in Thermal Equilibrium
I —

4.8.1 Generalities

By quantizing the particle field, we have been led to a versfauantum mechanics with a vastly expanded
Hilbert space which includes the vacuum and all possiblestaith an arbitrary number of particles. An
exactly parallel development occurs in statistical thedymamics, in making the passage from a canonical, to
a grand canonical ensemble, where systems are considdvedrt@quilibrium with a heat and particle bath.
Not surprisingly then, second quantization provides a tieduwvay of treating a grand canonical ensemble
of identical particles.

When we come to treat conserved particles in thermal equitibrwe have to take into the account the
conservation of two independent quantities

e Energy.E
e Particle numbeN

Statistical mechanics usually begins with an ensemblessitidal systems of definite particle number and en-
ergyE andN respectively. (More precisely, particle number and engyigyg in the narrow ranges\, N+dN]

and [E, E + dE], respectively). Such an ensemble is called a “microcas@rénsemble”. This is a confus-
ing name, because it suggests something “small”, yet tjlpi@microcanonical ensemble is an ensemble
of identical, macroscopic systems that play the role of & hath[8, 9, 10, 11]. The ergodic hypothesis of
statistical mechanics assumes that in such an ensemkédecabible quantum states within this narrow band
of allowed energies and particle number are equally prebgeljuala priori probability).
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Heat/Particle bath

E — E)

@ Heat Exchange N — N)\

Small system

Particle and

Fig. 4.2 lllustrating equilibrium between a small system and a large heat bath. Inset illustrates

how the number of states with energy E,, particle number N, is proportional to the
density of states in the big system.

Now suppose we divide the system into two parts - a vast “heti’land a tiny sub-system, exchanging
energy and particles, as shown in Fig. 4.2 until they readhta sf thermal equilibrium. In the vast heat and
particle bath, the energy levels are so close togetherthtgform a continuum. The density of states per unit
energy and particle number is taken toW€E’, N’), whereE’ is the energy antl’ the number of particles
in the bath. When the system is in a quantum sttevith energyE,, particle numbeN,, the large system
has energf’ = E — E,, particle numbeN’ = N — N,.

Assuming equak prioriprobability, the probability that the small system is intsta) is proportional to
the number of state#/(E, N) of the heat bath with enerdy — E, and particle numbeX — N,,

P(Ea. NY) o W(E — E,, N — N,) = @WEELN-N), (4.114)

Now following Boltzmann, we can tentatively identify/(E, N) with the entropyS(E, N) of the heat bath,
(see exercise 4.4) according to the famous formula

Sg(E. N) = kg In W(E, N) (4.115)

where we have included the subsciiipto delineate the heat bath. It follows that

P(E4, N,) < exp éSB(E —-E.LN-Ny (4.116)
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Now E, andN, are tiny perturbations to the total energy and particle remu the heat bath, so we may
approximateS(E — E,, N — N,) by a linear expansion,
B 8Sg 8Sg
Sg(E - E;,N - N,) = Sg(E,N) — E; 3E N FINIREE (4.117)

Now according to thermodynamictE = TdS + udN whereT andy are the temperature and chemical
potential, respectively, so thdBg = %dE— £dN, allowing us to identify

19Sg _dnwW 1

ks OE ~ OE  keT

19Sg _dnW _ u _

ks ON ~ ON  keT
These are the Lagrange multipliers associated with theecgation of energy and particle numbe®nce
we have made this expansion, it follows that the probatiitige in statel) is

=0,
—upB. (4.118)

B = %e—ma—w», (4.119)

where the normalizing partition function &= 3, , e #(E#N),
To recast statistical mechanics in the language of many buelyry, we need to rewrite the above expres-
sion in terms of operators. Let us begin with the partitionciion, which we may rewrite as

2= et

A
= Zme*ﬁ(“*ﬂ“) 1) = Tr[ePH-#9], (4.120)
A

Although we started with the eigenstates of energy andqi@miumber, the invariance of the trace under
unitary transformations ensures that this final expressiardependent of the many body basis.

Next, we cast the expectation val(®) in a basis-independent form. Suppose the quantity A, repted
by the operatod, is diagonal in the basis of energy eigenstatgsthen the expectation value #fin the
ensemble is

(A = Z paAAY = Tr[pA]. (4.121)
A

Here we have elevated the probability distributjprnto an operator- the Boltzmann density matrix:

p= 0Pyl = Z TP (4.122)
A

This derivation of (4.121) assumed thatould be simultaneously diagonalized with the energy amtigha
number. However, quantum statistical mechanics, makesthieal assertion that (4.121) holds for all quan-
tum operatordA representing observablesjen when the operatdk does not commute witd or N, and is
thus not diagonal in the energy and particle number basis.

1 Incidentally, if you are uncomfortable with the use of claasthermodynamics to identify these quantities in terms ofeheperature
and chemical potential, you may regard these assignmentstasitenpending calculations of physical properties thawaus to
definitively identify them in terms of temperature and chempmtential.
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4.8.2 ldentification of the Free energy: Key Thermodynamic Propert ies
There are a number of key thermodynamic quantities of gnéextast: the enerdsy, the particle numbeN, the F = —kTinz, Free energy
entropyS and the Free enerdy = E - ST- uN. One of the key relations from elementary thermodynamics W
is th ai)y & K 4 y v Z = Tr[eH-+N], Partition function
R e BH-uN) ) )
b= —F Density Matrix
dE = TdS- pudN - PdV (4.123)
- NA] — _ OF 5
By puttingF = E — TS—uN, dF = dE— dTS— SdT—- udN — Ndy, one can also derive N = TrNpl=-3 Particle number
S = —kgTrfpIng] = -5& Entropy
P = -4, Pressure
dF = -SdT- Ndu - PdV (4.124)
E-uN = Tr(H-uN)p], = -25Z Energy
a relationship of great importance.

The energy and particle number can be easily written in thguage of second-quantization as
Notice how, in this way, all the key thermodynamic propexti@an be written as appropriate derivatives of
Free energy.

E = Tr[Hp].
N = Tr[Np], (4.125)
Example 4.7: (i) Enumerate the energy eigenstates of a single fermion Hamiltonian.
but what about the entropy? From statistical mechanics,egvkhat the general expression for the entropy H=Ec’c (4.130)
is given by where{c,c’} = 1, {c, ¢} = {c, c'} = 0.
(ii) Calculate the number of fermions at temperafiire
Solution (i) The states of this problem are the vacuum state and the one-particle state
S=-ks . pilnp, (4.126) SRR
E 19 D=0 (4.131)
Iy=cfl0), E; = E. .
Now since the diagonal elements of the density matrixparave can rewrite this expression as (ii) The number of fermions at temperatures given by
() = Tr[pn] (4.132)
S = —kgTr[pInp] (4.127) whererf= c'c,
p =Ptz (4.133)
If we substitute Ip™= —g(H — uN) — In Z into this expression, we obtain is the density matrix, and where
Z = Tr[e PN (4.134)
S= ?Trp(H ~uN) + kglnZ is the “partition function”. For this problem, we can write out the matricedieitly.
1 10 .~ oo
= ?(E — uN) + kgInZ (4.128) eM=|g spen| 0= [0 1 (4.135)
so that
i.e —kgTInZ = E — ST~ uN, from which we identify Z=1+ePEWN (4.136)
and
F = —kgTInZ (4.129) Trife?"] = e#E# (4.137)
The final result is thus
B(E-,
as the Free energy. Summarizing these key relationshipsggither, we have () i g (4.138)

Thermodynamic Relations
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which is the famous Fermi-Dirac function for the number of fermions itagesof energyE, chemical
potentialyu.

4.8.3 Independent Particles

In a system of independent particles with many energy le¥elach energy level can be regarded as an
independent member of a microcanonical ensemble. Forpthityis because the Hamiltonian is a sum of
independent Hamiltonians

H—-uN = Z(Eﬁ — )M (4.139)
P

so that the partition function is then a product of the indiidl partition functions:

Z=T[ |enEmn (4.140)
1®

and since the trace of an (exterior) product of matricesgisakto the product of their individual traces,
(Tr[e = I1a ),

z=]|merEm =[]z, (4.141)
a a
Since
1 + e BEI-#) Fermions
Z= { 14 P 4 g®E 4 | = (1-ePE)Ll Bosons 4.142)
The corresponding Free energy is given by
fermions
— T B(Er—1)
F = 7kgT Z Inf[l+e 1, { bosons (4.143)
The occupancy of thith level is independent of all the other levels, and given by
Ay =Triph] = T(| 0]
®:1
—— . 1
= [[TlodxTrlon] = e (4.144)

A#l
where ) refers to Fermions and-§ to bosons.
In the next chapter, we shall examine the consequencess# te&tionships.

Exercises
|

Exercise 4.1 In this questiorc;” andc; are fermion creation and annihilation operators and thestare
fermion states. Use the convention
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111111000..) = cs'csfesf s’ e flvacuum.

1 Evaluatecs'csCaCs'c3111111000. ).
2 Write|1101100100..) in terms of excitations about the “filled Fermi s¢4111100000..) . Inter-
pret your answer in terms of electron and hole excitations.
3 Find(yIN|y) wherely) = AI100 + B[111000, N = 3 'c.
Exercise 4.2 1 (a) Consider two fermionsy anda,. Show that the Boguilubov transformation

¢ =Uua +va

¢’y = —vay +ua, (4.145)
whereu andv are real, preserves the canonical anti-commutation o@lgif u? + v2 = 1.
2 Use this result to show that the Hamiltonian
H = e(aa; — apay’) + A(a’1a’, + H.c.) (4.146)
can be diagonalized in the form
H = VeZ + A2(clycy + clocy — 1) (4.147)

3 What is the ground-state energy of this Hamiltonian?
4 Write out the ground-state wavefunction in terms of the ingijoperatorsc;™ and ¢, and their
corresponding vacuui), (c12/0) = 0).
Exercise 4.3 Consider a system of fermions or bosons, created by the i) interacting under the
potential

(U <R,
V() = { 0, >R,

1 Write the interaction in second quantized form.

2 Switch to the momentum basis, wheie) = %Cke‘k". Verify that [cx, ¢ ] = (27)26®)(k —k’)
and write the interaction in this new basis. Please sketetidim of the interaction in momentum
space.

(4.148)

Exercise 4.4 1 Show that for a general system of conserved particles atichépotential, the total parti-
cle number in thermal equilibrium can be written as

N = —0F/du (4.149)
where
F = —kgTInz
Z = Tr[e AH-+N) (4.150)
2 Apply this to a single bosonic energy level, where
H-uN = (e -p)a'a (4.151)
andd’ creates either a Fermion, or a boson, to show that
o 1
(h) = e 1 (4.152)

Why doesu have to be negative positive for bosons?
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Exercise 4.5 (Equivalence of the microcanonical and Gibb’s ensemblekafge systems.)
In a microcanonical ensemble, the density matrix can bendiye
A 1 - -
pm = W6(E — H)5(N - N)
whereE andN are the energy and particle number respectively, while
W = W(E, N) = Tr[6(E - H)&(N - N)]
is the “density of states” at enerd@y, particle numbeN. This normalizing quantity plays a role similar
to the partition function in the Gibb’s ensemble.
1 By rewriting the delta functions inside the above trii¢@s an inverse Laplace transforms, such as
. o+ico dﬁ R
sty = [ B
C-F= o
and evaluating the resulting integrals at the saddle péithisointegrand, show that for a large system
W is related to the entropy by Boltzmann'’s relation
S(E,N) = kg InW(E, N).
2 Using your results, show that in a large system, the expeotaalue of an operator is the same for
corresponding Gibb’s and microcanonical ensembles, namel
(A) = Tr{owAl = TrpsAl

wheregy = Z-le#H#N|,_, . is the Boltzmann density matrix evaluated at the saddletpoin
values ofB andpo,
dlnwW ,0InW
Po="5g  Ho=hooN
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Simple Examples of

Second-quantization

In this section, we give three examples of the applicatiosezfond quantization, mainly to non-interacting
systems.

5.1 Jordan Wigner Transformation

A*“non-interacting” gas of Fermions is still highly corrédal: the exclusion principle introduces a “hard-core”
interaction between fermions in the same quantum states fEaiture is exploited in the Jordan -Wigner
representation of spins. A classical spin is represented Wgctor pointing in a specific direction. Such a
representation is fine for quantum spins with extremelydagjn S, but once the spin S becomes small, spins
behave as very new kinds of object. Now their spin becomesatgm variable, subject to its own zero-point
motions. Furthermore, the spectrum of excitations becatisesete or grainy.

Quantum spins are notoriouslyfiiicult objects to deal with in many-body physics, because theyot
behave as canonical fermions or bosons. In one dimensioe\u@wit turns out that spins witB = 1/2
actually behave like fermions. We shall show this by writifig quantum spin/2 Heisenberg chain as
an interacting one dimensional gas of fermions, and we sttallally solve the limiting case of the one-
dimensional spin+2 x-y model.

Jordan and Wigner observed[1] that the down and up stateinfjesspin can be thought of as an empty
or singly occupied fermion state, (Fig. 5.1.) enabling thtermake the mapping

[ 1) = f7[0), 1) =10). (5.1)
An explicit representation of the spin raising and loweripgrators is then
. [0 1
o =
-0l
__._|0 0O
S =f= 1 0] (5.2)
The z component of the spin operator can be written
1 1
= = - =fff-2 .
Su= 5[ D=1 = 1715 (53)
We can also reconstruct the transverse spin operators,
_Lletesyo Lt
Sy = 21(S +S7) = 21(f + f),
= —(St-S)= = T
Sy = 5 (S*-957) 2i(f f), (5.4)
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nf=1

Showing how the “up” and “down” states of a spin-1/2 can be treated as a one

December 1, 2011

particle state which is either full, or empty.

The explicit matrix representation of these operators mikaear that they satisfy the same algebra

[Sa, Sp] = i€ancSe- (5.5)
Curiously, due to a hidden supersymmetry, they also sadisfygnti-commuting algebra
1 1
{Sa, Sp} = Z{U'as op} = é‘sabv (5.6)

and in this way, the Pauli spin operators provided Jordanvdigder with an elementary model of a fermion.

Unfortunately the represeentation needs to be modifieeiktts more than one spin, for independent spin
operators commute, but independent fermions anticomndotelan and Wigner discovered a way to fix up
this difficulty in one dimension by attaching a phase factor calledrantg' to the fermions[1]. For a chain of
spins in one dimension, the Jordan Wigner representatitmea$pin operator at sitgis defined as

Sf=flé (5.7)
where the phase operaipy contains the sum over all fermion occupancies at sites ttethef j,
i = II'Z nj (5.8)
1<i
The operatoéél is known as a “string operator”.
The complete transformation is then
S = -
SHEE i@ 2 1 Jordan Wigner transformation (5.9)
SI = fie*i”Z\q n

(Notice€™ = e is a Hermitian operator so that overall sign of the phas@faatan be reversed without
changing the spin operator.) In words:

Spin= Fermionx string.
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The important property of the string, is thatabticommutesvith any fermion operator to the left of its
free end. To see this, note first that is that the opetbranticommutesvith the fermion operatofj. This
follows becausd; reducesn; from unity to zero, so thaf; €™ = —f; wherea™ f; = f;. from which it
follows that

(€™ fj} = ™Mfj+ f™ = - ;=0 (5.10)

and similarly, from the conjugate of this expressiet™, f;} = 0. Now the phase fact®@™ at any other
sitel # j commutes withf; and fi'*, so that the string operatéf’i anticommutes with all fermions at all sites
| to the “left” of j, | < |:

(€, fI(T)} -0, (<
whilst commuting with fermions at all other siteg |,
(€, 171=0, (=]

We now can verify that the transverse spin operators safigfycorrect commutation algebra. Suppose
j <k, theng?i commutes with fermions at siteandk so that

[Sgt)’ S(ki)] _ [fj(*)em7 fk(*)emk] _ eM[fJ(T)’ fé’f)eidw]
But (7 antcommutes with botfi{” ande* so it commutes with their produd{”*], and hence

180,80 e [ 17, §Ne] = 0. (5.11)

So we see that by multiplying a fermion by the string operatds transformed into a boson.
As an example of the application of this method, we shall nasewubs the one-dimensional Heisenberg
model

H=-3)[S/S}, +S/8,,1-3 ) sist, (5.12)

]
In real magnetic systems, local moments can interact viaf@gnetic, or antiferromagnetic interactions.
Ferromagnetic interactions generally arise as a resultioé¢t exchange” in which the Coulomb repulsion
energy is lowered when electrons are in a triplet state, Usscthe wavefunction is then spatially antisym-
metric. Antiferromagnetic interactions are generallydurced by the mechanism of “double exchange”, in
which electrons on neighbouring sites that form singleasi(fparallel spin”) lower their energy through vir-
tual virtual quantum fluctuations into high energy statesliich they occupy the same orbital. Here we have
written the model as if the interactions are ferromagnetic.
For convenience, the model can be rewritten as

H= (5.13)

[S;.1S] + Hel -3, ) S8,
]

_J
2
To fermionize the first term, we note that all terms in thengfsi cancel, except foréf™ which has no fiect,
J J J N
52, 51S) = 5 2, fia'@M =5 > ',
i i i

so that the transverse component of the interaction indac¢éspping” term in the fermionized Hamilto-
nian. Notice that the string terms would enter if the spiriiattion involved next-nearest neighbors. The

(5.14)
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z-component of the Hamiltonian becomes
1 1
=3 S1S] =% ) (= 5)0 - 5)
i i

Notice how the Ferromagnetic interaction means that spimibns attract one-another. The transformed

Hamiltonian is then
H=-3 Zj:(f jeafp+ i) + JZZi: nj - JZZi: niNj1.

(5.15)

(5.16)

Interestingly enough, the pure x-y model has no interadgom in it, so this this case can be mapped onto a
non-interacting fermion problem, a discovery made by L&thulz and Mattis in 1961[2].

To write out the fermionized Hamiltonian in its most compfietn, let us transform to momentum space,
writing

1 )
fi=— kR 5.17

wheres', creates a spin excitation in momentum space, with momektimthis case, the one-particle terms

become
JZZ nj = JZZ SrkSK.
i K
Néie

J § J cika |, kay ot Cik-K)R
- Z(f jafy+HE) = —o0 Z(e + kayg ksk,Ze J
] K ]

=-J Z coska)s' (S« (5.18)
K
The anisotropic Heisenberg Hamiltonian can thus be written
H= Zwks*ksk— JZZ ninjs1 (5.19)
k i
where
wy = (J, — Jcoska) (5.20)

defines a magnon excitation energy. We can also cast thedsé&on in momentum space, by noticing that

the interaction is a function af- j which is—J,/2 fori — j = +1, but zero otherwise. The Fourier transform

of this short-range interaction \&(q) = —J, cosga, so that Fourier transforming the interaction term gives
Jz

H=) wsks— 2 " costia) S'kassgSe s
k

(5.21)
Ns kk'.q

This transformation holds for both the ferromagnet andemtmagnet. In the former case, the fermionic spin
excitations correspond to the magnons of the ferromagnehd latter case, the fermionic spin excitations
are often called “spinons”.

To see what this Hamiltonian means, let us first neglect ttegdstions. This is a reasonable thing to do in
the limiting cases of (i) the Heisenberg Ferromagdgt J and (i) the x-y model, =0 .

68

38



(©2011 Piers Coleman Chapter 5. Chapter 5. ©Piers Coleman 2011
k upwards. Rotating the magnetization should cost no enargythis is the reason why the= 0 magnon
—_—
is a zero energy excitation.
| | | | l | | | | x-y Ferromagnet
Heisenberg Ferromagnet J particle
2J Wik
Goldstone
Wi e holes
0 m/2a% o —7/2a
¥ s
s 4
. § N\ i
A} o Occupied
L] &
fﬂ/a 0 Kk 7'r/a _J .- .4,0 states
Excitation spectrum of the one dimensional Heisenberg Ferromagnet. —7T/CL 0 i W/a
° Helsenb?rg Ferromagné. = J Excitation spectrum of the one dimensional x-y Ferromagnet, showing how the
In this case, the spectrum negative energy states are filled, the negative energy dispersion curve is “folded over”
wi = 2Jsirf(ka/2) (5.22) to describe the positive hole excitation energy.

is always positive, so that there are no magnons presentimibund-state. The ground-state thus o Xx-y FerromagnetAs J, is reduced froml, the spectrum develops a negative part, and magnon states wi

contains no magnons, and can be written
0y=14l1..2) (5.23)

corresponding to a state with a spontaneous magnetizitien-Ns/2.

Curiously, sinceuk—o = 0, it costs no energy to add a magnon of arbitrarily long weveth. This is an
example of a Goldstone mode, and the reason it arises, isigetlae spontaneous magnetization could
actually point in any direction. Suppose we want to rotagrtragnetization through an infinitesimal
angledd about the x axis, then the new state is given by

Wyzémwung
=\u.”>+i§Zs;\u“,>+0(592) (5.24)
]

The change in the wavefunction is proportional to the state
Storl L.y = ) f€“l0)
i
=310y = YNss'ieol0) (5.25)
i
In otherwords, the action of adding a single magnoq at0, rotates the magnetization infinitesimally
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negative energy will become occupied. For the purg model, wherel, = 0, the interaction identically
vanishes, and the excitation spectrum of the magnons is giyey = —J coskaas sketched in Fig. 5.3.
All the negative energy fermion states wjkh< x/2a are occupied, so the ground-state is given by

o= [] so (5.26)

ki<r/2a

The band of magnon states is thus precisely half-filled, ab th
1
(Sz) = (nf - 5) =0 (5.27)

so that remarkably, there is no ground-state magnetizaiienmay interpret this loss of ground-state
magnetization as a consequence of the growth of quantunfleptoations in going from the Heisen-
berg, to the x-y ferromagnet.

Excitations of the ground-state can be made, either by gdalimagnon at wavevectojg > r/2a,
or by annihilating a magnon at wavevecttkis< x/2a, to form a “hole”. The energy to form a hole is
—w. To represent the hole excitations, we make a “particle‘hohnsformation for the occupied states,
writing

- { S (KK > 7/2a), (5.28)

sk, (Kl < 7/2a)
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These are the “physical” excitation operators. Sigge, = 1 — 'k, the Hamiltonian of the pure x-y
ferromagnet can be written

1

Hy= > J kal(5' & — = 5.29

s Zk: | coskal(S'ksc - 5) (5.29)

Notice that unlike the pure Ferromagnet, the magnon ei@itapectrum is now linear. The ground-state
energy is evidently

1
Eg = -3 Z J| coska
K

/22 K
-2 d—J coska) = —ﬂ.

5 ) an - (5.30)

But if there is no magnetization, why are there zero-energgmon modes at = +r/a? Although there

is no true long-range order, it turns out that the spin-dati@ns in the x-y model display power-law
correlations with an infinite spin correlation length, gexted by the gapless magnons in the vicinity of
q=+n/a

5.2 The Hubbard Model

In real electronic systems, such as a metallic crystal atdight it might appear to be a task of hopeless
complexity to model the behavior of the electron fluid. Foettely, even in complex systems, at low energies
only a certain subset of the electronic degrees of freedemsited. This philosophy is closely tied up with
the idea of renormalization- the idea that the high energyeskes of freedom in a system can be successively
eliminated or “integrated out” to reveal afffective Hamiltonian that describes the important low energy
physics. One such model, which has enjoyed great succetfg ldubbard model, first introduced in the
early sixties by Hubbard, Gutzwiller and Kanamori[3, 4, 5].

Suppose we have a lattice of atoms where electrons are dloeasized in atomic orbitals at each site. In
this case, we can use a basis of atomic orbitals. The opavatoh creates a particle at sijés

c'iy = fd3x®(x -R)¢ (X (5.31)
where®(x) is the wavefunction of a particle in the localized atomibital. In this basis, the Hamiltonian
governing the motion, and interactions between the pagican be written quite generally as
. L 1 o
H= %(MHD\])C,U% + 5 l;p(lm|V|pn>c'\[,c'Wcm/cp(, (5.32)

where(i|Holj) is the one-particle matrix element between state=l j, and(Im|V|pn) is the interaction matrix
element between two-particle stafies) and|pn).

Let us suppose that the energy of an electron in this statelighis orbital is highly localized, then the
amplitude for it to tunnel or “hop” between sites will decagpenentially with distance between sites, and
to a good approximation, we can eliminate all but the neareighbor hopping. In this case, the one-particle
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e
il -
lllustrating the Hubbard Model. When two electrons of opposite spin occupy a single

atom, this gives rise to a Coulomb repulsion energy U. The amplitude to hop from site
to site in the crystal is t.

matrix elements which govern the motion of electrons betvwsites are then
e j=i

(jIH@Jiy ={ —t i, jnearest neighbors
0 otherwise

(5.33)

The hopping matrix element between neigboring states witlegally be given by an overlap integral of the
wavefunctions with the negative crystalline potentiall &or this reason, it is taken to be be negative. Now
the matrix element of the interaction between electronsfigrent sites will be given by
(mivjpry = f O ()R IPF(X)P(XIV (X~ X). (5.34)
XX
but in practice, if the states are well localized, this wil lominated by the onsite interaction between two
electrons in a single orbital, so that we may approximate

_JU I=p=m=n
(mVipry = { 0 otherwise (5.35)
In this situation, the interaction term in (5.32) simplifies
U
5 2. it irCirCir = U 3 nipny, (5.36)

J.oo’ ]

where the exclusion principle:J?(, = 0) means that the interaction term vanishes untess are opposite
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spins. The Hubbard model can be thus be written

H =t > [C jarCio + Hocl+ € ) clioCir + U Y gy,

jao jo j

(5.37)

wheren;, = c'j,Cj, represents the number of electrons of spiat site j. For completeness, let us rewrite
this in momentum space, putting

1 kR
Ciy = o @RI (5.38)
Y
whereupon
H= kacfk Cko t+ B Z Ctk ka/ Cy | Cx (5 39)
2. o Cor qukk' -q1C k+ql Gk Cer :
Hubbard model
where
&= ) (i +RilHoljye*®
1
= —2t(cosky + cosky + cosk;) + € (5.40)

is recognized as the kinetic energy of the electron exoitatiwhich results from theicoherenthopping
motion from site to site. We see that the Hubbard model dessi band of electrons with kinetic eneegy
and a momentum independent “point” interaction of stretgthetween particles of opposite spin.
Remark

e This model has played a central part in the theory of magmetisetal-insulator transitions, and most
recently, in the description of electron motion in high tergiure superconductors. With the exception
of one dimensional physics, we do not, as yet have a compteterstanding of the physics that this
model can give rise to. One prediction of the Hubbard modéthvis established, is that under certain
circumstance, if interactions become too large the elasttiecome localized to form what is called
“Mott insulator”. This typically occurs when the interamtis are large and the number of electrons per
site is close to one. What is very unclear at the present tsnehat happens to the Mott insulator when
it is doped, and there are many who believe that a completerstahding of the doped Mott insulator
will enable us to understand high temperature supercoivityct

5.3 Non-interacting particles in thermal equilibrium
|

Before we start to consider the physics of the interactimplem, let us go back and look at the ground-state
properties of free particles. What is not commonly recoghiethat the ground-state of non-interacting, but
identical particles is in fact, a highly correlatathny body state. For this reason, the non-interacting gtoun
state has a robustness that does not exist in its classigalerpart. In the next chapter, we shall embody some
of these thoughts in by considering the action of turningfeninteractions adiabatically. For the moment
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FERMIONS BOSONS

Fermi Surface

Kk ke K

Fig. 5.5 Contrasting the ground-states of non-interacting Fermions and non-interacting

December 1, 2011

Bosons. Fermions form a degenerate Fermi gas, with all one-particle states below the
Fermi energy individually occupied. Bosons form a Bose Einstein condensate, with a
macroscopic number of bosons in the zero momentum state.

however, we shall content ourselves with looking at a fewhefground-state properties of non-interacting
gases of identical particles.

In practice, quantumfects will influence a fluid of identical particles at the poirttere their characteristic
wavelength is comparable with the separation betweencfestiAt a temperatur€ the rms momentum of
particles is given b)szMS = 3mikgT, so that characteristic de Broglie wavelength is given by

h h
A== (5.41)
’pZRMS V3mksT
so that whenly ~ p~%/3, the characteristic temperature is of order
; h2p2/3
keT* ~ > (5.42)

Below this temperature, identical particles start to ifees with one-another, and a quantum-mechanical
treatment of the fluid becomes necessary. In a Fermi fluidusion statistics tends to keep particles apart,
enhancing the pressure, whereas for a Bose fluid, the ctadataotion of particles in the condensate tends to
lower the pressure, ultimately causing it to vanish at theeBBinstein condensation temperature. In electron
fluids inside materials, this characteristic temperatsréwio orders of magnitude larger than room tem-

perature, which makes the electricity one of the most driengaiamples of quantum physics in everyday

phenomena!
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5.3.1 Fluid of non-interacting Fermions

The thermodynamics of a fluid of fermions leads to the concépt “degenerate Fermi liquid”, and it is
important in a wide range of physical situations, such as

e The ground-state and excitations of metals.
e The low energy physics of liquid Helium 3.
e The degenerate Fermi gas of neutrons, electrons and prhiainiges within a neutron star.

The basic physics of each of these cases, can to a first apptian be described by a fluid of non-interacting
Fermions, with Hamiltonian

H=Hs-uN= Z(Ek = 1)CkoCror (5.43)

Following the general discussion of the last section, tlezfenergy of such a fluid of fermions is is described
by a single Free energy functional

F=—kgT )" In[1+ &)
ko
= —2kgTV f In[1 + e #EH)] (5.44)
k

where we have taken the thermodnamic limit, replacihg — 2V fk By differentiatingF with respect to
volume, temperature and chemical potential, we can imntegliderive the pressure, entropy and particle
density of this fluid. Let us however, begin with a more phgkiiscussion.

In thermal equilibrium the number of fermions in a state witbmentunp = 7k is

ne = f(Ex 1) (5.45)
where

1
f(X) = ——— 5.46
W= (5.46)
is the Fermi-Dirac function. At low temperatures, this ftios resembles a step, with a jump in occupancy
spread over an energy range of orlgf around the chemical potential. At absolute z&(g) — 6(—x), so
that the occupancy of each state is given by

nk = 0(u — Ex) (5.47)

is a step function with an abrupt change in occupation whernu, corresponding to the fact that states with
Ex < u, are completely occupied, and states above this energyrarg/eThe zero-temperature value of the
chemical potential is often called the “Fermi energy”. Inmmrentum space, the occupied states form a sphere,
whose radius in momentum spageg,is often refered to as the Fermi momentum.

The ground-state corresponds to a state where all fermadesstvith momenturk < kg are occupied:

Wo =[] cl0) (5.48)

|k|<ke, o

Excitations above this ground-state are produced by théiaaaf particles at energies above the Fermi
wavevector, or the creation dfolesbeneath the Fermi wavevector. To describe these excisatwoe make
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the following particle-holgrransformation

a' = { C'ho  (K>Kg) particle (5.49)

sgnE)Ck-» (K> Kkg) hole

Beneath the Fermi surface, we must replagck, — 1 — a'k,ax,, SO that in terms of particle and hole
excitations, the Hamiltonian can be re-written

H—uN = 37 I(Ex - pla k8 + Fo (5.50)
ko
where respectively,
Fom 2 G- =2V [ (Ec-n) (5.51)
K <ke.o- kl<ke

is the ground-state Free energy, aaoandN are the ground-state energy and particle number Notice that

e To create a hole with momentuknand spino-, we must destroy a fermion with momenturk and spin
—o. (The additional multiplying factor of- in the hole definition is a technical feature, required so tha
the particle and holes have the same spin operators.)

¢ The excitation energy of a particle or hole is givendjy= |Ex — ul, corresponding to “reflecting” the
excitation spectrum of the negative energy fermions atimiFermi energy.

The ground-state density of a Fermi gas is given by the voloftiee Fermi surface, as follows

1 : d®k 2
== Yt =2 [ === ==V, 52
9= Yt fk« o = o (5.52)
where
4 4r\ (2mee |2
Vs = gké = (Eﬂ) (#) (5.53)

is the volume of the Fermi surface. The relationship betwberdensity of particles, the Fermi wavevector
and the Fermi energy is thus

N 1 1 (2mee\*?
<V> = ok = Q( ’;‘:F) (5.54)

In an electron gas, where the characteristic density/ ~ 10?°m-3 the characteristic Fermi energy is of
order BV ~ 10,000K. In other words, the characteristic energy of an electrawgsorders of magnitude
larger than would be expected classically. This is a stackdramatic consequence of the exchange inter-
ference between identical particles, and it is one of thatgearly triumphs of quantum mechanics to have
understood this basic piece of physics.

Let us briefly look at finite temperatures. Here, bffetientiating the Free energy with respect to volume
and chemical potential, we obtain

_OF

P=-w

F ookt f In[1 + e#E]
v k
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N=—i=2ff(Ek—y) (5.55)
o 3
The second equatiarefineghe chemical potential in terms of the particle density avamgtemperature. The
first equation shows that, apart from a minus sign, the pressisimply the Free energy density. These two
equations can be solved parametrically as a function of @& potential. At high temperatures the pressure
reverts to the ideal gas laRV = NkgT, but at low temperatures, the pressure is determined byehaiF
energy

P=2

(u-El= %e; (5.56)

Iki<ke
The final result is obtained by noting that the first term iis #pression ig(N/V). The first term contains an
integral overd®k ~ k?dk — k2 /3, whereas the second term contains an integral Bygtk ~ k*dk — k2 /5,

so the second term ig/8 of the first term. Not surprisingly, this quantity is badligghe density of fermions
times the Fermi energy- a pressure that is hundreds of tiavger than the classical pressure in a room
temperature electron gas.
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Remarks

o Atfirst sight, it might seem very doubtful as to whether thmagkable features of the degenerate Fermi gas
would survive once interactions are present. In particolae would be tempted to wonder whether the
Fermi surface would be blurred out by particle-particlerattions. Remarkably, for modest repulsive
interactions, the Fermi surface is believed to be stablaénmedsions bigger than one. This is because
electrons at the Fermi surface have no phase space forrsutEhis is the basis of LandauRermi
liquid Theoryof interacting Fermions.

¢ Inaremarkable result, due to Luttinger and Ward, the jumbénoccupancy at the Fermi wavevectpr
remains finite, although reduced from uniB( < 1) , in interacting Fermi liquids.

5.3.2 Fluid of Bosons: Bose Einstein Condensation

Bose Einstein condensation was predicted in 1924- the méauf Einstein extending Bose’s new calcula-
tions on the statistics of a gas of identical bosons. Howévers not until seventy years later- in 1995, that
the groups of Cornell and Wieman[6] and independently th&etterle[7], succeeded in cooling a low den-
sity gas of atoms - initially rubidium and sodium atoms - tigh the Bose Einstein transition temperature.
The closely related phenomenon of superfluidity was firseplesl in the late 30’s by Donald Misener and
Jack Allen working in Toronto and Cambridge[8] and Piotr Kzpin Moscow([9]. Superfluidity results from
a kind of Bose-Einstein condensation, in a dense quantum, fiuiere interactions between the particles
become important. In the modern context, ultra cold, ulifate gases of alkali atoms are contained inside a
magnetic atom trap, in which the Zeeman energy of the atgpirs;adigned with the magnetic field, confines
them to the region of highest field[10]. Lasers are used toqmiea small quantity of atoms inside a mag-
netic trap using a method known as “Doppler cooling”, in whibe tiny “blue shift” of the laser light seen
by atoms moving towards a laser causes them to selectivelyrlalphotons, which are then re-emitted in a
random direction, a process which gradually slows them doegucing their average temperature. Doppler
pre-cooling cools the atoms to about 10-AB0The second stage involves “Evaporative cooling”, a pssce
in which the most energetic atoms are allowed to evaporat@fotne well while systematically lowering
the height of the well. As the well-height drops, the temperaof the gas plumits down to the nano-Kelvin
range required to produce Bose-Einstein condensationgioniHiquid formation) in these gases (see Fig.
5.6).

To understand the phenomenon of BEC, conside the densigsaffgoosons, which at a finite temperature
takes almost precisely the same form as for fermions

B 1
P= ) &1

where we have written the expression for spinless bosonvspaksl be the case for a gas of liquid Helium-4,

or ultra-dilute Potassium atoms, for instance. But there vghole world of physics in the innocent minus

sign in the denominator! Whereas for fermions, the chemiotgtial is positive, the chemical potential for

bosons is negative. For a gas at fixed volume , the above eipng$.57) thus defines the chemical potential
u(T). By changing variables, writing

(5.57)

12k? m
X = ﬂEk _ﬁﬁ’ (ﬁ)dx— kdk
®k  4ankedk 1 [ m\¥?
@ " @ Vo (i) veox ©-59)
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Fig. 5.6 lllustrating evaporative cooling in an atom trap. (a) Atoms are held within a magnetic
potential. (b) As the height of the potential well is dropped, the most energetic atoms
“evaporate” from the well, progressively reducing the temperature. (c) A Bose Einstein
condensate, with a finite fraction of the gas in a single momentum state, forms when
the temperature drops blow the condensation temperature.
we can rewrite the Boson density in the form
2 o 1
= — dXVX—"— 5.59
o vm%fo Vi (559)
where
B 2h2 \ 2
=== 5.60
=) (5.60)

is a convenient definition of the thermal de Broglie wavetirlg order to maintain a fixed density, as one
lowers the temperature, the chemical potent{@l) must rise. At a certain temperature, the chemical potentia
becomes zergy(T, = 0) = N/V At this temperature,

5 \3
At 2 1 3
—] =— dxv/x ={(z)=261 5.61
(T) - & [ oxvrgg - (561)
wherea = p~%3 is the interparticle spacing. The corresponding tempegatu
hZ
keTo = 3.31| — 5.62
oo =331 1) (562
is the Bose-Einsteinondensation temperature.
Below this temperature, the number of Bosons inkhe0 state becomes macroscopic, i.e.
Neo= g = No(T) (5.63)
becomes a finite fraction of the total particle number. SiNg@) is macroscopic, it follows that
u 1
- 5.64
kT No(T) (5:64)
79

bk . pdf

December 1, 2011

Chapter 5. ©Piers Coleman 2011

is infinitesimally close to zero. For this reason, we mustéeful to split df thek = 0 contribution to the
particle density, writing

N = No(T) + ) (5.65)
k#0
andthentaking the thermodynamic limit of the second term. For thesitg, this gives
N 1
p=y =po(T)+ ﬁiw(Ek) - (5.66)

The the second term is proportional;te—3 o T2, Since the first term vanishes &t= T, it follows that
below the Bose Einstein condensation temperature, thétgefid®osons in the condensate is thus given by

(5.67)

po(T) =p|lf (TIO)M

Remarks

e The Bose Einstein Condensation is an elementary exampleedand-order phase transition.

e Bose Einstein condensation is an example of a broken symiplefise transition. It turns out that the same
phenomenon survives in a more robust form, if repulsiverautgons between the Bosons are present.
In the interacting Bose Einstein Condensate, the field opegdx) for the bosons actually acquires a
macroscopic expectation value

W0)) = Vpee*® (5.69)

In a non-interacting Bose condensate, the plgsg lacks rigidity, and does not have a well-defined
meaning. In an interacting condensate, the plgseis uniform, and gradients of the phase result in a
superflonof particles- a flow of atoms which is completely free fromoasity.

Example 5.1: In a laser-cooled atom trap, atoms are localized in a region of spacethtioe:Zeeman

energy of interaction between the atomic spin and the external field. A=ttiefianges direction, the
“up” and “down” spin atoms adiabatically evolve their orientations to remamlfel with the magnetic

field, and the trapping potential of the “up” spin atoms is determined by tlyninale of the Zeeman
energyV(x) = gusJB(x), which has a parabolic form

wn:gpg%+4f+¢ﬂ
Show that the fraction of bosons condensed in the atom trap is now gjven b
No(D) _, (T Y
N Tee)

Solution: In the atom trap, one particle states of the atoms are Harmonic oscillatorstétenergy
Eimn = i(lwx + Mwy + Nw,) (Where the constant has been omitted). In this case, the numbetiofgsar
in the trap is given by

1
N= Z PEimn — 1
Lmn

The summation over the single-particle quantum numbers can be caht@ea integral over energy,
provided the condensate fraction is split the sum, so that

1 1
%Ea:i=mawjla®§iT
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whereN;y is the number of atoms in the condensate and
pE)= Y. 8(E-Em)
Imn, (Eymn#0)

is the density of states. By converting this sum to an integral we obtain

o(E) = f dIdmd(E - Einr)

_ (dEdEdE,
B hwyhwyho,

1 € Ex E2
= Gor Jy 95 f, 9=z

The quadratic dependence of this function on energy replaces theesgod dependence of the cor-
responding quantity for free Bosons. The number of particles outsédeahdensate is proportional to
TS,

6(Ex+ Ey+ E;— E)

(& = (wywyw)"?)

23
1 e T \F
J et = e [ 71 ()
whereks Tge = h(N/Zs)*3, so that the condensate fraction is now given by

P/nk:BTU [

Fermi Liquid

10

Bose Einstein Condensate

. \ .

10 1t

1 !
Tse S5 T/T,

Fig. 5.7 Pressure dependence in a Fermi or Bose gas, where temperature is measured in
units of kgTo = 72/m& Showing P/nkg
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Example 5.2: Using the results of the previous section, show that the ideal gas law is etbbfithe
interference between identical particles, so that

P = nksT7*(u/keT) (5.69)

wheren is the number density of particles*(z) = g*(2)/h*(2) and

g2 = if dxvxin[1 + e *?]

0
1
() —

h*(2) = f: Vg (5.70)
where the upper sign refers to fermions, the bottom to bosons. Sketdepeadence of pressure on
temperature for a gas of identical bosons and a gas of identical fesmidmthe same density.

Solution: Let us begin by deriving an explicit expression for the Free energyfafe gas of fermions,
or bosons. We start with

F =%(2S+1)ksTV f In[1 + e#E) (5.71)
k
whereS is the spin of the particle. Making the change of variables,
12k?
d3kx ) ﬂE; ) ﬁﬂ’
=—— Vxdx (5.72)

@pR " Bk
whereldr = /27h2/(mksT) is the rescaled Thermal de Broglie wavelength, we obtain
Vv 2
F=%(2S+ 1ksT =5 — f dxyXin[1 + e 4] (5.73)
A3 \r

Taking the derivative with respect to volume, and chemical potential, @irothe following results
for the Pressure and the particle density.

=& kel 2 o)
P= =0 =+(2S +1) = ﬁfdxﬁln[lte i
_ OF _(2S+1) 2 1
i f XV (5.74)

Dividing the pressure by the density, we obtain the quoted result for taégds.
To plot these results, it is convenient to rewrite the temperature ancupeeaghe form

T = To[h* ()] 2°
P _ 9w
nkeTo — [=(uB)]**"

wherekgT, = % permitting both the pressure and the temperature to be plotted parametially
function ofuB. Fig 5.7 shows the results of such a plot.

(5.75)
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Exercises

Exercise 5.1 1 Use the Jordan Wigner transformation to show that the omemsional anisotropic XY
model
H=- Z[Jlsx(j)sx(i + 1)+ BSy(1)Sy(j + 1)] (5.76)
i
can be written as
H = = > [t(d" jad + H.0) + A" a0 + H.O)] (5.77)
i

wheret = 2(J; + J) andA = (J; - Jy).
2 Calculate the excitation spectrum for this model and $kgtur results. Comment specifically on
the two cases; = J, andJ, = 0.

Fig. 5.8 Phase diagram of transverse field Ising model. See problem 5.3

Exercise 5.2 The 1D transverse field Ising model provides the simplestngka of a “quantum phase
transition”: a phase transition induced by quantum zeratgootion (Fig.5.8). This model is written

H=-3)" S{i)Sii+1)-h " Su(i).
i i

whereS; is the z-component of a spiry4, while the the magnetic field acts in the transverse (x)
direction. ( For convenience, one can assume periodic yrmnditions, withN; sites, so thaj =
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Ns+ 1= j=0.)Ath = 0, the model describes a 1D Ising model, with long-rangefeagnetic order
associated with a two fold degenerate ferromagnetic gretate,

[¥1) =1
or
W)y =11l l2) .. T Ing-

A finite transverse field mixes “up” and “down” states, andifdinitely largeh, the system has a single
ground-state, with the spins all pointing in thelirection,

[ 1) +1 lj))
[¥-) = (7 .

In other words, there is thus a quantum phase transition-aagtransition driven by quantum fluc-

tuations, between these the doubly degenerate ferromagsetallh and a singly degenerate state

polarized in the x direction at large h.

1 By rotating the above model so that the magnetic field adiserx direction and the Ising interac-
tion acts on the spins in thedirection, the transverse field Ising model can be re-writte

H=-3)"Sx(i)Sx(i+1)-h) Sy
7 i

2 Use the Jordan Wigner transformation to show that the fatinéd version of this Hamiltonian can
be written

J
H :sz:(f,—fﬂ)(fj+1+ fml)—hzj:ffjf,-. (5.78)

3 Writing fj = \/% T de R, whereR; = aj, show thatH can be rewritten in momentum space as

H= Z [l — d i) + i(AdTd" k- d k)] (5.79)

ke[0,zr/a]
where the sum ovek = N%a(l,z...Ns/z) € [0,%] is restricted to half the Brillouin zone, while
& = —3 coska— handA, = 3 sinka.
4 Using the results of Ex 4.2, show that the spectrum of thetatians are described by “Dirac
fermions” with a dispersion

Ec= e +A2= \23nsiré(ka) + (h— J/22
so that gap in the excitation spectrum closels ath, = 2J. What is the significance of this field?

Exercise 5.3 Consider the non-interacting Hubbard model for next neareighbor hopping on a two
dimensional lattice

H-uN=-t Z [CTjJ,é[erg +H.c] —[JZ ij[,Cj(r

ja=xy.o jo

wheren;, = ¢'j,Cj, represents the number of electrons of spin compoment:1/2 at sitej.
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4

Show that the dispersion of the electrons in the absenagefictions is given by
s(l?) = —2t(coskya + coskya) — u

whereais the distance between sites, dnd (kx, ky) is the wavevector.
Derive the relation between the number of electrons pensiand the area of the Fermi surface.
Sketch the Fermi surface when

1 ne<1.
2 “halffilling” wheren, = 1

The corresponding interacting Hubbard model, with arrétigon termUn;n; at each site describes
a class of material called “Mott insulators”, which inclsdée mother compounds for high temper-
ature superconductors. What feature of the Fermi surfacal&filing makes the non-interacting
ground-state unstable to spin density wave formation aadévelopment of a gap around the Fermi
surface ?

Derive the dispersion for the case when, in the one-partiemiltonian there is an additional next-
nearest neighbor hopping matrix element of strength a¢hesdiagonal-t’. (Hint: use the Fourier
transform oft(R), given byi(l?) = Zﬁt(ﬁ)e"‘m). How does this fiect the dispersion at half filling?

Fig. 5.9 Honeycomb structure of graphene. See Problem 5.3

(5.9). The vertices of each unit cell form a triangular tatof side lengtha, located at positions

ri = ma+nb, wherea = a(%ﬂr 17} andb = a( 37 - 1f) are the lattice vectors. There are two atoms

per unit cell, labelled “A” and “B”. In a simplified model of gphene, electrons can occupyrbitals
at either theA or theB sites, with a tight-binding hopping matrix elemetitbetween neighboring sites.

1

Construct a tight-binding model for graphene. For sinigyliggnore the spin of the electron. Suppose
the creation operator for an electron in ther B orbital in the “i"th cell isy7a(r;). Show that the
tight-binding Hamiltonian can be written in the form

H=—t > {[w'e(r) + w'e(ri — @) + st = b)| wa(rs) + Hoc) + (e = 1) D (nai) + (i)
j i
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wheree is the energy of a localized orbital.
By transforming to momentum space, writing

1 . .
yhar) = —= > cliue™"
)= R ; 1

andNs is the number of unit cells in the crystal, show that the Heamiln can be written

. —u Ak
H =D ) & (ii)

(1=AB)

where
A(K) = —t(1+ €42 + &kP)
with energy eigenstates
(k) = £|AK)| + (e - p)-
Show thatA(k) = 0 at two points in the Brillouin zone wheke-a= -k - b = J_r%, given by
k =K
whereK = &7,

By expanding aroun# = +K + p, showing that whem is small,Ap.x = +=E(py + ipx), Where

?at is a “renormalized” speed of light. By defining a spinor foe tivo cones

Ypr = (CP+K B)’ Up = ( Cp-KA )’

Co+KA —Cp-ks

&=

show that the low energy Hamiltonian can be written as a Décaation

H= > 0@ xp)+(e-mD ¥

pA=+

where¢ is a Pauli pseudo-spin matrix acting in the two-componehtagtice space, so that when
e — p = 0, the excitation spectrum is defined by two Dirac cones W({h) = +Ep.
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Green’s Functions

Ultimately, we are interested in more than just free systaifssshould like to understand what happens to
our system as we dial up the interaction strength from zerits full value. We also want to know response
of our complex system to external perturbations, such aseatremagnetic field. We have to recognize that
we can not, in general expect to diagonalize the problemtefést. We do not even need interactions to
make the problem complex: a case in interest is a disordeegdl mvhere we our interest in averaging over
typically disordered configurations introduceeets reminiscent of interactions, and can even lead to new
kinds of physics, such as electron localization. We needesgemeral way of examinining the change of the
system in response to theseets even though we can’t diagonalize the Hamiltonian.

External Fields

Interactions

ek

Randomness

N
o R

N

Fig. 6.1 “Dialing up the interaction”. Motivating the need to be able to treat perturbations to a

December 1,

non-interacting Hamiltonian by dialing up the strength of the perturbation.
In general then, we will be considering problems where weothice new terms to a non-interaction
Hamiltonian, represented hy. The additional term might be due to
e External electromagnetic fields, which modify the Kinetieegy in the Hamiltonian as follows
"2 _, n? e

LR v N (v - i—A)Z

2m 2m h (6.1)
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o Interactions between particles.
~ 1 .
0= 3 [ ddes @' @u@u) ©2)
e Arandom potential
V= f d1v(1)p(1) (6.3)

whereV(x) is a random function of position.

One of the things we would like to do, is to examine what happehen the change in the Hamiltonian to
small enough to be considered a perturbation. Even if time ¢éinterest is not small, we can still try to make
it small by writing

H = Ho+ AV (6.4)

This is a useful excercise, for it enables us to consider figeteof adiabatically dialing up the strength of
the additional term in the Hamiltonian from zero, to its fudllue, as illustrated in fig6.1. This is a dangerous
procedure, but sometimes it really works. Life is intemggtbecause in macroscopic systems the perturbation
of interest often leads to an instability. This can somesimecur for arbitrarily smalll. Othertimes, when
the instability occurs when the strength of the new termlreasome critical valug.. When this happens,
the ground-state can change. If the change is a continuajgteen the point where the instability develops
is a Quantum Critical Pointa point of great interest. Beyond this point, for- A, if we are lucky, we can
find some new startingl;, = Ho + AH, V' =V -AH. If H; is a good description of the ground-state, then we
can once again apply this adiabatic procedure, writing,

H=H,+ 1V (6.5)

If a phase transition occurs, thetj will in all probability have display a spontaneobsoken symmetryThe
region of Hamiltonian space wheke~ H/ describes a new phase of the system, ldfi closely associated
with the notion of a “fixed point” Hamiltonian.

All of this discussion motivates us developing a generalysbative approach to many body systems, and
this rapidly leads us into the realm of Green’s functions Beghman diagrams. A Green’s function describes
the elementary correlations and responses of a systernfagydiagrams are a way of graphically displaying
the scattering processes that result from a perturbation.

6.1 Interaction representation

Up until the present, we have known two representations ahtum theory- the Schdinger representa-
tion, where it is the wavefunction that evolves, and the efgierg, were the operators evolve and the states
are stationary. We are interested in observable quantii@e than wavefunctions, and so we aspire to the
Heisenberg representation. In practice however, we always to know what happens if we change the
Hamiltonian a little. If we changél, to H, + V, but we stick to the Heisenberg representationHgr then

we are now using the “interaction” representation.

Table. 5.1. Representations .
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Representation States Operators
Schrodinger Change rapidly Os- operators constant
iZlws®) = Hiws(t)
Heisenberg Constant Evolve
1958 = [H.0u(0)]
Interaction States change slowly Evolve according-g
H=Ho+V iy (1) = Vi (1) =129 = [Ho, 0y (V)]

Let us now examine the interaction representation in gredgtail. In the discussion that follows, we
simplify the notation by taking taking = 1. We begin by writing the Hamiltonian as two paHs= H, + V.
States and operators in this representation are defined as

i) = €M),
Removes rapid state evolution dueHg (6.6)
Ot) = €Hotoge Mot
The evolution of the wavefunction is thus
@) = U®(0),
6.7)
U(t) - elHole—lHt
or more generally,
[ (1) = St )y (1)),
S(t) = U(U(t) (6.8)
The time evolution ofJ(t) can be derived as follows
oU gty Hot deht
E( - )e +ie (Tt )
= eMol(—H, + H)e ™Mt
_ [eiH"tVe"H"‘]U(t)
=Vi(u () (6.9)
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so that

; 9S(t2, t1)

o V(t2)S(t2, ta)

(6.10)

where from now on, all operators are implicitly assumed tinttee interaction representation.

Now we should like to exponentiate this time-evolution ggqra but unfortunately, the operatdf(t) is
not constant, and furthermoré(t) at one time, does not commute wif(t’) at another time. To overcome
this difficulty, Schwinger invented a device called the “time-ondgperator”.

Time ordering operator Suppose{O(t;), Ox(t2) ... On(tn)} is a set of operators at féerent times
{ti,t2...ty}. If P is the permutation that orders the times, so that> tp, ...tp,, then if the opera-
tors are entirely bosonic, containing an even number of fermionic tpsrthe time ordering operator
is defined as

T[O1(t1)Ox(t2) - . - On(tn)] = Op, (tr)Op, (tr,) - - - Opy (try)

For later use, we note that if the operator set contains fermionic opgratanposed of an odd number
of fermionic operators, then

T[Fi(t)Fa(t) . .- Fn(tn)] = (~1)7Fp, (te,)Fe, (te,) - - - Fry (tey)
whereP is the number of pairwise permutations of fermions involved in the time imgl@rocess.

(6.11)

(6.12)

<l

N— ©

4\'\ P
] de\/i
T4 + Sdc

=
T3 S,
3 b cb
T2 4 Sba a

&

! [i> i

Fig. 6.2 Each contribution to the time-ordered exponential corresponds to the amplitude to

follow a particular path in state space. The S-matrix is given by the limit of the process
where the number of time segments is sent to infinity.
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Suppose we divide the time interva.[t;], wheret, > t; into N identical segments of periatt = (t; —
t1)/N, where the time at the midpoint of tiith segment ig, = t; + (n — %)At. The S-matrix can be written
as a product of S-matrices over each intermediate time sggasefollows:

S(lz,ll) = S(tz,tN - %)S(IN,l + %,tN,1 - % e S(Il + %,ll) (613)
ProvidedN is large, then over the short time intervetl we can approximate
S(t+ 4.t— 4 = e ™0+ O(1/N?) (6.14)
so that we can write
S(ty, ty) = e VWA VDAL | g IVAL L O(1/N) (6.15)
Using the time-ordering operator, this can be written
N
St tr) = T[[ eV + O(1/N) (6.16)

=1

The beauty of the time-ordering operator, is that even thod@) and A(t’) don’'t commute, we can treat
them as commuting operators so long as we always time-drder.tThis means that we can write

T [e,A(li)eA(Tz)] - T[eA(‘l)*'A(‘z)]

because in each time-ordered term in the Taylor expansienpever have to commute operators, so the
algebra is the same as for regular complex numbers. Withrtbis we can write,

(6.17)

S(ta, ty) = Limy_,o T[e 21 VAT (6.18)
The limiting value of this time-ordered exponential is w&it as
o
S(tp, t1) = T[exp{—i f V(t)dt}], Time-ordered exponential (6.19)
t

This is the famous time-ordered exponential of the intéwaaepresentation.
Remarks

e The time-ordered exponential is intimately related to Fegn’s notion of the path integral. The time-
evolution operatoB(t; + At/2,t; — At/2) = S(t;) across each segment of time is a matrix that takes one
from stater to statef. The total time evolution operator is just a matrix produgtroeach intermediate
time segment. Thus the amplitude to go from statetimet; to statef at timet; is given by

Stlzt)= ), Stpua(tn). Spp(t)Spi(t) (6.20)
path=(p....pv }
Each term in this sum is the amplitude to go along the pathabést
pathi - f:i-opr->p—...pn1— f (6.21)

The limit where the number of segments goes to infinity is & peaegral.
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e One can formally expand the time-ordered exponential asv@pseries, writing,

S
S(ta.ty) = Z o I dty ... dtyT[V(t) ... V(t)] (6.22)

n=0,c0
Thenth term in this expansion can be simply interpreted as the amdglito go from the initial, to the
final state, scattering times df the perturbatiorV. This form of the S-matrix is very useful in making
a perturbation expansion. By explicitly time-ordering the th term, one obtaina! identical terms, so

that
. t
St = Y ¢ [ it V() V() 6.23)
n=0,c0 s {th>ta1>t)
This form for the S-matrix is obtained by iterating the edquabf motion,
to
S(ta, ty) = 1—i f dtV(t)S(t, ty) (6.24)
t

which provides an alternative derivation of the time-oedkeexponential.

6.1.1 Driven Harmonic Oscillator

To illustrate the concept of the time-ordered exponenti@,shall show how it is possible to evaluate the
S-matrix for a driven harmonic oscillator, whefe= H, + V(t),

w(b’b+ %)
b + biz(t)

Ho
V(1)

(6.25)

Here the forcing terms are written in their most general fozft) and Z(t) are forces which “create” and
“annihilate” quanta respectively. A conventional forcetlire HamiltonianH = H, — f(t)X gives rise to a
particular case, whergt) = z(t) = (l/me)% f(t). We shall show that if the forcing terms are zero in the
distant past and distant future and the system is initialthe ground-state, the amplitude to stay in this state
is

Sz :<0|Te’ifjvdﬁ‘)b(‘)*“’z<‘)]|0>:exp[—i f dtdt ZG(t - t)z(t)| . (6.26)

whereG(t - t') = —if(t — t')e 1) is our first example of a one particle “Green’s function”. Thmportance
of this result, is that we have a precise algebraic resulttferresponse of the ground-state to an arbitrary
force term. Once we know the response to an arbitrary foregam, as we shall see, deduce the n-th ordered
moments, or correlation functions of the Bose fields.
Proof: To demonstrate this result, we need to evaluate the timeendxponential
T
(0T exp[—i f df{Zt)b(t) + b (H)z(t)] | 10) (6.27)
-

whereb(t) = bé“! andbf(t) = bfé“!. To evaluate this integral, we divide up the interval (t;,t) into N

93

bk . pdf

December 1, 2011

Chapter 6. ©Piers Coleman 2011

segments, € (t; — At/2, tj + At;) of width At = 27/N and write down the discretized time-ordered exponential
as

Sy = AN AT L eMA (6.28)
where we have used the short-hand notation,
A = ~iZlt)bltr)At,
A'r = ib'(t)z(t)At (6.29)

To evaluate the ground-state expectation of this exposente need to “normal” order the exponential,
bringing the terms involving annihilation operat@ to the right-hand side of the expression. To do this ,
we use the resit

&b = dediiliz (6.30)
and the related result that follows by equatefiyf = &+¢,
g = Peididl, (6.31)

These results hold if;3] commutes with»'and. We use these relations to sepaﬂheAT' - et g AAT2
and commute the™ to the right, past terms of the foret”'s, eve”'s = eA'se~eAA'd, We observe that
in our case,

A A%s] = Atzztr)ﬁts)eiiwnﬁ&)

is a c-number, so we can use the above theorem. We first nomthed each term in the product, writing
N AT = g Argh e A2 g0 that

Sy = e AN | g A g TIAAT2

(6.32)

(6.33)
Now we move the general tereft to the right-hand side, picking up the residual commutaatoeg the way
to obtain

Su:

Ty o 1
Sn=e B e A expl- ) TALA(L - Sor)].

r=s

(6.34)

where thes,s term is present because by Eq. (6.33), we get half a commutdtenr = s. The vacuum
expectation value of the first term is unity, so that

S(tz.t) = im exf - D AL )2 (1 - %ars)]

s<r
T
- exp[— f dtdt Aty - t’)e"“'("")z(t’)], (6.35)
-

where thej,s term contributes a term of ordat ﬁz dtjz(t)|? O(At) to the exponent that vanishes in the limit
1 To prove this result considei(x) = eief, Differentiatingf (x), we obtain%; = e (@ +/3)e>¢‘. Now if [&, 3] commutes withr"and

B, then ", 3] = n[a, Bla™2, so that the commutatoef?, 3] = X[&, 8], It thus follows 1hal% =@ - /33 X[&.f]) f(x). We can

integrate this expression to obtaitx) = expx(@ + ) + L22[[)/,/3]]. Settingx = 1 then givese® = e**Pezl®4 If we interchanger

andg, we obtaind’e? = &*#e 31341 Combining the two expressiorese® = el
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At — 0. So placing3(t — t’) = —if(t — t’')e “t-1),
S(to,ty) = ex;{—i f " dtdtANG(t - )At)

Finally, taking the limits of the integral to infinityr(— ), we obtain the quoted result.

95

(6.36)

bk . pdf

Chapter 6. ©Piers Coleman 2011

i

a8

anr 9

p(r)

B T e T T e S R e S R e f T R e Y

0 i 2 3 4 5
N2 x/e)

Fig. 6.3 Probability p(T) for an oscillator to remain in its ground-state after exposure to an
electric field for time T, illustrated for the case V/hw = 1.

Example 6.1: A charged particle of chargg massmis in the ground-state of a harmonic potential of
characteristic frequenay. Show that after exposure to an electric figldor a timeT, the probability
it remains in the ground-state is given by

p = exp[—4g® sirf(wT/2)] (6.37)
where the coupling constant
V N
2 _ Vspring
g=—"= (6.38)

is the ratio between the potential enelying = G2E?/(2mw?) stored in a classical spring stretched by
a forceqE and the quantum of enerdiw.
Solution: The probabilityp = |S(T, 0)]%, to remain in the ground-state is the square of the amplitude

S(T,0) = (g et b Vo), (6:39)
Notice, that since we explicitly re-introducéd# 1, we must now use
% E —%(t)x(t) (6.40)

in the time-ordered exponential, wheit) is the electric field. Writingx = 1lﬁ(b +b), we can
recastV in terms of boson creation and annihilation operatorg@g7 = Z(t)b(t) + bf (t)z(t), where,

20 = 2) = 1\ 5o GE() =~ 260 (6.41)

HereV = % is the potential energy of the spring in a constant fleldsing the relationship derived
in (6.36), we deduce that

S(T,0)=¢e™
where the phase term

.
A= f dtdeZt)G(: - L))
(]
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andG(t) = —ie “'4(t) is the Green function. Carrying out the integral, we obtain

.
A_—l—f dtf dre et |V—wf dt_i[l—e’i“"]
hoJo iw

VT 2V iwT/2 wT
h + —€ sin— >
_ VT[, sin@T)| 2V _ ,(wT
= 7[1 oT ] i 5 () (C22)

The real part of A contains a term that grows linearly in tiReA~ —VT/% giving rise to uniform
growth in the phase o8(T) ~ €"T/%|S(T, O)| that we recognize as a consequence of the shift in the
ground-state energy of the oscillaty — % — V in the applied field. The imaginary part determines
the probability to remain in the ground- state, which is given by

= |S(T,0) = ™A = exp(—— sir? & )

demonstrating the oscillatory amplitude to remain in the ground-state (Fig. 6.3

6.1.2 Wick’s theorem and Generating Functionals

The time-ordered exponential in the generating function

Sz =<0|Te’if:§d‘[f(‘)b(‘)*b“‘”“)]lO)=exp[—i f dtdtZG(t - t)z(t)| . (6.43)

is an example of a “functional”: a quantity containing onevare arguments that are functions (in this case,

Z(t) andz(t)). With this result we can examine how the ground-stateaedp to an arbitrary external force.
The quantityG(t — t’) which determines the response of the ground-state to thed@(t) andz(t), is called

the “one particle Green'’s function”, defined by the relation
G(t - t') = —i(OTh(t)b' (t')[0). (6.44)

We may confirm this relation by expanding both sides of (6td3)rst order inzandz The left hand side
gives

1+ (—i)2fdtdt’Zt)(0|Tb(t)b*(t’)\O)z(t’) +0Z,2) (6.45)
whereas the right-hand side gives
1-i fdtdt’ﬂt)G(t -t)zt') + O(Z, 2) (6.46)

Comparing the cdécients, we confirm (6.44).

Order by order irzandz, the relationships between the left-hand and right-hashel sf the expansion (6.43
) of the generating function&[z Z] provide an expansion for all the higher-order correlafiamctions of the
harmonic oscillator in terms of the elementary Green’s fiomcG(t — t'), an expansion known as “Wick’s
Theorem”. From the left-hand side of (6.43), we see that @auhwe diferentiate the generating functional
we bring we bring down operatohgl) andb’ (1) inside the Green’ function according to the relation

- b(1), - b(1). (6.47)

)
"2
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where we have used the short-hand 1, 1’ = t’. For example,
i 6S _ (0SK1)0)
Sl (080

so if there is a force present, the boson field develops anceadpen value, which in the original oscillator

corresponds to a state with a finite displacement or momerifume differentiate this expression again and
set the source terms to zero we get the two-particle Greengibn,

= (b(1)) = f dIG(1- 1)), (6.48)

izﬁ . = (OTh(1)b' (1)|0) = iG(1 - 1') (6.49)
If we take a 2n-th order derivative, we obtain the n-part@teen’s function
'2"62( 1/)5;(5;”3@;]@)57 = = (OITB(). .. (b () ... b"(1)[0) (6.50)
We define the quantity
G(,...n1...n) = ( iHoT b(l) b(n)bf(n')...bf(1')|0)
"S[z4 (6.51)

mm

as the n-particle Green’s function. Now we can obtain an esja for this quantity by dierentiating the
right-hand side of (6.43 ). After the firstdifferentiations we get

o"S - 2
i”7:SLz><f dsG(s-9)z(s
57 o) - 52 g (5= 9)xs)

Now there aren! permutationsP of the z(s'), so that when we carry out the remaininglifferentiations,
ultimately setting the source terms to zero, we obtain

in 'S ,
ol ; [Tst-P)

62()...6z(n)oz(n). .
Pp). Comparing relations (6.51 ) and (6.53

(6.52)

(6.53)

whereP; is ther-th component of the permutatidh= (P1P...
), we obtain

(6.54)

G(l,..,n;l’.,.n’):ZﬂG(r—P’
P r

Wick's theorem.

It is a remarkable property of non-interacting systems, tifia n-particle Green'’s functions are determined
entirely in terms of the one-particle Green functions. Ir5§ each destruction event at tife= r is paired

up with a corresponding creation event at tithe= P;. The connection between these two events is often
called a “contraction”, denoted as follows

]

(=i O[T ... b(r) ... B (B ..

98

|#) =G(r—P)x (-)"OT...[0) (6.55)
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Notice that since particles are conserved, we can only acrércreation operator with a destruction operator.
According to Wick’s theorem, the expansion of the n-pagti@reen function in (6.50) is carried out as a sum
over all possible contractions, denoted as follows

G(1...M) = ) G(1- PPG(2-Py)...G(r - P)...
L

—

= 2 (M GITHHER) - b(r) - B (P B (P () o)

Physically, this result follows from the identical naturfetioe bosonic quanta or particles. When we take the
n particles out at times; ... tn, there is no way to know in which order we are taking them otie et
amplitude is the sum of all possible ways of taking out theiglas- This is the meaning of the sum over
permutationd®.

Finally, notice that generating functional result can beegelized to an arbitrary number of oscillators by
replacing ¢ 2) — (z, %), whereupon

(6.56)

[0 exp

i I ) difz (b (1) + br*(t)zr(t)]} 0)

= exp[—i f : dtdtZ ()Grs(t - t’)zs(t’)] (6.57)

where nowG,s(t—t') = —i(0[T by (t)b’s(t")|0) = —is;s0(t—t')e ' (-*) and summation over repeated indices is
implied. This provides the general basis for Wick’s theor@ime concept of a generating functional can also
be generalized to Fermions, with the proviso that now we msetreplacez z) by anticommuting numbers
(n,1), a point we return to later.

6.2 Green’s Functions
|

Green’s functions are the elementary response functiomsne@iny body system. The one particle Green's
function is defined as

Gur(t—t) = =i Ty’ v (t)Ig) (6.58)
where|g) is the many body ground-staig,(t) is the field in the Heisenberg representation and
Py (t) (t>1t)
Ty’ (t) = Bosons (6.59)

= (W) (t<t) i'{ Fermions

defines the time-ordering for fermions and bosons. Diagtiaaily, this quantity is represented as follows

Mt At

Gu(t-t)= - (6.60)
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Quite often, we shall be dealing with translationally inaat systems, wherg denotes the momentum and
spin of the particlel = po-. If spin is a good quantum number, (no magnetic field, no spbitinteractions),
then

Gk (t =) = 8por 0 Gk, t = 1) (6.61)
is diagonal, (where in the continuum limdig — (27)°6® (k — k)). In this case, we denote
Gk, t =) = =iPIT U (O ko (V)I) = t ——— +—t (6:62)
We can also define Green'’s function in co-ordinate space,
G(x =X, 1) = =@ Ty (. ' (X, 1)1 (6.63)
which we denote diagramatically, by
G(x —x',t) = (x,t) - x,t) (6.64)

By writing ¢,(x.t) = [ vx-€*¥, we see that the co-ordinate-space Green's function istfiesEourier
transform of the momentum-space Green’s function:

S Gk A1)
N - st st —————
G(x-X,t) = f R il T (0 o0 (0))
k.k
dgk jk-(x=x")
= @G(k,t)e' (6.65)
Itis also often convenient to Fourier transform in time, lsatt
G(k,t) =f d—wG(k,w)e"““ (6.66)
e 21
The quantity
G(k, w) :f dtG(k, t)ee!
w
= k’: (6.67)

is known as the propagator. We can then relate the Greercsiduarin co-ordinate space to its propagator, as
follows

d*kdw

@ G(K, w)elkX)-et=t)] (6.68)

KT (X W (X, 1)) =

6.2.1 Green'’s function for free Fermions

As a first example, let us calculate the Green’s function ofgetierate Fermi liquid of non-interacting
Fermions in its ground-state. We shall take the heat-bathdocount, using a Heisenberg representation
where the heat-bath contribution to the energy is subtiemtey, so that

H=Ho—uN =" ac’ioCor (6.69)
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is the Hamiltonian used in the Heisenberg representatidreas % — 1. We will frequently reserve use
of “c” for the creation operator of fermions in momentum spathe ground-state for a fluid of fermions is

given by
w= ] cwlo
olk|<ks

(6.70)

In the Heisenberg representatiafy, () = €%'c’y,, ¢ (t) = e*!c,,.. For forward time propagation, it is
only possible to add a fermion above the Fermi energy, and

(Bleka OCT e (©)D) = oo S €U ICC il

= 80 S (1= M) 1) (6.71)

wheren, = 6(|kg| — K[). For backward time propagators, it is only possible tomgsa fermion, creating a
hole, below the Fermi energy

(B o (1) O)19) = O S i) (6.72)
so that
G(k, 1) = —i[(L — n)6(t) — neo(-t)]e ' (6.73)
can be expanded as
—ifk_k €'t (t>0) “electrons”
G(k,t) = (6.74)

iBke-ke* (t<0)

This unification of hole and electron excitations in a sirfgliection is one of the great utilities of the time-
ordered Green’s functiof.
Next, let us calculate the Fourier transform of the Greamgfion. This is given by

“holes” : electrons moving backwards in time

cnvgnce factor
00 . —_——~—
Gk, w) = —i f dtde-at gl [é)k_kpe(t)—élk;_ké)(—t)]

. Ok—ke O ] 1
=- - - - = . 6.75
I[(S—I(w—ek) S+ i(w— &) W — €& + 16k ( )
wheresy = sign(k— kg). The free fermion propagator is then
1 k, @
Gk,w)= ——— = ‘- 6.76,
( w) w — € + 10k ( )

2 According to an aprocryphal story, the relativistic coupget of this notion, that positrons are electrons tramglbhackwards in time,
was invented by Richard Feynman while a graduate studentwf\Mheeler at Princeton. Wheeler was strict, allowing his gasel
students precisely half an hour of discussion a week, empiayichess clock as a timer at the meeting. Wheeler treated Feyranan
differently and when the alloted time was up, he stopped the clutlaanounced that the session was over. At their second meetin
Feynman apparently arrived with his own clock, and at the didechalf hour, Feynman stopped his own clock to announcehibat
advisor, Wheeler's time was up. During this meeting they disedshe physics of positrons and Feynman came up with the idea th
that a positron was an electron travelling backwards in tintethat there might only be one electron in the whole univehseading
backwards and forwards in time. To mark the discovery, at tind theeting Dick Feynman arrived with a modified clock which he
had fixed to start at 30 minutes and run backwards to zero!
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The Green’s function contains both static, and dynamicrinfdion about the motion of particles in the
many-body system. For example, we can use it to calculatéehsity of particles in a Fermi gas

GO = D W o) = = D (AT (% 0 (. 0))
= Ji(2S + 1)G(X, 0 )heco 6.77)

whereS is the spin of the fermion. We can also use it to calculate timetic energy density, which is given
as follows

#2V2
2m

R 2
O =~ S W 007200000 = X S T 6,0 (X, 01

x-x'=0

=i(2S+1) %G(X, 0) (6.78)

x=0

Example 6.2: By relating the particle density and kinetic energy density to one-particlenGrienc-
tion to the particle density, calculate the particle and kinetic energy densitytiflpain a degenerate
Fermi liquid.

Solution: We begin by writing(3(x)) = —i(2S + 1)G(0, 0-). Writing this out explicitly we obtain

~ k[ fdo ,, 1
W”‘(Zs*l)fwl 2 e

where the convergence factor appears because we are evaluatBrgéms function at a small negative
time —5. We have explicitly separated out the frequency and momentum integraspoles of the
propagator are ab = ¢ — i6 if k > kg, but atw = ¢ + i6 if k < kg, as illustrated in Fig. 6.4.
The convergence factor means that we can calculate the complex Intsimg Cauchy’s theorem by
completing the contour in the upper half complex plane, where the integlianciway exponentially.
The pole in the integral will only pick up those poles associated with states lie¢ofermi energy, so

(6.79)

that
dw ;s 1
2% ooetioe Oke-ki (6.80)
and hence
d*k Ve
=(2S+1 —— =(2S+1)— 6.81
p=Gsed) [ o -essnghs (6.8)
In a similar way, the kinetic energy density is written
d*k n2k? dw . 1
(00 =25+ 1’f @ 2m [ 20 w—ect i
d*k nk2 3
=(2S+1) Jk;kF @ 2m = g&p (6.82)

6.2.2 Green'’s function for free Bosons

As a second example, let us examine the Green’s function aé @fjnon-interacting bosons, described by

. 1
H =" wglbqbg + 5l (6.83)
q
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or

D(q,v) = Bose propagator (6.88)

(ke k)

Z:8k+| 6

h 2wq
2Mmuwgq | V2 = (wq — 10)2 |’

Remarks

/ e Note that the bose propagator has two poles at+(w — is). You can think of the bose propagator as a
XXX X XXX X X X X X sum of two terms, one involving a boson emission, that prafesgforwardsn time from the emitter, a
second involving boson absorption that propagates baclsiratime from the absorber,

emission absorption
h 1 1
D(q.v) =

. Smen | v = — =t — (6.89)
7 :Sk _ |6 Mwg [ v — (wq —16)  —v — (wq — 16)

e We shall shortly see that amplitude to absorb and emit bospmsopagating fermions is directly related
(k> kF ) to the Boson propagator. For example, when there is an iteneof the form

Hin = 9 f P (p(0) (6.90)

Fig. 6.4 Showing how the path of integration in (6.80) picks up the pole contributions from the

The exchange of virtual bosons between particles givesaisetardednteractions,
occupied states beneath the Fermi surface. 5
V(g t-t) = %D(q,t—t’), (6.91)

where physical field operator is related to a sum of creatfuhannihilation operators: whereby a passing fermion produces a the potential chantfeeienvironment which lasts a charac-

_ dax teristic timeAt ~ 1/w, wherew, is the characteristic value afy. From the Fourier transform of this
¢ = fq¢q expression, you can see that the time average of this iti@naproportional taD(q, v = 0) = —# is
h N negative: i.e. the virtual exchange of a spinless bosonatesian attractive interaction. )
$a = 4 W[bq = (6.84)

Since there are no bosons present in the ground-state, bestrction operators annihilate the ground-state . .
|¢). The only terms contributing to the Green function are then 6.3 Adiabatic concept
-]
—i{IT by()bq(0)g) = —iat)e ",

—i{gITH _(t)b_q(0)lp) = —ie(~t)e“", (6.85) The adiabatic concept is one of the most valuable conceptsainy body theory. What does it mean to
understand a many body problem when we can never, excepe imdist special cases, expect to solve the

sothat problem exactly? The adiabatic concept provides an answtbig question.
D(q, t) = —i{ple(q, )(~q, 1)) = _iilg(t)e*'wq‘ + 0(-t)d!] (6.86) Suppose we are interested in a many body problem with HamditcH, with ground-staté¥g) which
2mwg we can not solve exactly. Instead we can often solve a simglifersion of the many body Hamiltonié
If we Fourier transform this quantity, we obtain the bosoopgrator, where the ground-stat®#,) has the samsymmetryas|¥g). Suppose we start in the ground-stpitg), and

. now slowly evolve the Hamiltonian fro, to H, i.e, if V = H — H,, we imagine that the state time-evolves
D(q,v) = f dte 1 p(q, 1) according to the Hamiltonian
T 1 1 H(t) = Ho + AWV
= o [5 i —wg) 5110 o) 6.87) Aty = el (6.92)
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H=H & V
Adiabaticity: Phase transition:

A

c

Level repulsion k

lIJ4 E ' States which cross
'-Ié , | have different symmetries
0 U B
2 ‘ ;
Y % |
1] , |
v Wy Y
9 \f\ g 3
lpg T
1
0 1 0 A 1
C
A A
Fig. 6.5 lllustrating the evolution of the Hilbert space as the Hamiltonian is adiabatically

evolved. In the first case, the ground-state can be adiabatically evolved all the way to
A= 1. In the second case, a phase transition occurs at 1 = A¢, where a previously
excited state, with a different symmetry to the ground-state crosses below the
ground-state.

wheres is arbitrarily small.

As we adiabatically evolve the system, the ground-state excited states will evolve, as shown in Fig.
6.5. In such an evolution process, the energy levels wilcglty show “energy level repulsion”. If any two
levels get too close together, matrix elements betweenvtbestates will cause them to repel one-another.
However, it is possible for states offfiirent symmetry to cross, because selection rules prevemt fitom
mixing. Sometimes, such an adiabatic evolution will leatiéwel crossing”, whereby at = 1. when some
excited state), with different symmetry to the ground-state, crosses to a lower giteag the ground-state.
Such a situation leads to “spontaneous symmetry breakigimple example is when a Ferromagnetic
ground-state becomes stabilized by interactions.

In general however, if there is no symmetry changing phasesition as the interactiov is turned on, the
procedure of adiabatic evolution, can be used to turn orfautions”, and to evolve the ground-state from
Fyto Py

These ideas play a central role in the development of petior theory and Feynman diagrams. They
are however also of immense qualitative importance, forpiingsics of adiabatically related ground-states
is equivalent. Adiabatic evolution defines an equivalenesscof ground-states with the same qualitative
physics. The adiabatic principle was first employed withagrsuccess in the fifties. Murray Gell-Mann
and Francis Low used it to prove their famous relation ligkimon-interacting, and interacting Green's
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functions[1]. Later in the fifties, Landau[2, 3, 4] used thiadatic idea in a brilliantly qualitative fashion, to
formulate his theory of interacting Fermi liquids, which examine in detail in the next chapter.

6.3.1 Gell-Mann Low Theorem

Suppose we gradually turn on, and later, gradually tdifao interactiorV so that

V(1) = e v(0) (6.93)

acquires its full magnetitude at® and vanishes in the distant past and in the far-future. Thetityra = e *
sets the characteristic “switch-on time” for the procesdiahaticity requires that we ultimately let— 0,
sending the switch-on time to infinitys, — co. When we start out at= —oo, the ground-state is- ), and
the interaction and Heisenberg representations cointfisée now evolve to the present in the Heisenberg
representation, the states do not evolve, so the groutelistanchanged

g = | = o), (6.94)

and all the interesting physics of the interact\is encoded in the the operators. We would like to calculate
the correlation or Green’s functions of a set of observalsigbe fully interacting system. The Gell-Mann
Low theorem enables us to relate the Green’s function ofrttezacting system to the Green'’s functions of
the non-interacting system et —co. The key result is

@ITAt)B(t) . Rt = (+oo[T S[eo, o] Alt)B(t2) . R(t)| = ol
ﬂm%—m]:Texq—hf vaqa@

(6.95)

where the subscrig and| indicate that the operators, and states are to be evaluatbd Heisenberg and
interaction representations, respectively. The gtai®) = S(co, —o0)| — c0) corresponds to the ground-state,
in the interaction representation in the distant futuradibaticity holds, then the process of slowly turning
on, and then turning fd the interaction, will return the system to its original statip to a phase, so that
| + o0) = €%9] — o0). We can then write?? = (—co|oo), S0 that so that

oo = 62| = =L 6.96
(ool = €000l = oo (6.96)
and the Gell-Mann Low formula becomes
—oo|T [0, —co] A(t1)B(t2) . . . R(t;)| — oo
(T ABLE)... R = IS8 M =) 6.97)

Remarks:

e With the Gell-Mann Low relation, we relate the Green’s fuoctof a set of complex operators in an
interacting system, to a Green'’s function of a set of simplerators multiplied by the S-matrix.

e The Gell-Mann Low relation is the starting point for the Feyan diagram expansion of Green'’s functions.
When we expand the S-matrix as a power-seriég,irach term in the expansion can be written as an
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integral over Green’s functions of the non-interactinghpeon. Each of these terms corresponds to a
particular Feynman diagram.

¢ When we expand the vacuum expectation value of the S-matexwill see that this leads to “Linked
Cluster” diagrams.

Proof: To prove this result, leU(t) = S(t,—c0) be the time-evolution operator for the interaction repre-
sentation. Since the interaction, and Heisenberg staieside att = —co, and|y) does not evolve with
time,

() = U®lyn) (6.98)

SinceU () Au(®)lvn) = Al (1) = A(t)U(t)lvn), the relation between operators in the two representations
must be

An(t) = UTOADU®) (6.99)
Supposé; >t > t3...t, then using this relation we may write
S(tyt2) S(tr—1.tr)
@A) Rt)IP)n = (~eolUT(t)A (t) UtV (t2) ... Ut-)UT (t) R (1)U (1)) — o)
where we have identifiep)y = | — o). Now S(t1, ;) = U(t;)U'(tp) is the operator that time evolves the

states of the interaction representation, so we may retiét@bove result as

S'(t1,-) S(ty,~0)

- SN
(OIA(ta) . .. R(t:)I0)n = (=oo] U™ (t2) Ai(t1)S(ts,t2) ... S(tr-1, tr)Ri(tr) U(tr) | = o)
where we have replacdd(t) — S(t, —c0). Now S(co, t;)S(t3, —o0)| — c0) = |eo) and sinceS is a unitary
matrix, S’ (co, t1)S(eo, t1) = 1, so multiplying both sides b$ (o, t;), S(ty, —o0)] — 00) = S¥(co, t3)|c0) and by
taking its complex conjugate,
(=00ST(tg, —e0) = (c0|S(e0, ty) (6.100)
Inserting this into the above expression gives,

(OlA(t1) - . . R(t) 10y = (+00[S(e0, 1) Ay (11)5(5({1,'[)2) <o S(tr-1, 1R (t)S(tr, —00)| — 00)

= (+00|T S(00, t1)S(t1, t2) . .. S(tr, —c0) Ai(ta) . .. Ri(tr)| — o)

where we have used the time-ordering operator to separatee8-matrix terms from the operators. Finally,
since we assumetg > t, > ... t;, we can write,
(PIT[AtL) ... Rt) ]Iy = (+0o[T[S(c0, —c0) A (t1)B (t2) . .. Ri ()]l — o0y (6.101)

Although we proved this expression for a particular timdewing, it is clear that if we permute the operators
the time-ordering will always act to time-order both sidasd thus this expression holds for an arbitary
time-ordering of operators.
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6.3.2 Generating Function for Free fermions

The generating function derived for the harmonic oscilatm be generalized to free fermions by the use of
“anticommuting” or Grassman numbeysndn. The simplest model is

H = ecc }
V(@O = o) +c On)
The corresponding generating functional is given by

(6.102)

st = oiT exp(-1 [ anftoet) + ¢ 0] - exp[fi | autiee-nw

Gt - ) = —igIT O (V)6 (6.103)

where|g) is the ground-state for the non-interacting Hamiltoniaa.pFove this result, we use the same
method as used for the harmonic oscillator. As before we spltheS matrix into N discrete time-slices,
writing

Sy = AN e AT e (6.104)
where
A = 7(t;)(~ice 0)At,
Al = () (cTde)At. (6.105)

The next step requires a little care, for wher: 0, [¢) = c'|0) is the vacuum for holeb = ¢', rather than
particles, so that in this case we need to “anti-normal drttherS matrix. Carrying out the ordering process,
we obtain

e L Argli A exp{— ZraslAr A.;‘s](l - %65)] (e>0)
e he LA el T A AL - 160)]  (€<0)

When we take the expectation val#Sy|¢), the first term in these expressions gives unity. Calcuettie
commutators, in the exponent, we obtain

[A AT = AP e, cp(t)] e
= Aq(t)(e.¢’ pr(ts)e <
= Atz’](tr)fi(ts)] gt

Sy = (6.106)

(6.107)

( Notice how the anticommuting property of the Grassmanatdeisn(t;)n(ts) = —n(ts)n(tr) means that we
can convert a commutator oA, A] into an anticommutatofc, ¢'}.) Next, that taking the limitN — co, we
obtain

exp[— f B dtdtn(t)ot - t’)q(t')e“‘("")] (e>0)
Sl = (6.108)

exp

fw drde'n(r)o(t’ — l)n(‘r’)e"‘("”] (e<0)
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By introducing the Green function,
G(t) = -i [(L - F(e)o(t) - F()o(-1)]e™
we can compactly combine these two results into the final form
Slto,ty) = exp{—i f dtdt G (t - t’)n(t’)]. (6.109)

A more heuristic derivation however, is to recognize thaivdéives of the generating functional bring down
Fermi operators inside the time-ordered exponential,

.6 ~ N
I@M)ITS 16y = (QITSC). .. 1)
i——(ITS...1p) = (HTSAY)... 6.110
I6n(t) (¢l [§) =<oITSAL)...|1p) ( )
where$ = T exp|-i [ dt (37(t)c(t') + ¢ (t)n(t'))| so that inside the expectation value,

S8
|@ =c'(t)
|% = c(t), (6.111)

and

sinsS _ ITS(@)SIg)
on(1) (@ISIp)
whereS = T exp[—i fV(t')dt’J. Here, we have used the Gell-Mann Low theorem to identifycfhetient
above as the expectation value &¢1) in the presence of the source termsf&eentiating one more time,

InS[n.nl _ T 1)SI9) _ (AT o2)SI9) ST (1)SIp)

i = (c'(1). (6.112)

2
O on(2)on(1) (41SI¢) (#ISIe) (#ISIe)

= (T2)c! (1)) - (e (1)

= (Téc(2)s5¢ (1)). (6.113)

This quantity describes the variance in the fluctuatiocid(2) = c(2) — (cV(2)) of the fermion field
about their average value. When the source teyraadz are introduced, they induce a finite (Grassman)
expectation value of the fieldg(1)) and(c’(1)) but the absence of interactions between the modes mean
they won’t change the amplitude of fluctuations about thermsa that

262 InS[in] B i
(i) W =(Td1)c (2»‘,7' =0 = iIG(1-2),
and we can then deduce that
InS[n, 7] = -i fdleﬁ(Z)G(Z - 1)n(1). (6.114)

There is no constant term, becagse 1 when the source terms are removed, and we arrive back 88)6.1
The generalization of the generating functional to a gaseofiffons with many one-particle states is just a
question of including an appropriate sum over one-partiidées, i.e
H = Yiachic }

VO = e + ol Qm (6:119)
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The corresponding Generating functional is given by

SOr. = (oIt exptfi [aYawew+ cf(l)m(l)] )
a

= exp

-1y [ awene.a- 2)m<2)}
a
Gi(1-2) = -iT e, (1), (20) (6.116)

Example 6.3: Show using the generating function, that in the presence of a source term

@) = f d26,(1- 22 6117)

Solution: Taking the (functional) derivative of (6.116) with respectto from the left-hand side of
(6.116), we obtain

ISLml _ i s ey(ay expl i f dtV(t)]|¢) (6.118)
om(1)
so that
SISzl i oS[mal  AITc(@)exp[-i [div(D)]ie)
— = — — = = (Ca(1)). 6.119
"Ton@  Siinl on@® | (aT exp[-i [ dtv(D)] o) e (5
Now taking the logarithm of the right-hand side of (6.116), we obtain
iinsil = Y, | 2.~ 2n(2) (6.120)
a
so that 7
PSR f d2G,(1- 2m(2) (6.121)
om(7)
Combining (6.119) with (6.121) we obtain the final result
(1) = f d2G,(1 - 2)m4(2) (6.122)

6.3.3 The Spectral Representation

In the non-interacting Fermi liquid, we saw that the propgagaontained a single pole, at = . What
happens to the propagator when we turn on the interactioastafkably it retains its same general analytic
structure, excepting that now, the single pole divides afilethora of poles, each one corresponding to an
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excitation energy for adding, or removing a particle frora ¢fliound-state. The general result, is that

IMa(K)I?
k = —_— 12
Gk, w) ;w_mm (6.123)
whered, = dsign(e;) and the total pole strength
DMk =1 (6.124)
A

is unchanged. Notice how the positive energy poles of theGfenction are below the real axisat- id,
while the negative energy poles are below the real axisepreg) the pole structure of the non-interacting
Green’s function.

If the ground-state is aN particle state, then the stdt® is either anN + 1, or N — 1 particle state. The
poles of the Green function are given by related to the etoit@nergies, — Eg > 0 according to

() €IN+1))

[ Ei-Eg>0
a={ S k<o (WeN-1) ° (6.129)
and the corresponding matrix elements are
Actkolg), (11 € IN+1)),
Ma(k) = (6.126)
(Ackslp), (1) € IN = 1)).

Notice that the excitation energigs — E > 0 are always positive, sq > 0 measures the energy to add and
electron, whileg, < 0 measures-1x the energy to create a hole state.

In practice, the poles in the interacting Green functiorr bito a continuum of excitation energies, with
an infinitesimal separation. To deal with this situation, deéine a quantity known as the spectral function,
given by the imaginary part of the Green'’s function,

Ak, w) = %ImG(k, w —i6), Spectral Function (6.127)

By shifting the frequencyv by a small imaginary part which is taken to zero at the end efddculation,
overriding thes, in (6.123), all the poles 06(k, w — i5) are moved above the real axis. Using Cauchy’s
principle part equation, /Ix — i6) = P(1/x) + ind(x), whereP denotes the principal part, we can use the
spectral representation (6.123) to write

Ak, @) = D IM(K)Po(w - &)
a

= Z[\(ﬂ|ctk(r|¢>\29(w) + (llck,r|¢>|29(—w)]5(lw\ - (Ex-Ey) (6.128)
a
where now, the normalization of the pole-strengths meaats th
f AK, w)dw = Z IMa(K)I? = 1 (6.129)
- a

Since the excitation energies are positiég,— E5 > 0 from (6.125) it follows that; is positive for electron
states and negative for hole states, so

Ak, w) = 8(w)pe(k, ) + O(-w)pn(K, —w) (6.130)
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where
pe(@) = D KAIC ko l®)6(w - (Ey - Eg)) (w>0) (6.131)
a
and
prlw) = Z KAlekolp)Po(w = (Eg = E2)) (w>0) (6.132)
a

are the spectral functions for adding or holes of energy the system respectively. To a good approximation,
in high energy spectroscopyen(k, w) is directly proportional to the cross-section for addingyemoving
an electron of energl| to the material. Photoemission and inverse photoemissiparegnents can, in this
way, be used to directly measure the spectral function etmleic systems.

To derive this spectral decomposition, we suppose that veevkhe complete Hilbert space of energy
eigenstate$l1)}. By injecting the completeness relatidhl1)(1| = 1 between the creation and annihilation
operators in the Green’s function, we can expand it as fallow

Gk, 1) = _i[(d"ck(r(t)c%kvr(0)|¢>g(t) = (9" ko (0o Blp)O(-1)

=1 =1

= =i [ @l T €' 018 - (GI6'r O T e V11O
a

By using energy eigenstates, we are able to write

(Bleke O = (Pl cre ™ 1A) = (gloe )G EN
(Acko ()1 = (Al cr ey = (ko |p)yeEE

Notice that the first term involves adding a particle of motnenk, spinco, so that the statgd) = [N+ 1; ko)

is an energy eigenstate with+ 1 particles, momenturk and spiro-. Similarly, in the second matrix element,
a particle of momenturk, spino has beersubtractedso thail) = [N — 1;-k — o). We can thus write the
Green’s function in the form:

Glk.t) = i Z[\<ﬂ|c*kg|a>>\Ze*'ﬁfEa)‘e(t) = [Alorlo)Pe GomEdg-p)|,
A

(6.133)

where we have simplified the expression by writ{gtp,|1) = (AIck,1¢)* and{A|c,1p) = (BIci ko |2)*. This
has precisely the same structure as a non-interacting Grieeiction, except thage — E, — Eq in the first
term, andec — Eg — E, in the second term. We can use this observation to carry eutdarier transform,
whereapon
(AT ko)
G(k,w) = — +
k) ZA:[M—(EJ— Eg) +i0

which is the formal expansion of (6.123).
To show that the total pole-strength is unchanged by intierss; we expand the sum over pole strengths,
and then use completeness again, as follows
DUMOR = 3 KAC ko B + KAGkoI)P
a a o o
—_—— ¥ + —_——
= Z<¢|Ckn [ €k lé) + (PIC"ker [ANA Ckorlp)
a

[(Alc )
w-(Eg—Ey—io
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=1

e
= (@l{Ckr, C'kr} 16) = (6.134)

Example 6.4: Using the spectral decomposition, show that the momentum distributiotidaria the
ground-state of a translationally invariant system of fermions is giveimtagral over the “filled” states

D (o) = (@S +1) f dwAK, )

Solution: Let us first write the occupancy in terms of the one-particle Green'stitum evaluated at
timet = 0"

(M) = (BINks|9) = ~i X ~i{IT 6 (07)C ko (O)lg) = ~IG (K, 07),
Now using the spectral representation, (6.134),

(N = -IG(K,07) = Z [KAlckolp)P = Z IMa(K)P0(-€2)
since|M, (k)2 = [(Alc.9)I? for €, < 0. This is just the sum over the negative energy part of the spectral

function. Now sinceA(k, w) = ¥, IM,(K)[?6(w — €,), it follows that at absolute zero,
0(—€1)

———
fa dak,) = 3 M) f dws(w - €) = )" IMi(K)Fo(-€).
- a - a

so that
0

S =@s+1) [ Laka.
Example 6.5: Show that the zero temperature Green’s function can be written in terthe 8pectral
function as follows:

Gk, w) = f 7A(k e).

e(1-i9)

Solution: Introduce the relationship4 [ ded(e - (E, — Eg)) and 1= [ ded(e + (E, — Eg)) into (6.134)

to obtain
G(k,w) = fde

= Z KAG9)Re + (1 ~ Eg).

<716 2ol ote - B~ Ep)
(6.135)

Now in the first terme > 0, while in the second terna,< Onn, enabling us to rewrite this expression as
Alk.e)
G(k, w) = f de—t O [KAUC o @PeE) + KAGkoBP0(=€) | 8(1el - (Ex — Eg)).
’ w—e(l-i0) & 7 7 o

giving the quoted result.
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6.4 Many particle Green’s functions
|

The n-particle Green'’s function determines the amplitwdafparticles to go from one starting configuration
to another:

initial particle positions  final particle positions

- s o
{1,2...n"} — {L,2...n} (6.136)
where 1 = (X',t’), etc and 1= (x,t), etc. The n-particle Green'’s function is defined as
G(L2,..m1,2,..0) = (=) ATy (2). .. p(my () ...y D)lp)
and represented diagramatically as
G(L2,...n1,2,...n) =
(6.137)

In systems without interactions, the n-body Green’s fuorctan always be decomposed in terms of the
one-body Green'’s function, a result known as “Wick's thesteThis is because particles propagate without
scattering & one-another. Suppose a particle which ends upcatmes from locatio®;, whereP is the r-th
element of a permutatioR of (1, 2,...n). The amplitude for this process is

G(r-Py) (6.138)
and the overall amplitude for all n-particles to go from ldeas P; to positionsr is then
PG(L-P)G(2-P,)...G(n-P,) (6.139)

where{ = + for bosons ¢) and fermions (-) angb is the number of pairwise permutations required to make
the permutatiorP. This prefactor arises because for fermions, every timexebange two of them, we pick
up a minus sign in the amplitude. Wick’s theorem states thesiphlly reasonable result that the n-body
Green’s function of a non-interacting system is given bysi of all such amplitudes:

G.2... =[] e -p)

r=1n

n.2,.. (6.140)

For example, the two-body Green'’s function is given by

G(1.27,2) = G(1.1)G(2.2) + G(1.2)G(2. 1)
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The process of identifying pairs of initial, and final staiteshe n-particle Green'’s function is often referred
to as a “contraction”. When we contraction two field operafoside a Green’s function, we associate an
amplitude with the contraction as follows

O ..w(1)...97(2).. ]]0) — (OIT(1)y"(2)]|0) =iG(1 - 2)

]

O wt(2) .. 9(). . JJ0) — (OITRT(2)v(1))|0) = £iG(1 - 2)

Each product of Green’s functions in the Wick-expansionhef propagator is a particular “contraction” of
the n-body Green’s function, thus

1
(=)™ OIT[(1)(2) ... ¢(n) ... T (P) ... T (PY) ... 4T (P})]|0)
=PG(1- PG~ Py)...G(n - P}) (6.141)

where nowP is just the number of times the contraction lines cross-omheer. Wick's theorem then states
that the n-body Green'’s function is given by the sum over adigible contractions

)M T y(Lp(2)...p' (M)Ig) =

1]
(=)™OIT[ (1)(2) ... 9p(n) ... T (P3) .. T (PY) ... 4" (P,)]]0)

All contractions

Example 6.6: Show how the expansion of the generating functional in the absence wfdtites can
be used to derive Wick’s theorem.

Exercises
|

Exercise 6.1 A particle withS = 1/2 is placed in a large magnetic fiel= (B, cos(st), B; sin(wt), Bo),
whereB, >> B;.
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(a) Treating the oscillating part of the Hamiltonian as theeiiaction, write down the Sabdinger
equation in the interaction representation.

(b) FindU(t) = Tex;{—iH.m(t')dt'] by whatever method proves most convenient.
(c) If the particle starts out at tinte= 0 in the stateS, = —%, what is the probability it is in this state at

time t?
Exercise 6.2 (Optional derivation of bosonic generating functionalgnSider the forced Harmonic oscil-
lator
H(t) = wb'b + Z{t)b + b z(t) (6.142)
wherez(t) andz(t) are arbitrary, independent functions of time. ConsiderSkmatrix
S[z.7] = (0]TS(c0, —0)[0) = (OT exp(—i f dt{Z(t)b(t) + b(t) z(t)] | (0), (6.143)

whereﬁ(t) denotesh in the interaction representation. Consider changing tinetfon z(t) by an in-
finitesimal amount

At) > ) + ARL)S(E — to), (6.144)

The quantity
im ASlzZ _4S[z7
Alte)=0  AZ(to) 5Z(to)
is called the “functional derivative” @& with respect t@. Using the Gell-Man Lowe formulay(t)|bly(t)) =

(0T $(e0.—c0)b(1)0) ing i ;
OTS(—)0, Prove the following identity

i6InS[z. 2/s7(t) = b(t) = (b(t)) = WO (1)) (6.145)
(ii) Use the equation of motion to show that
%B(t) = ([H(. b)) = ~i[eb(®) + V).
(iii) Solve the above dferential equation to show that
b(t) = f : G(t — t')Z(t') (6.146)

whereG(t — t') = —i(0T[b(t)b (")]|0) is the free Green’s function for the harmonic oscillator.
(iv) Use (iii) and (i) together to obtain the fundamentalules

S[z 7] = exp. (6.147)

4 f " dtdt NG - t)At)

Exercise 6.3 (Harder problem for extra credit).
Consider a harmonic oscillator with chargeso that an applied field changes the Hamiltortiar>
Ho—eE(t)X, wherexis the displacement arig(t) the field. Let the system initially be in its ground-state,
and suppose a constant electric fielis applied for a timel .
(i) Rewrite the Hamiltonian in the form of a forced Harmongcdlator

H(t) = wb'b + Zt)b + biz(t) (6.148)
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and show that

we (T>t>0)
0 (otherwise) ’

-7~ ©149 References

deriving an explicit expression farin terms of the fieldg, massm, and frequencw of the oscillator.
(i) Use the explicit form ofS(z 2)

S[z7 = exp[—i f dtdtZG(t - t)(t)) (6.150)

whereG(t - t') = —i(OT[b(t)bf(t')]|0) is the free bosonic Green-function, to calculate the priibab
p(T) that the system is still in the ground-state after timd>lease express your result in termspfo
andT. Sketch the form ofy(T) and comment on your result.
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Landau Fermi Liquid Theory

7.1 Introduction

One of the remarkable features of a Fermi fluid, is its robessdragainst perturbation. In a typical electron
fluid inside metals, the Coulomb energy is comparable wighelectron kinetic energy, constituting a major
perturbation to the electron motions. Yet remarkably, the-imteracting model of the Fermi gas reproduces
many qualitative features of metallic behavior, such as B-aefined Fermi surface, a linear specific heat
capacity, and a temperature-independent paramagnetiepitslity. Such “Landau Fermi liquid behavior”
appears in many contexts - in metals at low temperature$ieircore of neutron stars, in liquid Helium-3
and most recently, it has become possible to create Fermid#iquith tunable interactions in atom traps. As
we shall see, our understanding of Landau Fermi liquidstimately linked with the idea of adiabaticity
introduced in the last chapter.

In the 1950’s, physicists on both sides of the Iron curtaindeed the curious robustness of Fermi liquid
physics against interactions. In Princeton New JerseyjdDBoehm and David Pines, carried out the first
quantization of the interacting electron fluid, proposihgttthe &ects of long-range interactions are ab-
sorbed by a canonical transformation that separates tliggans into a high frequency plasmon and a low
frequency fluid of renormalized electrons[1]. On the otliée ®f the world, Lev Landau at the Kapitza Low
Temperature Institute in Moscow, came to the conclusion ttiea robustness of the Fermi liquid is linked
with the idea of adiabaticity and the Fermi exclusion prhef2].

At first sight, the possibility that an almost free Fermi flunight survive the #ect of interactions seems
hopeless. With interactions, a moving fermion decays byttergiarbitrary numbers of low-energy particle-
hole pairs, so how can it ever form a stable particle-liketexion? Landau realized that a fermion outside
the Fermi surface can not scatter into an occupied momertate lselow the Fermi surface, so the closer it
is to the Fermi surface, the smaller the phase space awftatdecay. We will see that as a consequence, the
inelastic scattering rate grows quadratically with ex@taenergye and temperature

7€) « (€2 + 7°T2). (7.2)
In this way, particles at the Fermi energy develop an infilifiééime. Landau named these long-lived excita-
tions “quasi-particles”. “Landau Fermi liquid theory”[2, 4, 5] describes the collective physics of a fluid of
these quasiparticles.

It was a set of experiments on liquid Helium-3Hg), half a world away from Moscow, that helped to
crystallize Landau’s ideas. In the aftermath of the SecomdldWVar, the availability of isotopically pure
3He as a byproduct of the Manhattan project, made it possibtehéofirst time, to experimentally study this
model Fermi liquid. The first measurements were carried &einiversity in North Carolina, by Fairbank,
Ard and Walters. [6]. While Helium-4 atoms are bosons, atohtse@much rarer isotopéje— 3 are spin-12
fermions. These atoms contain a neutron and two proton®inuhbleus, neutralized by two orbital electrons
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in a singlet state, forming a composite, neutral fermitte is a much much simpler quantum fluid than the
electron fluid of metals:

« without a crystal lattice, liquidHe is isotropic and enjoys the full translational and Gallilegmmetries
of the vacuum.

o SHeatoms are neutral, interacting via short-range interastiavoiding the complications of a long-range
Coulomb interaction in metals.

Prior to Landau’s theory, the only available theory of a degate Fermi liquid was Sommerfeld’s model
for non-interacting Fermions. A key property of the norenaicting Fermi-liquid, is the presence of a large,
finite density of single-particle excitations at the Ferméggy, given by

@op2dp|  _ mp:

=2 = 3.
NO) (2n1)3 dep p=pr m2h3

(7.2)

where we use a script/(0) to delineate the total density of states from the dertfistates per spif(0) =
N(0)/2. The argument ol (0)(e) is the energy = E — u measured relative to the chemical potentialA
magnetic field splits the “up” and “down” Fermi surfacesfshg their energy by an amouriouB, where
o =+1andyu = %% is half the product of the Bohr magneton for the fermion arelgkactor associated
with its spin. The number of “up” and “down fermions is theyethanged by an amouatN; = —6N; =
%N(O)(,UFB), inducing a net magnetizatidvl = yB where,

x = pe(Ny = N,)/B = iEN(0)

is the “Pauli paramagnetic susceptibility”. For electroms- 2 andug = ug = %] is the Bohr magneton, so
the Pauli susceptibility of a free electron gagisv(0).
In a degenerate Fermi liquid, the energy is given by

(7.3)

1

g1 9

&T)=E(T)-uN = Z
ko=+1/2
Here, we use the notatigh = E — ;N to denote the energy measured in the grand-canonical efes€eThie
variation of this quantity at low temperatures (where toeoitf, the chemical potential is constant ) depends

only on the free-particle density of states at the Fermigne(0). The low temperature specific heat

d& . d 1
Cy = a7 N(O)de“CTT (ﬁ)

/3 =y
——

- 2 2
_ 2 X _T 2
= NO)ET I e = g NORT

is linear in temperature. Since both the specific heat, aadrthgnetic susceptibility are proportional to
the density of states, the ratio of these two quantilés= y/y, often called the Wilson ratio or “Stoner
enhancement factor”, is set purely by the size of the magnatiment:

2
w=X - 3(LF)
Y kg

Fairbank, Ard and Walters’ experiment confirmed the Paulapegnetism of liquid in Helium-3, but the

(7.5)

(7.6)

1 Note: In the discussion that follows, we shall normalize all extee properties per unit volume, thus the density of staiée) the
specific hea€y, or the magnetizatioM, will all refer to those quantities, per unit volume.
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measured Wilson ratio is about ten times larger than prediby Sommerfeld theory. Landau’s explanation
of these results is based on the idea that one can track theatiewoof the properties of the Fermi liquid
by adiabatically switching on the interactions. He consadea hypothetical gas of non-interacting Helium
atoms with no forces of repulsion between for which Somnié'sfenodel would certainly hold. Suppose
the interactions are now turned on slowly. Landau arguetdsinae the fermions near the Fermi surface had
nowhere to scatter to, the low-lying excitations of the Fdiquid would evolve adiabatically, in the sense
discussed in the last chapter, so that that each quantuenddttite fully-interacting liquid Helium-3, would
be inprecise one-to-one correspondence with the states of daizetd “non-interacting” Fermi-liquid4]

7.2 The Quasiparticle Concept
|

The “quasiparticle” concept is a triumph of Landau’s Ferigpilid theory, for it enables us to continue using
the idea of an independent particle, even in the presendeonfgsinteractions; it also provides a framework
for understanding the robustness of the Fermi surface wabiteunting for the féects of interactions.

A quasiparticle is the adiabatic evolution of the non-iat¢ing fermion into an interacting environment.
The conserved quantum numbers of this excitation: its spuhits “charge” and its momentum are un-
changed but Landau reasoned that that its dynamical piepgttie &ective magnetic moment and mass of
the quasiparticle would be “ renormalized” to new valgesndm’ respectively. Subsequent measurements
on3Hel6, 5] revealed that the quasiparticle mass and enhancedetiagnomenty* are approximately

m" = (2.8)Me),
(9 = 33(@%) e

These “renormalizations” of the quasiparticle mass andnegg moment are elegantly accounted for in
Landau Fermi liquid theory in terms of a small set of “Landaugmeters” which characterize the interaction,
as we now shall see.

Let us label the momentum of each particle in the original-imeracting Fermi liquid byp and spin
componentr = +1/2. The number of fermions momentugnspin componentr, ny,, is either one, or zero.
The complete quantum state of the non-interacting systéabéled by these occupancies. We write

7.7

¥ =101y Npyerys ) (7.8)

In the ground-statey, all states with momenturp less than the Fermi momentum are occupied, all states
above the Fermi surface are empty
no— 1
=1 0

Landau argued, that if one turned on the interactions iefinilowly, then this state would evolve smoothly
into the ground-state of the interacting Fermi liquid. Tisian example of the adiabatic evolution encountered
in the previous chapter. For the adiabatic evolution to witmi Fermi liquid ground-state has to remain stable.
This is a condition that certainly fails when the system wgdes a phase transition into another ground-state,
a situation that may occur at a certain critical interacstrength. However, up to this critical value, the
adiabatic evolution of the ground-state can take place.efeegy of the final ground-state is unknown, but
we can call itE.

(P < pr)

Ground- state¥, (otherwise p> pe)

(7.9)
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quasi-particle

particle

hié

| —
INTERACTIONS

hole

quasi-hole

(a) Fermi Liquid (b) Landau Fermi Liquid

Fig. 7.1 In the non-interacting Fermi liquid (a), a stable particle can be created anywhere

December 1, 2011

outside the Fermi surface, a stable hole excitation anywhere inside the Fermi surface.
(b) When the interactions are turned on adiabatically, particle excitations near the
Fermi surface adiabatically evolve into “quasiparticles”, with the same charge, spin
and momentum. Quasiparticles and quasi-holes are only well defined near the Fermi
surface of the Landau Fermi Liquid.

Suppose we now add a fermion above the Fermi surface of thmaristate. We can repeat the the adia-
batic switch-on of the interactions, but it is a delicateqadure for an excited state, because away from the
Fermi surface, an electron can decay by emitting low-enpagticle-hole pairs which disipates its energy in
an irreversible fashion. To avoid this irreversibilityetlifetime of the particlee must be longer than the adia-
batic “switch-on” timera = e~ encountered in (6.93), and since this time becomes infititet adiabaticity
is only possible for excitations that lie on the Fermi suefagherere is infinite. A practical Landau Fermi
liquid theory requires that we consider excitations that affinite distance away from the Fermi surface,
and when we do this, we tacitly ignore the finite lifetime oé thuasiparticles. By doing so, we introduce
an error of orderg!/ep,. This error can be made arbitrarily small, provided we festur attention to small
perturbations to the ground-state.

Adiabatic evolution conserves the momentum of the quatgpastate, which will then evolve smoothly
into a final state that we can label as:

e = { L
=) 0

122

(p< prandp = po, o = 07)

uasi— particle : ¥, -
Q P Poco (otherwise)

(7.10)
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This state has total momentupg where|p,| > pr and an energ¥(p,) > E, larger than the ground-state.
Itis called a “quasiparticle-state” because it behavednost every respect like a single particle. Notice in
particular, that the the Fermi surface momentois preservedby the adiabatic introduction of interactions.
Unlike free particles however, the Landau quasiparticlerily a well-defined concept close to the Fermi
surface. Far from the Fermi surface, quasiparticles devaltifetime, and once the lifetime is comparable
with the quasiparticle excitation energy, the quasipkertioncept loses its meaning.

The energy required to create a single quasiparticle, is

EY = E(po) - Eo (7.11)

where the superscript (0) denotes a single excitation inatigence of any other quasiparticles. We shall
mainly work in the Grand canonical ensemble, usihg E — xN in place of the absolute energy, wheres

the chemical potential, enabling us to explore the vaneatibthe energy at constant particle numberThe
corresponding quasiparticle excitation energy is then

& = EY — i = &(po) - &o. (7.12)

Notice, that sincgpo| > pe, this energy is positive.
In a similar way, we can also define a “quasi-hole” state, ifcvla quasiparticle is removed the Fermi sea,

1
M =1 g

where the bar is used to denote the hole and i< pr is beneath the Fermi surface. The energy of this
state isE(po) = Eo — Ep,, Since we have removed a particle. Now the change in partigieber isAN = -1,
so the the excitation energy of a single quasi-hole, medsorihe Grand Canonical ensemble, is then

(p < pe except wherp = po, o = o)

(otherwise) (7.13)

Quasi- hole : ¥,

0= EQ =D, (7.14)

i.e the energy to create a quasihole is the negative of tlresmonding quasiparticle energy. Of course,
when|po| < pr, 6, < 0 so that the quasihole excitation ene@po is always positive, as required for a
stable ground-state. In this way, the energy to create alltplasor quasiparticle is always given k|,
independently of whethey, is above, or below the Fermi surface.

The quasiparticle concept would be of limited value if it viiasited to individual excitations. At a finite
temperature, a dilute gas of these particles is excitednartiue Fermi surface and these particles interact.
How can the particle concept survive once one has a finiteitgleafexcitations? Landau’s appreciation of a
very subtle point enabled him to answer this question. Hizeshthat since the phase space for quasiparticle
scattering vanishes quadratically with the quasipargclergy, it follows that the quasiparticle occupancy at
a given momentum on the Fermi surface becomes a constarg afidgkion. In this way, the Landau Fermi
liquid is characterized by ainfinite set of conserved quantities,., so that on the Fermi surface,

[H,np] = 0. (p €FS) (7.15)
It follows that the only residual scattering that remaindtua Fermi surface iforwardscattering, i.e
(q = 0 on Fermi surface.)

(P1,P2) = (P1 -0, P2 + Q) (7.16)

The challenge is to develop a theory that describes the FregyeF[{n,,}] and the slow long distance
hydrodynamics of these conserved quantities.
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Example 7.1: Supposé¥o) = [Tjp<pr.r ¢'p-[0) is the ground-state of a non-interacting Fermi liquid,
wherec’,, creates a “bare” fermion. By considering the process of adiabaticatjntyion the inter-
action, time-evolving the one-particle stafg,,|FS) from the distant past to the present< 0) in
the interaction representation, write down an expression for the grstaelwavefunctiof) and the
quasiparticle creation operator of the fully interacting system.

Solution: The time-evolution operator from the distant past in the interaction repesm is

U= Texp[—i f; v (t)dt]

whereV (t) is the interaction operator, written in the interaction representation. If wiegshrticle to
the filled Fermi sea, and adiabatically time evolve from the distant past tadsert, we obtain

(7.17)

QPafps 1)
. *;—’R
CpoWo) — UC 5o} = (UcprUT) UIWo) . (7.18)
If the adiabatic evolution avoids a quantum phase transition, then
|¢) = UIFS) (7.19)
is the ground-state of the fully interacting system. In this case, we may iiaterp
a'p, = (Uc'p,U") (7.20)

as the “quasiparticle creation operator”. Note that if we try to rewrite thiscobjeerms of the original
creation operatot',, it involves combinations of one fermion with particle-hole pairs. See seét®
for a more detailed discussion.

7.3 The Neutral Fermi liquid
|

These physical considerations led Landau to conclude ligaenergy of a gas of quasiparticles could be
expressed as a functional of the quasiparticles occupmngie Following Landau, we shall develop the
Fermi liquid concept using an idealized “neutral” Landaufidiquid, like He—3, in which the quasiparticles
move in free space, interacting isotropically via a shangeainteraction, forming a neutral fluid.

If the density of quasiparticles is low, it isficient to expand the energy in the small deviations in particl
numbersng, = np(,—ng,fl from equilibrium. This leads to the Landau energy functl@@n,.}) = E({nps}) —
uN, where

1
E=8+ Z(ESQ — 1), + 5 Z forproOMpo SN + - (7.21)
po p,p’,t}',tY'
The first order coféicient
2]
) =EQ —p= (7.22)

S

describes the excitation energy of an isolated quasiparfRrovided we can ignore spin-orbit interactions,
then the total magnetic moment is a conserved quantity, sonthgnetic moments of the quasiparticles are
preserved by interactions. In this cag@, = € — our B, whereyr is the un-renormalized magnetic moment
of an isolated fermion.
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The quasiparticle energy can be expanded linearly in mamenear the Fermi surface
E = ve(p— pe) + 1, (7.23)

wherevg is the Fermi velocity at the Fermi energfp), whereu® is the chemical potential in the ground-state.
The quasiparticleféective massn' is then defined in terms of as

4e©@
Ve = 57‘;) - % (7.24)
p=pr
We can use this mass to define a quasiparticle density ofstate
4rp?dp p° dp
£\ _ _ 0y _ _ 0y hald
N (e) = 22’)“6(6 =2 o) se—e) = o act (7.25)
Using (7.24), it follows that
ey M PE
N*(0) = T (7.26)

In this way, the fective massn* determines the density of states at the Fermi energy: |dfgetiee masses
lead to large densities of states.
The second-order céiicients
526

2 (7.27)
Moo |5y,

fpmmr' =
o =0

describe the interactions between quasiparticles at tmaifseirface. These partial derivatives are evaluated
in the presence of an otherwisfozen” Fermi seawhere all other quasiparticle occupancies are fixed.
Landau was able to show that in an isotropic Fermi liquid,ghasiparticle massi* is related to the dipolar
component of these interactions, as we shall shortly detraias The Landau interaction can be regarded
as an interaction operator that acts on a the thin shell dipatticle states near the Fermi surfaceylf =

¥’ potpe is the quasiparticle occupancy, wherg,, is the quasiparticle creation operator, then one is tempted
to write

1 A
Hi~ 3 Z foopro oo P (7.28)
pop’o
Written this way, we see that the Landau interaction term ifoaward scattering amplitude”between
quasiparticles whose initial and final momenta are unché@rgeractice, one has to allow for slowly varying

quasiparticle densities,-(x), writing

1 a o
Hi~ g [ @Y o G0 0

pop'c’

(7.29)

wheren,,(x) is the local quasiparticle density. Using the Fourier sfarmed density operatan, (q) =
U p-qrar¥psqjar = f, €79 np.(X), a more correct formulation of the Landau interaction is

H|:% Z

pop’o’.ql<A

foorpro (@)D (A) o (=) (7.30)

whereA is a cutdf that restricts the momentum transfer to values smaller tharthickness of the shell
of quasiparticles. The Landau dheients for the neutral Fermi liquid are then the zero mommnlimit

forpor = Tpopor (@ = 0). The existence of such a limit requires that the inteoachias a finite range, so that
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the its Fourier transform af = 0 is well-defined. This requirement is met in neutral Feripuids, however
the Coulomb interaction does not meet this requirement.ekbension of Landau’s Fermi liquid concept to
charged Fermi liquids requires that we separate out therfange part of the Coulomb interaction - a point
that will be returned to later.

Interactions mean that quasiparticle energies are semgdichanges in the quasiparticle occupancies.
Suppose the quasiparticle occupancies deviate from thendrstate as followsp, — np, + dny,. The
corresponding change in the total energy is then

68
Nper

=€pr = Epr —p = E[(J?T) + Z foopr.o 0N« (7.31)
po’
The second-term is change in the quasiparticle energy éulhyg the polarization of the Fermi sea.

To determine thermodynamic properties of the Landau Feiquid we also need to know the entropy
of the fluid. Fortunately, when we turn on interactions adtaally, the entropy is invariant, so that it must

maintain the dependence on particle occupancies that inite non-interacting system, i.e.
S = ~Kg ) [Ny NNy + (1 = Mg, )IN(L = )]
p.o

The full thermodynamics are determined by the the Free grferg & - TS = E — uN — TS, which is the
sum of (7.21) and (7.32).

(7.32)

1
F(tnpe}) = Solw) + Z f;(nc<)r)6nprr + 3 Z Toopror ONporONp o
po p.p’ oo’
+ kgT Z[np(,lnnpu + (1= npe)In(L = npyr)] (7.33)
p.o
Free energy of Landau Fermi Liquid.
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Table. 8.1 Key Properties of the Fermi Liquid .

PROPERTY NON-INTERACTING LANDAU FERMI LIQUID
Fermi momentum Pr unchanged
Density of particles ng unchanged
Density of states N(©) = 5% N*(0) = ”2,,
Effective mass m m =m(1+F})
Specific heat Cd#cient

Cv=1T = ZIZN(0) y = ZKEN*(0)
Spin susceptibility Xs = 12N(0) Xs =12 y;gg
Charge Susceptibility xc = N(0) Xc = ﬁ,(:os)

Sound (r << 1)

Collective modes - Zero soundt >> 1)

Table 8.1 summarizes the key properties of the Landau Fegnidl

7.3.1 Landau Parameters

The power of the Landau Fermi liquid theory lies in its abilio parameterize the interactions in terms
of a small number of multipole parameters called “Landalapeaters”. These parameters describe how
the original non-interacting Fermi liquid theory is renaiimed by the feedbackflect of interactions on
quasiparticle energies.

In a Landau Fermi liquid in which spin is conserved, the iat¢ion is invariant under spin rotations and
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can in general be written in the fortn

L R (7.35)

The spin-dependent part of the interaction is the magnetigponent of the quasiparticle interaction.

In practice, we are only interested in quasiparticles wigmall excitation energy, so we only need to know
the values offSa near the Fermi surface, permitting us to pet pep, p’ = pep’, wherep andp’ are the
unit vectors on the Fermi surface. In an isotropic Landaurfréquid, the physics is invariant under spatial
rotations, so that interactions on the Fermi surface onpedd on the relative angtebetweer) andp’. We
write

fop = f5%(coso), (cos9 =p-p). (7.36)
We convert the interaction to a dimensionless function bytiplying it with the quasiparticle density of

statesN*(0):

F3%(cosd) = N*(0)f%%(cosb) (7.37)
These functions can now be expanded as a multipole expainsierms of Legendre polynomials
FS3(cosh) = Z(z + 1)FS2P|(cosh). (7.38)

1=0
The codficientsF? andF? are the Landau parametefie spin-symmetric componerf§ parameterize the
non-magnetic part of the interaction while the spin-amtigyetricF? define the magnetic component of the
interaction. These parameters determine how distortiérikeothe Fermi surface are fed-back to modify
quasiparticle energies.
We can invert (7.38 ) using the orthogonality relatg)‘rﬁ}1 dc R(c)Py (c) = (21 + 1) Loy,
1
=3 f e FSQPi(0) = (FSH(Q)PI(Q))a, (7.39)
where(...), denotes an average over solid angle. It is useful to rewrigeangular average as an average

over the Fermi surface. To do this we note that sing& d(ec) = N*(0), the functiongZs; 6(ek) behaves as
a normalized “projector” onto the Fermi surface, so that

= (FS(Q)PIQ))rs = e (0) Z FS2 Pi(COSHpp)8(ep ). (7.40)

and sinceF >3, = N*(0)f >3

p.p’ pp”

=2 Z 152 Py (coStp )6 (e )- (7.41)
P

This form is very convenient for later calculations.

2 To see that this result follows from spin rotation invarianwe need to recognize that the quasiparticle occupangies/e have
considered are actually the diagonal elements of a quaisigaiensity matrixp,s. With this modification, the interaction becomes
a matrix fouppr,, Whose most general rotationally invariant form is

foagipryn = F5(0.0")8apbyy + 19(p. P')G o - Ty (7.34)

The diagonal components of this interaction recover theteesfi(7.35)
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po- Uy

po

fpg'7p’g" = V(q = 0) - V(p - pl)ao'o"

Fig. 7.2 Feynman diagrams for leading order contributions to the Landau parameter for an

interaction V(). Wavy line represents the interaction between quasiparticles.

Example 7.2: Use first order perturbation theory to calculate the Landau interactiameders for a
fluid of fermions with a weak interaction described by

1 g
H= Z Epnps + 3 E V(0)Cp-q0C pr o7 Cpro Cpor
po

pop'a’.q

whereE, is the energy of the non-interacting Fermi gégg) = f%e"q "V(r) is the Fourier transform
of the interaction potentia¥/(r) and1 << 1 is a very small coupling constant. Hint: use first order
perturbation theory il to compute the energy of a state

¥ = Mooy s Npporgs -+ ) (7.42)
to leading order in the interaction strengthand then readfthe terms quadratic iny,.. Solution:
To leading order in, the total energy is given b = (¥|H|¥), or

a i
E=D Bt 5 WPZ Vol G o). (7.43)

The matrix element¥|c’y_q-C'yr 1o Gy Coo[¥) N the interaction term vanishes unless the two quasi-
particle state annihilated by the two destruction operators has an overlap witivahparticle state
created by the two creation operators, i.e.

(WIC -0 Cpr 07 G Cpor ) = (P = 0, 5 P’ + G, [P, 07 P07 M T
= (5(,:0 — Gp-apt e )n,,,n,W (7.44)

where the second term occurs when the outgoing state is the “exchahgk& incoming two-
quasiparticle state.
Inserting (7.44) into (7.43), we obtain

a
DiEebr+ 5 D V()= V(P = ) Iy, (7.45)
po pop’o’

enabling us to readfbthe Landau interaction as
forpror = AV(A = 0) = V(P ~ P)or] + O(L). (7.46)
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It follows that the symmetric and antisymmetric parts of the interaction petenare
1
T =AV(@=0)- SV(p-p)] + O(?)
A
fop = —EV(p —p’) + O(43). (7.47)

Note that

e The Landau interaction is only well-definedv{q = 0) is finite, which implies that the interaction is
short-ranged.

e The second term in the interaction corresponds to the “exchange” dfaeeparticles. For a repul-
sive interaction, this gives rise to aitractivef?®. We can represent the interaction term by the
Feynman diagrams shown in (***).

7.3.2 Equilibrium distribution of quasiparticles

Remarkably, despite interactions, the Landau Fermi liguégerves the equilibrium Fermi-Dirac momentum
distribution. The key idea here is that in thermal equilibri the free energy (7.33) is stationary with respect
to small changeény, in quasiparticle occupancies, so that

N

oF = Z Nper [epur + kBTIn(l

)J +0@Npe?) = 0. (7.48)
po

po
Stationarity of the Free energyf = 0 enforces the thermodynamic identity = 6& — T6S = 0, ord& =
TdS. This requires that the linear déieient of 6n, in (7.48) is zero, which implies that the quasiparticle
occupancy

1
P f(eper) (7.49)
is determined by Fermi-Dirac distribution function of itseggy. There is a subtlety here however, for the
quantityep, contains the feedbackfect of interactions, as given in (7.31)

Npr =

= Q0+ Y o0y (7.50)
po’
Let us first consider the low temperature behavior in theratesef a field. In this case, as the temperature
is lowered, the density of thermally excited quasiparsickéll go to zero, and in this limit, the quasiparticle
distribution function is asymptotically given by

Nper = F(e?). (7.51)
In the ground-state this becomes a step funatigir—o = 0(~e\) = 0(u — EL), as expected.
To obtain the specific heat, we must calculatgdT = d& = 3, e,g?,)ﬁnp(,. At low temperaturesing, =

(0)
m,ﬁ’”)dT, so that

It (el © 8
ov=) 5,5‘2[%] S N*(O)I de e(da_(l_)), (7.52)
po bl

where, as in (7.5) the summation is replaced by an intege the density of states near the Fermi surface.
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Apart from the renormalization of the energies, this is [&ly the same result obtained in (7.5), leading to

”2 2
Cv=»yT. v= TkBN*(O) (7.53)

7.4 Feedback effects of interactions
|

One can visualize the Landau Fermi liquid as a deformablerspliike a large water droplet in zero gravity.
The Fermi sphere changes shape when the density or magieetiahthe fluid is modified, or if a current
flows. These deformations act back on the quasiparticletheiaandau interactions, to change the quasipar-
ticle energies. These feedbadkeets are a generalization of the idea of a Weiss field in m&meWhen the
feedback is positive, it can lead to instabilities, suchhasdevelopment of magnetism. A Fermi surface can
also oscillate collectively about its equilibrium shapealconventional gas, density oscillations can not take
place without collisions. In a Landau Fermi liquid, we willlisee that the interactions play a non-trivial
role that gives rise to “collisionless” collective oscfitans of the Fermi surface called “zero sound” (literally
zero-collision sound), that are absent in the free Fernfirgas

To examine the feedbackects of interactions, let us suppose an external potentifild is applied to
induce a polarization of the Fermi surface, as illustrateBig. 7.3. There are various kinds of external field
we can consider - a simple change in the chemical potential

SeS, = —Op, (7.54)

which will induce an isotropic enlargement of the Fermi aod, the application of a magnetic field,

bep, = —opEB. (7.55)

which induces a spin polarization. We can also consider pipdication of a vector potential which couples
to the quasiparticle current
ep

668(, =-A.-—,

g (7.56)

in a translationally invariant system. Notice how, in eatlthese cases, the applied field couples to a con-
served quantity (the particle number, the spin and the pt)irevhich is unchanged by interactions. This
means that the energy associated with the application oéxteznal field is unchanged by interactions for
any quasiparticle configuratidm,,}, which guarantees that the coupling to the external fieldéstical to

that of non-interacting particles. This is the reason ferappearance of the unrenormalized mass in (7.56).

For each of these cases, there will of course be a feedIfiek ef the interactions that we now calculate.
From (7.31) the change in the quasiparticle energy will nomtain two terms - one due to direct coupling
to the external field, the other derived from the induced fimddéion én, of the Fermi surface

Sepr = e + Z foupro oMo (7.57)
po’
In this case, the equilibrium quasiparticle occupanciesire
Npor = F(e + 66pr) = F(6) + £ (6™)Sepor- (7.58)
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As the temperature is lowered to zero, the derivative of teeri function evolves into a delta function
—f’(e) ~ 4(€), so that the quasiparticle occupancy is given by
nf) SNper
0) (0)
Moo = O(—€) + [~6(eM)bepo] - (7.59)

Moy = —6(5,50’)65[,‘, represents the polarization of the Fermi surface, whichfeéld back into the interaction
(7.57) as follows

0]
O€pr = 65{)0) + Z fp(rp’(r’6np'rr'~
o

Moo = —6(6)56pr

The resulting shift in the quasiparticle energies must gwisfy the self-consistency relation:

S€por = 65,(,?2 - Z fpwp/,,ré(e’(ﬁ))éeprlr.

o

(7.60)

This feedback process preserves the symmetry of the ekpartarbation, but its strength in a given symme-
try channel depends on the corresponding Landau parariiates, isotropic charge and spin polarizations
of the Fermi surface shown in Fig 7.3(a) and Fig 7.3(b) arebi@ck via the isotropic charge and magnetic
Landau parameters; and F§. When the quasiparticle fluid is set into motion at velodifythis induces a
dipolar polarization of the Fermi surface, shown in (Fig &B, which is fed-back via the dipolar Landau
parametef . This process is responsible for the renormalization okffective mass.

Consider a change in the quasiparticle potential that hastacplar multipole symmetry, so that the “bare”
change in quasiparticle energy is

Sy = Yim(P) (7.61)

whereYy, is a spherical harmonic. The renormalized response of thsiparticle energy given by (7.60)
must have the same symmetry, but will have fiedent magnitudég:

6Ep(r = t\Ylm(ﬁ)-

When this is fed back through the interaction, according t6Q9, it produces an additional shift in the
quasiparticle energy of given by, forpodNye = —FF1iYim(P) (see exercise below), so that the total
change in the energy is given by, = (v — Ft))Yim(P). Comparing this result with (7.62), we see that

= (v — Fft). (7.63)

(7.62)

This is the symmetry resolved version of (7.60). Consedygnt
Vi

VS TR

(7.64)

We may interpret; as the scattering t-matrix associated with the potewtidf F® > 0 is repulsive, nega-
tive feedback occurs which causes the response to be sapgréghis is normally the case in the isotropic

3 Note: in Landau’s original formulation[2], the Landau paraene were defined without the normalizing factar42) in (7.72). With
such a normalization thig are a factor of B+ 1 larger and one must replagg — ﬁFf in (7.64)
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(a) e tions grow to the point wherg§ = -1, the Fermi surface becomes unstable to the formation afrstapeous
_LAdu spin polarization: this is called a “Stoner” instabilityydresults in ferromagnetism.

L]
F(] Example 7.3: Calculate the response of the quasiparticle energy to a charge, or $mizgton with
a specific multipole symmetry.

/ 1 Consider a spin-independent polarization of the Fermi surface ébtive
du Mo = —tYim(P) X ()
~TEtAsurB whereYn(p) is a spherical harmonic. Show that the resulting shift in quasipartickgiesds given
L\ upB by

u Sepr = —tFF Yim(P)-
FO 2 Determine the corresponding result for a magnetic polarization of timei Barface of the form
Oy = ot Yim(P) X (")

Solution:
According to (7.31), the change in quasiparticle energy due to the patiarizof the Fermi surface is
given by
6 = ) Torpt.or 0Tt (7.67)
F-5 e
aj Substitutingsnp, = —t Yim(p) X 6(e”), then
S ==t ), Forgr o Yim(B) X 6(). (7.68)
b

Decomposing the interaction into its magnetic and non-magnetic compofygpts = f5(p - p’) +
oo’ f3(p - p’), only the non-magnetic survives the spin summation, so that

Fig. 7.3 lllustrating the polarization of the Fermi surface by (a) a change in chemical potential to A A

g the pol  Fer by ( ) ge in che p: _ S = 1 X 22 50 - ') Yim(D') X 5(e). (7.69)
produce a isotropic charge polarization (b) application of a magnetic field to produce a spin T o
polarization and (c) the dipolar polarization of the Fermi surface that accompanies a current of

- ‘ o ) Replacing the summation over momentum by an angular average ovesrthedtirface
quasiparticles. The Landau parameter governing each polarization is indicated on the right

. dQy
hand side. 23" 5(el?) > N*(0) f s (7.70)
5
channel, where repulsive interactions tend to supprespdfeizability of the Fermi surface. By contrast, we obtain
if £S i ive i i iti S dQs . ., ~
if FS <0, correspond'lhg to an attractive interaction, po:snnmitmck enhances the response. Indeefs; if Sepr = —ti X N‘(O)f ) Y {50 - B)Yim(@)
drops down to the critical valuE® = —1, an instability will occur and the Landau Fermi surfacedrees A0 a
unstable to a deformation - a process called a “Pomerandhstality. =-t f T;Fs(ﬁ ) Yim(®) (7.71)
A similar calculation can be carried out for a spin-polatia of the Fermi surface, where the shift in the . o . o
. icl . Now we can expand the interaction in terms of Legendre polynomials, vaaichin turn be decom-

quasiparticle energies are posed into spherical harmonics

56;(3?2 = aVYim(P). Sepr = Tt Vim(P) (7.65) FS(cosf) = Z(2| +DFFP(P-P) = 4"2 FYim(B) Vi (D) (7.72)

| I.m
Now, the spin-dependent polarization of the Fermi surfaeel$ back via the spin-dependent Landau param- When we substitute this into (7.70) we may use the orthogonality of the sphesicnonics to obtain
eters so that s
11 m
= M (7.66) s o (7 0
R : 6 == 3 Fi¥ear®) [ 60 Y (0 Vi)
I"nv
= —t;F} Yim(P). (7.73)

The isotropic responsé € 0) corresponds to a simple spin polarization of the Fernfaser If spin interac-
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For a spin-dependent polarizatiaim,, = —t,aa'Yum(fl)zS(e,(,o’) it is the magnetic part of the interaction
that contributes. We can generalize the above result to obtain

S€pr = ot X F Yim(P). (7.74)

7.4.1 Renormalization of Paramagnetism and Compressibility by
interactions

The simplest polarization response functions of a LandanHgjuid are its “charge” and spin susceptibility.
_ 16N _ 1M
TV “ VB’
whereV is the volume. Here, we use the term “charge” density to reféhe density response function of
the neutral Fermi liquid. These responses involve an ipatrpolarization of the Fermi surface. In a neutral
fluid, the bulk modulus = —V% is directly related to the charge susceptibility per uniluwoe, x = E
wheren = N/V is the particle density. Thus a smaller “charge” susceljiiinplies a stifer fluid. *

When we change the apply a chemical potential or a magnetit, tieé “bare” quasiparticle energies
respond isotropically.

Xe Xs (7.75)

66l = 6ES) — 6 = ~oueB - 6. (7.76)
Feedback via the interactions renormalizes the resportse édll quasiparticle energy
O€pr = =0 AsFB — AcOpt. (7.77)
Since these are isotropic responses, the feedback is fittetsthrough thé = 0 Landau parameters
1
=17 F3
Ac = o (7.78)
CT1+Fy :

When we apply a pure chemical potential shift, the resultihngnge in quasiparticle number & =
AN*(0)u, so the “charge” susceptibility is given by
N*(0)
1+F§
Typically, repulsive interactions causg > 0, reducing the charge susceptibility, making the fluidffet.

In 3He, F5 = 10.8 at low pressures, which is roughly ten timesfetithan expected, based on its density of
states.

A reverse phenomenon occurs to the spin response of Landanilepiids. In a magnetic field, the change
in the number of up and down quasiparticlesns = —én; = %N*(O)p,: B. The resulting change in magneti-
zation is6M = ug(6n; —ony) = /lspf:N‘(O)B, so the spin susceptibility is
HEN"(0)

1+F3°

Xxe=AN"(0) = (7.79)

Xs = AEN(0) = (7.80)

4 In a fluid, where-9F/dV = P, the extensive nature of the Free energy guaranteesthat-PV, so that the Gibbs free energy
G = F+PV = 0vanishes. BulG = -SdT-Ndu+VdP= 0, so in the ground-stafédu = VdPand hence = -V %\N =-N %‘,'N,

_ . . . . du _ N2 du _ n _ _ n?
buty = u(N/V) is a function of particle density alone, so thatl gy TV ANy T ve wheren = N/V. It follows thatx = Y
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There are a number of interesting points to be made here:

e The “Wilson” ratio, defined as the ratio betwegg/y in the interacting and non-interacting system, is
given by
X
(¢)_ 1

W= = . (7.81)

In the context of ferromagnetism, this quantity is oftereredd to as the “Stoner enhancement factor” In
Landau Fermi liquids with strong ferromagnetic exchangeractions between fermioris] is negative,
enhancing the Pauli susceptibility. This is the origin a¢ #nhancement of the Pauli susceptibility in
liquid He — 3, whereW ~ 4. In palladium metaPd, W = 10 is even more substantially enhanced[8].

e When a Landau Fermi liquid is tuned to the point whEfe— -1, y — oo leading to a ferromagnetic
instability. This instability is called a “Stoner instaibjl’: it is an example of a ferromagnetic quantum
critical point - a point where quantum zero-point fluctuatiof the magnetization develop an infinite
range correlations in space and time. At such a point, thed#itatio will diverge.

7.4.2 Mass renormalization

Using this formulation of the interacting Fermi gas, Landeas able to link the renormalization of quasi-
particle mass to the dipole component of the interactféhsAs the fermion moves through the medium, the
backflow of the surrounding fluid enhances iffeetive mass according to the relation

m = m(1+F5). (7.82)

Another way to understand quasiparticle mass renormalizas to consider the current carried by a quasi-
particle. Whether we are dealing with neutral, or physiceligrged quasiparticles, the total number of par-
ticles is conserved and we can ascribe a particle curren¢émive = pg/m* to each quasiparticle. We can
rewrite this current in the form

backflow
FS
_Pe_ PE _PE(_ T
VES i m m (l+ Ff) (7.83)

—_
bare current

The first term is the bare current associated with the origiadicle, whereas the second term is backflow of
the surrounding Fermi sea (Fig. 7.4 ).
“Mass renormalization” increases the density of statesifi(0) = ",‘r—'} — N*0) = "‘;EF, i.e it has the

effect of compressing the the spacing between the fermion grevgls, which increases the number of
quasi-particles that are excited at a given temperatureféagtarm*/m: this enhances the linear specific heat.

m
Gy = —-Cv (7.84)

whereCy is the Sommerfeld value for the specific heat capacity. Erpntally, the specific heat of Helium-3
is enhanced by a factor of&, from which we know thatn* ~ 3m.

Landau’s original derivation depends on the use of Galiiiesariance. Here we use an equivalent deriva-
tion, based on the observation that backflow is a feedbaglons® to the dipolar distortion of the Fermi
surface which develops in the presence of a current. Thislesas to calculate the mass renormalization in
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3k

Backflow

-2 (i)

Fig. 7.4 Backflow in the Landau Fermi liquid. The particle current in the absence of backflow is

Fi \p

p Sl
- Backflow of the Fermi liquid introduces a reverse current — (Tpf) o

an analogous fashion to the renormalization of the spineqigility and compressibility, carried out in (7.4)
and (7.4.1), except that now we must introduce the conjuiglteto current - that is, a vector potential.

To this end, we imagine that each quasiparticle carries aeroad charge = 1, and that the flow of
quasiparticles is coupled to a “fictitious” vector potehtid = Ay. The microscopic Hamiltonian in the
presence of the vector potential is then given by

HIAN] = Z fd&%nw;(x) [(-iY = AN ] e () + ¥ (7.85)
whereV contains the translationally invariant interactions. is@that éfect ofAy is to change the momen-
tum of each particle by-Ay, so thatH[An] is in fact, the Hamiltonian transformed into Gallileaneednce
frame moving at speed = Ay/m. Landau’s original derivation did infact use the Gallileeguivalence of
the Fermi liquid to compute the mass renormalization.

Since the vector potentidy is coupled to a conserved quantity - the momentum, we canitrizathe
same way as a chemical potential or magnetic field. The ligearinAy in the total energy isH = —Ay - %
whereP is the conserved total momentum operator. For a non-irtierasystem the change in the total
energy for a small vector potential at fixed particle occuiesn,, is

P
m

6E = (6H) = (7.86)

A== Y (B A,
po

Provided the momentum is conserved, this is also the chanthe ienergy of thénteractingFermi liquid, at

fixed quasiparticle occupancy, i.e. without backflow. Irstiviay, we see that turning on the vector potential

changes

eé?) — e,(,?z + 65&?,) (7.87)
where
6@ = _P Ay = CAPE cos. (7.88)
PP m m

Here,d is the angle between the vector potential and the quasifgartiomentum. Thus the vector potential
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introduces alipolar potentiabround the Fermi surface. Notice how the conservation of emom guaran-
tees it is thebare massn” that enters intael).

Now when we take account of the feedbaéleet caused by the redistribution of quasiparticles in raspo
to this potential, the quasiparticle energy becoffgsa = %. Here, the replacement pf— p—gAyn =
p — Ay is guaranteed because the quasiparticle carries the samserged charge = 1 as the original
particles. In this way, we see that in theesenceof backflow, the change in quasiparticle energy
Pr

e cos6. (7.89)

Sepr = =2 - A = —Ay
involves the renormalized mass.
Since the vector potential induces a dipolar perturbatidhe Fermi surface, using the results from section
(7.4), we conclude that backflow feedbadkeets involve the spin symmetric= 1 Landau ParameteF,]
(7.64),

1 0
Sepr = (T':i) el (7.90)
Inserting (7.88) and (7.89) into this relation, we obtain
m 1
m T 1+F (7.92)

orm’ =m(1+ F3).
Note that:

e The Landau mass renormalization formula relies on the cwasen of particle current when the inter-
actions are adiabatically turned on. In a crystal latti¢doaigh crystal momentum is still conserved,
particle current is not conserved and at present, there isxawn way of writing down an expression
for 65,5,?) anddep,- in terms of crystal momentum, that would permit derivatiba mass renormalization
formula for electrons in a crystal.

e SinceF; = N*(0)f? involves the renormalized density of state$(0) = m;rzp‘, the renormalized mass*
actually appears on both sides of (7.82). If we use (7.39 gugite F} = %’N(O)fs, whereN(0) = ",‘7?
is the unrenormalized density of states, then we can sotvefin terms ofmto obtain:

. m
m = T(O)ff (7.92)
This expression predicts that — co atN(0)f7 = 1, i.e that the quasiparticle density of states and hence
the specific heat cdicient will diverge if the interactions become too strongisTjossibility was first
anticipated by Neville Mott, who predicted that in preseotkrge interactions, fermions will localize,

a phenomonon now called a “Mott transition”.

There are numerous examples of “heavy electron” systemshwité close to such a localization transi-
tion, in whichmi/me >> 1. Quasiparticle masses in excess of ¥0Bave been observed via specific heat
measurements. In practice, the transition where the massgéss is usually associated with the develop-
ment of some other sort of order, such as antiferromagnetisrolidification. Since the phase transition
occurs at zero temperature, in the absence of thermal flimtsait is an example of a “quantum phase
transition”. Such mass divergences have been observedarietyof diferent contexts in charged electron
systems, but they have also been observed as a second-oatéum phase transition, in the solidification of
two-dimensional liquid Helium-3 Mott transition.
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7.4.3 Quasiparticle scattering amplitudes

In 8.3 we introduced the quasiparticle interactidgsy~ as the variation of the quasiparticle eneegy with
respect to changes in the quasiparticle occupangy,., under the condition that the rest of the Fermi sea
stays in its ground-state

O€por

— 7.93
s (7.93)

forpror =

1
-~ |rsp. 'E3(H . B
- N*(O)[ (B -p') + oo’ F3(p - p)
The quantityf, .~ can be regarded as a bare forward scattering amplitude eetthe quasiparticles. It
proves very useful to define the corresponding quantitiesrwiermi sea is allowed to respond to the original
change in quasiparticle occupancies, as follows:

_ 06 1 e o, Ad(A A
Qopo = Sy N*(O)[A (- p)+od' AP p)]

(7.94)

Microscopically, the quantities,.~ correspond to the t-matrix for forward-scattering of thasjparticles.
These amplitudes can decoupled in precisely the same wag &sihdau interaction (7.72),

A*(cosf) = Z(ZI + 1)A?Py(cos)

T
=47 )" A im(B)Yin (), (@ =(sa) (7.95)
I,m
These two sets of parameters are also governed by the fdeebects of interactions:
PR ( ) (7.96)
= — « =S, a) .
1+F

The derivation of this relation follows closely the derieat of relations (7.64) and (7.66); we now repeat the
derivation by solving the “Bethe Salpeter” integral eqoatihat links the scattering amplitudes. The change
in the quasiparticle energy is

S€pr = Tpopor Ny + Z
PR o)

P . 7.97
po.p’ P

where the second term is the induced polarization of the Feurface (7.59 )My = —8(\)06p o, SO
that

Sepr = Torpror Oy = D Torprordlel Voo (7.98)
pra”
SubstitutingSep, = 8popo SNy then dividing through byn, -, we obtain
Qpopor = fp(r,p’(r' - Z fp(r,p”(r”5(55(3(/)/))31)”(r’p’rr'- (799)

po”

This integral equation for the scattering amplitudes isranfof Bethe-Saltpeter equation relating the bare
scattering amplitudé to the t-matrix described bg.
Now near the Fermi surface, we can decompose the scatteriplitades using (7.93) and (7.94), while
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Fig. 7.5 Showing the geometry associated with quasiparticle scattering 1+ 2 — 3+ 4. The

December 1, 2011

momentum transfered in this process is g = |ps — p1| = 2pg Sin6/2sing/2. P = p; + p2
is the total incoming momentum. Landau parameters determine “forward scattering”
processes in which ¢ = 0.

oy

7 SO that this equation

replacing the momentum summation by an angular integgal— %N*(O)fde"
becomes

P Py AR o o paar

KEB)=F (0P - [ EFG 5N D) (7.100)

If we decomposé andT in terms of spherical harmonics using (7.72) and (7.95) énsxcond term, we
obtain
A o ey s
[ om0 -

1 Smnt /(47)

e
dQg
=@ Y FAYn®) [ 6 e (6) Vi )

Impm an

= (4m) D FEAYm(B)Yim() = D (21 + DFT AP - )
Im |

(7.101)

Extracting coéiicients of the Legendre Polynomials in (7.100), then giégs- F{* — F*A? from which the
result
o_ _F
A= 1+Ff

(e=sa) (7.102)
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follows. The quasiparticle processes described by thesttesng amplitudes involve no momentum transfer
between the quasiparticles. Geometrically, scatterimggsses in whicly = 0 correspond to a situation
where the momenta of incoming and outgoing quasiparti@es the same plane. Scattering processes which
involve situations where the plane defined by the outgoinmerda is tipped through an anglevith respect

to the incoming momenta, as shown in Fig. 7.5 involve a finitemmantum transfeq = 2pg| sing/2 sing/2|.
Provided this momentum transfer is very small compared thiéhFermi momentum, i.¢ << 1 then one
can extend the t-matrix equation as follows

Fi(a)

() = ———— . 7.1
AQ = g (@<<pr) (7.103)
It is important to realize however, that Landau Fermi ligthidory is however, only really reliable for those

processes whekg~ 0 is small.

7.5 Collective modes
|

The most common collective mode of a fluid or a gas is “souna@hv@ntional sound results from colli-
sions amongst particles which redistribute momentum withé fluid - as such, sound is a “low-frequency”
phenomenon that operates at frequencies much smallerttdypical quasiparticule scattering raté, i.e
w << 771 or wr << 1. One of the startling predictions of Landau Fermi liquiddty, is the existence of a
collionless collective mode that operates at high fregigsner >> 1, “zero sound”. Zero sound is associ-
ated with collective oscillations of the Fermi surface arabies not involve collisions. Whereas conventional
sound travels at a speed below the Fermi velocity, zerogs@ffsupersonic” traveling at speeds in excess of
the Fermi velocity. Historically, the observation of zesound in liquid He-3 clinched Landau Fermi liquid,
firmly establishing it as a foundation of fermionic many-pqzhysics.

Let us now contrast “zero ” and “first” sound. Conventionaliiso is associated with oscillations in the
density of a fluid, and hydrodynamics tells us that

2 K K

w==

S (7.104)

wherep = mnis the density of the fluid and = —V% is the bulk modulus. From our previous discussion,
K= E andyc = N*(0)/(1 + Fg), so the velocity of first sound in a Fermi liquid is given by

2 n n S
= = __(1+F 7.105
Myc mN*(O)( o ( )
Replacingn = ng’ N*(0) = P, andm = m'/(1 + F$) we obtain
2 F s s
@ = L3 (L+F)L+F (7.106)

In the non-interacting limity; = v/ V3 is smaller than the Fermi velocity.

To understand of zero-sound we need to consider variatiorthe quasiparticle distribution function
np(x, ). Provided that the characteristic frequencyand wavevectoq of these fluctuations are much re-
spectively smaller than the Fermi energy<< e and the Fermi wave-vectar << kg respectively, then
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fluctuations in the quasiparticle occupancy can be treateu-slassically, and this leads to a Boltzmann
equation

Dy
or = o] (7.107)
where
DNpr  Mpr .
Bt = at + X+ VMoo + P - VpNper (7.108)

is the total rate of change of the quasiparticle occupamgyx, t), taking into account the movement of
quasiparticles through phase spdcis.the collision rate. In a semi-classical treatment, the oé change of
momentum and position are determined from Hamilton’s éqnap = —Vye, andx = Ve, so that

Dnp,  dnp,
bt = gt Vee Vo = Vxpo - Vol (7.109)
We now consider small fluctuations of the Fermi surface défine
no(x. 1) = f() + €3 tqy, (7.110)

whereay,, is the amplitude of the fluctuations. Now the terms contiitmito the total rate of changeny, /Dt
are of ordelO(wsn), whereas the collision teriin] ~ O(r~*6n) is of order the collision rate™. In the high
frequency limit,wr >> 1 the collision terms can then be neglected, leading to thisicoless Boltzmann
equation:
OMNp,-
ot
For small periodic oscillations in the Fermi surface, thstfiwo terms in (7.111) can be written

+ Vpép - Vo = Vxpo - Vphpo = 0. (7.111)

an, .
% + Vp&p - Vo = —i(w = VE - Q)ap, €9
O

In the last term of (7.111), the position dependence of tiEsigarticle energies derives from interactions

fop(r = Zf fprr,p’(r’Van'.o"
o P

(7.112)

— i S [ o (7.113)
ReplacingV,ny, = %vp, the collisionless Boltzmann equation becomes:
df
(@ = Ve - Dape + Ve 0~ Z | foowrapr =0 (7.114)

For a mode propagating at speedus ugq. If we express/r.q = Veqcost), and write the mode velocity as
a factorstimes the Fermi velocity) = s\, then this becomes

df
(s— cosfp)aps + COSH, (_E) Z j,; fpopo@p o =0

We see that the fluctuations in occupancy associated withcaszeind modegp, = 7-(P) (—g) are pro-
portional to the energy derivative of the Fermi functiondahus confined to within an energy scaleof

(7.115)

142

75



(©2011 Piers Coleman Chapter 7.

the Fermi surface. The functiop.(p) describes the distribution around the Fermi surface, hisdftinction
satisfies the self-consistent relation

_costp
00 = ey 2 | G Foowe ) (7116)
For spin-independent zero-sound waves, the right-haredsity involvesrF* and can be written
€osY, do, .,
n(p) = Lo | =R () (7.117)

(s—costp) Ar

To illustrate the solution of this equation, consider theecarhere the interaction is entirely isotropic and
spin-independent, so that the only non-vanishing Landaarpeter isF3. In this case, the angular function
is spin-independent and given by

B cosp)
n(®) = Asf cosf) (7.118)
whereA is a constant. Substituting this form into the integral eigum we obtain the following formula for
S=U/VE,
tdcog co9 s s+1
A= L 7 s cog 0" AFO[ In( — 1)J (7.119)
so that
s+1 1
= I 1=—. 7.12
2 (s 1) Fs ( &

For larges, the function on the I.h.s. behaves vanishes asymptatiaall/(3s%), and since the r.h.s. vanishes
at large interactionk=3, it follows that for large interaction strength the zerarsd velocity is much greater

thanvg,
s
U=SW =V 3 (F§>>1).

For small interaction strengts,— 1, and the zero-sound velocity approaches the Fermi vglocit

Experimentally, zero sound has been observed through etyari methods. Low frequency zero sound
couples directly to vibrations at the wall of the fluid, anchdze detected directly as a propagating density
mode. Zero sound can also be probed at higher frequencieg osiutron and X-ray scattering. Neutron
scattering experiments find that at high frequencies, the geund mode enters back into the particle-hole
continuum, where, as a damped excitation, it acquires atfominimum similar to collective modes in
bosonic 4-He.

(7.121)

7.6 Charged Fermi Liquids: Landau-Silin theory

One of the most useful extensions of the Landau Fermi ligo@bty is to charged Fermi liquids, which
underpins our understanding of electrons in metals. ClaFgemi liquids present an additional challenge,
because of the long-range Coulomb interaction. The exdardfiLandau Fermi liquid theory to incorporate
the long-range part of the Coulomb interaction was origynalade by Silin[9, 10]. In neutral Fermi liquids,
the existence of well-defined Landau interaction pararsetepends on a short-range interactit{a) with
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a well-defined zero momentum limit— O (see also example 8.2). Yet the long-range Coulomb interact
V() = fqz is singular ag) — 0. Charged quasipatrticles act as sources for an electenpakwhich satisfy

Gauss'’ law
e
- ONper (X
50; b (X)

The fieldEp = —V¢p that this produces polarizes the surrounding quasiperticid to form a“polariza-
tion cloud”around the quasiparticle which screens its charge, soltkeatet interaction between screened
quasiparticles has a finite range. Nevertheless, this gosebtle technical problem for screening requires a
collective quasiparticle response, yet the Fermi liquigriactions are determined by variation of the quasi-
particle energy in response to a change in quasiparticlepaoy against an otherwise frozen (and hence
unpolarized) Fermi sea:

Vgp = Polarization field (7.122)

S €po (X)

0] (7.123)

fpope (X, X) =
Ny =0

In a frozen Fermi sea, the quasiparticle interaction must the unscreened at large distances, forcing it to
be singular as| — 0.

The solution to this problem was proposed by Silin in 195%n$iroposed splitting the electric potential
¢ produced by charged particles into two parts: a long ranagesidal polarization fieldp considered above,
and a short-range, fluctuating quantum component

B(X) = ¢p(X) + 5pq(X) (7.124)

The quantum component is driven by the virtual creation ettbn hole pairs around a charged particle.
These processes involve momentum transfer of order theilReomentumpe, are hence localized to within

a short distance of order the quasiparticle de Broglie vemgthA ~ h/pg around the quasiparticle. Silin
proposed that these virtual fluctuations in the electrieptial introduce a second, short-range component
to the quasiparticle interactions. Silin’s theory isotatee polarization field as a separate term, so that the
quasiparticle energy is written

o) = &7 +@pp() + 3" oo oMy (X) (7.125)
po’
In momentum space, the change in the quasiparticle eneggyes by
(7.126)

S6pr(0) = 89p(A) + ) T My ()
b
However, Gauss’ law implies thap(q) = % Yo ONpo(4). Combining these results together, we see that

Sepor(q) = Z (;qz + ﬂ)mp’rr')énp’o"((]) (7.127)

o

In other words, theféective interaction takes the form (see Fig. 7.6)
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Long range interaction
from polarization field
—_—
forprar (0) = o7 forpro (7.128)
—_—
Short-range residual inter-
action

[

Interactions of a charged Fermi liquid. The short-range part of the interaction results
from quantum fluctuations of the polarization field (see exercise 8.?7). The long range
component of the interaction derives from the induced polarization field around the
quasiparticle.

There are a number of points to emphasize about Silin’s $heor

e When the interaction is decomposed in terms of (q-depentdantjau parameters, the singular interaction
only enters into thé = 0, spin symmetric component; all the other components atermdéened by
fpopov, SO that

N (0)
o 2

S+ FP
pov 1o+ Fy

Fi(a) = (7.129)
andF? = F2.

e The Landau-Silin theory can be derived in a Feynman diagoamdlism. In such an approach, the short-
range part of the interaction is associated with multipkgtseing df the Coulomb interaction.

e The short-range interactidbpr is a quantum phenomenadfistinct from classical “Thomas-Fermi” screen-
ing of the quasiparticle chargahich result from the polarizingfiects of the long-range,/? compo-
nent of the interaction.
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To illustrate this last point, let us calculate the lineapense of the quasiparticle densip(q) = xc(q)du(q)
to a slowly varying chemical potential(x) = 6u(q)€*, wherey.(q) is the charge susceptibility. In a neutral
Fermi liquid, forq << pg, the long-wavelength density response is determineg.fy) ~ yn, where

_ N0
Xn= 77 = (7.130)
as found in eq. (7.79). In the charged Fermi liquid, we replg— F3(q) = "’22]’(;2(0’ + lfg, which gives

(@) = N*(0) _ Xn __ Xn
c - * ~ - -
1+(EEO4 Ry 1+5 1+ S

(7.131)

wherex? = ;%)(n defines a “Thomas Fermi” screening lengith = «~*. At large momenta >> « (distances
x << Itg), the response is exactly that of the neutral fluid, but aflsmamentaq << «, (distancex >> It¢),
the charge density response is heavily suppressed.

Historically, the Landau Silin approach changed the wayhofking about metal physics. In early many
body theory of the electron gas, the singular nature of theld@ob interaction was a primary focus, and
many body physics in the 1950s was in essence the study ofuqugrlasmas. With Landau Silin theory,
the long-range Coulomb interaction becomes a secondamestt because this component of the interaction
is unrenormalized and can be added in later as an afterthdTigis is a major change in philosophy which
shifts our interest to the short-range components of thaipaticle interactions. In essence, the Landau
Silin observation liberates us from the singular aspects®oulomb interaction, and enables us to treat the
physics of strongly correlated electrons as a close coropaniother neutral Fermi systems.

Example 7.4: Calculate the scattering t-matrix in Landau-Silin theory to display the screefiigf
of the long range interaction.

Solution:

If we introduce a small modulation in the quaisparticle occupancy at momepl, while “freezing”
the rest of the Fermi sea, then the change in the quasiparticle energip&lvilip a modulation given
by

de(@) = fi5p (A)any (@) (7.132)

where f;p, = (% + f;sp) is the spin symmetric part of the interaction. (For convenience we tem-
porarily drop the spin indices from the subscripts). If we now allow thesipaaticle sea to polarize in

response to the this change in energy, the change in quasiparticle enveitbiake the form
565(a) = &, (@)ony (a)

wherea® is the screened quasiparticle interaction to be calculated. At low momentan isotropic
system, bothf anda can be expanded in spherical harmonics, as in (7.72), by writing

5@ = 3G POCCIACH

(7.133)

%019 = 575y 2 A ENG(E) (7.134)

For very smallg, we can solve for the relationship betweghand F? using the methods of section
(7.4.3), which gives

Fi(q)
1+ Fi(a)

A@Q) = (7.135)
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But from (7.129), they dependence only enters into the 0 component of the spin-symmetric scat-
tering, whereo(q) = % + F so that

EN0) |, [ ~
) = o2 TFo  RIQ+F)

" A;(nemrau (7.136)

+Fo CETH)

whereAgeutal = gés is thel = 0 scattering t-matrix of the equivalent neutral Fermi liquid. Since all
0

other components are unchanged by the long-range Coulomb interact@miows that the interaction

t-matrix of the charged Fermiliquid is a sum of the original neutral interacfitus a screened Coulomb

correction:

(neutra)

1
Bpopo(d) = m w + o (7.137)

Note how the residual “Coulomb” part of the t-matrix is heavily supprdsdmenlfg becomes large.

7.7 Inelastic Quasiparticle Scattering
|

7.7.1 Heuristic derivation.

In this section we show how the Pauli exclusion principleiténthe phase for scattering of quasiparticles in
a Landau Fermi liquid, giving rise to a scattering rate wituadratic dependence on excitation energy and
temperature

% o [+ 22T, (7.138)

The dominant decay mode of a quasipatrticle is into threeigadiles. There are also higher order processes
that involve a quasiparticle decaying into a quasipartateln particle-hole pairs:

2n

2n+1

We'll see that the phase space for these higher order decaggses vanishes with a high power of the
energy & €2™1), allowing us to neglect them relative to the leading precasow temperature and energy.
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For our discussion, we will denote a hole in the quasipartitatej asf denoting the quasihole energy by

€ = —¢; > 0. By the Golden Rule, the rate of decay imtparticle-hole pairs is

2 = . -
Tonsa(er) ~ W Z la(1;2,3,....2n+ 2)%[er — (B2 + €3 + &+ - - + €ns2)] (7.139)

23.2n+2

E.e3->0
Wherea(l;z 3,...2n + 1) is the amplitude for the scattering processe, ... e ... denote the energies
of the outgoing quasiholes ang, es . . . e2n41, €2n:2 denote the energies of the outgoing quasiparticles. The
energies of the final state quasi- particles and holes museabositive, while also summing up to give
the initial energy. When the incoming particle is close tofleemi energye and the all final state energies
e > & > 0 must also lie close to the Fermi energy, so so we can refddey an appropriate Fermi surface
average

(eoniP) = ) 1a(1;2.3,...2n+ 2)?6(&) ... 6(eana). (7.140)
23..2n+2
to obtain®
2n 5 00 5 . EZn
Ionia(€) ~ —(lagnaal?y | d&...dens10[e — (&2 + ... €nr1)] o o (7.141)
h b (2n)!

In this way, the phase space for decay into 2 1 quasiparticles vanishes a&'. This means that near
the Fermi surface, quasiparticle decay is dominated by éeaylinto two quasi-particles and a quasihole,
denoted byl — 2+ 3+ 4 as illustrated in Fig. (7.7).

(a) 4 (b) £, e
3
O €4
! 2 €5
-
2

Decay of a quasiparticle into two quasiparticles and a quasihole. (a) Scattering
process. (b) Energies of final states.

The decay rate for this process is given by

27T 2
I(e) = S-laa) 5 (7.142)

5 Formally this is done by inserting 12" [ ded(a) into (7.139),
6 This last integral can be done by regarding ¢hes the diferences:; = sj — sj_1 between an ordered set of co-ordinasgs 1 >
S+ > s Wheresy = 0, so that

Son+1
e e, o N S+ 1 S EZH
[ dansite-larar el = [ denaste-snn) [ den.. [Cds = S
0 W 0 o 0 (2n)!
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On dimensional grounds, we expect the averaged squareix mlaiment to scale a$as|?) ~ g wherew is

a dimensionless measure of the strength of the scattedribatl” ~ e

hoe”

7.7.2 Detailed calculation of three body decay process

We now present a more detailed calculation of quasipardietay, deriving a result that was first obtained by
Abrikosov and Khalatnikov in 1957[3]. The amplitude to pucé an outgoing hole in stafsis equal to the
amplitude to absorb an incoming particle in stateo we denote

al—>2+3+4) =all+2— 3+4)=a(1,23,4) (7.143)
Using Fermi’s golden rule, the net scattering rate intoestas given by
2+3+451 152 +3+4
2n 2
1] = 57 )" 123, 2: 34|~ nanena( = no) - a1~ )2 - 1)
34
x (271)%6®(py + P2 — P3 — Pa) 6er + €2 — €3 — €4) (7.144)

Wherez = f (z‘fh‘;a denotes a sum over final state momenta, and the delta fusdtigoose the conservation

of momzentum and energy, respectively. The terms insidedhare brackets determine thepriori proba-
bilities for the scattering process. For scattering inatest, the initial states must be occupied and the final
state must be empty, so tlepriori probability is (1- ny)ngns x (1 — ny), where (1- ny) is the probability
that the quasihole stais occupied anahsn, is the probability thaB and4 are occupied, while (% n;)
is the probability that the final quasiparticle states empty. The second term in the brackets describes the
scattering out of statg, and can be understood in a similar way.

In thermal equilibrium, the scattering rate vanishﬁrém] = 0 and for small deviations from equilibrium,
we may expand the collision integral to linear ordersip, = n, — niY), identifying the coéicient as the
quasiparticle decay rate as follow$n,] = —I'6ny + O(rSng), wherel’ = —%, or

2r .
r-= 2;|a(1, 2:34)°|np(L - Me)(L - ) + (1= narsne

x (211)%(ey + €2 — €3 — €a)0D(py + P2 — P3 — Pa).

The occupation factors in the square brackets impose thaigatistics. These terms are easiest to under-
stand at absolute zero, whatg = 6(—¢p) restrictsg, < 0 and 1- ny = 6(ep) restrictse, > 0. The first term
n,(1 - n3)(1 — ng) enforces the constraint that the excitation energigses, e, > 0 are all positive. (Recall
that thee; refer to quasiparticle energies, se; = ¢; is the excitation energy of the outgoing hole in sﬁl)e
At absolute zero, the second termH{fi;)nzn, is zero unless the excitation energies are negative, anshemn
whene > 0. Now the delta functio(e; + e, — €3 — €4) enforces energy conservation, + e3 + & = €.
Together with the requirement that the scattered quagifeaenergies are positive, this term forces all three
excitation|e, 3 4| energies to be smaller thanin this way, we see that for smaillthe final quasiparticle states
must lie very close to the Fermi momentum.

With this understanding, at low tempertures, we can replaeéntegrals over three dimensional momen-
tum by the product of an energy and an angular integral owvedirection of the momenta on the Fermi

surface:
N*(0) [ dQpy ,
2~ [5Ex [ae.
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This factorization between the energy and momentum degifdesedom is a hallmark of the Landau Fermi
liquid. Using it, we can factorize (7.145) into two parts

angular average energy phase space integral
—_——

2
r=20 (af)  x{ml-ng-ng+@-mnen) (7.147)
e
where
N*(0)\* [ dQpdQzdQ O
0@3z#§l)fgﬁﬁ%lmazaﬂﬂhWNMMm+m—m—M] (7.148)
is the angular average and
(... >52)531a = fdfzd53d546(51 + € —€3— 54)[4 . J (7149)

is the energy phase space integral. At absolute zero, thenamf of the phase space integral restricts the final
states to have positive excitation energies, gi@f]gas obtained from (7.141) for= 1. At finite temperature
(see example), thermal broadening leads to an additioredrgtic temperature dependence to the phase
space integral

1
€34 2

To calculate the average squared matrix element, it is coereto first ignore the spin of the quasiparticle.
To evaluate the angular integral, we need to consider thengey of the scattering process near the Fermi
surface, which is illustrated in Fig. (7.5). At low tempenags, all initial and final momenta lie on the Fermi
surface |pj| = pe. The total momentum in the particle-particle channdPis p; + p2. Suppose the angle
betweerp; andp; is 6, so that each of these momenta subtends an @hgheith P as shown in Fig. 7.5, then
|P| = 2pg sing/2. Now since the total momentum is conseneg;ps = P also, so thalps+pal = 2pg sind/2,
which means that; andp, also subtend an anghg2 with P. However, in general, the planes definedohy
andps4 are not the same, and we denote the angle between thgmlbyeneral, the scattering amplitude
a(0, ¢) will be a function of the two angleg,and¢. In this way, we can parameterize the scattering amplitude
by a(b, ¢).

A detailed evaluation of the angular integtfas|?) (see example 8.4), leads to the result

(mad-ma)(L - o)+ (- nonene) = 5 (¢ + (nkeT)?) (7.150)

o 1 SN0\ [0, 9)P
<@H—§xn(2m)<2myﬂﬂ (7.151)
where
la@. ¢)P\ _ [ dcossdg (la(, ¢)I*
<2cos<)/2>Q - f 4n (2 cosﬁ/z) (7.152)

denotes a weighted, normalized angular average of theescattrate over the Fermi surface. For identical

spinless particles, the final states with scattering apgleds +x are are indistinguishable, and the pre-factor

of one half is introduced into (7.151) to take into accourtdlercounting that occurs when we integrate from

¢=0to¢g = 2r.

7 The first term in the phase space integral corresponds toetteydl— 2+ 3+ 4 of a quasiparticle, while the second term describes
the regeneration of quasiparticles via the reverse prdzes3 + 4 — 1. The classic treatment of the quasiparticle decay given by

Abrikosov and Khaltnikov[3, 11], reproduced in Pines andziees and in Mahan, only includes the first process, whichditres
an additional factor A1 + e#4) into this expression.
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The complete scattering rate for a spinless quasipartidkeein given by

o [31a0.9)7\ (N0} (€ + (nkgT)?
7 <2cose/2>9”( 2pr ) X( 2 )
Let us now consider how this answer changes when we reirtstpin of the quasiparticles. In this case,
we must sum over the two spin orientations of quasiparticleofresponding the case where the spin of 1
and 2 are either parallef{;) or antiparallel £;). When the spins of the two quasiparticles are parallel they
are indistinguishable and we must keep the facto%,diut when the spins are antiparallel, the particles are
distinguishable and this factor is omitted. So to take antofispin, we must replace

r= (7.153)

1 1
51, PP - 5lan (@, I+ lary (6, 9) (7.154)
in (7.153). Following the original convention of Abrikosaewnd Khalatnikov [3], we denote
2r 1
2 (0. 00+ Firs @) = 2000.6), (7155)

Applying these substutions to (7.153), and writikg(0) = m"* pe /(7%%°), we obtain

() | W(o, ¢) 2 2
Ir= — kg T 7.156
815 \ 2cow)2 QX(E + (ks T)%) ( )
This result was originally obtained by Abrikosov and Khalkov in 1957[3]. An alternative way to rewrite
this expression is identify the normalized scattering atungesA*(0)aqs(6, ¢) = Awp(6. ) = Aqp(q) with the Fig. 7.8 Co-ordinate system used to calculate the angular average of the scattering amplitude.

dimensionless t-matrix introduced in section (7.4.3).nfrithis we see that the average matrix elements can
be written in terms of a dimensionless parameter
in the dominant quasiparticle decay processes.

W o A (6, 9)7 + %|ATT(9, o) (7.157)
B 2cosd/2 o ’ Solution: We first replac@®[ p (A; + i, — Az — Ag)] — p%&“’"[ﬁl + f, — Az — Ay], so that
3
In many strongly interacting systema,is close to unity. Using this notation, the scattering rat@%6) can N\
be written in the form (lasl?) = (W) f dQ20Q5dQ6@[Ay + Ay — Ay — Aglla(l, 2; 3, 4)2 (7.160)
(lagl®)
N 2 To carry out the angular integral, we use polar co-ordinatesifor (6, ¢,), N3 = (6, ¢3) andfiy =
r= @ W2 \[ €+ (nkgT) (7.158) (02, ¢4), (as illustrated in Fig. 7.8), whefeandd; are the polar angles of; relative ton;, 634 are the
n \ 16ep 2 ’ angles betweefiz, and the direction of the total momentupn while ¢ is the azimuthal angle afs
. . . ) . measured relative to the plane definedipyandn, andg, is azimuthal angle afi, measured relative to
Apart from the factor of 16 in the denominator, this is whatguessed on dimensional grounds. the common plane df; andP. The delta function in the integral will forcé; andf, to lie in a place,
There are two important regimes of behaviour to note: so that ultimately, we only need to know the dependence of the ampk{idgs) on 6 andgs.
Taking the z-axis to lie alon§ and choosing the y axis to lie aloigx fiz, then in this co-ordinate
o |l << nkgT: T o T2, Near the Fermi surface, quasiparticles are thermallytestcivith aT? scattering systemf +f, = (0,0, 2 cos9/2), i3 = (sinbs, 0, cosbs) andf = (SiNs COSea, SiNbs SiNs, COSYs), SO
rate that is independent of energy. that
o |g| >> nkgT: T o eg. For higher energy quasiparticles, the scattering rateigglctically dependent on fig + g — Ay — Az
energy. = (sings + sinb,; COSg4, SiNb4 SiNg,, COSH3 + COSH, — 2 COSP/2))
Factorizing the three dimensional delta function intaxitg andz components gives
) ) SO[(Ay + Az — Az — Ay)]
Example 7.5: Calculate the angular average of the scattering amplitude = 8[SiNs + Sin6, COSP4][SiN 64 SiN4] S[COSH; + COSH, — 2 COSH/2)]
N0\ [ dQdQ:d0; B[ Integrati 1dQ, = sing,do,de, fi = d6, = 65 (note thatp, = O satisfies th d
2\ _ 1.2: 3 4)P(27h)%6) Al 7159 ntegrating overdQ, = sind,ddsde, forcesg, = = andé, = 65 (note thatp, satisfies the secon
<|a3| ) ( 2 ) (4n)3 la( 3 A (@rhy 321 pr (s + Az = fis = )] ( ) delta function, but this then requires that &n= — siné, which is not possible wheés, € [0, x1]).
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Resolving the delta functions around these points, we may write

S[Sinés + Sind, CoSp,]d[SiNGs Sings] = s = 04) 8(¢a —m)

Chapter 7.

©Piers Coleman 2011

Now to carry out this integral, we need to distort the contour into the upgectmplex plane. The
function ¥/ sinh( + i6)zT has poles at = in/T — ig, so the distorted contour wraps around the poles
with n > 0. The cube of this function, has both triple and simple poles at these logafiorevaluate

Cosfls  sinb, the residues of these poles, we expand sirih to third order inse = (- i) about the poles, to obtain
When we carry out the integral ovef), = sinf,dé,d¢4, we then obtain Ty
o 1 sinhanT = (-1)"2Téa (1 + %6(12) +...
fdQA‘S(S)[nl + 1, — iz — Aglla(d, ¢3) = @5[2 Cosf; — 2 cosg/2)]la(6 ¢)l* s
3

So that near the poles,
Integrating ovedQ; = désd cosd; imposedl; = 6/2, so that P

dgs ( LA )3 S (O
fdﬁsdﬁaé(a)[m +fip — fig — Ag][a(d, ga)* = m\a(ﬂ b3)f sinharT/) = a8 2 ¢
. 1 aT)?
The azimuthal angle, of fi, aboutn; does not enter into the integral, so we may integrate over this =-i(-1)" (E - (263 )
angle, and write the measwl€, = 2rd cosd. The complete angular integral is then

dgsd cosd
2c0s9/2
Substituting this result into (7.160 ), the complete angular average is then

The complete contour integral becomes

< | [ da 1 1 (aT)? | e
b= 2 éﬁ{(a—%")a 20-F }é

1

f d0,00500,6 A + Ay — s — Aullald, d:)F = 20 f (6, ¢)F.

o\ _ 2 N'(O) )3 dcosids [a(d, ¢)* N fde 1 [E @T .
{loa) == ( 2nr 4r 2082 2V PrmieTylzt 2 |°
where we have relabelleg as¢. Notice (i) th?t the weighted angular average is normalized, so that if _ [52 . (;rT)Z] i(—l)“e‘"f” _ 1 [sj N (nT)z]
[a(8, )l = [a? is constant(|as|?) = 7% (%} |al?, and that (ii) since the denominator in the average 2 2 |l 1+elT|2 2

vanishes fo® = =, the angular average contributing to the quasiparticle decay is weighteddmowa
large angle scattering events in which the outgoing quasiparticles havsisppmmenta; = —ps.
This feature is closely connected with the Cooper pair instability discusseldaptér 14.

Example 7.6: Compute the energy phase space integral

Finally, addingly(e, T) + l1(=¢, T) finally gives
(e, T) = %[52 +(xT)?
I(e,T) = f dedesdesd(e + € — e — €)[M2(1 — N3)(1 — ny) + (1 — np)ngny],

7.7.3 Kadowaki Woods Ratio and “Local Fermi Liquids”

wheren; = f(g) = 1/(€* + 1) denotes the Fermi function evaluated at energy

Solution: As a first step, we make a change of variable> —e,, so that the integral becomes Heuristic Discussion

I(e,T) = I dexdesdesd(e — (€ + € + €))[ (1 — N2)(1 — N3)(1 — Ng) + MaNgy ] One of the direct symptoms of Landau Fermi liquid behavioa imetal is al'? temperature dependence of

~ resistivi low temperatures:
= f de,desdesd(e — (&2 + € + €))[MoMans + {€ & —€}] esistivity at low temperatures

p(T) = po + AT (7.161)

Next, we rewrite the delta function as a Fourier transfaf(r) = f%"e‘“x, so thatl (e, T) = l1(e, T) +

(e, T), where Herepy is the “residual resistivity” due to the scattering of eteas df impurities. The quadratic temperature
1(-€T),

dependence in the resistivity is a direct reflection of thadyatic scattering raté « T2 expected in Landau
Fermi liquids. Evidence that this term is directly relatedefectron-electron scattering is provided by a
remarkable scaling relation between theodficient of the resistivity and the square of the zero tempegatu
linear codficient of the specific hegt= Cy/T|r-o.

(e T) = % f dade,desdes @@ e [nngn,].

By carrying out a contour integral around the poles of the Fermi fundt{g) atz = izT(2n + 1) in the
lower half plane, we may deduce

A
D ey I P T = =~ 1x10°%Qcm(K mojmJy (7.162)
Imdee( )f(e)=2anZ:';e( Bt )=W, v?
The ratioA/y? is called the “Kadowaki Woods” ratio, and the quoted valugesponds to resistivity mea-
sured in unitsuQcm and the specific heat diieient per mole of material is measured in units/mal/K?2.
In a large large class of intermetallic metals called “healgctron metals”, in which the quasiparticle
mass renormalization is particularly large, the Kadowakiods ratio is found to be approximately constant

@ = 1x 10%uQcm(K moymJy (Fig. 7.9).

where a small imaginary part has been added to guarantee convergence. This enables us to carry
out the energy integrals in(e, T), obtaining

hen= [ %Q(WY
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EUiPt, oNig.

EulPhy o Hi

YhInAu,

¥ {ml/mol K)

Showing the Kadowaki Woods ratio for a wide range of intermetallic “heavy electron”
materials after Tsujii et al [12]

To understand Kadowaki Woods scaling, we need to keep tifduvoA andy depend on the Fermi energy.

In the last section, we found that the electron-electrottesdag rate is set by the Fermi energy* ~ T?/er.
If we insert this into the Drude scattering formula, for thesistivity p = m'*/(n€?7), sincem* « 1/er, we
deduce thap ~ (T?/€2), i.e A« 1/€Z. By contrast, the specific heat ¢beienty o m* o 1/eg, is inversely
proportional to the Fermi energy, so that

2 1 A
Ac|=]|, y o — = — ~ constant
€F €F A

(7.163)

In strongly correlated metals, the Fermi energy varies fedhto meVscales, so thé codficient can vary

over eight orders of magnitude. This strong dependenéeonf the Fermi energy of the Landau Fermi liquid

is cancelled by?.

Estimate of the Kadowaki Woods Ratio

To obtain an estimate of the diieientA, it is useful to regard a metal as a stack &f Ryers of separation
a, so thatp = app = a/oap, Whereoyp is the dimensionless conductivity per layer. If we use thader
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formula for the conductivity in two dimensiorsp = néz/m, puttingn = 2x k2 /(2r)?, i/t = T, we obtain

Po=129kO
h r
p-a () (5) (159
In the last section, we found thBt= 2r(w/4)?(rkgT)?/er. Putting this together then gives
W\2 (ks T \?
p=@on(y) ( 2 ) (7.165)
&

(The prefactolpg is sometimes called the “unitary resistance”, and cornedpdo the resistivity of a metal
in which the scattering rate is of order the Fermi energy. éf puta ~ 1 — 4A, po ~ 13kQ, we obtain
3on ~ 100— 50QuQcm) It follows that

2
. a(Wy (L
A= (3p0)7 (4) X(TF) A (7.166)
whereTg = e /kg is the Fermi temperature.

”2

Now using (7.53) the specific heat dheient per unit volume iy = $7?k2N*(0) = zké n, wheren is the

€F

212
number of electrons per unit volume, thus the specific hegficnt per electron is simplye = ”zf and the
specific heat per mole of electronsgyig = %nZR%, whereR = kgNay is the Gas constaniay is Avagadro’s

number. So if there ame; electrons per unit cell,
2 7R (ne)?

M 2 Tg (7.167)
giving
A W2\ (po a
r= 5~ (E)(ﬁ)x o (7.168)
If we takepg = 13x 10°%uQ, R = 8.3 x 10°mJ/mol/K andw?/(4x) ~ 1, to obtain
@~2x108x ("’E[:';]) uQem(K moymJy (7.169)
8

giving a number of the right order of magnitude. Kadowaki aldods found thatr ~ 10-5uQ cm(K
mol/mJ¥ in a wide range of intermetallic heavy fermion compoundstramsition metal compounds ~
0.4 x 10-°uQem(K moyJy has a smaller value, related to the higher carrier density.

Local Fermi Liquids

A fascinating aspect of this estimate, is that we needed tto/fif4r) ~ 1 to get an answer comparable with
measurements. The tendencywof 1 is a feature of a broad class of “strong correlated” mefdthough

Landau Theory does not give us information on the detailegikan dependence of the scattering amplitude

A6, ), we can make a great deal of progress by assuming that titersugt-matrix is local. This is infact,
a reasonable assumption in systems where the importano@buihteractions lie within core states of an
atom, as in transition metal and rare earth atoms. In this,cas

a0 (0,¢) = @ + oo’ (7.170)
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is approximately independent of the quasiparticle momanthmomentum transfer. This is the “local” ap-
proximation to the Landau Fermi liquid. When “up” quasipelgs scatter, the antisymmetry of scattering
amplitudes under particle exchange guaranteesahéd, ¢) = —a;1(6, ¢ + n). But if a is independent of
scattering amplitude, then it follows that, = a°+ a = 0, so that

2o (0.9) = (1 - 00). (7.171)

in a “Local” Landau Fermi liquid.
Now we can relate the,, = A, /N*© to the dimensionless scattering amplitudes introduceédtian
(7.4.3)). By (7.79), the charge susceptibility is given by

Xe = N*(0)x (Tng) = N*(0)x (17 %) = N*(0) x (1- A

In strongly interacting electron systems the density diestés highly renormalized, so that*(0) >> N(0),
but the charge susceptibility is basically dieated by interactions, given by = N(0) << N*(0). This
implies thatA§ ~ 1. so thata® = 1/N*(0), which in turn implies that the dimensionless rationtroduced
last section is close tor = 1.

(7.172)

7.8 Microscopic basis of Fermi liquid Theory
|

Although Landau’s Fermi liquid theory is a phenomenolobibaory, based on physical arguments, it trans-
lates naturally into the language of diagramatic many bbepty. The Landau school played a major role
in the adaptation of Feynman diagramatic approaches to mady physics. However, Feynman diagrams
do not appear until the third of Landau’s three papers on Fikgoid theory[13]. The classic microscopic
treatments of Fermi liquid theory are based on the analysisany body perturbation theory to infinite order
carried out in the late 1950's and early 1960’s.

Galitski[14], in the Soviet Union, gave the first first forratibn of Landau’s theory in terms of diagra-
matic many body theory. Shortly thereafter Luttinger, Wand Nozieres developed the detailed diagramatic
many body framework for Landau Fermi liquid theory by anadgsthe analytic properties of inifinite order
perturbation theory[15, 16]. Here we end with a brief disiois of some of the key results of these analyses.

From the outset, it was understood that the Landau Fermidligualways potentially unstable to su-
perconductivity. By the late 1960’s it also became that thetdau Fermi liquid theory does not apply in
one-dimensional conductors, where the phase space sugieguments used to support the idea of the Lan-
dau quasiparticle no longer apply. In one dimension, thedaamuasiparticle becomes unstable, breaking
up into collective modes that independently carry spin amatge degrees of freedom. We call such a fluid
a “Luttinger liquid”. However, with this exception, few gstioned the robustness of Landau Fermi liquid
theory until the 1980s. In 1986, the discovery of high temapee superconductors, led to a resurgence of
interest in this topic, for in the normal state, these mateican not be easily understood in terms of Landau
Fermi liquid theory. For example, these materials displéipear resistivity up to high temperatures that at
this time remains an unsolved mystery. This has led to theudggtion that in two or three dimensions, Lan-
dau Fermi liquid theory might break down into a higher dinienal analog of the one-dimensional Luttinger
liquid. two or even three dimensional metals. In the wakénisfinterest, the Landau Fermi liquid theory was
re-examined from the perspective of the “renormalizatiosug” [17, 18] The conclusion of these analyses
is that unlike one dimension, Fermi liquids are not gendyieastable in two and higher dimensions. While
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this does not rule the possibility of new kinds of metallitibeior, the Landau Fermi liquid theory continues
to provide the bedrock for our understanding of basic métaiwo or three dimensions.

As we discussed in the last chapter, the process of adiabgatiswitching on” interactions can be under-
stood as a unitary transformation of the original stateb@fton-interacting Fermi sea. Thus the ground state
and the one-quasiparticle state are given by

[¢) = U[¥o),

ko) = Ulkor) (7.173)

where|¥o) is the filled Fermi sea of the non-interacting system, laila momentum very close to the Fermi
surface. In fact, using the results of (6.1), we can wdtas a time-ordered exponential

U= T[exp{—i [ i V(t)dt}],

whereV is the interaction, written in the interaction represeintatNow sincelke) = ¢, [Wo), wherec'y,
is the particle creation operator for the non-interactiragytonian, it follows that

(7.174)

. a'ys
ko) = Uch,U" [g) (7.175)
so that the “quasiparticle creation operator” is given by
'y = Uch, U™ (7.176)

From this line of reasoning, we can see that the operatorctieates the one-quasiparticle state is nothing
more than the original creation bare creation operatotatilyi time-evolved from the distant past to the
present in the interaction representation.

While this formal procedure can always be carried out, theterce of the Landau Fermi liquid requires
that in the thermodynamic limit, the resulting state pressi finite overlap with the state formed by additing
a bare particle to the ground-state, i.e.

Z = Kkoolc ko l#)? > 0

This overlap is called the “wavefunction renormalizatimmstant”, and so long as this quantity is finite on
the Fermi surface, the Landau Fermi liquid is alive and well.

In general, near the Fermi energy, the electron creatioretgewill have an expansion as a sum of states
containing one, three, five and any odd-number of quasgbadind hole states, each with the same total spin,
charge and momentum of the initial bare particle.

wavefunction renormalization (7.177)

Cho = VZi@'ko + Z AKaoa, K33 K202, K)a gy @ kgorgpery + - - - (7.178)

ka+ka=ko+k
There are three important consequences that follow frosrésult:

e Sharp Quasiparticle peak in the spectral function.
When a particle is added to the ground-state, it excites areanh of state$1), with energy distri-
bution described by the spectral function (7.112),

Ak, w) = I—lrImG(k, w-id) = Z IM25(w — €)). (7.179)
P
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where the squared amplitugd,[> = [{A|c’y|¢)[?. In a Landau Fermi liquid, the spectral function retains
a sharp “quasiparticle pole” at the Fermi energy. If we spfithe 2 = ko~ contribution to the summation

in (7.179) we then get
qp peak continuum
LS by

1 .
Alk.w) = ZIMG(K. & ~i6) = Zro(w ~ &) + Z IM25(w — €) -
Azko

(7.180)

@) (b) .

Iy o e

Ak, w)

Ak,w)

€k

€
Ak, w)

(@) In a non-interacting Fermi system, the spectral function is a sharp delta function at
w = &. (b) In an interacting Fermi liquid for k # kg, the quasiparticle forms a
broadened peak of width 'y at wy. If k = kg, this peak becomes infinitely sharp,
corresponding to a long-lived quasiparticle on the Fermi surface. The weight in the
quasiparticle peak is Zx ~ m/m, where m* is the effective mass.

e Sudden jump in the momentum distribution.
In a non-interacting Fermi liquid, the particle momenturstdbution function exhibits a sharp Fermi
distribution function which is preserved by theasiparticlesn a Landau Fermi liquid theory

(l(Peor)qpley = O(u — Ex)

where herer,)qp = &'voCko is the quasiparticle occupancy. Remarkably, part of thisgsurvives
interactions. To see thidfect, we write the momentum distribution function of the jwdes as

(7.181)

0
<ﬁw>:<¢manww>:kf dwA(k, w) (7.182)

where we have used the results of (6.3.3) to relate the frartienber to the integral over the spectral
function below the Fermi energy. When we insert (7.180) ihts éxpression, the contribution from the
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quasiparticle peak vanisheif > 0, but gives a contributio®y if e < 0, so that
(Pir) = ZkO(—ec) + smooth background (7.183)

This is a wonderful illustration of the organizing power bétPauli exclusion principle. One might have
expected interactions to have the sarfiea as temperature which smears the Fermi distribution by an
amount of ordekgT. Although interactions do smear the momentum distribytilea jump continues to
survive in reduced form so long as the Landau Fermi liquidtadt.

Ae O (b) N
1 1

Scale of Interaction Energies

(&)

ke K

Fig. 7.11 (a) In a non-interacting Fermi liquid, a temperature T that is smaller than the Fermi

December 1, 2011

energy, slightly “blurs” the Fermi surface; (b) In a Landau Fermi liquid, the exclusion
principle stabilizes the jump in occupancy at the Fermi surface, even though the bare
interaction energy is far greater than than the Fermi energy,

e Luttinger sum rule.
In the Landau Fermi liquid, the Fermi surface volume meastite particle densitye. Since the
Fermi surface of the quasiparticles and the unrenormapaeticles coincides, it follows that the Fermi
surface volume must be an adiabatic invariant when theaotiens are turned on.
e = (2S+1) (‘2’;;,

The demonstration of this conservation law within infinitder perturbation theory was first derived by
Luttinger in 1962, and is known as the Luttinger sum rule neiiacting fermion systems the conserva-
tion of particle number leads to a set of identities betwediernt many body Greens functions called
“Ward Identities”. Luttinger showed how these identities e used to relate the Fermi surface volume
to the particle density.

(Luttinger sum rule) (7.184)

Today, more than a half century after Landau’s original jdea Landau Fermi liquid theory continues to
be a main-stay of our understanding of interacting metatsvéver, increasingly, physicists are questioning
when and how, does the Landau Fermi liquid break-down, arat wéw types of fermion fluid may form
instead? We know that Landau Fermi liquid does not surviwnig-dimensional conductors, where quasipar-
ticles break up into collective spin and charge excitatiensn high magnetic fields where the formation of
widely spaced Landau levelsfectively quenches the kinetic energy of the particles, eaing the relative
importance of interactions. In both these examples, newskiof quasiparticle description are required to
describe the physics. Today, experiments strongly sugiggisation that the Landau Fermi liquid breaks up
into new kinds of “Non-Fermi liquid” fluid at a zero temperegphase transition, or quantum critical point,
giving rise to new kinds of metallic behavior in electrontgyss. The quest to understand these new metals
and to characterize their excitation spectrum is one of teatgopen problems of modern condensed matter
theory.
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Zero Temperature Feynman

Diagrams

Chapter 6. discussed adiabaticity, and we learned how Gréerctions of an interacting system, can be
written in terms Green'’s functions of the non-interactiggtem, weighted by the S-matrix, e.g.

(Bol TSY(L)y' (2)l0)
Tyu(L)y' (2 =
(GITY(1 (29 B0
=7 exp[—i f ) V(t')dt’] ®©.1)

where|g,) is the ground-state dfl,. In chapter 7. we showed how the concept of adiabaticity veesl o
establish Landau Fermi liquid theory. Now we move on to wekin how to expand the fermion Green’s
function and other related quantities order by order in thength of the interaction. The Feynman dia-
gram approach, originally developed by Richard Feynmaretzidbe the many body physics of quantum
electrodynamics[1], and later cast into a rigorous mathiealaramework by Freeman Dyson, [2] provides
a succinct visual rendition of this expansion, a kindrathematical impressionism” which is physically
intuitive, without losing mathematical detail.
From the Feynman rules, we learn how to evaluate

e The ground-stat&— matrix

S = (¢o|Sldbo) = Z {Unlinked Feynman Diagrarhs (8.2)
e The logarithm of theS— matrix, which is directly related to the shift in the groustdte energy due to
interactions.
E-Eo = lim £|n<¢0|3[r/2, —7/2]|po) = i Z {Linked Feynman Diagrams (8.3)

where each Linked Feynman diagrams describefferdnt virtual excitation.
e Green's functions.

G(1-2)= Z {Two-legged Feynman Diagrains (8.4)
e Response functions. These are fiedtent type of Green’s function, of the form

R(1-2) = -i(gl[A(L), BQ)]I$)o(ts — t2) (8.5)
8.1 Heuristic Derivation
e

Feynman initially derived his diagramatic expansion as @mmnic device for calculating scattering am-
plitudes. His approach was heuristic: each diagram has sig#iymeaning in terms of a specific scattering
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process. Feynman derived a set of rules that explafiwegto convert the diagrams into concrete scattering
amplitudes. These rules were fine tuned and tested in thdestapes where they could be checked by other
means; later, he applied his method to cases where the digetiraic approach was impossibly cumbersome.
Later, Dyson gave his diagramatic expansion a systematicenstical framework.

Learning Feynman diagrams is a little like learning a lamgua/ou can learn the rules, and work by the
book, but to really understand it, you have to work with itinjjag experience in practical situations, learning
it not just as a theoretical construct, but as a living toateenmunicate ideas. One can be a beginner or an
expert, but to make it work for you, like a language or a calfyou will have to fall in love with it!

Formally, a perturbation theory for the fully interactingv@&trix is obtained by expanding the S-matrix as a
power-series, then using Wick's theorem to write the rasylitorrefat i as a sum of contractions.

bt = 3, CF [
n=0 N -

The Feynman rules tell us how to expand these contractiorssasn of diagrams, where each diagram
provides a precise, graphical representation of a saagtenmplitude that contributes to the complete S-
matrix.

Let us see examine how we might develop, heuristically, afen diagram exapnsion for simple potential
scattering, for which

I
D @IT V)V (t) ... V(t,) o0 (8.6)

Contractions

V(D)= f U ()0 (%, )0 (5, ). ®7)

where we've suppressed spin indices into the backgroundnWieestart to make contractions we will break
up each producV(1)V(2)...V(r) into pairs of creation and annihilation operators, rejplgeach pair as
follows

$(2)... (1) = (ViPxG@2-1). (8.8)

where we have divided up the the prefactoi tfio factors of i, which we will transfer onto the scattering
amplitudes where the particles are created and annihil@tes contraction is denoted by

GR-1)=2—=e—1
(8.9)

representing the propagation of a particle from “1” to “2urP potential scattering gives us one incoming,
and one outgoing propagator, so we denote a single potentgkring event by the diagram

—iU(z) = (Vi2x-iUx) =U(x

(8.10)

Here, the “i” has been combined with the two factors 9 taken from the incoming, and outgoing propa-
gators to produce a purgtalscattering amplitudeyi)2 x —iU (x) = U(X).

The Feynman rules for pure potential scattering tell us thatS-matrix for potential scattering is the
exponential of a sum of connected “vacuum” diagrams
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S:exp[©+©+©+...y

The “vacuum diagrams” appearing in the exponential do nwé ey incoming or outgoing propagators-
they represent the amplitudes for the various possiblegss®s by which electron-hole pairs can bubble out
of the vacuum. Let us examine the first, and second orderaxtitns for potential scattering. To first order

(8.11)

Sl V(1) 109 =1 Y, [ U0l G (2,8 o (2, £7) 10 (8.12)
This contraction describes a single scattering ever® &t)( Note that the creation operator occurs to férfe

of the annihilation operator, and to preserve this ordeinsgle the time-ordered exponential, we say that the
particle propagates “backwards in time” frans t; tot = t7. When we replace this term by a propagator the
backward time propagation introduces a factot ef —1 for fermions, so that

@lT Y (2, 6 )y (2, 17) Id0) = 14G(R- %17 - ) = i£G(0,0)

We carry along the factod(X) as the amplitude for this scattering event. The result &f tontraction
procedure is then

(8.13)

-
4£dumvmﬂwzms+nfmxf&wwmm@0)

where we have translated the scattering amplitude into aghestliagram. You can think of it as the sponta-
neous creation, and re-annhilation of a single particleehiee may tentatively infer a number of important
“Feynman rules” - listed in Table 8.1: that we must assodaieh scattering event with an amplitudéx),
connected by propagators that describe the amplitude émtreh motion between scattering events. The
overall amplitude involves an integration over the spatetto-ordinates of the scattering events, and appar-
ently, when a particle loop appears, we need to introducéattter {(2S + 1) (where{ = —1 for fermions)
into the scattering amplitude to account for the presenanafdd-number of backwards-time propagators
and the & + 1 spin components of the particle field. These rules are suinetkin table 8.1

Physically, the vacuum diagram we have drawn here can beiatswith the small first-order shift in the
energyAE; of the particle due to the potential scattering. This intproduces a phase shift in the scattering

S-matrix,
—iAElfdtj ~1- iAElfdt,

where the exponential has been audaciously expanded & bréer in the strength of the scattering potential.
If we compare this result with our leading Feynman diagrapeesion of the S-matrix,

(dolSlgpo) = 1+ O .

we see that we can interpret the overall factogfmftl in (8.14) as the time period over which the scattering

(8.14)

S~ exp (8.15)
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Table 8.1 Real Space Feynman Rules (T = 0) .

1 2 G(2-1)
>- e u0a)
]>\/\/\/\N\,<2 iV (1 — 2)

Integrate over all intermediate times and
positions.

I [ @

—(2S +1)6(0,07)

O

[-@s + 1),

F = no. Fermion loops.

(1) ————— n(1)

JEES—TE) —in(1)

@@ b3

p = order of symmetry group.
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potential acts on the particle. If we factor this term outraf expression we may identify

P

AE; =i2(2S +1)G(G,07) f d*xU(x)

(8.16)

Here, following our work in the previous chapter, we havmth‘iedi{(ZS+1)G(6, 0) = 2ot e (N (X)) =
p as the density of particles. givingg; = pfd3xU(x). The correspondence of our result with first order
perturbation theory is a check that the tentative Feynmkes iare correct.

Let us go on to look at the second order contractions

n n rl
@ITV (1) V (t3) 160) = GolTV (1) V (£2) do) + (olT V (£,)V (t2) 1éo)

(8.17)
which now generate two diagrams
o M M 2
77 [ dudtutoalT V1)V (1) |¢0>=%[©J =[© QJ
1, (7 =l
510 [ dudttonlT V(1)V (1) 0 =4 (8.18)

The first term is simply a product of two first order terms- tlegibning of an exponential combination of such
terms. Notice how the square of one diagram is the origiredrdim, repeated twice. The factor gRlthat
occurs in the expression on the left hand-side is absorliedhis double diagram as a so-called “symmetry
factor”. We shall return to this issue shortly, but brieflyistdiagram has a permutation symmetry described
by a group of dimensiod = 2, according to the Feynman rules, this generates a prefaao= 1/2. The
second term derives from the second-order shift in the glaréinergies due to scattering, and which, like
the first order shift, produces a phase shift in the S-maliiis diagram has a cyclic group symmetry of
dimensiond = 2, and once again, there is a symmetry factor f £ 1/2. This connected, second-order
diagram gives rise to the scattering amplitude

Q = %((ZS + 1)fd1d2U(1)U(2)G(1 -2)G(2-1) (8.19)
where 1= (X3, 1), so that
di= | dyd®x
G2-1)=G(% - X1, — t). (8.20)

Once again, the particle loop gives a fact(®S + 1), and the amplitude involves an integral over all possible
space-time co-ordinates of the two scattering events. Yay imterpret this diagram in various ways- as
the creation of a particle-hole pair ati(t1) and their subsequent reannilation &,{,) (or vice versa).
Alternatively, we can adopt an idea that Feynman developeal graduate student with John Wheeler- the
idea than that an anti-particle (or hole), is a particle pggiing backwards in time. From this perspective,
this second-order diagram represenssrale particle that propagates around a loop in space time. Eajuati
(8.19) can be simplified by first making the change of varigblet; —t;, T = (t; + t2)/2, so thatf dtdt; =
de X fdt. Next, if we Fourier transform the scattering potential &réen functions, we obtain

O = f dT x %g(zs +1) f dtdPqdPk|U (G0)IPG(K + d, )G(K, —t)
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Once again, an overall time-integral factors out of the alexpression, and we can identify the remaining
term as thesecond-ordeshift in the energy

AE; = i74(25 +1) f dt ok ﬂ|U(ql)|2(3(12 +d.H)G(K, ). (8.22)
2 (2m)® (2)?
To check that this result is correct, let us consider the oafermions, where
Gk, t) = —i[(1 - o) — neo(-t)]e et (8.23)
which enables us to do the integral
i f dte MGk + d G(K, ~t) = 7(1Ek’+”k_*q€)k”k +(kok+a) (8.24)

We recognize the first process as the virtual creation of ectrein of momenturk + d, leaving behind a
hole in the state with momentuf The second-term is simply a duplicate of the first, with thenmenta
interchanged, and the sum of the two terms cancels the fatig infront of the integral. The final result
d*k dq
(2m)3 (2n)3
is recognized as the second-order correction to the enengyed from these virtual processes. Of course,
we could have derived these results directly, but the ingmbnpoint, is that we have established a tentative
link between the diagramatic expansion of the contractiand the perturbation expansion for the ground-
state energy. Moreover, we begin to see that our diagranesddirect interpretation in terms of the virtual
excitation processes that are generated by the scattesmgse
To second-order, our results do indeed correspond to ténigarder terms in the exponential

OO 2O e O

Before we go on to complete this connection more formallyhie next section, we need to briefly dis-
cuss “source terms”, which couple directly to the creatind annihilation operators. The source terms let
us examine how the S-matrix responds to incoming currenpadfcles. Source terms add directly to the
scattering potential, so that

2 (1= Niig)Ni
€k+q ~ €k

AE; = —(2S + 1) f 01

2

S=1+ +--- = exp|

V(1) = V(@) + 7(1(L) + ' (Ln(L).

The source terms involve a single creation or annihilatiperator, thus produce either the beginning

—<—q(1)zfdl~--><n(1)
(8.25)

or the end

i — z—ifdzﬁ(z)x...
(8.26)

of a Feynman diagram. In practice, eaciindy arrive in pairs, and the facteri which multiplies; combines
the two factors of-i from a pair ¢, ) with the factor ofi derived from the propagator line they share. We
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need these terms, so that we can generate diagrams whidkeinmocoming and outgoing electrons. The
simplest contraction with these terms g

%?f@wﬂwmﬂmwm+wmmﬂhmwwmwn+MMMM@
- [ q1dz(VFiie(2 - 1)V-in()

= —ip———n.

(8.27)

If we now include the contraction with the first scatteringrieve produce the first scattering correction to
the propagator

_i3 T 1
%fdzdx dlol{[... +7(2e(2) + .. ] [U(X)z!)"(X)¢v(X)+...] [+ ¢f(D)n(1)] + perms}0)

= f dldz(ﬁﬁ(z) f dXG(Z—X)V(X)G(X—l)\/jr,(l))

=—in - - n.

(8.28)

where we have only shown one sk equivalent contractions on the first line. This diagram sy inter-
preted as a particle, created at 1, scattering at poskibefore propagating onwards to position 2. Notice
how we must integrate over the the space-time co-ordinateedhtermediate scattering evenpatto obtain

the total first order scattering amplitude. Higher orderections will merely generate multiple insertions
into the propagator and we will have to integrate over thesfiane co-ordinate of each of these scattering
events. Diagramatically, the sum over all such diagramsigaes the “renormalized propagator”, denoted by

G'(2-1)=2—=a——1

To——-——1 + /\\ + + o (8:29)
2 1, 1

Indeed, to second-order in the scattering potential, wesearthat all the allowed contractions are consistent
with the following exponential form for the generating ftional

S=w4 <:%<:>+“4%:a::w,

To prove this result formally requires a little more workatlwe now go into in more detail. The important
point for you to grasp right now, is that the sum over all cactions in the S-matrix can be represented by
a sum of diagrams which concisely represent the contribatio the scattering amplitude as a sum over all
possible virtual excitation processes about the vacuum.

(8.30)

8.2 Developing the Feynman Diagram Expansion

A neat way to organize this expansion is obtained using thecederm approach we encountered in the last
chapter. There we found we could completely evaluate theetgonse of a non-interacting the system to a
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source term which injected and removed particles. We sti#iitthe source term S-matrix

S[n.n) = Texp[—i f A1y (Wn(1) + n(Lw ()] (8.31)
Here, for convenience, we shall hide details of the spin awitly the space-time co-ordinate, so thatl
(X1,t1,01), ¥(1) = ¥, (x.t). You can think of the quantitieg(1) andn(1) as “control-knobs” which we
dial up, or down, the rate at which we are adding, or subtrgqgtiarticles to the system. For fermions, these
numbers must be anticommuting Grassman numbers: numbens articommute with each and all Fermion
field operators. The vacuum expectation value of this Simiatthen

St n] = @IS nlp) = exp (8.32)

- f d1d27L)G(1 - 2)n(2)

where hereG(1-2) = 6,,,G(X1 — X2, 1 —t) is diagonal in spin. In preparation for our diagramaticrapgh,
we shall denote

f d1d2n(1)G(1-2m(2)=n —=-——n (8.33)
where an integral over the space-time variablast() and &2, t,) and a sum over spin variables, o is
implied by the diagram. The S-matrix equation can then béevri

Sl 1l = exg|-iif ——=——1 (8.34)
This is called a “generating functional”. By ftérentiating this quantity with respect to the source terms,
we can compute the expectation value of any product of opexaBGrassman numbers and theifetiential
operators anticommute with each other, and with the fieldaipes.* Each time we dferentiate the S-matrix
with respect toy(1), we pull down a field operator inside the time-orderectpt

67](1) - y(1)

= (#ITS(...)le) = (8.35)

5(1) @ITSL...y(1)... }ig)

For example, the field operator has an expectation value

@Sy . 6
1 =T a— . .. = —
WA= ehley oD

= f G - 2)(2)d2

InS[77, 7]

=[1—a—-y)] (8.36)

Notice how the dierential operatorml) ‘grabs hold” of the end of a propagator and connects it up éosp
time co-ordinate 1. Likewise, each time wefdientiate the S-matrix with respect¢l), we pull down a

field creation operator inside the time-ordered product.

0 +

= L, 8.37
55;7(1) ¥ (1) ®30
1 Forexample, i [7,7] =

Aq+qA+Bzm whereA, A, nandyare Grassman numbers, whidés a commuting number théﬁ A+Bn,

o
but % =-A- Br.Tbecause the fierential operator antlcommutes Wmhandn. The second derlvatlvg% 0”0” = B, illustrating
that the diferential operators of Grassman numbers anticommute.
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The appearance of &
mutes with the field operatorg; (1)p(1) =

in (8.37) compared with the+i” in (8.35) arises because the source term anticom-
—n(1)y(1), so that

S gt
5o ) 0000 = e [ 09w 09 = co' ) (838)
and the expectation value of the creation operator has the va
" @Sy’ @iy 6 o
2y = — =" = InS[7,
VO e oo
= f d17(1)G(1 - 2)
= [ —a—2] (8.39)
If we differentiate either (8.36) w.r#(2), or (8.39 ) w.r.t7(1) we obtain
2 = (@[T (2l = G(1 - 2 8.40
57,(2)“”( U (1)“”( V| = T @ =6a-2) (8.40)

as expected.
In general, we can calculate arbitrary functions of the fagerators by acting on the S-matrix with the
appropriate function of derivative operators.

(TS AF 10) = Fic 5 2 e iy ———— 1] (8.41)
If we now setF[uf,y] = Te [VIV'¥Idt then
S|l = (T [ at(v(' w)+source term)%) (8.42)
can be written completely algebraically, in the form
Sl = & VO D el i ————— (8.43)

The action of the exponentiatedfidirential operator on the source terms generates all of theaaions.
It is convenient to recast this expression in a form that gsoall the factors of “i”. To do this, we write
@ = n,a = —in, this enables us to rewrite the expressiol$ds, 7] = Si[a, a]lo=ya=—i7, Where

Sia.a] = 0 LV gt exp{& —_—— a]
where we have written

V(l{ lt —ive s, %)

44
oa’ sa 8.44)

for an interaction involvingn creation anch annihilation operators ( n-particle interaction). Thisiation
provides the basis for all Feynman diagram expansions.

To develop the Feynman expansion, we need to recast oursskpnen a more graphical form. To see how
this works, let us first consider a one-particle scatterioigptial f = 1). In this case, we write

n 62
v ({61 5‘)_f XU ({&r(x)&?(x))
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which we denote as

5
.

(D)

(8.46)

Notice that the basic scattering amplitude for scatteringoint x is simply U(x) (or U(x)/7 if we reinstate
Planck’s constant). Schematically then, our Feynman diagexpansion can be written as

gma)
|exdd ——=—2a

&mﬂ=a4

m(1)

The differential operators acting on the bare S-matrix, glue thiéesazag vertices to the ends of the propaga-
tors, and thereby generate a sum of all possible Feynmarediesg Formally, we must expand the exponen-
tials on both sides, e.g.

1 G
si.al = 3 o]

L e
da(l) (8.47)

The action of the dferential operator on the left hand-side is to glue the m pyapmas together with the
vertices, to make a series of Feynman diagrams. Now, at fiist, ghis sounds pretty frightening- we will
have a profusion of diagrams. Let us just look at a few: do httia stage worry about the details, just try to
get a feeling for the general structure. The simptestl, m = 1 term takes the form

C5om
[ Sa(T) ][a+0 {fle(l)M(l)b (l)dedY_(X)G(x Y)a(Y)

Au(l)
(8.48)

= {fle(l)G(l’ -1)=

This is the simplest example of a “linked-cluster” diagraand it results from a single contraction of the

scattering potential. The sigh= —1 occurs for fermions, because the fermi operators needitadrehanged

to write the expression as a time-ordered propagator. Onesag that the expectation value involves the

fermion propagating backwards in time from tirméo an infinitesimally earlier tim¢~ = t — €. The term
{rm

n=1,m= 2 gives rise to two sets of diagrams, as follows:
1 _ 2 _ _
—[ ][a 0/] =a a+ [ X @ —=—a0a]
2 J

o) (8.49)
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The first term corresponds to the first scattering corredtiche propagator, written out algebraically,

a - - = f did2a(1) f dXG(1 - X)V(X)G(X - 2)a(2)

whereas the second term is an unlinked product of the bapagator, and the first linked cluster diagram.
The Feyman rules enable us to write each possible term irxgransion of the S-matrix as a sum of unlinked
diagrams. Fortunately, we are able to systematically coehblil of these diagrams together, with the end
result that

Si(a, ) = exp[z linked diagram}s

©+Q+..,5Ia].

When written in this exponential form, the unlinked diagraemsirely disappear- a result of the so-called
“link-cluster” theorem we are shortly to encounter. Thefirgn rules tell us how to convert these diagrams
into mathematical expressions (see table 8.1).

Let us now look at how the same procedure works for a two-garinteraction. Working heuristically,
we expect a two-body interaction to involve two incoming &wd outgoing propagators. We shall denote a
two-body scattering amplitude by the following diagram

1M2 =(Viy*x-iv(1-2)=iv(1-2)

Notice how, in contrast to the one-body scattering ampéifwae pick up four factors of/i from the external
legs, so that the net scattering amplitude involves an awdkdactor of §”. If we now proceed using the
generating function approach, we set 2 and then write

= exp| (8.50)

(8.51)

o o o
6a(x) Sa(X') sa(x') sa(X)
Notice how the amplitude for scattering two particles is i\ — x’) (or iV (x—x')/% if we reinstate Planck’s
constant). We can now formally denote the scattering versex

ity ({60 o )_|—fd3xd3x’v(x X) (8.52)

_o_ _o_
5a(2) oa(1)
1
2
s 5 (8.53)
5a(2) a(l)

This gives rise to the following expression for the genagfunctional

o o
5a(2) 5a(D

_ 1
Si[a,a] = exp 3

} ex;{& ——
o .
52@) 5@

for the S-matrix of interacting particles.
As in the one-particle scattering case, thedential operators acting on the bare S-matrix, glue the sca
tering vertices to the ends of the propagators, and therebgrgte a sum of all possible Feynman diagrams.
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Once again, we are supposed to formally expand the expaiteati both sides, e.g.
J o)
_ 1 11 %@ Fa(@) ynp _ m
=Yy —[= —_—— 54
Sila.a] ;n!ml[z s s H“ “] (8.54)
’ 52 5a(D)

Let us again look at some of the leading diagrams that appehisi process. For instance

)
O~-0O-(D}
5@ 5@

171 %@
2112

We shall see later that these are the Hartree and Fock aatitris to the Ground-state energy. The prefactor

of % arises here because there are two distinct ways of comtggttte vertices with the propagators. At each

ﬁ(l) _ 2 1
o —=—ef -3
s

of the vertices in these diagrams, we must integrate ovespthee-time co-ordinates and sum over the spins.

Since spin is conserved along each propagator, so this riegtresach loop has a factor of32 1) associated
with the spin sum. Once again, for fermions, we have to befgaabout the minus signs. For each particle
loop, there is always an odd number of fermion propagataspagating backwards in time, and this gives
rise to a factor

{(2S+1)=-(25+1) (8.55)
per fermion loop. The algebraic rendition of these Feynmagrdms is then
% fdleV(l - 2)[(28 +1)°G(0,07)? + £(2S + 1)G(1 - 2)G(2 - 1) (8.56)

Notice finally, that the first Hartree diagram contains a pggior which “bites its own tail”. This comes from
a contraction of the density operator,

—i Z<. O D (X, 1)) = £(2S + 1)G(x, 07) (8.57)
and since the creation operator lies to the left of the detnuoperator, we pick up a minus sign for fermions.
As a second example, consider

J )
111 5%@ R 3 9
sz oy i———e| -4 Nt SO

)
5a(2) sa(1)
corresponding to the Hartree and Fock corrections to thpggator. Notice how a similar minus sign is
associated with the single fermion loop in the Hartree seéfgy. By convention the numerical prefactors
are implicitly absorbed into the Feynman diagrams, by ohiing two more rules: one which states that

each fermion loop gives a factor ofthe other which relates the numerical pre-factor to thersgiry of the
Feynman diagram. When we add all of these terms, the S-matciorbes
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+&—<—+‘<2<7+—<—£3—<—+.“ a

+ ...

4000000 D - |
The diagrams on the first line are “linked-cluster” diagrathsy describe the creation of virtual particle-hole
pairs in the vacuum. The second-line of diagrams are thdemndiagrams, which describe the one-particle
propagators. There are also higher order diagrams (notrgheith 2n legs, coupled to the source terms,
corresponding to the n-particle Green’s functions. Thegies on the third line are “unlinked” diagrams.
We shall shortly see that we can remove these diagrams bygtétie logarithm of the S-matrix.

(8.58)

8.2.1 Symmetry factors

Remarkably, in making the contractions of the S-matrix, ghefactors in terms like eq. (8.54) are almost
completely absorbed by the combinatorics. Let us examieenttmber of ways of making the contractions
between the two terms in (8.54). Our procedure for constrget diagram is illustrated in Fig. 8.1

1 We label each propagator on the Feynman diagram 1 throughd label each vertex on the Feynman
diagram (1) throughn).

2 The process of making a contraction corresponds to igeémgifeach vertex and each propagator in (8.54
) with each vertex and propagator in the Feynman diagramruwaiestruction. Thus th®; th propagator
is placed at position on the Feynman diagram, and tReth interaction line is placed at positiéron the
Feynman diagram, whelis a permutation of (1..n) andP’ a permutation of (1 .., m).

3 Since each interaction line can be arranged 2 ways at eaatidn, there are"®/(P) = 2"n! ways of
putting down the the interaction vertices awP’) = m! ways of putting down the propagators on the
Feynman diagram, giving a total ¥f = 2"n!m! ways.

4 The most subtle point is notice that if the topology of thgrifean graph is invariant under certain permu-
tations of the vertices, then the above procedure oversdhetnumber of independent contractions by a
“symmetry factor”p, wherep is the dimension of the set of permutations under which theltgy of the
diagram is unchanged. The point is, that each of tr choices made in (2) actually belongs tpa
tuplet of diferent choices which have actually paired up the propagatutssertices in exactly the same
configuration. To adjust for this overcounting, we need taddi the number of choices by the symmetry
factor p, so that the number of ways of making the same Feynman graph is

2"nim!
w= 2

5 (8.59)

As an example, consider the simplest diagram,
1

2
174
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@ w=2 W) W) = 2%1 61
1
o P
e P,
Sann P,
1 PI
2 = F;
3 o
l )
S S
¥ 5
O 2
(b)
P
Fig. 8.1 (a) Showing how six propagators and three interaction lines can be arranged on a
Feynman diagram of low symmetry (p = 1). (b) In a Feynman diagram of high
symmetry, each possible assignment of propagators and interaction lines to the
diagram belongs to a p— tuplet of topologically equivalent assignments, where pis the
order of the symmetry group of permutations under which the topology of the diagram
is unchanged. In the example shown above, p = 3is the order of the symmetry group.
In this case, we need to divide the number of assignments W by a factor of p.
(8.60)
This diagram is topologically invariant under the group efrputations
G =1{(12) (21) (8.61)
sop = 2. In a second example
1 2
(8.62)
4 3
the invariance group is
G = {(1234) (3412} (8.63)
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S0 once agairnp = 2. By contrast, for the diagram

1 2
(8.64)

the invariance group is 4 3
G = ((1234) (3412) (2143) (4321) (8.65)

so thatp = 4.

8.2.2 Linked Cluster Theorem

One of the major simplifications in developing a Feynman diagexpansion arise because of the Linked
Cluster Theorem. Ultimately, we are more interested inudating the logarithm of the S-matrix, {7, ).
This quantity determines both the energy shift due to intéras, but also, it provides the n-particle (con-
nected) Green'’s functions. In the Feynman diagram expargfithe S-matrix, we saw that there are two
types of diagram: linked-cluster diagrams, and unlinkeajcims, which are actually products of linked-
cluster diagrams. The linked cluster theorem states tiedotiarithm of the S-matrix involves just the sum of
the linked cluster diagrams:

InS[n,7] = Z{Linked Cluster Diagrams (8.66)

To show this result, we shall employ a trick called the “replirick”, which takes advantage of the relation

n_
InS = lim [¥ (8.67)
n—0 n

In other words, if we expan8" as a power-series im then the linear cdécient in the expansion will give us
the logarithm ofS. It proves much easier to evalu&8 diagramatically. To do this, we introducédentical,
but independent replicas of the original system, each teaplabelled by = (1, n). The Hamiltonian of the
replicated system is just = },,_; , and since the operators of each replica live in a completelgpendent
Hilbert space, they commute. This permits us to write

—i fw dt Z (V(", ) + source term)% )

©  a=ln

(Siln,7)" = (¢IT exp (8.68)

When we expand this, we will generate exactly the same Feyriz@mams as irS, excepting that now,
for each linked Feynman diagram, we will have to multiply #meplitude byN. The diagram expansion for
interacting fermions will look like

S|((;,(l):l

+nxk>w<>+(g)+;P_<__+_.52._+_._£:h_._+”Ja+m}
O~ O~ O~ |

A+ (8.69)
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from which we see that the cfigient of N in the replica expansion @V is equal to the sum of the linked
cluster diagrams, so that

InS)(a, a) = Ov\O+@+& —<—+49<7+—<—£j—<—+... a+...

By differentiating the log of the S-matrix with respect to the seusrms, extract the one-particle Green’s
functions as the sum of all two-leg diagrams

B §2nS, (@, @) B .
G(2-1)= {m = Z[Two leg diagrams

= 2—<—1+249<—1+2—<—£:2—<—1+“. (8.70)

This is a quite non-trivial result. Were we to have attemmtdtead-on Feynman diagram expansion of the
Green'’s function using the Gell Mann Lowe theorem,
(TSP (2)lg)
G(l-2)=-i—F " 8.71
( ) (#ISI¢) @71)
we would have to consider the quotient of two sets of Feynniagrams, coming from the contractions of
the denominator and numerator. Remarkably, the unlinkagrdims of the&S matrix in the numerator cancel
the unlinked diagrams appearing in the Wick expansion ofdieominator, leaving us with this elegant
expansion in terms of two-leg diagrams.
The higher order derivatives w.r¢.anda correspond to the connected n-body Green'’s functions

Example 8.1: By introducing a chemical potential source term into the original Hamiltonian,

H= [ dwux0309 ®72)
show that the change in the logarithm of the S-matrix is

>6¢(2)} ©.73)

InS[¢] = InS[0] + % ‘(Sq)(l)

where

(8.74)
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denotes the sum of all diagrams that connect two “density” verticesthiseesult to show that the
time-ordered density correlation function is given by

(D)X(¢ITop(L)op(2)ig) = InS[g] = 1. (8.75)

62
5¢(1)96(2)

Example 8.2: Expand the S-matrix to quadratic orderdrande, and use this to show that the two-
particle Green’s function is given by

1 5'S s
ST, 0] sapaRya@pad) —(@ITly (L) @) (4)]ig)

l——sd 1 4 1 4
_ " \ + >< (8.76)
23 2* g 2 3

Show that the last term, which is the connected two-particle Green’s fpdsithe quartic term coef-
ficient in the expansion of Bla, @].

8.3 Feynman rules in momentum space

Though itis easiest to motivate the Feynman rules in re@esgmactical computations are much more readily
effected in momentum space. We can easily transform to momesyiaoe by expanding each interaction line
and Green'’s function in terms of their Fourier components:

d’p ip(-Xz)
1] ——— 2 =G(X - Xp) = wG(p)e' 172

d,
1>W\/\<2 ZV(Xy = Xo) = f (gﬂ‘;dV(q)éWer) ®.77)

where we have used a short-hand notapiea (p, w), q = (g, v), X = (X, t), andpX = p - X — wt. We can deal
with source terms in similar way, writing

d
o(X) = gﬂ—;épxa(p). (8.78)

Having made these transformations, we see that the spaeeet-ordinates associated with each vertex,
now only appear in the phase factors. At each vertex, we cancaory out the integral over all space-time
co-ordinates, which then imposes the conservation of #equand momentum at each vertex.

P2
’V\AN\./\AQ - fddxei(pl—prq)x = (27r)d6(d)(p1 - p2-0) (8.79)
q
) P1

Since momentum and energy are conserved at each verteryehiss that there is one independent energy
and momentum per loop in the Feynman diagram. Thus the tianafion from real-space, to momentum
space Feynman rules ifected by replacing the sum over all space-time co-ordiratéise integral over all
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Table 8.2 Momentum Space Feynman Rules (T = 0).

—_——— Go(k, w) Fermion propagator
(k,w)
ivV(q) Interaction
J>\/\/\/\N\,<2
(@)
igZDo() Exchange Boson.
>‘ -4a U(a) Scattering potential
~¢~ [-(2S + 1), F= no. Fermion loops
f ddqdv &0 Integrate over internal loop momenta and
(2r)d+t frequency.
@.v)
O/O p=2
1
= p = order of symmetry group.
O@®

loop momenta and frequency. (Table 8.2). The convergemterfa
oo’ (8.80)
is included in the loop integral. This term is only really ded when the loop contains a single propagator,
propagating back to the point from which it eminated. In thése, the convergence factor builds in the
information that the corresponding contraction of fieldrapers is normal ordered.
Actually, since all propagators and interaction varialilepend only on the fierence of position, the
integral over alh space-time co-ordinates can be split up into an integral theecenter-or-mass co-ordinate

X+ Xo+...
e = %X“ (8.81)
and the relative co-ordinates
X=X -X. (r>1), (8.82)
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as follows

]_[ A%, = d%em ]_[ A%, (8.83)

r=Ln r=2n

The integral over th&; imposes momentum and frequency conservation, whilst tiegiial overX., can be
factored out of the diagram, to give an overall factor of

f d%em = (21)%69(0) = VT (8.84)

whereV is the volume of the system, afidthe time over which the interaction is turned on. This mehas t
the proper expression for the logarithm of the S-matrix is

In(S) =VT Z{ linked cluster diagrams in momentum sphace (8.85)
In other words, the phase-factor associated with the Skogatows extensively with the volume and the time
over which the interactions act.

8.3.1 Relationship between energy, and the S-matrix

One of the most useful relationships of perturbation theisrthe link between the S-matrix and the ground-
state energy, originally derived byfdey Goldstone[3]. Here the basic idea is very simple. Whenurredn
the interaction, the ground-state energy changes whickesahe phase of the S-matrix to evolve. If we turn
on the interaction for a tim&, then we expect that for fiiciently long times, the phase of the S-matrix will
be given by-iAET:

S[T] = (—colU(T/2)U* (=T /2)l0) oc €74ET (8.86)

whereAE = Eq = E, is the shift in the ground-state energy as a result of intenas. This means that at long
times,

In(S[T]) = —-iIAET + constant (8.87)
But from the linked cluster theorem, we know that
S=VT Z[Iinked clusters in momentum space (8.88)
which then means that the change in the ground-state enaegtodnteractions is given by
AE =iV Z[Iinked clusters in momentum space (8.89)

To show this result, let us turn on the interaction for a peobtime T, writing the ground-state S-matrix
as

S[T] = (~o|U(T/2)U7(-T/2)lc0) (8.90)

If we insert a complete set of energy eigenstatesyl, |1){4] into this expression for the S-matrix, we obtain

SIT] = ) (~ool0(T/2)XAUU " (~T/2)e0) (8.91)
A
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In the limit T — oo, the only state with an overlap with the time-evolved stat¢-T/2)| — co) will be the

true ground-statgy,) of the interacting system, so we can write
S(T) = UTYU(-T) (8.92)

whereU(7) = (—oo|l](r/2)\wg). Now differentiating the first term in this product, we obtain
i - i Hot/2-1HT/2
5 UM = ?’< cole"er/Ze M 2y )
= 5<—OOHH0U(T/2) - U(@/2H}lyg)
iAE
- —'T(u(r) (8.93)
Similarly, Z2*(-7) = —~4Ef(-7), so that

ot
as(T)

T = CIAES(T) (8.94)

which proves the original claim.

8.4 Examples

8.4.1 Hartree Fock Energy

As a first example of the application of Feynman diagrams, seethe linked cluster theorem to expand the
ground-state energy of an interacting electron gas to figtroTo leading order in the interaction strength,
the shift in the ground-state energy is given by

OO
corresponding to the Hartree, and Fock contributions tgthend-state energy. Writing out this expression
explicitly, noting that the symmetry factor associatedwatch diagram ip = 2, we obtain
iV [ kK dwdw’
AEpr = —
2 (2n)°  (20)?

In the last chapter (6.80), we obtained the result

Eg=Eo+iV (8.95)

N [(-[25 + 1) (Vawo) + (125 + L)(Vir) | GRIGK)

(Crtur) = [ G26K ) = = ok - K (8.96)
so that the shift in the ground-state energy is given by
V [ d®kdPk
AEnF = 2) e [(ZS +1)%(Vgo0) — (2S + 1)(Vk7k’)] ficfir (8.97)

In the first term, we can identify = (2S + 1) }; fx as the density, so this term corresponds to the classical
interaction energy of the Fermi gas. The second term is tbleamge energy. This term is present because the
spatial wavefunction of parallel spin electrons is antisyetric, which keeps them apart, producing a kind of
“correlation hole” between parallel spin electrons.
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Let us examine the exchange correlation term in more d&tathis end, it is useful to consider the equal
time density correlation function,
Coor(X=X) = (g0l : pr(¥)po(X) : Id0)

In real space, the Hartree Fock energy is given by
- 1 a .
(Gol¥100) =5 3" [ xR 001 500 00

1 3
=50 [ xR, (-9 (8.98)
so it is an integral of the interaction potential with theretation function. Now if we look at the real-space
Feynman diagrams for this energy,

AE:i[M ’ @]
Ll e G

since each interaction line contribute$/gx — x’) to the total energy. The delta function in the second term
derives from connectivity of the diagram, which forces thinso- ando” at both density vertices to be the
same. We thus deduce that the Feynman diagram for the eogatiénsity correlation functions are

Corlx—y) = - [( ch Qc x’) " (x<>c x')am,/]

The first term is independent of the separatior ahdx’ and describes the uncorrelated background densities.
The second term depends »r x” and describes the exchange correlation between the dsnsitparallel
spin fermions.

Written out explicitly,

(8.99)

(8.100)

~ipo
Coo(X=9) = =|(=G(0.0")?) — 85 G(X - ¥,07)G(y - X, 0")

= ph + 650 G(X - ¥,07)G(Y - X, 07) (8.101)

where we have identifie(6, 0-) = ipo with the density of electrons per spin. From this we see@hgix -

y) = pj3 is independent of separation- there are no correlationseget the up and down-spin density in
the non-interacting electron ground state. However, thieetation function between parallel spin electrons
contains an additional term. We can calculate this term fiterequal time electron propagator, which in real
space is given by

G(X,07) = fk G(k,0)e* =i fk fieekx

sinkr
ke

—
i f kdk (" dcosd gkrcosy
ke 272 2
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i : .
= 5773 [Inker) — ker cosken)] = ipoP(keX) (8.102)
wherepo = ek,ng is the density, while
SiNX — XCOSX 3.
P = 3(7) =210 (8.103)

and j1(x) is thel = 1 spherical Bessel function. The density correlation fiomcof parallel spin fermions
then takes the form

Cr(r) = p3 (1 - [Pen)P?)

This function is shown in Fig. 8.2: at = 0 it goes to zero, corresponding to the fact that the proitabil
to find two “up” electrons in the same place actually vanislieis this “exchange hole” in the correlation
function that gives the interacting electron fluid a prepdistion towards the development of ferromagnetism
and triplet paired superfluids.

“Exchange hole”. The equal time correlation function C;1(ker) for the non-interacting
Fermi gas. Notice how this function vanishes at the origin, corresponding to a
vanishing probability to find two “up” electrons at the same location in space.

Before we end this section, let us examine the Hartree Faeiggrior the Coulomb gas. Formally, with the
Coulomb interaction the Hartree interaction becomes itfjitiut in practice, we need not worry, because to
stabilize the charged Fermi gas, we need to compensatedhgeobf the Fermi gas with a uniformly charged
background. Provided the Fermi gas is uniform, the clakSlcalomb energy of the combined system is
identically zero. The leading order expression for the gtbatate energy of the compensated Coulomb gas
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of Fermions is then

E 21,2
9 _(os+ 1)fﬂfk _@s+1 (8.104)
k

v 2m 2 Je Kk —k)?
A careful evaluation of the above integrals (see Probleqd@ves
Eq [3 3eke
=9 e -

v =5 ar
wherep = (2S + 1)k¥/(37?) is the density of particles. An important parameter for éhectron gas is the
dimensionless separation of the electrons. The sepamdtielectronsR. in a Fermi gas is defined by

47ng_ 1
= =

wherep is the density of electrons. The dimensionless separgfisriefined ass = R./ag whereag = h:%
is the Bohr radius, so that
1

_ 1

= e (8.105)
1
3

wherea = (é(zs + 1)) ~ 0.521 forS = 1/2. Usingrs, we can re-write the energy of the electron gas as

E_S3R SR
oV 50212 2rars
221 001
_ (72 _08 6) Ry (8.106)
rg I's

whereRy = % = 136eV is the Rydberg energy. From this, we see that the most syragielated limit

of the electron gas is thdilute limit.

8.4.2 Electron in a scattering potential

As an illustration of the utility of the Feynman diagram apgch, we now consider an electron scatterifig o
an attractive central scattering potential. Here, by resing the Feynman diagrams, it is easy to show how
in dimensiongl < 2, an arbitrarily weak attractive potential gives rise taihg-states.

The Hamiltonian is given by

H =" ackt+ Hse (8.107)
k
wheree, = k?/2m - u and the scattering potential is given by
Hse = f d®xy " (w ()U (%) (8.108)
If we Fourier transform the scattering potential, writing
U(x) = f U(q)e™ (8.109)
then the scattering potential becomes ’
Hse = Uy k0 (8.110)
S —

k.|
amplitude to transfer momentukn- k"
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E(Ry)

05

04

03

02

0.1

00| .

Fig. 8.3 Showing the energy per electron as a function of the reduced separation rs between

electrons, after equation (8.106)

The Feynman diagrams for the one-electron Green’s funetierthen

=P = ———t————+——o—p—o—p—+ ... (8.111)
k’ k k k

k’ k k’ k”
where
—»— =Gk, w) = # (8.112)
Kk W — € — 16k
denotes the propagator in the absence of potential scaftanid
—— = kak' (8113)

k" k
is the basic scattering vertex. The first diagram repregbatamplitude to be transmitted without scattering;
subsequent diagrams represent multiple scattering pesesvolving one, two three and more scattering
events. We shall lump all scattering processes into a samglgitude, called the t-matrix, represented by

Y =—@Q—=——+—o—p—o—+—o—p—o—p—o—+... (8.114)
K K K
With this short-hand notation, the diagrams for the elecpmpagator become

tie (w)
=P = ——+ (8.115)
k k k k’ k
Written out as an equation, this is
G(k, k', w) = 6k Gk, w) + GOk, W)t k (W)G°(K’, w) (8.116)
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If we look at the second, third and higher scattering terntbért-matrix, we see that they are a combination
of the t-matrix plus the bare scattering amplitude. Thisbégsgus to re-write the t-matrix as the following
self-consistent set of Feynman diagrams

tie (@)
—@—2—0—+—é—>—0—

K

(8.117)
Written out explicitly, this is

te (@) = Uceie + ), Ut G(K”, @)t () (8.118)
&

Equations (8.116) and (8.118) fully describe the scatteoifithe impurity.
As a simplified example of the application of these equatiteiais look at the case of s-wave scattering
off a point-like scattering center:
U(®x) = Us9(x) (8.119)

In this caseJ(q) = U is independent of momentum transfer. By observation, tléams that the t-matrix
will also be independent of momentum, itew (w) = t(w). The equation for the t-matrix then becomes

t(w)=U+U ) Gk, w)t(w) (8.120)
e
or
u

t(w) = TUFe (8.121)

where
Foy= (&P 1 fA deN() ————— (8.122)

T J @)e-a+ioe J, w — € +idsign()” ’

HereN(e) is the density of states ard= — is the bottom of the conduction sea. A high-energy diitias
been introduced to guarantee the convergence of the iht&jmgsically, such a cutfd corresponds to the
energy scale, beyond which ,the scattering potential ngdobehaves as a point potential. At low energies,
F(w) < 0, so that if the potential is attractive] < 0, there is the possibility of poles in the t-matrix,
corresponding to bound-states.

It is instructive to calculaté& (w) in two dimensions, where the density of states is constgax = N(0).
In this case,

1

A
F@ = NO) | de s = -NOn|

zZ-A
Z+u

}: -N(0)In

-A
m] (12 <<A) (8.123)

Here we have taken the liberty of moving into the complex elegplacingw — z, which permits us to
remove thds from the propagator. We have also simplified the final ansag&suming thalzl << A. The
final answer is then

U
= ——————. 8.124
@ 1+UN(0) In[ 2] ¢ )
Remarks
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e For an attractive potential) = —|U],
Ul _ 1
1-UINO)In=5 NO) [~ gy + =25
1

t(2) =

- m (8.125)

—(z+p)

wherew, = Ae oo . This has a pole at the energy
w= —wu—,u:Aefm —u

corresponding to a bound-state splif below the bottom of the electron sea. This energy seglean
not be written as a power-serieslih and as such, is an elementary example of a “non-pertugiativ

result. The bound-state appears because an infinite cldssyafan diagrams have been resummed.

(See Fig 8.4.) This is a special property of two dimensionshigher dimensions the potential must
exceed a threshold in order to produce a bound-state. (Tiheaagnce of a bound-state for electrons
scattering € an arbitrarily weak attractive potential is similar to thedper instability.)

08
t(w)
06
Tl (e — i8)]
04
02)
00F
0.2 —Wwp — K
04 ]
PR |
-20 -15 -10 05 00 05

Fig. 8.4 Showing real and imaginary parts of the t-matrix function for scattering off an

attractive delta function potential in two dimensions. The bound-state at w = —wo —
develops for arbitrarily small attractive interaction in two dimensions

e The functionF(2) contains a branch cut fas > —u, so that

-A A .
ln(m):ln(_‘m’)ﬂﬂ (w>—p)
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and hence
U
1+UN(0) In[ 2] - izUN(0)

wHp

t(w +16) = (w+p>0) (8.127)

The complex value of this expression reflects the appeaxrecphase shift” in the scattering t-matrix.
Indeed, we can write the t-matrix written in standard scageform in terms of a phase shift as

) €7siny
t(w +i6) = NQO) (8.128)
where
» = tard ZUN(0)
1+ UN(O)In[ - ]

is the scattering phase shift.

8.5 The self-energy

The concept of the self-energy enables us to understanceéutbéck of the interacting environment on a
propagating particle. This is one of the most important gxasof the power of Feynman diagram resum-
mation.

Let us consider the Greens function of a fermion in an intérgenvironment. Every diagram contribut-
ing to the propagator consists of a sequence of free propagseparated by various many-body scattering
processes. The self-energy sums the amplitude for all skthreermediate scattering processes into a single
entity represented by the symialWith this conceptual simplification, the propagator hasgtructure

=— :—>—+—>—@—>—+—>—@—>—@—>—+...(8.129)

where
(K, w) :—@—:9—&—+%+@+ ... (8.130)

denotes the self-energy: the sum of all scattering prosetbset can not be separated into two by cutting
a single propagator. By convention each of these diagramticotwo small stubs (without arrows) that
denote the points where the diagram connects with incomidgpatgoing propagators. We do not associate
any propagator with these stubs. In a rather macabre telwgiypathe external legs of the self-energy are
sometimes said to have been “amputated”.

The one-particle propagator can then be expanded as a geoseeies involving the self-energy, as fol-
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lows
Gk,w) = —m— + —»@—»— + —»—@—»—@—»— .
= G° + Go=G° + Go(=G%? ...
Gy 1
1-5GO Gk, ) -2k, w)
(8.131)
So that
1
Gk, w) = (8.132)

w—e& — 2k, w)

Feynman propagatqr

This heuristic derivation involves the summation of a gewimeaeries, which in general will be outside its
radius of convergence, but we may argue the result is truadlytc continuation. Another way to derive the
same result is to notice that the second and subsequentitethesseries (8.131) can be re-written in terms
of the original Green'’s function, as follows:

=—P— =

— -

GOk,w) + GOk, w)E(k, w)G(K, w)

(8.133)
Gkow) =

Dyson equatior

This equation is called a “Dyson equation”[2]. Using it tdwv@for G(k, w), we also obtain (8.132).
Physically, the self-energy describes the cloud of pariizlle excitations which accompanies the propagating
electron, “dressing” it into a quasiparticle. In generhk self-energy has both a real, and an imaginary
component.

Sk, w —i6) = T (k. ) + iT(K, w). (8.134)

The imaginary component to the self-energy describes tieeafadecay of the bare fermion, through the
emission of particle-hole pairs.
If we use this expression to evaluate the one-particle sgléfanction, we obtain
'k, w)
[w- & - Z'(k, w)]2 + Tk, w)?
If the self-energy is small, we see that this correspondsltorantzian of widthl" centered around a renor-
malized energy; = & +X'(K, ). If we expand the Lorentzian around this point, we must efoato write

AK, w) = 7—1rImG(k,w —i6) = (8.135)
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w-& Y (Kw) = (w-g)Z wherez;t = (1- HU,E’(k,w))\ME;. Near the renormalized energy~ e,
Zy

Gk, w - i6) = —F—,
kw=i0) =TT

(8.136)

where, provided', is small,

& e +2'(K, &), renormalized energy

(8.137)

1 Z Ik, €), Lifetime.

can be interpreted as a “quasiparticle” with enesggyand lifetimel’, (see section 7.8). Now this “quasipar-

ticle peak” is not the only component to the spectral functiecause it only contains a weidlt, while the
total weight of the spectral function is unity. The full Gréefunction is better represented in the form

G(k,w —16) = L
w-— g — il
whereGj . represents the incoherent particle-hole continuum dautian to the Green's function. This is
precisely the form of spectral function expected in a Feiquiitl (7.8), with a sharp quasiparticle pole co-
existing with an incoherent backgroung,.(k, w). From the spectral decomposition (6.123), we can relate
Z, to the overlap between the bare particle and the dressegpgutade:

+Ginclk, w) (8.138)

Z = a.ptcleka|c’ ) “Quasiparticle weight” (8.139)

8.5.1 Hartree-Fock Self-energy

The simplest example of the self-energy is the Hartree-Betflenergy, given by the two diagrams
She(p, w) = 9_&_

=i f {-(@5 + 1)Vgeo + Vpp ) dZwGO(k)e““W (8.140)
.

Here we see a case where we must include a convergence fsgociated with the normal ordering of the
operators inside the interaction. IdentifyifiglwGo(k)e“*" = 2nify, we obtain

13
e (p) = f %[(2& Do Vo (&)

The first term describes a simple shift in the energy due tontieaction with the uniform density of particles,
the second term describes thigeet of the exchange hole (Fig. 8.2) which lowers the denditigmions
around propagating particle. In the Hartree-Fock appratiom, the electron acquires a renormalized energy

(8.142)

(8.141)

*

€ = & + Zur(p)

but since the Hartree-Fock self-energy is completely stati this approximation, the quasiparticle has an
infinite lifetime and the renormalized propagator is

G(p) = ——

(A)*Ep
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The dispersion and the quasiparticle mass are renormdlizéue interaction. Now in general, th&ect of
the Hartree-Fock self energy will also shift the chemicakptial, changing the Fermi momentum to a new
value pg. We can improve the Hartree Fock solution by self-consttéaeding the renormalized Greens
function back into the Hartree Fock self energy, as follows

Zhe(p) :9 + —&—

The use of this kind of “self-consistent” approximation @mwmon in many body physics. If we expand the
double lines in the self-energies, we see that we ar@éte resumming an entire class of nested self-energy
diagrams, for example,

In Hartree Fock theory,fEect of this change is simply to renormalize the Fermi fundiased in evaluating
the self-energy, so that nofy = f(e;) reflects the quasiparticle Fermi momentpm so that

(8.143)

Sue(p) = f (d;—p);[(zs + Vg0 - vp,p,]f(e;,,) (8.145)
We can now relate the quasiparticle mass to the interacsioppose we write
% = Vo = [% + vszF(p)J (8.146)
then integrating by parts,
VoZhe(p) = - fp VoVop fy = + fp Vo Vopfp = - fp Vp-p Y Ty (8.147)
Now sincefy = f(€p), Vpfp = Vpep (9F/0€7) = —%6(5,;), we then obtain
VoS (p) = fp vpfp/(rf;)fs(e,;)
- %F fp Vo o0 D)ile) = (%F) N%“” f %vp_p,cosf)pp, (8.148)

whereN*(0) = m'pi/(x?1®), is the renormalized (quasiparticle) density of statesniake contact with
Landau Fermi liquid theory, we write
PF

VoZe(p) = _EFE

where

dQs [ Voo
F5= N*(o)fTﬂp(—%)cosep,p,).
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This is the dipolel(= 1) Landau parameter expected in Hartree-Fock theory, wtherguasiparticle interac-
tion is given byfpspo = Vg=0 = Vp-p'0sev, SO thatf;p, = Vg0 - %Vp,pr (see eq. (7.47). Combining (8.146)
and (8.148), we then obtain
P sy_ P
~(1+F)== 1
m*( +F3) m (8.150)
so that the renormalized mass is given by

m
=1+F;
m

(8.151)

Formally, this result is the same as that derived in LandamnFgquid theory (section 7.4.2), using the

Hartree-Fock approximation to the quasiparticle intéoact7.47 )
f5y = V=0 = Vpp-- (8.152)

However, a more realistic theory would take into accountsitreening and modification of the interactions
by the medium, a subject which we touch on at the end of thipteha

8.6 Response functions
|

One of the most valuable applications of Feynman diagrasis, €valuate response functions. Suppose we
couple the interacting system up to an external source field,

H() = Ho + Hs(t) (8.153)
where
Hs(t) = —A@) f(t) (8.154)
involves the coupling of an external force to a variable efs$lgstem. Examples would include
Hs(t) = —nyd3xﬁ(x) -B(x 1), External magnetic field
Hs(t) = — de)qo(x)(D(x, t) External potential (8.155)

In each case, the system will respond by a change in the \at). To calculate this change, we use the
interaction representation 6f(t) , so that

Au(t) = UT AU

S Ay
[ e

We shall now drop the subscriptbecausé\ (t) = A(t) also corresponds to the Heisenberg representation of
Ho. Expanding (8.156) to linear order s, we obtain

(8.156)

where, from chapter 7,

U(t) = T exp

(8.157)

An(t) = At) — i f l [AQ), Hs(t)]dt + O(H?) (8.158)
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Finally, taking expectation values, we obtain

t
(An(t)) = (PAWDIP) — i I (PITA®), Hs(t)]Ig)dt (8.159)

But if Ais zero in the absence of the applied force, (@A(t)l¢) = O, then the linear response of the system
is given by
(Au(t)) = fm dt y(t - t') f(t")dt’ (8.160)

where

X(t=t) = KgIIA®), A Ip)oct - ) (8.161)

is called the “dynamical susceptibility” art) is in the Heisenberg representation of the unperturbeésys
Now in diagramatic perturbation theory, we are able to eam@ltime-ordered Green functions, such as

XT(L-2) = (-)XSIT ADAR)). (8.162)

Here, the prefactor()? has been inserted because almost invariablg,a bilinear of the quantum field, so
thatyT is a two-particle Greens function. Fortunately, there isg/\deep link between the dissipative re-
sponse function, and the fluctuations associaed with alatime function, called the “fluctuation-dissipation”
theorem. The Fourier transforms®fandG are both governed by precisely the same many-body exaigtio
with precisely the same spectral functions, with one smidliecence: in the complex structure pfw), all

the poles lie just below the real axis, guaranteeing a retarésponse. By contrast, i (w), the positive and
negative energy poles give rise to retarded, and advanspdmses, respectively. The spectral decomposition
of these functions are found to be

_ 2AMPw,
)=, W — (w+16)2

a

: 2|M,2
XT(w)=|Z |Mal“w,
a

o (8.163)

whereM, = (1|Al¢) is the matrix element between the ground-state and theseksiatel andw, = E; — Eg
is the excitation energy. In this way, the response funatambe simply related to the time-ordered response
at a small imaginary frequency:

X(w) = =iy (@ + i) (8.164)

We can obtain the Feynman rules for the time-ordered cdiwaléunction, by introducing a source terry
and calculating the S-matri[ f]. In this case,

INS[f] = ~(ATIADAR)IIg) = x"(1-2) = 1 (8.165)

62
ST )
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Diagramatically, the time-ordered correlation function the quantity A, is given by
Y (w) = Z{diagrams formed by connecting two "A” vertices together. (8.166)

as summarized in Table 8.3.

Table 8.3 Table. 8.3 Relationship With Physical Quantities

AE iV Y {linked cluster iv [0,0 +@+ .
InS VTy{linked clusters VT 0,0+@+ L
—i(Ty(2y' (1)

>{Two leg diagrams

—<—+g+-<-@-<—+

(=)Ty(2)...y"(2n) >{2n- leg diagramis

XL

Response Functions

(PWITIARBDIY) = xAp

xAB = —ixpg(w — i6) —ix<>+® ...
B(1)

AR, BDO: ~ ) = vao

AQ)

December 1, 2011

8.6.1 Magnetic susceptibility of non-interacting electron gas

One of the fundamental qualities of an fermi liquid, is itsiocal response to an applied field. Suppose for
example, one introduces a localized “delta-function”wisance in the magnetic fieléB,(x) = Bs3(x). Since
the fermions have a characteristic wave vector of okgethis local disturbance will “heal” over a length-
scale of ordet ~ 1/kg. Indeed, since the maximum wavevector for low-energy gartiole excitations is
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sharply cut-& at g, the response produces oscillations in the spin density avivavelengtil = 2r/kg
that decay gradually from the site of the disturbance. Thessdlations are called “Friedel Oscillations”
(Fig. 8.5). In the case of the example just cited, the changled spin density in response to the shift in the
chemical potential is given by

SM(X) = xs(XB (8.167)

where

1 = [ (a0 =0 (8168)
q
is the Fourier transform of the dynamical spin susceptibifVe shall now calculate this quantity as an
example of the application of Feynman diagrams.
From the interaction in (8.155 ) the magnetization is given b

M(x) = f d*Xx(x— X)B(X) (8.169)

where

X, = Kl T O)]Ip)6() (8.170)

The electron fluid mediates this non-local response. If werigo transform this expression, thaf(q) =
)ﬁ(q)ﬁ(q), where (in a relativistic short-hand)

xan() = ifcf f d*x(gllo?(x). o (O)]ip)e(De (8.171)
We can relatgran(d, v) = —ix],(d, v + i6) wherk'the time ordered Greens function is given by
Xa(® = 5 6° a®
260G (k+Q)G(K)
=2 fk %“ Tr [r*G(k + Qr*G(K)| = Sanx " (). (8.172)
The susceptibility " (q) is then
X' (@ = —@éﬁ%[ﬁw}a‘] (8.173)

where we have invoked the notatien= & — idsgnéx). The term inside the square brackets has two poles at
w =& and atw = &.q — v,

f_fdiw 1 1 B 1
“,7 ZIT(E;HQ—E[()—V (u+V—Ek+q+i(5k+q w — € + ik

We may carry out the frequency integral by completing thet@onin the upper half plane. Each Green
function gives a contribution/2 x fermi function, so that

fk+q - fk

_— 8.174
k (&g — &) —v ¢ )

X' (@) = -2k

so that the dynamic susceptibilifq, v) = —ix" (g, v + i6) is given by
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Fig. 8.5 “Friedel oscillations in the spin density, in response to a delta-function disturbance in
the magnetic field at the origin.These oscillations may be calculated from the Fourier
transform of the Lindhard function.

fierg —
x(@.v+id6) = 2/1%[ kg = & dynamic spin susceptibility (8.179)

k V= (&g — &) +10

There are a number of important pieces of physics encoddmkinliove expression that deserve special dis-
cussion:

e Spin Conservation. The total spin of the system is conses@that the application of a strictly uniform
magnetic field to the fluid can not change the total magnétizaindeed, in keeping with this expecta-
tion, if we taked — 0 we find limy_o x(d.v) = 0.

e Static susceptibility. When we take the limit— 0, we obtain the magnetization response to a spatially
varying magnetic field. The static susceptibility is given b

(@) = 2 [ AT (©.176)

B Jk (ekeq — &)

This response is finite, because the spins can always fibdistthemselves in response to a non-uniform
field. When we take the wavelength of the applied field to infirie g — 0, we recover the Pauli
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q~0
2
v/(der)
1 1
! L]
0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 2
q/(2kr) q/(2kr)

Fig. 8.6 “The Lindhard function”. The Fourier transform of this function governs the magnetic Fig. 8.7 Density plot of the imaginary part of the dynamical spin susceptibility, calculated from
response of a non-interacting metal to an applied field. Notice the weak singularity (8.185) showing the band of width 2kg that spreads up to higher energies. Excitations
around q/(2kg) = 1 that results from the match between the Fermi surface, and the on the left side of the band correspond to low momentum transfer excitations of
wavevector of the magnetic response. electrons from just beneath the Fermi surface to just above the Fermi surface.

Excitations on the right hand side of the band correspond to high momentum transfer
. processes, right across the Fermi surface.
susceptibililty
2 df(e) 2 2 iris ai
x—2ug | |- o 2ug | 6(e) = 2ugN(0), (8.177) hole pair is given by
k k @k
whereN(0) = m?k; is the density of states per spin. The detailed momenturestgmt static suscepti- fkeq T & = 50 * m cosd

bility can be calculated (see below), and is given b
Y ( ) g y whered is the angle betweek andg. This quantity is largest whefi = 0, k = ke and smallest when

@) = 2ENOF (- 0=, k=ke 50 that
F(x) = A—t((l—xz)ln‘g +% (8.178) %+%>v>;—;—%
The functionF(x) is known as the Lindhard function[4]: it has the propertgtth(0) = 1, while F’(x) defines a band of allowed wavevectors where the particle-tiehsity of states is finite, as shown in
has a weak logarithmic singularity fat = 1. Figure 8.7. Outside this regiope(q, v) is purely real.
o Dissipation and the imaginary part of the susceptibilitye Tull dynamic spin susceptibility has both a real
and an imaginary part, given by 8.6.2 Derivation of Lindhard Function

x(@.v) =x'(@.v) +ix"(a.v).
The dynamic spin-susceptibility
where the imaginary part determines the dissipative paftefagnetic response. The dissipation arises
because an applied magnetic field generates a cloud ofa@idudie pairs which carry away the energy. @) = 2”25f fi = fkeq ) (8.180)
If we use the Dirac-Cauchy relation(k + i5) = P(1/x) — iz8(x) in (8.175 ), we obtain k (€k+q — €k = v)
X'(@.v) = 2u3 fk 76y = (€krq — @)](fk = fisq)s (8.179) can be rewritten as
1 1

+
(6c+q =& = v)  (6k—q — & +V)

x(q.v):méfkfk[ (8.181)

This quantity defines the density of states of particle-lalgtations. The excitation energy of a particle
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Written out explicity, this is

* kedk fl dcosd
-1

ran =24 [ 52 [ 95

1
e T G q))].

(€k+q
By replacingex — g—fn — p rescalingx = k/kg, § = 9/(2ke) and v’ = v/(4er), we obtainy(q,v) =
212N(0)F (d.7), where

1 1
F@,5) = if xzdxf dc{% o —v)] (8.182)
44 Jo 4 |xc+G-3
is the “Lindhard Function”. Carrying out the integral oveigée, we obtain
e 1 1 G- % + X . - ]
7—‘,v:—,,fxdx|n~ + (V- =V
@n=g | [ o e R G
1 7\2] [a-5+1 1
= li-(a-2) |in|— v 5= -+ 8.183
R R S
This function is known as the Lindhard function. Its statiit, F(§) = # (g, v = 0),
o Ly q+1’ 1
F(q)74d([1 q]ln’q_1)+2 (8.184)

has the property th&(0) = 1, and thatdF/dx s singular atx = 1 as shown in Fig. 8.6. The imaginary part
of x(q,v +19) is given

2

} -(v— —V)}

8.7 The RPA (Large-N) electron gas

X'(@.9) = 2ENO) % o {[1 - [ (8.185)

)
|
ol <2
frmthiii

o
N

5
—_—

-

|
—_—

Fs)

|
ol <t
frmthiii

which is plotted in Fig. 8.7.

Although the Feynman diagram approach gives us a way to gtenalt perturbative corrections, we still need
a way to selecting the physically important diagrams. Inegah as we have seen from the last examples, it
is important to resum particular classes of diagrams toiokt@hysical result. What principles can be used
to select classes of diagrams?

Frequently however, there is no obvious choice of smallipater, in which case, one needs an alternative
strategy. For example, in the electron gas, we could selagrams according to the power of entering
the diagram. This would give us a high-density expansiorhefgroperties - but what if we would like to
examine a low density electron gas in a controlled way?

One way to select Feynman diagrams in a system with no natonall parameter is to take the so-called
“large-N" limit. This involves generalizing some interndégree of freedom so that it h&scomponents.
Examples include:

e The Hydrogen atom in N-dimensions.
e The electron gas witl = 2S + 1 spin components.
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e Spin systems, with spi8 in the limit thatS becomes large.
e Quantum Chromodynamics, with N, rather than three colours.

In each of these cases, the lilNt - o corresponds to a new kind of semiclassical limit, whereadert
variables cease to undergo quantum fluctuations. The péeadibl plays the role of anféectiver:
1
—~" 8.186
= (8.186)
This does not however mean that quantufees have been lost, merely that their macroscopic consegae
can be lumped into certain semi-classical variables.
We shall now examine the second of these two examples. Thésdetake an interacting Fermi gas where
each fermion hadl = 2S + 1 possible spin components. The interacting Hamiltoniatilisvritten
+ 1 5 5
H= ; &CkoCr + 5 Z V€0 Cie—gor G Ceor (8.187)
but now, the spin summations run oWér= 2S + 1 values, rather than just two. A$is made very large, it
is important that both the kinetic and the interaction epeale extensively wit, and for this reason, the
original interactiorV is rescaled, writing

1
Va=Va

(8.188)
where it is understood that & — oo, V is to be kept fixed. The idea is to now calculate quantitiesnas a
expansion in powers of/N, and at the end of the calculation, to giMethe value of specific interest, in our
caseN = 2. For example, if we are interested in a Coulomb gas of sprelectrons, then study the family
of problems where
g YV

Vg = %g = W‘” (8.189)
andé = 2¢?/¢. At the end, we sell = 2, boldly hoping that the key features of the solution arobing 2
will be shared by the entire family of models. In practiceés tnly holds true if the density of electron gas is
large high enough to avoid instabilities, such as the foionatf the Wigner crystal. For historical reasons,
the approxation that appears in the lahgémit is called the “Random Phase approximation” or “RPAY fo
short, a method developed during the 1950s. The early veddithe RPA approximation was developed by
Bohm and Pines[5] while its reformulation in a diagrammégitguage was later given by Hubbard[6The
largeN treatment of the electron gas recovers the RPA electromgasadntrolled approximation.

With the above substitution, the Feynman rules are unchihregeepting that now we associate a factor
1/N with each interaction vertex. Before we start however,grae a few few preliminaries, in particular,
we need to know how to handle long range Coulomb interactfedl begin considering a generﬁh with
a finite interaction range. To be concrete, we can consideregsed Coulomb interaction

&

(Vq:qz_H;z

(8.190)

where we tak@é — 0 at the end of the calculation to deal with the infinite rangeraction.

2 A more detailed discussion of this early history can be foumithé book by Nozires and Pines|[7]
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8.7.1 Jellium: introducing an inert positive background.

To deal with long-range Coulomb interactions (and take> 0 in the above interaction (8.190)), we will
need to make sure that the charge of the entire system idlgetaatral. The resulting medium is a radically
simplified version of matter that is playfully refered to galfftum” (a term first introduced by John Bardeen).
In jellium, there is an inert and completely uniform backgnd of positive charges, with chargdel and
number density,(x) = p, adjusted so that. = pe, the density of electrons. The the Coulomb interaction
Hamiltonian of jellium takes the form

Hi= g [ VO 60 -p )60 - = 5 [ Vo tanomt): @19

wherep(X) is the density of electrons amg(x) = p(x) — p. is the fluctuation of the density. We see that the
Coulomb energy of jellium is only sensitive to the fluctuagan the density. The presence of the background
charge has the thefect of upwardly shifting the chemical potential of the etens by an amount

du= [ Vx=x)p.06) = Voop, (8.192)

This chemical potential shift can be treated as a scatt@atential that is diagonal in momentuVy - =
—Aud k, which introduces an additional uniform potential scatigterm into the electron self energy

—— = —Ap = —Vgops. (8.193)

k k
If we compare this term with the the “tadpole” diagrams in $ke#-energy
9 =-i(2S + 1)Vg=0 f G(K) = Vg=ope- (8.194)
k

we see that when we combine the terms, provided p., they cancel one-another.
9+—.——Vq(pep+) =0. (8.195)

Thus by introducing a uniform positively charged backgmbume entirely remove the tadpole insertions.
Let us now examine how the fermions interact in this largeeNrii gas. We can expand thé&eztive
interaction as follows

.’\/q
'~
AAAA = m+w@\/\m+w@m@m+_”
iVert(q) i%a i%e i%a iTe i (8.196)

The "self-energy” diagram for the interaction line is cdlla "polarization bubble”, and has the following
diagramatic expansion.

@ - Q * @ * & * @ * = iNy(q) (8.197)

o) o(1) o) O(1/N)
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By summing the geometric series that appears in (8.196) \arob
1 V@
N 1+V(qx(0)

This modification of the interaction by the polarization bétmedium is an example of “screening”. In the
large-N limit, the higher-order Feynman diagrams f§¢q) are smaller by factors of/N, so in the large-N
limit, these terms can be neglected giving

Vert = (8.198)

ix(@N = ixo()N + O(1) = +0(1) (8:199)

The large N approximation where we replade) — xo(q) is arso called the “RPA appoximation”.
In the case of a Coulomb interaction, where the screenerhitten becomes

1 &

= S 8.200
N oPerpa(g, w) ( )

Vet(d, w) =

where we have identified

&
erpa(0, ) = 1+ V(Qy(q) = 1+ ?Xc(q) (8.201)

as the dielectric function of the charged medium. Notice linwhe interacting medium, the interaction be-
tween the fermions has become frequency dependent, imdj¢hat the interactions between the particles are
now retardedFrom our previous study of the Lindhard function, we shottedy,(q) = N(0)F (a/(2ke)), v/ (4er))
where# is the dimensionless Lindhard function aN¢D) = 2’:{‘2“;2 is the density of states per spin at the Fermi
surface, so we may write

EWAqw)=1+z(7gvﬂ (8.202)
where the dimensionless coupling constant
#NO) 1 &€m 1 @
T ke T ke dnegl?  nkeas (;) s (8.203)

. . 1/3 . . . .
hereag is the Bohr radiusr = (%) / ~ 0.521 andrs = (akrag) ™' is the dimensionless electron separation
(see 8.105). Notice that the accuracy of the la¥gexpansion places no restriction on the size of the coupling
constantl, which may take any value in the lar§elimit. Summarizing,

L1 (7@
et o) =1+ 22 (T2D) (8.204)

Dielectric constant of the RPA electron gas

8.7.2 Screening and Plasma oscillations

At zero frequency and low momenturi, — 1, so the dielectric constant diverges:

€ =limg_0e(q,v = 0) = co.
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Is this a failure of our theory?

In fact: no! The divergence of the uniform, static dieleztonstant is the quintisential electrostatic prop-
erty of a metal. Since = oo, no static electric fields penetrate a metal. Moreover, thet®n charge is
completely screened. At smaj] the dfective interaction is

1 @& &

Vett(Q,v) = N@+e = SR D (N=2) (8.205)
where
k= V@N©) = V2&N0)/es  (N=2) (8.206)

can be identified as an inverse screening lengthis the “Thomas-Fermi” screening length of a classical
charge plasma. You can think of

2

escreenqu) = €~ ‘e(

e K
€a.0) T TP+

(wheree = —|€)), as the Fourier transform of the screening charge arouaclictron. We can see that
the electron charge is fully screened, simggeenindd = 0) = +/€. Note however, that there is still a weak
singularity in the susceptibility wheq ~ 2kg, yo(d ~ 2kg,0) ~ (g — 2kg) In(q — 2kg), which Fourier
transformed, gives rise to a long-rangscillatorycomponent to the interaction between the particles of the
form

COS Ker
Ver (r) o« —5 iy (8.207)
This long-range oscillatory interaction is associateditiedel oscillations.

A second, and related consequence of the screening is thgy@mse collective of plasma oscillations.
In the opposite limit of finite frequency, but low momentume way approximatgo by expanding it in

momentum, as follows

fk-+-q - fx (q . Vk) (df(e))
) = ~ 8.208
wolan = [ s~ [ (e ©:209
wherevy = Vie is the group velocity. Expanding this to leading order in neoitam gives
__ (@w?(_df@)_ _NOM (¢?\ ([
wota) = - [ (209 - TR (£ - (D)(E). (8.209)
whereri’= n/N is the density of electrons per spin, so that
“p
&) =1-— (8.210)
v
where
Wl = gn_en (N=2). (8.211)

Pom  em

is the plasma frequency. This zero in the dielectric funttbw = w, indicates the presence of collective
plasma oscillations in the medium at frequengy At finite g, wp(q) develops a, forming a collective mode.
Itis instructive to examine the response of the electrort@asime-dependent change in potential energy
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—6U(x, t) (corresponding to a change in eneigdy= —fé‘U(x,t)p(x)) with Fourier transformsU(q). In a
non-interacting electron gas, the induced change in charge

pe(d) = Nxo(q)oU(q)

Speld) = —i <>5u @

In the RPA electron gas, the change in the electron densitycied by the applied potential produces its own
interaction, and the induced change in charge is given by

corresponding to the diagram

(8.212)

Speld) = i [<>+<:>~<>+<>\,<>~<>+m sU(a)
=N [)(0 +x0(=Vxo0) + xo(=Vx0)* + .. ~J6U (a)
Xo(a) }
=N|[——""—|5U(q). 8.213
[l+(va0(q) 6U(a) ( )
So we see that the dynamical charge susceptibility is realized by interactions
Xo(9) F(8.7) . -
=N =N T ate— A = |» =0/2Ke, V = v/4¢ 8.214
Y@ =NV G = NO| T ErEs @=a/2k, 7=v/de)  (8214)

where7 (g, v) is given in (8.183) andv(0) = N x N(0) is the total density of states. The imaginary part of
the dynaical susceptibility(q, v — i6) defines the spectrum of collective excitations of the RR&&bn gas,
shown in in Fig. 8.8. Notice how the collective plasma modgpist off above the particle-hole continuum.

Remarks:

e The appearance of this plasma mode depends on the singulgrdnge nature of the Coulomb interaction.
It is rather interesting to reflect on what would have happenehe results of this section had we kept
the regulatings in the bare interactior¥/q (8.190) finite. In this case the plasma frequency would be
zero, while the dielectic constant would be finite. In otherds, the appearance of the plasma mode,
and the screening of an infinite range interaction are irtéiganterwined. In fact, the plasma mode in
the Coulomb gas is an elementary example of a Higg's partelinite mass excitation that results from
the screening of a long-range (gauge) interaction. We slisdliss this topic in more depth in section
(12.6.2).

8.7.3 The Bardeen Pines Interaction

One of the most famous applications of the RPA approach ihthBardeen-Pines theory[8] for the electron-
electron interaction. Whereas the treatment of “jelliumschibed so far treats the positive ionic background
as a rigid medium, the Bardeen Pines theory takes accoutstfifite compressibility. The ions immersed in
the electron sea are thousands of times more massive thaartieeinding electrons, so their motions are far
more sluggish. In particular, The ionic plasma frequenayiven by

2 _ (Z&)?Nion _ zZén
Qf = oM~ oM (8.215)
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2—; With these approximations, the combined dielectric cartdtathen given by
X"(q,v)
2 02
v/(4er) =1+ -2 (8.222)
(s IR
1 1 Substituting this dielectric constant into (8.216), tffieetive interaction is then given by
& 1 &
V, = == 8.223
D= Ne@d = N (@ + 2 - R@) ©229)
0 1 2 which we can separate into the form
q/(2kr) e 1 a2g
Verr(@ = Tl g2 | 11T z
. o . P+« R+x2- 2L
Fig. 8.8 Density plot of the imaginary part of the dynamical charge susceptibility @ 2,2 P
Imyo(a. v)/€(d, v)] in the presence of the Coulomb interaction calculated for 4= = 1, == [ > 1 S||1+ L:z] (8.224)
(rs ~ 6). using eq. (8.204) and eq. (8.183). Notice the split-off plasmon frequency N[+« 1-wg/v
mode, and how the charge fluctuations have moved up to frequencies above the where
plasma frequency. @
2 2
wy = QPW (8.225)

where+Z|enion is the charge density of the background-ions agglthe corresponding ionic density. The

jonic plasma frequency is thousands of times smaller theretbctronic plasma frequency. Note that the is a renormalized plasma frequency. Replaahgs”(2)(€?/€0) and setting\ = 2 we obtain

expression on the right-hand side of (8.215) follows from tbquirement of neutrality, which implies that

the electron density i& times larger than the ionic densitgn = Z|elnion = p.. The ionic plasma frequency 2 W2

Qp sets the characteristic frequency scale for charge fluonsof the background ionic medium. Ver(Q,v) = [ﬁ] [1 + 27“2] (8.226)
The charge polarizability of the combined electron-ion metnow contains two terms - an electron, plus €o0? + %) Vi Wy

an ionic component. In its simplest version, the Bardeee$iheory treats the positive ionic background as

a uniform plasma. In the RPA (lard¢) approximation, theféective interaction is then

Bardeen Pines interactian

1 V(9) 1V(q)
Vetf = So——rrr Y 7 =y (8.216) Remarks:
T NI+ V@Lo(@ +xion(@] ~ N (@)
where, e We see that the electron-electron interaction inside tiiane plasma has split into terms: a repulsive and
. (8.217) instantaneous (i.e frequency independent) screened Rbuiltteraction, plus a retarded (i.e frequency
. e RS dependentelectron-phonon interaction.
iDro(Q) + xion(@IN = < > (8.218) pende) P
S’ (8.219) retarded electron phonon interaction
e e
2

is the sum of the non-interacting RPA polarizeabilitiestaf electron and ionic plasmas, where the dashed Vert(G,v) = [ ¢ } [ ¢ } “q (8.227)
lines represent the ionic propagators. For frequenciesaat for electron-electron interactions, we can ap- (0P + ) o(q? + &%) | v ~ w%
proximate the electron component of the polarizeabilitgh®/low-frequency screening form screened Coulomb

K Itis the retarded attractive interaction produced by tlvesd term that is responsible for Cooper pairing

V(@xo(d) ~ —- (8.220) I ¢

q in conventional superconductors (see Ex 8.7 and [9])
By contrast, the large ratio of the ionic to electron massesantees that the ionic part of the polarizeability e The plasma frequency(8.225) is renormalized by the intenaof the positive jellium with the electron
is described by its high frequency, layplasma approximation (8.209), which for the ions sea, to form a dispersing mode with a linear dispersigr- cqat low frequencies, where

Q32 Q
V@ion(@) ~ ~—- (8:221) 0= (8:228)
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Now by (8.206),

3n ne\ 3 b
— | =3 .22
Eno -2 (- () TR (8.229)
wherewp is the electron plasma frequency, so that the sound velpodgticted by the Bardeen Pines
theory is

Qp z ( m )%
—=\=1=V3ly) Ve
V3 \wp 3\M
a form for the sound-velocity first derived by Bohm and StfM@; which remarkably, agrees within
a factor of two with the experimental sound-velocity for adeirange of metals [8]. In this way, the
Bardeen Pines theory is able to account for the emergenanagitiidinal phonons inside matter as a
consequence of the interaction between the plasma modes wfits and the electron sea.
e The Bardeen Pines interaction can be used to formulatffectige Hamiltonian for the low-energy physics

of Jellium, known as the Bardeen Pines Hamiltonian:

(8.230)

Hep = Z &Cl o + (8.231)

1 f 3
> Zveff(Qv €k — €)C k—qoCkr+qo” Chro Chor
ko 2

Bardeen Pines Hamiltonian

The Bardeen Pines model Hamiltonian is the predecessoed @8 model, and it demonstrates that
while the intrinsic electron-electron interaction is régie, “overscreening” by the lattice, causes it to
develop a retarded attractive component. (See Ex 8.7)

8.7.4 Zero point energy of the RPA electron gas.

Let us now examine the linked cluster expansion of the grestate energy. Without the tadpole insertions,
the only non-zero diagrams are then:

@@ 858

|- QO

O(l/N) ou/n?)
These diagrams are derived from the zero the zero-poinufitions in charge density, which modify the
ground-state energy — E, + E;p. We shall select the leading contribution

(8.232)

(8.233)

Zoieme}
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Now thenthdiagram in this series has a symmetry fagier 2n, and a contribution{y,(q)V(q))" associated
with then polarization bubbles and interaction lines. The energyupérvolume associated with this series
of diagrams is thus

w1l [ dyqg n
En=13 50 | grro@viar (8.234)

By interchanging the sum and the integral, we see that werpatseries of the forn},,, ":)" =-In(1+ x),
so that the zero-point correction to the ground—state gnisrg

Ezp = 2 (27()4"1[1 + (VqXO(q)]

Now the logarithm has a branch cut just below the real axispésitive frequency, but just above the real

axis for negative frequency. If we carry out the frequendggnal by completing the contour in the lower half
plane, we can distort the contour integral around the brantht positive frequency, to obtain

Ez"”sz

[In[1 + xo(@, v +i6) Vo] = I[1 + xo(d, v — i6) V]|

Vox"'(9.v) )
arctar| —— 2 Y 8.235
=3 el g e ©239
If we associate a “phase shift”
Vox"(@.) )
6(9, w) = arctan ———— 8.236
@) [+ Ve @ ] 6:239)
then we can the zero-point fluctuation energy can also béewiiih the form
AEzp= (2;1)3 f de(w) (8.237)
where
Aw) = 12@9). (8.238)
T ow

We can interpref\(w) as the “density of states” of charge fluctuations at an gnergVhen the interactions
are turned on, each charge fluctuation mode in the continwperiences a scattering phase shff, w)
which has the fect of changing the density of states of charge fluctuatibhe.zero-point energy describes
the change in the energy of the continuum due to these soateffects.

Exercises
|

Exercise 8.1 The separation of electrofigin a Fermi gas is defined by
4nRE =
=0

wherep is the density of electrons. The dimensionless separatigs defined ags = R./a where
a= ncf‘—; is the Bohr radius.
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(a) Show that the Fermi wavevector is given by

whereq = (%)% ~ 0.521.

(b) Consider an electron plasma where the background chingsity precisely cancels the charge
density of the plasma. Show that the ground-state energgattig order in the strength of the

Coulomb interaction is given by

E_S3R SR

pV " 5ae2r2 2rars
(2.21 0.916)

_ Ry

r2 rs

2
whereRy = &

You may find it useful to use the integral

1 1 x+y 1
dxfdx nl—| ==
]L; o yxy X-y 2

(c) When can the interactiorffects be ignored relative the kinetic energy?
Exercise 8.2 Consider a gas of particles with interaction

V=1/2 )" Va€'y 4,50 G0 S
Rk oo

(a) Let|g) represent a filled Fermi sea, i.e. the ground state of themtereicting problem. Use Wick's

(8.239)

smz IS the Rydberg energy. (Hint - in the electron gas with a camstharge back-
ground, the Hartree part of the energy vanishes. The Fotligthe second term in this expression.

theorem to evaluate an expression for the expectation \@ltiee interaction energy¢|\7|¢> in the

non-interacting ground state. Give a physical interpietadf the two terms that arise and draw the

corresponding Feynman diagrams.

(b) Supposég) is the full ground-state of the interacting system. If we #ulthe interaction energy
(#IV|$) to the non-interacting ground-state energy, do we obtairfuh ground-state energy? Please

explain your answer.

(c) Draw the Feynman diagrams corresponding to the secatet @orrections to the ground-state
energy. Without calculation, write out each diagram in eofithe electron propagators and interaction

Vg, being careful about minus signs and overall pre-factors.

Exercise 8.3 Consider a d-dimensional system of fermions with spin-degacyN = 2S + 1, massnand

total densityNp, wherep is the density per spin component. The fermions attractamaher via the

two-body potential
V(ri—ri):—(xé(d)(ri—ri), ((Y>O)

(a.) Calculate theotalenergyper particlees(N, p) to first order ine.

(b.) Beyond some critical value;, the attraction between to the particles becomes so gratth gas
becomes unstable, and may collapse. Calculate the depmndkn on the density per spin To what

extent do you expect the gas to collapse ia 1, 2, 3 whena is exceeded?

(c.) In addition to the above two-body interaction nuclearss also thought to interact via a repulsive

209
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three-body interaction. Write the three-body potendi@t, r i, r) = B6@ (ri—r )6 @(r; -ry), in second-
quantized form.

(d.) Use Feynman diagrams to calculate the ground-statgeper particle es(N, p) to leading order
in bothp anda. How does your result compare with that obtained in (a) wen2?

(e.) If we neglect Coulomb interactions, why is the cBise 4 relevant to nuclear matter?

Exercise 8.4 (a.)Consider a system of fermions interacting via a monrerdependent interaction(q) =
%U(q), whereN = 2S + 1 is the spin degeneracy. Whéhis large, the interactions in this fluid can
be treated exactly. Draw the Feynman diagram expansioréogtound-state energy, identifying the
leading and subleading terms in thé\lexpansion.

(b) Certain classes of Feynman diagrams in the linked-®fiestpansion of the ground-state energy
identically vanish. Which ones, and why?
(c.) If Nx©(q) = (5p(a)sp(—0))o is the susceptibility of the non-interacting Fermi gas, i.e

=iN (o), (8.241)

whereq = (g, v), what is the &ective interaction between the fermions in the lakgmit? Suppose
that in real space)(r) = €/r is a long-range Coulomb interaction, explain in detail whappens to
the dfective interaction at long-distances.

Exercise 8.5 Compute the rms quantum fluctuatios = +/((o — po)2) in the charge density of the elec-
tron gas about its average densjty, in the large-N limit. Show that\p/p, ~ O(1/N), so that the
density behaves as a semiclassical variable in the Mrgait.

Exercise 8.6 Show that the dynamical charge susceptibility of an intimgcelectron gas in the largs
limit, defined by

x(@.v +i6) = f dgxf i(llo(x. ). p(0, 0)]pye @D (8.242)
0
contains a pole at frequencies
3
wq = wp(l+ Eqv,:) (8.243)

wherew,, = /4r&fi/mis the Plasma frequency amgl = p:/mis the Fermi velocity.
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Exercise 8.7 Show that Bardeen Pines interaction (8.226) can be refatedlin terms of a screened

Coulomb and an electron phonon interaction given by (s€e [9]

1
Hi=3, k%m, Ver(Q)CksaoC—ao G Chr + k;gq(b*q +b-a)C-q0 Ok
0 = (M)% ZqVet£(q)
M) T
[20]

where

Ver1(Q) = P+ D)

is the screened Coulomb interaction and
Wn = qu _ q ((Ze)znion)
a [+ [@+x2?\ €M

is the phonon frequency.
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Finite Temperature Many Body

Physics

For most purposes in many body theory, we need to know howctade the fects of temperature. At first
sight, this might be thought to lead to undue extra compférithe mathematics, for now we need to average
the quantum fects over an ensemble of states, weighted with the Boltzraeerage

ePE
Pa= a (9.1

Itis here that some of the the most profound aspects of madhy playsics come to our aid.

R S

N NN NN NN
ANRRNNNNNNNNNNNNY NN BN
ARNAANNNANINNNNNY [y ANANANNY NN

ANNNANNNNNNNNNNNY AN INNNNNNY NN

Ground State T=0 Ensemble of states at temperature T>

e—BEx

4

Px=

At zero temperature, the properties of a system are determined by the ground-state.
At finite temperature, we must average the properties of the system over an ensemble
which includes the ground-state and excited states, averaged with the Boltzmann

ePEL

probability weight &=

Remarkably, finite temperature Many Body physics is no maffecdlt than its zero temperature partner,
and in many ways, the formulation is easier to handle. Thergfss step that makes this possible is due to
the Japanese physicist Kubo, who noticed in the early fiftiasthe quantum-mechanical partition function
can be regarded as a time-evolution operatamaginary time

pocePH = U(-ing),

H

whereU(t) = e is the time-evolution operator, and by convention, we wte= Ho — uN to take into
account of the chemical potential. Kubo's observation led to realize that finite temperature many body
physics can be compactly reformulated using an imaginatiger than a real time to time-evolve all states
it
- =T

h
Kubo's observation was picked up by Matsubara, who wroterdthe first imaginary time formulation of
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finite temperature many body physics. In the imaginary timgraach, the partition function of a quantum
system is simply the trace of the time-evolution operataajweated at imaginary time= -i 73,

Z=Tre PH=TrU(-inp),
whilst the expectation value of a quantityin thermal equilibrium is given by

_ Tr{U(-ing)A|
O TruEmT

an expression reminiscent of the Gell-Mann Lowe formulaegtiag that now, the S-matrix is replaced by
time-evolution over thdinite intervalt € [0, —i7g]: The imaginary time universe is of finite extent in the
time direction! We will see that physical quantities turrt twbe periodic in imaginary time, over this finite
interval € [0,78]. This can loosely understood as a consequence of the ireote induced by thermal

fluctuations: thermal fluctuations lead to an uncertakafly in energies, so

n

represents a characteristic time of a thermal fluctuatioocd®ses of duration longer thaploose their phase
coherence, so coherent quantum processes are limitedhaithorld of finite temporal extent;3.

> (b)

>0

Yp(B) =
Yr(B)

—4r(0)

Fig. 9.2 (a) Zero temperature field theory is carried out in a space that extends infinitely from

t = —cotot = 0. (b) Finite temperature field theory is carried out in a space that
extends over a finite time, from r = 0 to 7 = 3. Bosonic fields (yg) are periodic over
this interval whereas Fermionic fields () are antiperiodic over this interval.

One of the most valuable aspects of finite temperature qoamtechanics, first explored by Kubo concerns
the intimate relationship between response functions anelation functions in both real and imaginary
time, which are mathematically quantified via the “fluctoattlissipation theorem”.
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Quantunithermal Fluctuations» Dynamic Response

“Fluctuation dissipation”

These relationships, first exploited in detail by Kubo, and/iknown as the “Kubo formalism”, enable us to
calculate correlation functions in imaginary time, andnthiey analytically continuing the Fourier spectrum,
to obtain the real-time response and correlation functidrsfinite temperature.

Most theoretical many body physics is conducted in the imagi time formalism, and theorists rarely
give the use of this wonderful method a moments use. It isgilytfair to say that we do not understand the
deep reasons why the imaginary time formalism works. Feyramdanits in his book on Statistical mechanics,
that he has sought, but not found a reason for why imaginamg &nd thermal equilibrium are so intimately
intertwined. In relativity, it turns out that thermal detysinatrices are always generated in the presence of an
event horizon, which excludes any transmission of inforomeibetween the halves of the universe dfefient
sides of the horizon. It would seem that a complete undeisigrof imaginary time may be bound-up with
a more complete understanding of information theory andvym mechanics than we currently possess.
What-ever the reason, it is a very pragmatic and beautifufcamh, and it is this which motivates us to
explore it further!

9.1 Imaginary time
|

The key step in making the jump from zero temperature, toefitdmperatures many body physics, is the
replacement

9.2)

==

With this single generalization, we can generalize almwstyghing we have done at zero temperature. In
zero temperature quantum mechanics, we introduced thefdea Schoédinger, Heisenberg and interaction
representations. We went on to introduce the concept of tleerG function, and developed a Feynman
diagram expansion of the S-matrix. We shall now repeat ttastgprocedure in imaginary time, reinterpreting
the various entities which appear in terms of finite tempeesstatistical mechanics. Table 1. summarizes the
key analogies between real time zero temperature, and maggime, finite temperature many body physics.
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Table. 9.0 The link between real and imaginary time formalisns.

Schidinger eqn ls(t)) = &7 Iys(0)) ls(7)) = & ™Mlys(0))

Heisenberg rep Ap = éH A tH Ay = eHAe™

Interaction rep [y (1)) = e ™ol (1)) Y1 (7)) = e ol (7))

Perturbation Expansion S = (—oofTe [ Vo) Z=Tr [e‘ b Vd’]

Zy

[

Wick's Theorem P()eH(2) = (O TH(1)p (2)[0) am/ﬂ(z) = (Ty(1)yf(2)

Green’s function G (t) = =0Ty ()" 1 (0)0y Gar (1) = =Ty (x)y' 2+ (0)

InS =TV} [linked cluster=

Feynman Diagrams LiTAE

In Z = gV 3, [linked clustery = —BAF

9.1.1 Representations

The imaginary time generalization of the Heisenberg aneraation representations precisely parallels the
development in real time, but there are some minfiedgnces that require us to go through the details here.
After making the substitution— —it#, the real time Sclidinger equation

9

Hiys) = Ihatltﬁs% 9.3
becomes
i)
Hlys) = _Z,T|‘//s>- (9.4)
T
so the time-evolved wavefunction is given by
lys()) = & lys(0)). (9.5)

The Heisenberg representation removes all time-deperdemo the wavefunction, so thity) = [#s(0))
and all time-evolution is transfered to the operators,
An(r) = @HCDAgeHED = ehragetT, (9.6)
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so that the Heisenberg equation of motion becomes

oAy
e [H, A4]

If we apply this to the free particle Hamiltonian
H= Z ekCJ"ka

we obtain
(?TCk =[H, & = —ac
i
@ =[H, C%k] = EkCTk 9.7)
ar
so that
iﬁii ;Z%} (s =@ # @@ ). ©9.8)

Notice a key diference to the real-time formalism: in the imaginary timeddaberg representation, creation
and annihilation operator are no longer Hermitian conjegat

We go on next, to develop the Interaction representatiorictwfreezes time-evolution from the non-
interacting part of the HamiltonialH,, so that

(7)) = €°7lys(r)) = €&l = U@lim)

whereU(r) = 7M™ is the time evolution operator. The relationship between Heisenberg and the
interaction representation of operators is given by

Ay(7) = " Ase™ = UTH(1)A (1)U (7)
In the interaction representation, states can be evolvizeelea two times as follows
1 (r2)) = U(r)U " (@2)) 0 (12)) = S(r1. T2l (72))

The equation of motion fod (7) is given by

J d THT
7EU(T):7E[GH”9H]

= oty gt
= ebrvery(r)
=ViU@) ©9
and a similar equation applies &{r1, 72),
0
_ES(TL 72) = Vi(11)S(71, 72). (9.10)

These equations parallel those in real time, and followkar#y analogous procedures, we deduce that the
imaginary time evolution operator in the interaction regaration is given by a time-ordered exponential, as
follows

Urn)=T exp[— fT \ (‘r)d‘r]
o
S(r1,72) =T exp[—f ’ \ (T)dT]. (9.11)
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One of the immediate applications of these results, is tuigeoa perturbation expansion for the partition
function. We can relate the partition function to the tinwelation operator in the interaction representation
as follows

z=Tr[e™]|=Tr[e?u(p)]
U@
Tr [e’ﬂHﬂU (/3)] ]

P
=Tr [e*BHg][ e
= Zo(U(B))o

enabling us to write the ratio of the interacting, to the materacting partition function as the expectation
value of the time-ordered exponential in the non-interacsystem.

% = e PP (T exp[—foﬂvl(-r)dr])

Notice how the logarithm of this expression gives the shifEiee energy resulting from interactions. The
perturbative expansion of this relation in powers\ofs basis for the finite temperature Feynman diagram
approach.

(9.12)

(9.13)

9.2 Imaginary Time Green Functions

The finite temperature Green function is defined to be
Gt =7) = <T@y (@) = =Tr[eP Py (D, (7))

wherey, can be either a fermionic or bosonic field, evaluated in thieéttberg representatioR,= -T InZis
the Free energy. ThE inside the angle brackets the time-ordering operator.iBeoh\H is time independent,
time-translational invariance insures tigats solely a function of the time fierencer — 7’. In most cases,
we will refer to situations where the quantum numbés conserved, which will permit us to write

G (1) = 6,0 Ga(7).

For the case of continuous quantum numbersuch as momentum, it is convention to promote the quantum
number into the argument of the Green function, wrigi(@, ) rather tharg, (7).
As an example, consider a non-interacting system with Haman

H= Z v’ .,

wheree, = E,—pu is the one-particle energy, shifted by the chemical podéritiere, the equal time expectation
value of the fields is

(9.14)

(9.15)

n(e,) (Bosons)

f(e,) (Fermions) (9.16)

wﬁwwﬁM{
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where
1
n(e) = @
fle) = gerg (9.17)
are the Bose and Fermi functions respectively. Similarly,
1+n(e) (Bosons)
oy o Ty =
W' ) =00 = W' Ya) =S { 1-f(e) (Fermions) (9.18)
Using the time evolution of the operators,
Ua(r) = € “U,(0)
Yha(@) = €7y (0) (9.19)
we deduce that
Gur(r =) == [0t = )’ ) + L0 = D)Wy ] @0 (9.20)

where we have re-introducet = 1 for Bosons and-1 for fermions, from Chapter 8. If we now write
Gur(t=7) =6 Ga(r - 7), then

[(1+ n(e)o(r) + n(e)(-7)]
[(1 - f(e))o() - fe)o(-7)]

There are several points to notice about this Green’s fancti

(Bosons)

(Fermions) ©:21)

6.0 = —e*ﬂt{

e Apart from prefactors, at zero temperature the imaginanetGreen’s functiog,(r) is equal to zero-
temperature Green’s functid@,(t), evaluated at a time= —ir, G,(r) = —iG,(-i7).
e If 7 < 0the Green function satisfies the relation

G (T + ) = (G (7)
so that the bosonic Green function is periodic in imaginanet while the fermionic Green function is

antiperiodic in imaginary time, with periggl

9.2.1 Periodicity and Antiperiodicity

The (anti) periodicity observed in the last example is dbtsageneral property of finite temperature Green
functions. To see this, takes < 7 < 0, then we can expand the Green function as follows

Gar(T) = LW 2 (O)a(7))

= {Tr[ePH-Flyf ) eMy e ] (9.22)

Now we can use the periodicity of the trace AB) = Tr(BA) to cycle the operators on the left of the trace
over to the right of the trace, as follows
g/u'(T) - (TI’ [eerlefrHe—B(H—F)w%/y]
= (Tr [eaFeere—(”ﬁ)ku]
=(Tr [e—/s(H—F) erAH W e (THHH WTA’J
= {Trya(r + By v (0)

=G (7 +p) (9.23)
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This periodicity, or antiperiodicity was noted by Matsudfdy. In the late 1950’s, Abrikosov, Gorkov and
Dzyalozinski[2] observed that we are in fact at liberty toesd the function outsidé(r) outside the range
7 € [-B. 8] by assuming that this periodicity, or antiperiodicity emtls indefinitely along the entire imaginary
time axis. In otherwords, there need be no constraint onghe\ofr in the periodic or antiperiodic boundary
conditions

Gar(t+B) = G (7)

With this observation, it becomes possible to carry out aieoexpansion of the Green function in terms of
discrete, frequencies. Today we use the term coined by A&oik Gorkov and Dzyaloshinskii, calling them
“Matsubara” frequencies|[2].

9.2.2 Matsubara Representation

The Matsubara frequencies are defined as

Vi = 2nnkg T
wp =n(2n+ L)k T

(Boson)

(Fermion) (9.24)

where by conventiony, is reserved for Bosons aig, for fermions. These frequencies have the property that

dn(TB) — gt
don(+h) = _gent (9.25)
The periodicity or antiperiodicity of the Green functiontigen captured by expanding it as a linear sum of
these functions:

[ T EaGar(ive)e™" Boson
Gu () = { T Y0 G (iwp)e o™ Fermion (9.26)
and the inverse of these relations is given by
Gav(iap) = f A6 (1), (an = {Matsubara frequengy 9.27)
0

Free Fermions and Free Bosons

For example, let us use (9.27) to derive the propagator forinteracting fermions or bosons with =
> et . For fermions, the Matsubara frequenciesiarg= 7(2n+1)ks T so using the real time propagator(9.21),
we obtain
[L+ePa]t
. . ——
Galiwn) = — fﬂ dreln=ed™ (1 - f(ey))
0
_—
1 (E('“’”"") _ 1)

- iwn—€  1l+eha ©.28)

so that
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Ga(iwp) = Free Fermions (9.29)

iwn — €

In a similar way, for free Bosons, where the Matsubara fragies areiv, = 7n2nkgT, using (9.27) and
(9.21), we obtain
[1-ePe]-1
) . N —
Galivn) = - fA dree07 (1 + n(ey)
0
—_
1 (e(lvn—s,y) _ 1)

= hiTa 1-e (9.30)

so that

Ga(ivn) = - Free Bosons

vn— €&

(9.31)

Remarks

o Notice how the finite temperature propagators (9.29) arllj%re essentially identical for free fermions

and bosons. All the information about the statistics is dedan the Matsubara frequencies.

e With the replacement — iw, the finite temperature propagator for Free fermions (9.2®ssentially
identical to the zero temperature propagator, but notiaettie inconvenienissign(,) in the denomi-
nator has now disappeared.

Example 9.1: Calculate the finite temperature Green function
D(7) = ~(TX(1)x(0)) (9.32)
and its corresponding propagator

D(iv) = fd & D() (9.33)
0
for the simple harmonic oscillator

H = hw(b'b + %)

— n F
= ,/2 (b+b") (9.34)
Solution:

Expanding the Green function in terms of the creation and annihilation topgrave have

D) = 5= (T(0(e) + b/ (D)(B(O) + (0
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h &
=~ 5= ((TH(@D(0)) + (T (@)b(0))). (9.35)
where terms involving two creation or two annihilation operators vanish. d&g the derivations that
ledto (9.21)
~(Th()b'(0)) = G(r) = ~[(1 + N(w))A(¥) + N(@)b(-7)]e " (9.36)
and

~(Tb'(0)b(0)) = ~[n(w)é(r) + (1 + n(w))]e”"
= [ + n(-w))6(r) + N(-w)o(-7)]e"". (9.37)

which corresponds teG(r) with the sign ofw inverted. With this observation,

D) = 5= 16() - (w = ~w]. 0.39)

When we Fourier transform the first term inside the brackets, we og&{n so that

: I 1 1
Dliv) = 2mw [ivn @ ivn +w]

h 2w
= [W . (9.39)
This expression is identical to the corresponding zero temperaturegatyy, evaluated at frequency

Z=livy.

Example 9.2: Consider a system of non-interacting Fermions, described by the Haiaiitbh =
Y. &c’ ¢ wheree;, = E; — u andE; is the energy of a one-particle eigenstate arisl the chemical
potential.

Show that the total number of particles in equilibrium is

NG) =T 3 Galiwn)e "

whereG,(iwn) = (iw, — €)7* is the Matsubara propagator. Using the relationstip —0F /gy show
that that Free energy is given by

F(T, ) = kT " In[-Ga(iwn) ] €10 + C(T) (9.40)

Aiwn
Solution: The number of particles in statecan be related to the equal time Green'’s function as follows
Ny = (€,60) = <(Tcy(07)c,) = Ga(07).

RewritingG() = T %;,,, G.€ ", we obtain

NG = D N =T " Giliwn)e”
a

Ajwn
Now since—-dF/du = N(u), it follows that
" gwn0*
F-[lamw=1¥ [fagSers
=-T > In[e, - iwg] €°'
Aiwn
=-T Z In[-G(iwn) ] €°" + C(T). (9.41)
Aiwn
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We shall shortly see th& = 0 using Contour integral methods.

Example 9.3: Consider an electron gas where the spins are coupled to a magneticdididis =
& —peo B. Write down an expression for the magnetization and Hgréntiating w.r.t the field, show
that the temperature dependent magnetic susceptibility is given by

M 2
X0 = G5, , =2t 3600
whereg(k) = G(k, iw,) is the Matsubara propagator.
Solution: The magnetization is given by
M = ug Z {(CkrCho) = usT Z oG (K, iwp)e "
Ao kaiwn

Differentiating this w.r.tB and then settin@® = 0, we obtain

— ﬂ — _2 2 B 2
X= gl = HeT k; TG (K, iwn)
wn B=0
= —212ksT Z G(k)? (9.42)

Kiiwn

9.3 The contour integral method

In practice, we shall do almost all of our finite temperatuateglations in the frequency domain. To obtain
practical results, we will need to be able to sum over the Mzsa frequencies, and this forces us to make an
important technical digression. As an example of the kintheks we might want to carry out, consider how
we would calculate the occupancy of a given momentum staeHermi gas at finite temperature, using the
Matsubara propagat@(p, iws). This can be written in terms of the equal time Green fumgtés follows

L__guo

e (9.43)

(poCor) =G(P.O) =T )"
n
A more involved example, is the calculation of the finite temgture dynamical spin susceptibiljgfq) of
the Free electron gas at wavevector and frequeney(q, ivn). We shall see that this quantity derives from a
Feynman polarization bubble diagram which gives

x(0) = 23T )" G(p+ Q)G(p) = 23 ) [kBT DG+ iw +iv)G(p,iw) | (9.44)
P P r

where the-1 derives from the Fermion loop. In both cases, we need to kmowto do the sum over the
discrete Matsubara frequencies, and to do this, we use ttieohef contour integration. To make this possi-
ble, observe that the Fermi functidiiz) = 1/[¢% + 1] has poles of strengthksT at each discrete frequency
Z = iwy, because

1 1 ks T

fliwn +0) = Srgrg =

BT
so that for a general functidf(iw,), we may write
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(CI) 1,

/

Pole of F(z)

o~ —~p~ L.

{_Branch-cut
Cof F(2)

(C) 1w,

C/ C /
O (o rrered)

Pole of F(2) Branch-cut
of F(2

Fig. 9.3 (a) Contour integration around the poles in the Fermi function enables us to convert a

December 1, 2011

discrete Matsubara sum T Y F(iwy) to a continuous integral (b) The integral can be
distorted around the poles and branch-cuts of F(2) provided that F(2) dies away faster
than 1/|7 at infinity.

) dz
kBT; F(iwn) = fc 5 F@f@ (9.45)
where the contour integrél is to be taken clockwise around the poleg atiw, as shown in Fig. 9.3 (a)
Once we have cast the sum as a contour integral, we may imedthull” contours (Fig. 9.3 (b)) which
allow us to distort the original conto@ into the modified contou€” shown in Fig. 9.3 (c), so that now

KeT > Fliwn) = fc %F(z)f(z)

whereC’ runs anticlockwisearound all the poles and branch-cutsF(z). Here we have used “Jordan’s
lemma” which guarantees that the contribution to the irgefjom the contour at infinity vanishes, provided
the functionF(2) x f(2) dies away faster thary[i] over the whole contour.

For example, in case (9.43(2) = % so thatF(2) has a single pole at= ¢,, and hence

(9.46)

~ 1 o (dZ 1 4
(o) = Tzn: jwn — e(p)é - L 2ni z— epezo @
= (&),

(9.47)
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recovering the expected result. In this example, the cgevere factoe?®" that results from the small negative
time increment in the Green function, plays an importang iiokide the Contour integral, where it gently
forces the functiori(2) to die away faster thary/[z in the negative half-plane. Of course the original contour
Cintegral could have been made by arbitrarily replacifg) with f(z) — constant. However, the requirement
that the function dies away in the positive half plane foreg$o set the constant term here to zero.
In the second example (9.44)
1 1

F(2) = -G(p + g.iva + 2G(p.2) = TR S——
n p+a P

which has two poles &= ¢, andz = —iv, + €y.q. The integral for this case is then given by
dz
—_92 i
x(@) = ~2up §p fc 5 C(P +0.2+1m)G(p. 919

=- Z (G(p, =iV + €piq) T (=iva + €1q) +G(P + 0. & + ivn)f(ep)) (9.48)

P
The first term in the above expression deserves some spéeiafian. In this term we shall make use the
periodicity of the Fermi function to replace

f(=ivn + €p4q) = T€prq)-
This replacement may seem obvious, however, later, whelytanadly extendingiv, — z we will keep
this quantityfixed, i.e, we will not analytically extendf(—ivy + €.q) — f(=Z + €.q). In other words,

the continuatioriv, — zis made, keeping the location and residues of all polegdnz) fixed. With this
understanding, we continue, and find that the resultingesgion is given by

forg = f
Jivn) = 243 (#) 9.49
x(@ivn) = 21 ; o e (949)
where we have used the shorthapd= f(ep). The analytic extension of this quantity is then
forq — o
x(0.2) = 23 (“7 (9.50)
3 Zp: 2= (ép+q — &)

A completely parallel set of procedures can be carried famreation over Matsubara boson frequencies
ivn, by making the observation that the Bose functigz) = d,z{l has a string of poles at= iv, of strength

kgT. Using a completely parallel procedure to the fermions, btaio

keT Z P(ivy) = — fc %P(z)n(z) =- fc / %P(z)n(z)

whereC is a clockwise integral around the imaginary axis &@ids an anticlockwise integral around the
poles and branch-cuts &f(z). (See exercise 9.1.)

Example 9.4: Starting with the expression
F=-T Z In[(e; — iwn)]€“®" + C(T)

lian

derived in example (9.1), use the contour integration method to show that

F=-T > In[1+e#]+C(T)
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so thatC(T) = 0.
Solution: Writing the Free energy as a contour integral around the poles of the iamgigiris, we have

F:;fp%f(z)ln[q—z]e”+c(T)

where the pathP runs anticlockwise around the imaginary axis. There is a branch cut ifutiction
F(2) = In[e;, — 7] running fromz = ¢, to z = +co. If we distort the contour P around this branch-cut, we
obtain

dz
F= ;fp 5 f@nle -7 +C(T)
whereP’ runs clockwise around the branch cut, so that

F:Zf:d?‘”f(w)wm

= Z ~TIn( + e#4) + C(T) (9.51)

so thatC(T) = 0, to reproduce the standard expression for the Free energy obarsat-interacting
fermions.

9.4 Generating Function and Wick’s theorem
|

The zero temperature generating functions for free ferm@rbosons, derived in chapter 7. can be general-
ized to finite temperatures. Quite generally we can considding a source term to a free particle Hamilto-
nian to formH(z) = Ho + V(7),

Ho
V(1)

(9.52)

2z Ewillm }
= @y + v an(@)]
The corresponding finite temperature Generating functisrectually the partition function in the presence
of the perturbatiorV. Using a simple generalization of (9.13), we have

i

Zolirn] = Zo(Te b Vi),

=2Zy(T exp[ j: dr ) (m(ewa(n) + wmr)m(r))}m (9.53)
a

where the driving terms are complex numbers for bosons, feutiaticommuting C-numbers or Grassman
numbers, for fermions. For free fields, the Generating fonel is given by

@: 7; f dTldeﬁa(l)GA(ﬁ*Tz)'h(z)j

G(r1— 12) = <(Tya(ro)y a(r2))

exp

(9.54)

A detailed proof of this result is given in Appendix A of thisapter. However, a heuristic proof is obtained
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by appealing to the “Gaussian” nature of the underlying Fiedds. As at zero temperature, we expect the
the physics to be entirely Gaussian, that is, that the aotgi of fluctuation of the free fields are entirely
independent of the driving terms. The usefulness of the rg¢ing function, is that we can convert partial

derivatives with respect to the source terms into field dpesanside the expectation values,

o
ﬁ - (1),

1
) .
- i (2), 9.55
5z V@ (955)
where we have used the short-hand notaicl) = 7,(71), ¢(1) = ¥.(r1)). In particular
§1n Zo[n, ]
—— = = (W()), 9.56,
o) = (9.56)

where the derivative of the logarithm @[7, 7] is required to place &o[n,7] in the denominator for the
correctly normalized expectation value. For bosons, yaitisiak of the source terms as an external field that
induces a condensate of the field operator. At high tempestonce the external source term is removed,
the condensate disappears. However, at low temperatar@sBose-Einstein condensate, the expectation
value of the field survives even when the source terms arewed-or fermions, the idea of a genuine
expectation value for the Fermi field is rather abstract,iartlis case, once the external source is removed,
the expectation value disappears.

We can of course take higher derivatives, and these do nithyaven when the source terms are removed.
In particular the second derivative determines the flueinatof the quantum field, given by

FInZolnml _ 6 [ 1 620[5-!7]]
an@enn) ~ on@ | Zalmmon(H .
__ 1 &Zha 1 [620[77,77]
Zoln,n) on(2)on(1)  Zoln,ml | 6n(2)
= (v @u) - v @)ww)
= (Tu(Ly' @) - W' )
= T - w@W))v' @ - W' @) = Guwos' @),

6Zo[17, 1]
on(1)

]Zo[%ﬂﬂ [

(9.57)

wheresy(1) = (1) — (¥(1)) represents the fluctuation of the fieldaround its mean value. If this quantity
is independent of the source terms, then it follows that thetdlations must be equal to their value in the
absence of any source field, i.e.

InZoli.nl _ 6*InZolip.n]
Smr)dna(rz)  dnalra)onalrz)

A more detailed, algebraic rederivation of this result igegiin Appendix A. One of the immediate corollo-
raries of (9.128) is that the multi-particle Green functi@an be entirely decomposed in terms of one-particle
Green functions, i.e., the imaginary time Green functidmsyca Wick'’s theorem. If we decompose the origi-
nal generating function (9.127) into a power series, we firad the general cdicient of the source terms is
given by

=-Gu(r1-T2).

=i7=0

G 2,..m 1,2, ... = (Ty(). ..y (). w(@))

by contrast, if we expand the right-hand side of (9.128) sngame way, we find that the same foéent is
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given by

> @°] Jer-P)
P r=1

wherep is the number of pairwise permutations required to prodheegermutatior?. Comparing the two
results, we obtain the imaginary time Wick’s theorem

G(L2..n1.2,. . .n)= Z(—l)p ]_[ G(r-Py)
P r=1

Although this result is the precise analog of the zero-temipee Wick's theorem, notice that that unlike
its zero-temperature counterpart, we can not easily dehigeresult for simple cases by commuting the
destruction operators so that they annihilate againstabhaum, since there is no finite temperature vacuum.

Just as in the zero temperature case, we can define a “camtraas the process of connecting two free
-field operators inside the correlation function,

~UN2).) — (T)W(2) = -G(1 - 2)

(Lt @) ). ) — T @) = e -2)

so that as before,

[ ! \

(—D)™T[(Q)(2)...om)... 0 (Py) ... (PY)... 0 (PL)])

=PG(L-PYGE2-Py)...G(n - Py).

(9.58)

Example 9.5:
Use Wick’s theorem to calculate the interaction energy oflatel Bose gas of spi$ bosons particles
interacting via a the interaction

v-1

> Z V(@' ki gob ko Die g0 bl

Qko Ko’

at a temperature above the Bose Einstein condensation tetpe
Solution: To leading order in the interaction strength, the intecacénergy is given by

W= Y V@O karbcrbigrbe)

gkk.o0
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Using Wick’s theorem, we evalute
e
O kg b BesaorDerd = (b, 0 bh bkt g.00k) + (B y g obhr bk g.07 k)
= NN 6.0 + MMk qOk k O (9.59)
so that
Wy = % fk T [(2S + 1)?Vieo + (28 + WVicie|

whereny = gt

9.5 Feynman diagram expansion

We are now ready to generalize the Feynman approach to femitedratures. Apart from a very small change
in nomenclature, almost everything we learnt for zero tewapee in chapter 8 now generalizes to finite
temperature. Whereas previously, we began with a Wick expawos theS matrix, now we must carry out a
Wick expansion of the partition function
[ (e o -
0

All the combinatorics of this expansion are unchanged aefieimperatures.
Now we are at finite temperature, the Free endtgy E — ST— uN replaces the energy. The main results
of this procedure can almost entirely be guessed by andiogygrticular:

Z=e"" =2Zy(Texp

e The partition function
Z= ZOZ{UnIinked Feynman diagrams

e The change in the Free energy due to the perturbatisngiven by
z ) .
AF =F -Fg=-kgTIn [Z] = —kgT Z[Lmked Feynman diagrams

This is the finite temperature version of the linked cluseorem.
e Matsubara one-particle Green's functions

G(1-2)= Z[Two-legged Feynman diagrains
, and the main changes are

(i) the replacement of ai — —1 in the time-ordered exponential.

(i) the finite range of integration in time
o B
f dt—)f dr
- o

which leads to the discrete Matsubara frequencies.
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Table. 9.1 Real Space Feynman Rules: Finite Temperature .

2 G(2-1)
> X U(x)
]>'\f\f\.f\f\f\»<2 —V(l — 2)

Integrate over all intermediate times and positions.

—(2S +1)6(6,07)

[-(s + 1),

F =no. Fermion loops.

—a—e(1) n(1)
- n(lje—a——r -n(1)
p

p = order of symmetry group.
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The dfect of these changes on the real-space Feynman rules is sinedna Table 9.1.
The book-keeping that leads to these diagrams now invohesedistribution of a+1” associated with
each propagator

¥(2)... vi(1) - ()x6@-1). (9.60)

where as before,

G2-1)=2—=—1
(9.61)

represents the propagation of a particle from “1” to “2”, botv we must redistribute dr(rather than av—i)
to each end of the progator. When these terms are redistlilaui® one-particle scattering vertices, they
cancel the-1 from the time-ordered exponential

[

—U(z) =(@i)?x-Ux=UX
. (9.62)
2
whereas for a two-particle scattering potentll — 2), the four factors of give a {)* = 1, so that the
two-particle scattering amplitude 48/(1 — 2).

1>W<2 =()*x-V(1-2)=-V(1-2). (9.63)

Apart from these small changes, the real-time Feynman eukebasically the same as those at zero temper-
ature.

9.5.1 Feynman rules from Functional Derivatives

As in chapter 8, we can formally derive the Feynman rules feofunctional derivative formulation. Using
the notation

f d1d27(1)G(L - 2)(2) = § ———— 7 (9.64)

wheredl andd2 implies the integration over the space-time variables,) and €, 7,) and a sum over
suppressed spin variables ando-,, we can write the non-interacting generating functional as

% = &) = ext] -7 ——=—)| (9.65)

where we have used the short-hand
. s .
§=T1 exp[ | e + t//‘(l)n(l)]]

Now each time we dierentiateS with respect to its source terms, we bring down an additifielal operator,
so that

o A N

——(T...S)o={(..¥(1)...S),

67](1)< Yo =(...¥(1) Yo

231

bk . pdf

December 1, 2011

Chapter 9. ©Piers Coleman 2011

B . . .
T So=(T - v'@).. S (9.66)

we can formally evaluate the time-ordered expectationevafitany operatoF [y, y] as

TF[0.u] 80 = FI2, %} expl-7 ——=—1]|

on
@ :<Texp[— fﬁ V(T)dr] Sho
0
d 5 6
- [ 3)

The formal expansion of this functional derivative genesahe Feynman diagram expansion. Changing
variables to ¢, @) = (n, —17), we can remove the minus-sign associated with each progagaobtain

so that

exn[fﬁ — n]

Z[’Tf"’] = exp[(—l)“ foﬁ dTv((%, 5%)] exda ———2a (9.67)

for ann- body interaction. The appearance of thd)" in the exponent indicates that we should associate a
(—=1)" with the corresponding scattering amplitude.

As in the case of zero temperature, we may rega®i §s a machine for generating a series of Feynman
diagrams- both linked and unlinked, so that formally,

Z[a,a] = ZOZ{UnIinked Feynman diagrams

9.5.2 Feynman rules in frequency/momentum space

As at zero temperature, it is generally more convenient tekvio Fourier space. The transformation to
Fourier transform space follows precisely parallel lineghat at zero temperature, and the Feynman rules
which result are summarized in Table 9.2. We first re-writeheiateraction line and Green’s function in a
Feynman diagram in terms of their Fourier transformed em

] 2 -600-%) - 3, | Gacmen
—— 2 =G(X1 - Xp) = =
- (27r)d 1

d-1,
1>M<2 =V(X-X) =T Z f 7(;)flwq)éq(xrx2) (9.68)

where we have used a short-hand notatioa (p,ian) (Wherea, = wy, for fermions,a, = v, for bosons),
q=(q,ivn), X = (X,i7), ip.X = ip - X — iwpT andiq.X = iq - X — iv;7). As an example, consider a screened
Coulomb interaction

V(r) = ?e”"

In our space time notation, we write the interaction as

V(X) = V(X,7) = le;‘e**‘“ x &(7)
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Where the delta function in time arises because the interadi instantaneous. (Subtle point: we will in
fact inforce periodic boundary conditions by taking thetalélinction to be a periodic delta functioitr) =
>n6(r — nB)). When we Fourier transform this interaction, we obtain

V(Q = V(@i = [ dxvie e
B
- d3 d T (0 X=,T)
f X fo V(X)3()e

Table. 9.2 Momentum Space Feynman Rules: Finite Temperature

Go(K, iwn) Fermion propagator )
(k. iwn) =V(q) = Frea (9.69)
. and the delta function in time translates to an interactia is frequency independent.
-V(q) Interaction . o o
We can also transform the source terms in a similar way, ngiti
]M d3p .
» X)=T grX
@) 09 EIWF”@
~G3Do(0. ivn) Exchange Boson. #Bp ix
nX)=T f—e’”’ n(p) (9.70)
Y Z @3
Rl (A o . . o
where,ipX = ip- X — ian7. With these transformations, the space-time co-ordinasssciated with each
scattering vertex now only appear as “phase factors”. Byingathe integral over space-time co-ordinates
>_ -q u(q) Scattering potential at each such vertex, we impose the conservation of momentdr(déscrete) Matsubara frequencies at each
vertex

and frequency per loop in the Feynman diagram. To be suré¢hisatally works, let us count the number of
dig 00 Sum over internal loop frequency and independent momenta that are left over after imposing at@nsat each vertex in the diagram. Consider
T Z 7(2”)d ¢ momenta. a diagram withV vertices and® propagators. In d spacetime dimensions, each propagatodirtesP x d,
" momenta. When we integrate over the space-time co-ordinates V vertices, we must be careful to split
the integral up into the integral over the— 1 relative co-ordinateX; = Xj,1 — X;j and the center of mass

co-ordinates:

OWO p=2 fﬂddx,-:fddxmfﬁd%
26,

(a.ivn)

P2
X = | d*XePrP9X = (270)3853) (1 — pp — A)Suras, 9.71
[-(2s + 1), F= no. Fermion loops MV\EN{ f R ©-71)
’ P1
Since momentum and frequency are conserved at each véiitemeans that there is one independent energy

p = order of symmetry group. This imposes\ - 1) constraints per dimension, so the number of independententa are then

Tl

no. of independent momenta d[P — (V — 1)]

Now in a general Feynman graph, the apparent number of mamelobps is the same as the number of
facets in the graph, and this is given by

L=&+(P-V)

where& is the Euler characteristic of the object. The Euler charigtic is equal to one for planar diagrams,
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and equal to one plus the number of “handles” in a non-plaizgrdm. For example, the diagram

V=4, P=6, L=4 ©72)
hasV = 4 vertices,P = 6 propagators and it has one handle with Euler charactefist= 2, so that
L = 6-4+2 = 4 as expected. So from the above, we deduce that the numbsitedendent momenta is
given by

d[L - (E - 1)]

This result needs a moments pause. One might have expectgzenof independent momentum loops to be
equal toL. However, when there are handles, this overcounts the nuofiliedependent momentum loops -
for each handle added to the diagram adds only one additimoalentum loop, but increases by 2. If you
look at our one example, this diagram can be embedded onraleyliand the interaction propagator which
loops around the cylinder only counts as one momentum laemgga total of 4- (2 — 1) = 3 independent

momentum loops.
/ Handle

~
L=4 L=4-1=3
In this way, we see thdt = L + (E — 1) is the correct number of independent momentum loops. Indegd, o
momentum constraint does indeed convert the diagram fromtegral ovelV space-time co-ordinates fo
independent momentum loops.

In this way, we see that the transformation from real-sp&ceiomentum space Feynman rulesfieeted
by replacing the sum over all internal space-time co-ortéigay an integradum over all loop momenta and
frequencies. A convergence factor

(9.73)

dand*
is included in the loop integral. This term guarantees théte loop contains a single propagator which
propagates back to the point from which it eminated, thercthieesponding contraction of field operators is

normal ordered.
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9.5.3 Linked Cluster Theorem

The linked cluster theorem for imaginary time follows frohetreplica trick, as at zero temperature. In this
case, we wish to compute the logarithm of the partition fiomct

z, . 1f(z)\"
w7
It is worth mentioning here that the replica trick was in fadgginally invented by Edwards as a device for

dealing with disorder- we shall have more to say about théhapter 11.
We now write the term that containg/Zo)" as the product of contributions fronreplica systems, so that

&-fof [ 5]

When we expand the right-hand side as a sum over unlinked Feymliagrams, each separate Feynman
diagram has a replica index that must be summed over, so thiagk linked diagram is of orde®(n),
whereas a group of k unlinked diagrams is of or@én“). In this way, a1 — 0, only the unlinked diagrams
survive, so that. The upshot of this result is that the shithe Free energ&F produced by the perturbation
V, is given by

—BAF =1n(Z/Zp) = Z{Closed link diagrams in real spg¢e

Notice that unlike the zero temperature proof, here we ddvae¢ to appeal to adiabaticity to extract the shift
in Free energy from the closed loop diagrams.

When we convert to momentum space, Fourier transforming gagagator and interaction line, an over-
all integral over the center of mass co-ordinates factor®bthe entire diagram, giving rise to a prefactor

[ d¥%en =20 16¢0(0) = vp

whereV is the spatial volume. Consequently, expressed in momespavte, the change in Free energy is
given by

AF . . .

v =" Z {Closed linked diagrams in momentum splace
Finally, let us say a few words about Green-functions Siheét- th order codicients ofa anda are the

irreducible n-point Green-functions,

InZ[a,a] = -BAF + f d1d2a(1)G(1 - 2)a(2)
L
(292
n-particle irreducible Green functions are simply the ntipee Green functions in which all contributions
fromn-1 particle Green functions have been subtracted. Now sivece-th order ca@icients in the Feynman
diagram expansion of [f[«, @] are the connected2point diagrams, it follows that the n-paricle irreducible
Green functions are given by the sum of ailjbint diagrams

f d1d2d304a(1)a(2)e(3)a@)Gir (1.2, 3.4) + ... (9.74)

Gir(L2,..m1,2,...0) = Z[Connected n-point diagrams

The main links between finite temperature Feynman diagrardspaysical quantities are given in table
9.3.
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Table. 10.3 Relationship With Physical Quantities: FiniteTemperature

AF -V Y {linked clustery

_vk>v<)+cg+m}

InZ/Z, Vp Y{linked clusters

| OO

2]
Ty @y (1)

>{Two leg diagrams

++£+<@<-+

(=DXTy(2)...y" @) >{2n- leg diagrams

Bl

Response Functions

WITIAR)BL)IY) = xAg

XAB :)(LB(‘H —i6)

I[A2), BDO(t — t2) = xas

9.6 Examples of the application of the Matsubara Technique

To illustrate the Matsubara technique, we shall examineetiexamples. In the first, we will see briefly how
the Hartree Fock approximation is modified at finite tempeest. This will give some familiarily with the
techniques. In the second, we shall examine ffexeof disorder on the electron propagator. Surprisinbly, t
spatial fluctuations in the electron potential that arise glisordered medium behave like a highly retarded
potential, and the scattering created by these fluctuaisaresponsible for the Drude lifetime in a disordered
medium. As our third introductory example, we will examimeedectron moving under the retarded inter-
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action dfects produced by the exchange of phonons, examining for itetifne how inelastic scattering
generates an electron lifetime.

9.6.1 Hartree Fock at a finite temperature.

As a first example, consider the Hartree-Fock correctiohédiree energy,

ool

These diagrams are precisely the same as those encourmechdpter 8, but now to evaluate them, we
implement the finite temperature rules, which give,

AT/HF = % D16(K Y G(K) {[-(2S + )2 V(k-K) - (25 + 1)V(q = 0)}
k k'

(9.75)

(9.76)

where the prefactor is the = 2 symmetry factor for these diagrams and
1 e
G(k) = fT - gend
Zk: ( ) K Z lwn — €
Using the contour integration method introduced in sec®8), following (9.47 ), we have

1 i 0" dz 1
T - e|mn0 -
Z lwn — €

c ﬂ Z— €
where the contou€ runs anticlockwise around the poleat e, so that the first order shift in the Free
energy is

&% 1(2) = f(a).

AFwe =3 [ ]S+ 1(Va-0) - 25+ DVicw) e

This is formally exactly the same as at zero temperaturespitg that nowfy refers to the finite temperature
Fermi Dirac. Notice that we could have applied exactly thmeeanethod to bosons, the main result being a
change in sign of the second Fock term.

9.6.2 Electron in a disordered potential

As a second example of the application of finite temperatugthods, we shall consider the propagator for
an electron in a disordered potential. This will introduige toncept of an “impurity average”.

Our interest in this problem is driven ultimately by a desirenderstand the bulk properties of a disordered
metal. The problem of electron transport is almost as olduakoowledge of the electron itself. The term
“electron” was first coined to describe the fundamental ohitharge (already measured from electrolysis)
by the Irish physicist George Johnstone Stoney in 1891[8intith Lorentz derived his famous force law for
charged “ions” in 1895[4], but did not use the term electrafild899. In 1897 J. J. (*JJ") Thomson[5] made
the crucial discovery of the electron by correctly intetprg his measurement of the/e ratio of cathode
rays in terms of a new state of particulate matter “from whadlhchemical elements are built up”. Within
three years of this discovery, Paul Drude[6] had synthesikese ideas and had argued, based on the idea
of a classical gas of charged electrons, that electronsdradiibit a mean-free path= Vg|gctrorf, Where
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7 is the scattering rate drthe average distance between scattering events. In Driidsisy electrons were
envisioned as diusing through the metal, and he was able to derive his fanwusula for the conductivity
o

_nér

=

o

Missing from Drude’s pioneering picture, was any notiontaf Fermi-Dirac statistics of the electron fluid.
He had for example, no notion that the characteristic vslaiithe electrons was given by the Fermi velocity,
Velectron™ VF @ vastly greater velocity at low temperatures than could eeexpected on the grounds of a
Maxwell Boltzman fluid of particles. This raises the questidiow - in a fully quantum mechanical picture
of the electron fluid, can we rederive Drude’s basic model?

A real metal contains both disorder and electron-electntgractions - in this course we shall only touch
on the simpler problem of disorder in an otherwise free etecgas. We shall actually return to this problem
in earnest in the next chapter. Our task here in our first elamiil be to examine the electron propagator
in a disordered medium of elastically scattering impusitié/e shall consider an electron in a disordered
potential

H= Z &C'iC + Visorder
K

Vdisorder= f d*xUEy (y'(x) 0.77)

whereU (x) represents the scattering potential generated by a raaday of N; impurities located at posi-
tionsR;, each with atomic potentig(x - R;),

U(x) = Zﬂ(x— R))
i

An important aspect of this Hamiltonian, is that it contamesinteractions between electrons, and as such the
energy of each individual electron is conserved: all intBoas are elastic.

We shall not be interested in calculating the value of a piafsjuantity for aspecifidocation of impurities,
but rather on the value of that quantity after we have avetager the locations of the impurities, i.e.

_ 1 R
@ - [T15 FRARD
]

This is an elementary example of a “quenched average”, ichwtiie “impurity average” takes plaegter
the Thermodynamic average. Here, we'll calculate the ityaveraged Green function. To do this we need
to know something about the fluctuations of the impurity eatg potential about its average. It is these
fluctuations that scatter the electrons.

Electrons will in general scatteffithe fluctuations in the potential. The average impurity poa U (x)
plays the roll of a kind of shifted chemical potential. Inde# we shift the chemical potential by an amount
Ay, the scattering potential becomegx) = U(x) — A, and we can always chooge: = U(X) so that
U(x) = 0. The residual potential describes the fluctuations in ¢ta¢tering potentialsU (x) = U(x) — U(X).
We shall now drop the tilde. The fluctuations in the impurittgntial are spatially correlated, and we shall
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shortly show that

BUGAU) = [ 40" jua)? ©79)
q

whereu(q) = fd3x11(x)e"q'X is the Fourier transform of the scattering potential and= N;/V is the
concentration of impurities. It is these fluctuations thetter the electrons, and when we come to consider
the impurity averaged Feynman diagrams, we’'ll see thatplaéa correlations in the potential fluctuations
induce a sort of “attractive interaction”, denoted by thagiam

| niu@rEe ) = vegx - x)

(9.79)

Although in principle, we should keep all higher momentstaf tmpurity scattering potential, in practice,
the leading order moments are enough to extract a lot of te& Iphysics in weakly disordered metals.
Notice that the fluctuations in the scattering potential sirert-range - they only extend over the range of
the scattering potential. Indeed, if we neglect the monmardapendence af(q), assuming that the impurity
scattering is dominated by low energy s-wave scatterirgp the can writai(q) = Uo. In this situation, the
fluctuations in the impurity scattering potential are esijilocal,

SUMX)SU(X) = muds(x — x') white noise potential

In our discussion today, we will neglect the higher order reata of the scattering potentialffectively
assuming that it is purely Gaussian.
To prove (9.78 ), we first Fourier transform the potential
U@ =y e f PxUKX - R)e™ R = u(g) Y ™R, (9.80)
i i

so that the locations of the impurities are encoded in thegshifts which multiplyu(q). If we now carry
out the average,

SU(x)oU (x’) = qu' d(@x-ax) (U @Uq) - U(Q) U(—q’))

- f dr-alygqui-q) (;.q‘.re.eaqfﬂ _guaR eiq'-R,) (9.81)

q.q’ ij
Now since the phase terms are independentfEtréit sites, the variance of the random phase term in the
above expression vanishes unlessj, so

Z (giqR\eq'vR, _ R e‘un,) =N x f%d3R,e‘“q‘q')'R'
[B]
= (20’6 - ) (9.82)

from which

U@UCa) - U(@) UCq) = nju@/?(27)°(q - q)
and (9.78) follows.
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Fig. 9.4 Double scattering event in the random impurity potential.

Now let us examine how electrons scattéirthese fluctuations. If we substitugé(x) = fk chee™®* into
Vdisorder We obtain

Vdisorder= fkw ckaeoU(k - k')

We shall represent the scattering amplitude for scattenmg

R|

Uk k') = [u(k -k’ Z CTIRN _ AuSy .
i

€N (9.83)

where we have subtracted the scatterifigtioe average potential. The potential transfers momentuin, b
does not impart any energy to the electron, and for this reé®muency is conserved along the electron
propagator. Let us now write down, in momentum space therGriaction of the electron
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DN DENSS B S B B I

= G, iwn)dick + GO(K, iwn)dU (k - K)GO(K', iwn)
+ f GOk, iwn)dU (k — k1)GO(K1, iwn)sU (kg — K)GO(K, iwn) + ... (9.84)
k1

where the frequenciwy, is constant along the electron line. Notice tigais actually a function of each
impurity position! Fig. 9.4 illustrates one of the scatberievents contributing to the third diagram in this
sum. We want to calculate the quenched avae@@ek’,iwn), and to do this, we need to average each
Feynman diagram in the above series.
When we impurity average the single scattering event, itsfees:
=0

femt—
GOK, iwn)sU (k — k")GO(K’, iwn) = GOk, iwn) sU (K — k) GO(K’, iwn)

but the average of a double scattering event is
Ui PO

—
DG, B0k, 1wn)G(K i) x SUK — k)oU (kz — K)

k1
= ke X Gk, iwn)y ) u(k — ka)2G° (Ka, iwn)GO(K, i) (9.85)

ky

Notice something fascinating - after impurity averagingmentum is now conserved. We can denote the
impurity averaged double scattering event Feynman diagram

k-q (9.86)

k-Q
0
2 MIUG)P = ~Verr(Q)
k k’
(9.87)

to denote the momentum transfer produced by the quencheddtions in the random potential. In writing
the diagram this way, we bring out the notion that quenchedrder can be very loosely thought of as an
interaction with an gective potential

‘ 5 -nju(@P? ,
Veir(@ivn) = [ dre V(@ 7) = oranua)
0
where the3sn = fd-re‘V"’ is derived from the fact that the interactivg(g, r)does not depend on the time
difference guarantees that there is no energy transferred ludrehed scattering events. In otherwords,
quenched disorder induces a sort of infinitely retarded,"Bttractivé potential between electrons. (Our
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statement can be made formally correct in the language ditasp- this interaction takes place between
electrons of the same, orftérent replica index. In thea — 0 limit, the residual interaction only acts on
one electron in the same replica. ) The notion that disomidudes interactions is an interesting one, for it
motivates the idea that disorder can lead to new kinds oéctille behavior.

After the impurity averaging, we notice that momentum is rammserved, so that the impurity averaged
Green function is now diagonal in momentum space,

G(K.K’,ivn) = Sk G(K. ivn).

If we now carry out the impurity averaging on multiple scetig events, only repeated scattering events at
the same sites will give rise to non-vanishing contribusidhwe take account of all scattering events induced
by the Gaussian fluctuations in the scattering potentiah the generate a series of diagrams of the form

O N N N

In the Feynman diagrams, we can group all scatterings intoected self-energy diagramé, as follows:

SN SN SN SN
(K = . N . N . N N
= = + + +
. . S .
~o . .

—~— <<+ < ODO<O<—
= [iwn - & - S0

In the case of s-wave scattering, all momentum dependerite stattering processes is lost, so that in this
caseX(k) = X(iwn) only depends on the frequency. In the above diagram, theledime on the electron
propagator indicates that all self-energy correctionhmen included. From the above, you can see that the
self-energy corrections calculated from the first expesare fed into the electron propagator, which in turn
is used in a self-consistent way inside the self-energy

We shall begin by trying to calculate the first order aboveydiens for the self-energy without imposing
any self-consistency. This diagram is given by

GK) = = -

(9.88)

o~
RS
N

Siwn) = -‘—é‘ =n ) lu(k = K)PG(K, iwn)
-
NI
=

iwn — e

(9.89)

Now we can replace the summation over momentum inside tliigsergy by an integration over solid angle

and energy, as follows
Qs
Z - fd K de'N(e')
- Ar
whereN(e) is the density of states. With this replacement,

S(iwn) = niugfdeN(e)

1

iwn— €
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where
doy.
Ar
is the angular average of the squared scattering amplifizcda.good approximation, this expression can be
calculated by replacing the energy dependent density t#fssky its value at the Fermi energy. In so doing,
we neglect a small real part to the self-energy, which caanpincase be absorbed by the chemical potential.
This kind of approximation is extremely common in many bodhygics, in cases where the key physics
is dominated by electrons close to the Fermi energy. Theatlems from constancy iN(e), will in practice
affect the real part af(iwy), and these small changes can be accomodated by a shiftaheéhgcal potential.
The resulting expression f@(iwy) is then

ug =

1
Jutk — k)% = %f dcosg|u(6)?
-1

Z(iwn):niugN(O)fwde o iz—];sgn@n) (9.90)

lwp — €
where we have identifieél = 2nniu§ as the electron elastic scattering rate. We notice thaettpsession is
entirely imaginary, and it only depends on the sign of thedubara frequency. Notice that in deriving this
result we have extended the limits of integration to infingdly approximation that involves neglecting terms
of order Y(er7).
We can now attempt to recomp@Eéw,) with self-consistency. In this case,

PAARY
. N

. N 1
Siwy) = === =Y ——
(iwn) ' 0; iwn — e — Z(iwn)

If carry out the energy integration again, we see that theositjpn of self-consistency has nfect on the
scattering rate

(9.91)

. o 1
S(iwn) = n.uéN(O)[ dem

= —iisgn@n). (9.92)
ad

Our result for the electron propagator, ignoring the “vexerrections” to the scattering self-energy is given
by
1
Gk = — G
Z— & +i5-sgrim(z)

where we have boldly extended the Green function into theptexplane. We may now make a few remarks:

e The original pole of the Green function has been broadenieel electron “spectral function”,

1 ) 1 2n)?
Ak, w) = =ImGKK,w —i6) = = —-F———
(k.) Fid (k. =10) 7 (w—&)? + (21)2
is a Lorentzian of width Ar. The electron of momentufnow has a lifetimer due to elastic scattering

effects.

o Although the electron has a mean-free patk, verthe electron propagator displays no features of dif-
fusion. The main ffect of the finite scattering rate is to introduce a decay lernigto the electron
propagation. The electron propagator does not bear anynt#aece to the “dfusion propagator”

244

126



(©2011 Piers Coleman Chapter 9.

x = 1/(iv — Dg?) that is the Greens function for thefilision equationd; — DV?)y = —6(x,t). The
physics of difusion and Ohm’s law do not appear until we are able to exanfieecharge and spin
response functions, and for this, we have to learn how to coerre density and current fluctuations in
thermal equilibrium. (Chapter 10).

e The scattering rate that we have computed is often calleddlassical” electron scattering rate. The
neglected higher order diagrams with vertex correctiorsamtually smaller than the leading order
contribution by an amount of order

1 1
et kel
This small parameter defines the size of “quantum correstitmthe Drude scattering physics, which
are the origin of the physics of electron localization. Talerstand how this small number arises in the
self-energy, consider the first vertex correction to theurnitp scattering,

kK oKy

. IR

D A N
skitkp -k . (9.93)

This diagram is given by
dEl dEz dQldQZ 1
2, = N(O - N(O - -
2 ( )j]t iwp — €& © iwn — & (4n)2  iwn — €k, +ko-k

~ |; X kel (9.94)

where the last term in the integral derives from the centrapagator in the self-energy. In this self-
energy, the momentum of the central propagator is entiretgrchined by the momentum of the two
other internal legs, so that the energy associated withpiitipagator is_y.k,+k,. This energy is only
close to the Fermi energy whé&n ~ —kj, so that only a small fraction/{kg1) of the possible directions
of ky give a large contribution to the scattering processes.

9.7 Interacting electrons and phonons

The electron phonon interaction is one of the earliest ssaeof many body physics in condensed matter.
In many ways, it is the condensed matter analog of quantectredynamics - and the early work on the
electron phonon problem was carried out by physicists whb hade their early training in the area of
quantum electrodynamics.

When an electron passes through a crystal, it attracts thby&ms, causing a local build-up of positive
charge. Perhaps a better analogy, is with a supersoni@fjrfor indeed, an electron is a truly supersonic
particle inside crystals, moving at many times the velogftyound. To get an idea of just how much faster the
electron moves in comparison with sound, notice that the odtthe sound velocitys to the Fermi velocity
Veis determined by the ratio of the Debye frequency to the Femergy, for

Vs Viwx wp/a _ wp
Vg Ve e/a - €F
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wherea is the size of the unit cell. Now an approximate estimatetierDebye frequency is given by% ~
k/M, whereM is the mass of an atomic nucleus dnd er /a? is the “spring constant” associated with atomic
motions, thus

and
@ 1 1. m
& (eadM M
~1/m

so that the ratio

Vs m 1
ve \YM 100

S0 an electron moves at around Mach 100. As it moves throwgbrifstal, it leaves behind it a very narrow

wake of “positively charged” distortion in the crystal ia& which attracts other electrons, long after the orig-
inal disturbance has passed by. This is the origin of the vaétadctive interaction produced by the exchange
of virtual phonons. This attractive interaction is highgtarded, quite unlike the strongly repulsive Coulomb
interaction that acts between electrons which is almogsaimaneous in time. (The ratio of characteristic

timescales being b% ~ \/% ~ 100). Thus- whereas two electrons at the same place andféeie, strong
mutual Coulomb repulsion, two electrons which arrive atshme place, but atfiierent times can be subject
to an attractive electron phonon interaction. It is thigfattion that is responsible for the development of
superconductivity in many conventional metals.

In an electron fluid, we must take into account the quanturareatf the sound-vibrations. An electron
can not continously interact with the surrounding atomitida - it must do so by the emission and absorp-
tion of sound quanta or “phonons”. The basic Hamiltonianésatibe the electron phonon problem is the
Frohlich Hamiltonian, derived by Bhlich, a German emigrto Britain, who worked in Liverpool shortly af-
ter the second-world war[7, 8]. &hnlich recognized that the electron-phonon interactiaridsely analogous
to the electron-photon interaction of QED.olitich appreciated that this interaction would give riseato
effective attraction between electrons and together with &ardwas the first to identify the electron phonon
interaction as the driving force behind conventional sopeductivity.

To introduce the Frohlich Hamiltonian, we will imagine wevhaa three phonon modes labelled by the
index A = (1,2,3), with frequencywg,. For the moment, we shall also ignore the Coulomb interactio
between electrons. Thedhlich Hamiltonian is then

;
He = Z &C ko Cuor

ko

1
Hp = Z ‘Uql(aTq/laq/l + E)
1

q,
Hi = Z QqACan(ern [aq/! + atq/!l
k,q.4

(9.95)

To understand the electron phonon coupling, let us considerlong-wavelength fluctuations of the lattice
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couple to the electron energies. Ii(lx) be the displacement of the lattice at a given pairgo that the strain
tensor in the lattice is given by

U(X) = % (Vu®(x) + V,0,(x))

In general, we expect a small change in the strain to modéyottkground potential of the lattice, modifying
the energies of the electrons, so that locally,

e(k) = eo(k) + Cpyly (X) + ...

Consider the following, very simple model. In a free elestgas, the Fermi energy is related to the density
of the electrondN/V by

L (%N)? (.96

Fom\ Vv

When a portion of the lattice expands froth— V + dV, the positive charge of the background lattice is
unchanged, and preservation of overall charge neutralityantees that the number of electrdhsemains
constant, so the change in the Fermi energy is given by

(56; 2dv 25 o

=~ —-—-V.-O®

€F 3V 3
On the basis of this simple model, we expect the followingptiog between the displacement vector and the
electron field

2

H =C f B (e (V.8 C=-3e (9.97)

The quantityC is often called the “deformation potential”. Now the disganent of the the phonons was
studied in Chapter 4. In a general model, it is given by

O(X) = —i Z &) Axq [aql + a*_ql] gax
al

where we've introduced the shorthand
1

h 2
Axgr = [
Xat (ZM Newa: )

to denote the characteristic zero point fluctuation asgettiwith a given mode.Ns is the number of sites
in the lattice. ) The body of this expression is essentialntical to the displacement of a one-dimensional
harmonic lattice (see (3.81)), dressed up with additionddnization indices. The unfamiliar quantieg is
the polarization vector of the mode. For longitudinal phasofor instanceeg = §. The “—i” infront of
the expression has been introduced into the definition optimon creation and annihilation operators so
that the requirement that the Hamiltonian is hermitian @llimplies eg)* = —(eiq)) is consistent with the
convention thae changes sign when the momentum vecfds inverted.

The divergence of the phonon field is then

V. 0(x) = Z q- ‘%AXM [aq,{ 4 a"“,q,{] Jax
ql
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In this simple model, the electrons only couple to the lamdjital phonons, since these are the only phonons
that change the density of the unit cell. When we now Fourérsform the interaction Hamiltonian, making
the insertiony,,(x) = %ﬁ Yk Sk €% (9.97), we obtain

Hi=C f ity (O (X)¥ - B(X)
O ~(k+q)

D EE—
= > Cleotir [aq4+a*_q4]% f d*xd @K X CAxg(q - )

k.k’.q.1

= qZk; 1€ ko O [Bq1 + @ (9.98)

where

_ i\ _
Oa1 = CoAxq = Cq(zMNsmq,,) (=1
0 (otherwise)

Note thatNs = V/a, wherea is the lattice spacing. To go over to the thermodynamic |imé will replace
our discrete momentum sums by continuous integrgls,= Vf — f Rather than spending a lot of
time keeping track of how the volume factor is absorbed ih®integrals, it is simpler to regaM = 1
as a unit volume, replacinlys — a3 whenever we switch from discrete, to continuous integhafish this

understanding, we will use
0q = Cay/ha®/(2Mwq,)

for the electron-phonon coupling to the longitudinal mod@sr simple model captures the basic aspects of
the electron phonon interaction, and it can be readily geized. In a more sophisticated model,

(9.99)

e C becomes momentum dependent and should be replaced by therf@nsform of the atomic potential.
For example, if we compute the electron - phonon potent@hfgiven by the change in the atomic
potentialVaomicresulting from the displacement of atoms,

oV(x) = Z VatomidX — R? - @) =- Z B;- 6Vatomic,(x - R?)
] ]

we must replace interaction,

1 i
C = Vatomidd) = o f PxVatomidX)e ™. (9.100)

e When the plane-wave functions are replaced by the detailechBlavefunctions of the electron band, the
electron phonon coupling becomes dependent on both theningaand outgoing electron momenta, so
that

Okr—ka = Gk’ ka-

Nevertheless, much can be learnt from our simplified mod#iérdiscussion that follows, we shall drop the
polarization index, and assume that the phonon modes wetoediee exclusively longitudinal modes.
In setting up the Feynman diagrams for our Frohlich modelneed to introduce two new elements- a
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diagram for the phonon propagator, and a diagram to deneteetitex. If we denotgq = a4 +a’_q, then the
phonon Green function is given by

D(A, 7~ 7) = ~(Tda(D)eg(x)) = T ), D(g)e ™) (9.101)
ivn
where the propagator
D) = 2wq
V= 7 (o2
is denoted by the diagram
(eS8 a e =D(q,ivn) (9.102)
Liv
The interaction vertex between electréﬂs a"rzd phonon istddry the diagram
k+q
k 5 = (i)*x —gq = igq (9.103)

The factori® arises because we have three propagators entering the,\eaté donating a factor of The
-1g, derives from the interaction Hamiltonian in the time-oteexponential. Combining these two Feyn-
man rules, we see that when two electrons exchange a bosogivis rise to the diagram

WZ = (igq)*D(0) = ~(94)*D(0) (9.104)
L,V
so that the exchange of a boson in%ugesfﬁﬂ:e've interaction
2w,
Vor(@,2) = @2 —9 9.105,
@2 = G (9.105)

Notice three things about this interaction -

e |tis strongly frequency dependent, reflecting the stromgtarded nature of the electron phonon interac-
tion. The characteristic phonon frequency is the Debyaieegywp, and the characteristic “restitution”
time associated with the electron phonon interactian4sl/wp, whereas the corresponding time asso-
ciated with the repulsive Coulomb interaction is of ordgerl The ratioer /wp ~ 100 is a measure of
how much more retarded the electron-phonon interactioorigpared with the Coulomb potential.

e |t is weakly dependent on momentum, describing an intevadtiat is spatially local over one or two
lattice spacings.

o At frequencies below the Debye energy< wp the denominator iVeg changes sign, and the residual
low-energy interaction is actually attractive. It is th@eponent of the interaction that is responsible for
superconductivity in conventional superconductors.

We wish to now calculate thefect of the electron-phonon interaction on electron propagaThe main
effect on the electron propagation is determined by the elegihmnon self energy. The leading order Feyn-
man diagram for the self-energy is given by
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q
" =3 = Z(igq)zﬁ°(k - d)D(a) (9.106)
k-q q
or written out explicitly,
2w, 1
o) = 2 q
(K, iwn) = TquV:ngq [(ivn)z _ w%} R T———
1 1

- -T% T P — (wq — -wq)l (9.107)

where we have simplified the expression by splitting up th&ohgpropagator into a positive and negative
frequency component, the latter being obtained by revgitsie sign onw,. We shall carry out the Matsubara
sum over the bosonic frequencies by writing it as a contaiegiral with the Bose function:

—TZF(ivn):—fC%n(z)F(z):j;%n(z)F(z)

whereC runs anti-clockwise around the imaginary axis &iduns anticlockwise around the polesFifz).
In this case, we choose

(9.108)

1 1
Z—wqliwn—Z—€q
1 1 ] 1
Z-wq Z—(iwn - €-q) | iwn — (wq + €-q)

F@ =

(9.109)

which has two poles, one at= wq and one at = iwn — ek—q (Fig. 9.5). Carrying out the contour integral, we

0y~ Exq Wy~ € _g
o @
a
i
. — o
-1 x . = 7
! wq o g

C

Fig. 9.5 Contours C and C’ used in evaluation of (K, iwn)

December 1, 2011

then obtain
~(1-fcq)

N(wq) — (i )
(k) = 2 qu = N(lwn — €k—q _ B
(K ; gq iwon *7(“& " Ek—q) {wq i ‘«Uq}
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1+ Ng — fk, ]
=Y R {wg - 9.110
Zq: Y% [lwn - (wq + €&—q) g wal ( )
The second term in this expression is obtained by reversiagsign onwq in the first term, which gives
finally,

1+ng— fk
):(k,z):Zgg[ 4 4y
q

Ng + fqu ]
Z— (€k—q + wq)

zZ— (Equ = ‘Uq)

where we have taken the liberty of analytically extending filmction into the complex plane. There is a
remarkable amount of physics hidden in this expression.

The terms appearing in the electron phonon self-energy eaintbrpreted in terms of virtual and real
phonon emission processes. Consider the zero temperatitewhen the Bose terms, = 0. If we look
at the first term ing(k), we see that the numerator is only finite if the intermed&éetron state is empty,
i.e |k — gl > ke. Furthermore, the poles of the first expression are locatemergieswg + ex_q, Which is
the energy of an electron of momentlm- g and an emitted phonon of momentusy, so the first process
corresponds to phonon emission by an electron. If we lookeasecond term, then at zero temperature, the
numerator is only finite ifk — g| < kg, so the intermediate state is a hole. The pole in the secomdaecurs
at—z = —eq + wq, corresponding to a state of one hole and one phonon, so ontvrerpret the second
term as the energy shift that results from the emission ¢fi@iphonons by holes. At zero temperature then,

virtual/real phonon emission by electronvirtual/real phonon emission by hole
——

1- fie fie—
3(k,2) = 2 9 + ke
(k,2) ; 9% [ Z— (&q + wq) Z— (€k-q — wq)
As we shall discuss in more detail in the next chapter, théytically extended Greens function
1
Ckd= 5k

can be used to derive the real-time dynamics of the eleatrémermal equilibrium. In general(k, w —i6) =
Re(k, w —i6) + IImZ(k, w — i5) will have a real and an imaginary part. The solution of tHatien

& = & + Re&E(K, )

determines the renormalized energy of the electron duetice¥iphonon emission. Let’s consider the case of
an electron, for whicle; is above the Fermi energy. The quasiparticle energy takefotim

energy lowered by virtual phonon emission energy raised by blocking vacuum fluctuations

2 1 2 1

"
€ = €& — —_—t —_—
I (€x—q + wq) — €& G e + lex—ql + wq

lk—al>ke lk=ql<ke

If we approximater, by its unrenormalized valug, we obtain the second-order perturbation correction to the
electron quasiparticle energy, due to virtual phonon Bses. To understand these two terms, it is helpful to
redraw the Feynman diagram for the self energy so that thtesicg events are explicitly time ordered, then

we see that there are two virtual processes - depending otherttée intermediate electron line propagates
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forwards or backwards in time:

Virtual phonon emission Virtual phonon and e-h p

The first term is recognized as th&ezt of virtual scattering into an intermediate state witke @ioton
and one electron. But what about the second term? This terfvas the initial formation of an electron-
hole pair and the subsequent reannihilation of the hole thithncoming electron. During the intermediate
process, there seem to heo electrons (with the same spin) in the same momentum kta@an it really

be that virtual processes violate the exculsion princifieftunately, another interpretation can be given.
Under close examination, we see that unlike typical virfluatuations to high energy states, which lower the
total energy, this term actually raises the quasiparticE@y. These energy raising processes are a “blocking
effect” produced by the exclusion principle, on the vacuum tlatons. In the ground-state, there are virtual
fluctuations

GS = electron k’) + hole (-k’ — q) + phonon §)

which lower the energy of the ground-state. When a singlerele@ccupies the state of momentimthe
exclusion principle prevents vacuum fluctuations wkth= Kk, raising the energy of the quasiparticle. So
time ordered diagrams that appear to violate the exclusioiple describe the suppression of vacuum
fluctuations by the exclusion principle.

If we now extend our discussion to finite temperatures, fgrgivenk andq, both the first and the second
terms in the phonon self-energy are present. For phonors@miprocesses, the appearance of the additional
Bose terms, is the the ect of stimulated emission, whereby the occupancy of phatates enhances
the emission of phonons. The terms which vanish at zero texhye can also be interpreted as tiftee of
phonon absorption of the now thermally excited phonons, i.e

fk,q +Ng

_ 2
s = qu % Z— (ek-q — wg)

virtual/real phonon absorption by holevirtualreal phonon absorption by electron

1- fk,q +Ng

—_ +
Z— (€k-q + wq)
_

By contrast, the imaginary part of the self-energy deteewithe decay rate of the electron due to real
phonon emission, and the decay rate of the electron is cefatihe quantity
I'c = 2ImE(k, g —i6) ~ 2Im2(K, & — i6)

If we use the Dirac relation
_1
X—a—id

1 .
] = PE\ +ind(x — a)

then we see that for a weak interaction, the decay rate ofi¢letren is given by
phonon emission phonon absorption
T = 2n ) G2[{L+ g~ oo — (ecq + wa)) + (g + fe-)0(ek — (g — @)
q
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which we may identify as the contribution to the decay ratenfphonon emission and absorption, respec-

tively. Schematicallx, we may write
K 2 2
|m[—Q—]:Z {%_q + A»Q_q] x 2r6(E; - E)
K k-q q k q k q

so that taking the imaginary part of the self-energy “cut& internal lines. The link between the imaginary
part of the self-energy and the real decay processes offatlisoand emission is sometimes refered to as the
“optical theorem”.

9.7.1 @°F: the electron-phonon coupling function

One of the most importantfects of the electron phonon interaction, is to give rise tagesconducting
instability. Superconductivity is driven by the interactiof low-energy electrons very close to the Fermi
surface, so the amount of energy transferred in an interacsi almost zero. For this reason, theetive
interaction between the electrons is given by (9.105)

292
Vef(@.0) = ——

Now the momentum dependence of this interaction is very wieatur simple model, for examplgﬁl/qu ~

%22 ~ constant, and a weak momentum dependence implies that &t agproximation then, thefective
q

low energy interaction is local, extending over one unit aetl of approximate form

Hetr = —QZ U et o Ui rge e (9.111)

T’ QKK (e, le . el lécql. <wp)
where the sum over electron momenta is restricted to withiaraow band of energies, withiap of the
Fermi energy. This means that the interaction is “insteenias” to within a time-scale aft ~ 1/wp. The
effective interaction strengiipis the sum over all gﬁ/wq,

qu f qu

Bardeen and Pines were amongst the first to realize thatele@h-electron interaction induced by phonon
exchange is highly retarded relative to the almost insteetas Coulomb interaction, so that for low energy
processes, the Coulomb interaction could be ignored. Treetive interaction in (9.111) was then the basis of
the “Bardeen-Pines” model[9] - a predecessor of the BCS Haniin. We can make an order-of-magnitude
estimate ofy, by replacing

V=1 (9.112)

(@2)? [
% 1 a3 e k2
: Pk
9 awp awp [( ZMmD)eF(ZkF) ( ZD) M " F

where we have takein= 1 and replace(f — 1/@%. The electron phonon coupling constant is defined as the
product of the interaction strength, times the electrorsidgf states,

2N(0)g?
A=N(0)g=z%

q q

(9.113)
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This dimensionless quantity is not reduced by the smab i@ftelectron to atom mass, and in typical metals
A~ 0.1-0.2. We'll now relate the electron phonon self energy to thiargity.

The electron-phonon self-energy can be simplified by th@éhiction of a function we call#?F”, that
keeps track of the frequency dependence of the electronguheoupling constant, wherdw) is the typical
energy dependent coupling constant &rid the phonon density of states. It turns out @ can be actually
measured inside superconductors &xhn be measured by neutron scattering.

The basic idea here, is that the momentum dependence ofetieogl-phonon self energy is far smaller
than the frequency dependence, so the momentum dependetiwe self-energy can be neglected. The
dimensionless ratio between these two dependences is bramdder of ordetwp/er,

(—|sz\)/(82) 9o <1
ow €F
To a good approximation then, the electron phonon selfggnean be averaged over the Fermi surface,
writing
f dS (k, w)
[ds

Wheref ds= fdzk/(2ﬂ)3 is an integral over the Fermi surface. Now the sum dvenside the self-energy
can be replaced by a combination of an energy integral, amgdraifsurface integral, as follows

Z de dkserp=

wheredS’ = d?k is a surface integral along the surface of constant enerdy&($) = n - Ve is the local
Fermi velocity normal to this surface. Making this subdiin,

_ 1 dSds , 2 14y — f(e’)
He) = j‘dsf A de gk‘k'[ 2= (@ + o)

If we introduce a delta function in the phonon frequency thie expression, using the identity:lf dvs(v—
wqa), then we may rewrite it as follows

2(w) =

¢ f ds’ de
—— Q¢
|d5k’/dk'| VE(S)

Nk + f(€) ]
z— (¢ - wkx)

, 1+n()—-f(e) n@)+ f(€)
s fdsfd cor [ S5 wotr- o | I ST
B 1+n() - f(€) n@)+ ()
= j:m de~f0 dvaz(v)F(v)[ () + — - ] (9.114)

where the function

F@) = ) 6w - wq)
q.1
is the phonon density of states, and
1 ds ds
2 __~ [ U=l _ N
“FO= T4 [ 0 oG

is the Fermi surface average of the phonon matrix elementiensity of states. With this definition, we may
rewrite the self energy as
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1+n()-f(e) n)+f(e)
z—(e+v) +Z—(E—v) ’

(2 = I: de Jom dva®(v)F(v)

where the energy dependence of the electron density obdtatebeen neglected. This is a very practical
form for the electron self-energy. In practice, most of thergy dependence iF is determined by the
phonon density of states. As we shall see later, in a coruaitielectron-phonon superconductor, one may
infer the function®F using the density of electron states in the superconduaasared by tunneling in the
superconducting state.

9.7.2 Mass Renormalization by the electron phonon interaction

Our simplified expression for of the self-energy enablewexamine how electron propagation is modified
by the exchange of virtual phonons. Let us expand the elegthmnon self energy around zero frequency in
the ground-state. In the ground-state,

E(w) = I: defow dmz(v)F(V)lLJr

zZ—(e+v)
0o v-z
— j(; dve?(v)F(v) In [yTz]

so that at low frequencies,

0(-€)
z— (e -v)

2(w) = Z(0) - dw

where

1o E@

dw lu-0

_, fdvaz(v)F(v)
v

If we look at our definition oix?F, we see that this expression is the Fermi surface average @f¢ctron

phonon coupling constant defined in (9.113).
Now at low energies, we can write the electron propagatarims of the quasiparticle energies, as follows

1

w—e& —Z(w—16)
1
= - R 9.116
w— & — (g —16) +A(w — &) ( )
N S

6-ir/2

(9.115)

Gk, w—i6) =

or

z

Gkw=i0)= o= (9.117)
k
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where

z 1+t

& e + Z(g)

" = 2ZImx(g - io)
We see that in the presence of the electron phonon interaetiectron quasiparticles are still well-defined at
low temperatures. Indeed, at the Fermi surfates 0 in the ground-state, so that electron quasiparticles are
infinitely long-lived. This is an example of a Landau Fermiid, discussed in chapter 8. If wefidirentiate
& with respect tag, we obtain

wavefunction renormalization
quasiparticle energy
quasiparticle decay rate

(9.118)

deg _ _ m*
de; _(l+ﬂ)_(ﬁ)

so that the fective mass of the electron is enhanced by the cloud of Vipisanons which trails behind it.
The density of states is also renormalized in the same way

N = SEN(0) = N©)(L+)
de;
while the electron group velocity is renormalized downveaadcording to

. _de
Vi = Ve = dekaEk =2ZV¢
Thus the electron phonon interaction drives up the masseoéléctron, fect of squeezing the one-particle
states more closely together and driving the electron guelgrity downwards. This in turn will mean that
the linear coficient of the electronic specific he@} = y*T
LT
Y= TN (0) = yo(1+ 1)
is enhanced.
We can give the wavefunction renormalization another preation. Recall that using the method of
contour integration, we can always rewrite the Matsubgpeesentation of the Green function

Gk, 7) =T > Gk iwn)e ™
n

as

Gk, 7) = —fd% [(1 - f(w))b(r) — F(w)o(-7)] Ak, w)e™", (9.119)

where Ak, w) = ImG(k,w — i6) is the spectral function. Now, from the normalization oé tfermionic
commutation relatioricy,, c'x-} = 1, we deduce that the spectral function is normalized:

(ko Ok

N pm——

1= ({Ck» C'ko}) = G(k,07) = G(k, 0")

= f—wA(k,w)

(G Cker)
—_——

(9.120)

s

The quasiparticle part of the spectral function (9.117) imeentzian of widthl';, weightzZ, and since the
width Ty — 0 ase, gets closer to the Fermi energy, we deduce thakferks, the quasiparticle part of the
spectral function ever more closely represents a deltaifumof weightZ, so that

%A(k,w) ~ Z§(w — ) + incoherent background
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where the incoherent background is required so that théftetguency integral of the spectral function is
equal to unity.
Now from (9.119), we see that the ground-state occupandyeoéliectron momentum stékds given by

o d
= (o = -6.0) = [ L H()AK.0)
n T=0

= fo CLwA(k,a)),
o T

The presence of the quasiparticle pole in the spectral ifumeheans that at the Fermi surface, there is a
discontinuity in the occupancy given by

(T=0) (9.121)

Meolkeke = Mol = Z = 171

as shown in Fig. 9.6

@ A b)

z k:kF_

Fig. 9.6 lllustrating the relationship between the coherent, quasiparticle component in the

electron spectral function, and the discontinuity in the momentum-space occupancy at
the Fermi surface due to the electron-phonon interaction. a) Spectral function just
below the Fermi surface - quasiparticle peak occupied. b) Spectral function just above
Fermi surface - quasiparticle peak unoccupied. ¢) Momentum space occupancy n.

Remarks:

e The survival of a sharp “coherent” delta-function peak ie tfuasiparticle spectral function, together with
this sharp precipace-like discontinuity in the momentyraeg occupancy, are one of the hallmark fea-
tures of the Landau Fermi liquid. In an electron-phonon raedi superconductor, it is the coherent part
of the spectral function which condenses into the pair cosae.

e At first sight, one might imagine that since the density ofest&l*(0) = (1 + A)N(0) is enhanced, the
magnetic susceptibility will follow suit. In actual facheé compression of the density of states produced
by phonons is always located at the Fermi energy, and thisisitéat if the electron phonon interaction
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is turned on adiabatically, it does ndtect the Fermi momenta of either up, or down electrons, sdttleat
magnetization, and hence the magnetic susceptibility mafacted by the electron phonon interaction.

9.7.3 Migdal’s theorem.

At first sight, one might worry about the usefulness of oudieg order self-energy correction. We have
already seen that the size of the electron phonon interaéti® of order unity. So what permits us to ignore
the vertex corrections to the self energy?

One of the classic early results in the electron phonon probis Migdal’s theorem[10], according to
which that the renormalization of the electron-phonon diogpby phonon exchange, is of orda;/%”.
Migdal's theorem is a result of the huge mismatch betweeretbetron and phonon dispersion. Basically-
when an electron scatter @ phonon, it moves away so fast that other phonons can nati‘cgi’ with the
outgoing electron.

Migdal’s theorem concerns the correction to the electrborpn vertex. Diagramatically, the electron self-
energy can be expanded as follows

which we can denote by the shorthand

(9.123)

Here, the shaded circle denotes the vertex part, given by

%’\ = >\/\/v+ %‘F""g(q)(l*'/\(q»

We shall discuss the leading order vertex correction,

(9.124)
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k-K = (igg)A(q) (9.125)
K +q
k+q
where the vertex function(q) is given by
A =T Z (igk-1)°G(K + Q)G(K)D(k - k') (9.126)

Kk =(iwp.k)
We are interested in an order of magnitude estimate of thasiify.
Now at low temperatures, we can replace the summation ogévitlisubara frequency can be replaced by

an integral,
dwy,
T; - f?

so that
dowy, d3k , ,
A=~ [ G [ GO + 9BKIDK- K)
Now the propogator
Wk

Dk-K)=-—"T"——
( ) (wn*wﬁ)ZJr‘”sz

vanishes as/{w},)? in the region wheréw, — wj)| > wp, SO we restrict this integral, writing

° dwj, [ dK N~ ,
7@ = [ 58 [ Dk KIGH + a6(0)

Inside the restricted frequency integral, to obtain amessti of this quantity, we shall replagék, D(k—k’) ~
a®g x 2wk D(k — k') ~ —g, since 2 D(k — k’) ~ —1. To good approximation, the frequency integral
may be replaced by a single factop, so that

e
3
z

PN e oo
A~ woge® [ 56 +AG00)

Now inside the momentum summation okérthe electron momenta are unrestricted so the enesgiesd

€ +q are far from the Fermi energy and we may estimate this ternf asder (ki—f‘)a Putting these results
f
together,
kea)®
A~ ng( FZ)
€;

F
Now sinceg ~ de- and kra)® ~ 1, we see that

wp m

A~A— ~ =

€F M
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In otherwords, even though the electron phonon interadsiofi order unity, the large ratio of electron to ion
mass leads to a very small vertex correction.
Remarks:

e Perhaps the main fiiculty of the Migdal argument, is that it provides a false sens security to the
theorist- giving the impression that one has “proven” titet perturbative treatment of the electron
phonon interaction is always justified. Migdal’s argumestiasically a dimensional analysis. The weak-
point of the derivation, is that the dimensional analysiegioot work for those scattering events where
the energies of the scattered electrons are degenerate2 $ubl scattering events may make up a small
contribution to the overall phase space contributing toselé-energy, they become important because
the associated scattering amplitudes can develop strogglarities that ultimately result in a catas-
trophic instability of the Fermi liquid. The dimensionalaysis in the Migdal argument breaks down
when electrons inside the loop have almost degenerateieseFpr example, the Migdal calculation,
does not work for the case whagés close to a nesting vector of the Fermi surface, wiapans two
nested Fermi surfaces, this causesande. .q to become degenerate, enhancing the size of the vertex
by a factor ofer /wp % l0g(wp/T). The singular term ultimately grows to a point where an ibiitg
to a density wave takes place, producing a charge densitg.vidwe other parallel instability is the
Cooper instability, which is a singular correction to thetjude-particle scattering vertex, caused by the
degeneracy of electron energies for electrons of oppositaenta.

9.8 Appendix A

In this appendix, we consider the Hamiltonian

Ho v,
H= Z ey W - Z [Z{(T)% + ‘//T)A]
A A

and show that the generating functional

Zolin i) = Zo(Te b ¥y,
= Zo(T exp, f drz (774(7)./,/1(1) ot @l T))

A

Yo (9.127)

is explicitly given by

@ =exp[—; f dTldelﬂ(l)G/l(Tl—Tz)’h(z)}

Gty - 72) = ~(Tya(r)y a(r2)) (9.128)

for both bosons and fermions.
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We begin by evaluating the equation of motion of the fieldhmlleisenberg representation:

Wt o) = @ + i)
T

Multiplying this expression by the integrating fact™, we obtain
i)
7 [ ()] = € na(7)
which we may integrate fromf = 0 to7’ = 7, to obtain
(e =i+ [ dre e )
0
We shall now take expectation values of this equation, sb tha

Wa(0)) = € (W, (0)) + fo de'e ey, ()d’ (9.129)

If we impose the boundary conditid;(8)) = £(¥1(0)), where/ = 1 for bosons and = -1 for fermions,
then we deduce that

Wa(0)) = {m f; ()T,
wheren, = 1/(€°¢ - ¢) is the Bose{ = 1), or Fermi function’ = —1. Inserting this into (9.129), we obtain

Wa(r)y =¢my fﬂ e"/’(”rr)n/l(f')d‘r’ + f e’é"(f”')e('r = )ma()dr’, (9.130)
o o

where we have introduced a theta function in the second teronder to extend the upper limit of integration
to 8. Rearranging this expression, we obtain
’ -Ga(r=7")
W)y = fo dr' e (r — ) [(L+ Cnor — ) + Znb(® — D]

=- jf dr'Ga(r = 7 )ma(7) (9.131)

s0G,(7) is the imaginary time response of the field to the source.té/enmay repeat the same procedure for
the expectation value of the creation operator. The resfittsese two calculations may be summarized as

L
Wiy =228 - (o). 9132)

Notice how the creation field propagates backwards in tiromfthe source. The common integral to these
two expression is

InZ[n.n) =InZo - ]j drdz'm(7)Galr — 7 )na(r)

where the constant term Hy has to be intependent of bothand 7. The exponential of this expression
recovers the result (9.128 ).
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Exercises
|

Exercise 9.1 Use the method of complex contour integration to carry oetNtatsubara sums in the fol-
lowing:
(i) Derive the density of a spinless Bose Gas at finite tentpegdrom the boson propagatb(k) =
D(K, ivn) = [iva — wk] %, wherewy = Ex —u is the energy of a boson, measured relative to the chemical
potential.

p(T) = 9 =v? Z(Tbﬂ(o‘)bfk(o» =-pv)*t Z D(K)e"". (9.133)
k iva.k

How do you need to modify your answer to take account of BosstEin condensation?
(i) The dynamic charge-susceptibility of a free Bose gas, i

ok
= T;IWD(q+ K)D(K).

Please analytically extend your final answer to real freqissn
(iii) The “pair-susceptibility” of a spin-R2 free Fermi gas, i.e.

D(k+q)
Xe(@ivn) = (9.134)

D(K)

j G(k+q)

:TZ d*k

e:) @y

xp(Q.ivn) = G(q + K)G(-K) (9.135)

G(-k) |
whereG(K) = G(k, iwn) = [iwn — &]~*. (Note the direction of the arrows: why is there no minus sign
for the Fermion loop?) Show that the static pair suscefiibitp(0)is given by
B d®k tanhpec/2]
J @2 2«
Can you see that this quantity diverges at low temperatues?does it diverge, and why ?

Yp (9.136)
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Exercise 9.2 A simple model an atom with two atomic levels coupled to aatdn field is described by

the Hamiltonian

H = Ho + Hi + Hphoton (9.137)
where
Ho = E_c'_c_ + E.cl.c, (9.138)
describes the atom, treating it agemion
(9.139)

H = V12 Z g(wq)(cﬁc, + cT,c+)[aTq + a_q]
q
describes the coupling to the radiation fieldi¢ the volume of the box enclosing the radiation) and

Hphoton = Z wqa+qaq, (wq = cq) (9.140)
q

is the Hamiltonian for the electromagnetic field. The “dgdoinatrix elemeng(w) is weak enough to

be treated by second order perturbation theory and theipatian of the photon is ignored.

(i) Calculate the self-energy, (w) andX_(w) for an atom in ther and- states.

(i) Use the self-energy obtained above to calculate thetlihesr.. of the atomic states, i.e.
77t = 2Imz. (E. - i6). (9.141)

If the gas of atoms is non-degenerate, i.e the Fermi funstioa all small compared with unitf(E..) ~
0 show that

771 = 27ig(wo) PF (wo)[1 + N(wo)]

72t = 2n1g(wo)l*F (wo)N(wo), (9.142)
wherew, = E, — E_ is the separation of the atomic levels and
d®q w?

F(w) = f —(h)aé(w —wq) = o (9.143)

is the density of state of the photons at enedgyWhat do these results have to do with stimulated

emission? Do your final results depend on the initial assiomphat the atoms were fermions?

(ii)Why is the decay rate of the upper state larger than treageate of the lower state by the factor

[1 + n(wo)]/n(wo)?
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Fluctuation Dissipation Theorem and

Linear Response Theory

10.1 Introduction

In this chapter we will discuss the deep link between fluotwst about equilibrium, and the response of a
system to external forces. If the susceptibility of a systerexternal change is large, then the fluctuations
about equilibrium are expected to be large. The mathentaélzgionship that quantifies this this connection
is called the “fluctuation-dissipation” theorem. We shadladiss and derive this relationship in this chapter.
It turns out that the link between fluctuations and dissgratlso extends to imaginary time, enabling us to
relate equilibrium correlation functions and responsefioms to the imaginary time Greens function of the
corresponding variables.
To describe the fluctuations and response at a finite tempenat will introduce three related three types
of Green function- the correlation functi@(t),
T dw gt
2

S(t—t') = (A(t) Alt)) = f 'S(w),

the dynamical susceptibility(t)
x(t-t) = i[AQD. A)Do(t - t),
which determines the retarded response
(A) = f dtx(t-t)f(t), (Aw)) = x(w)f(w),

to a force f(t) term coupled toA inside the HamiltoniarH, = —f(t)A(t), and lastly, the imaginary time
response functiog(r)

X =7) = (TADAT))

The fluctuation dissipation theorem relates the Fouriersfiams of these quantities. according to

Quantum  Thermal
. N \ ”
S(w) =2a[ 1 + ng(w)] x"(w).
—

Fluctuations Dissipation

wherey” (w) = Im y(w) describes the dissipative part of the response functiothd limit,w << kgT, when
n(w) ~ keT/hw, this result reverts to the classical fluctuation-dissgratheorem,

s = 22T )
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Thus in principle, if we know the correlation functions iretimal equilibrium, we can compute the response
function of the system.

The dissipative response of the system also enters into tamét’s Kronig expansion of the response
function,

W@ = [T

and this expression can be used to analytically exigng into the complex plane. In practice, the theorist
takes advantage of a completely parallel fluctuation-pégin theorem which exists in imaginary time. The
imaginary time correlation functiop(r) is periodic in timey(r + 8) = x(r), and has an discrete Matsubara
Fourier expansion, given by

1 ; :
(@) = TADAO) = 7 D& xu(iva)
n
The key relation between this function and the physicalaasp function is that

am(ive) = X(Z)-Ikivn .

This relation permits us to compute the physical responsetiion by analytically continuing the Fourier
components of the imaginary-time correlation functiontodhe real axis.

To understand these relations, we need first to understanubtiure of the quantum mechanical response
functions. We shall then carry out a “spectral decompasitid each of the above functions, deriving the fluc-
tuation dissipation theorem by showing that the same uyidgrmatrix elements enter into each expression.
A heuristic understanding of the relationship between flations and dissipation, is obtained by examining
a classical example. The mairfidirence between the classical and the quantum fluctuatisipdiion theo-
rem, is that in classical mechanics we are obliged to exiliciclude the external sources of noise, whereas
in the quantum case, the noise is intrinsic, and we can aa#hgsfluctuations without any specific reference
to external sources of noise. Nevertheless, the classasel is highly pedagagocical, and it is this limit that
we shall consider first.

10.2 Fluctuation dissipation theorem for a classical harmonic
oscillator

December 1,

In a classical system, to examine correlation functions @e=irto include an explicit source of external noise.
To illustrate the procedure, consider a harmonic oscillatdhermal equilibrium inside a viscous medium.
Suppose that thermal fluctuations give rise to a random fatang on the oscillator, according to the quation
of motion:

mX + w2X) + nX = f(t)

If we Fourier transform this relationship, we obtain
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x®|\MMMM ¢quﬂmkv
v W
t
fluctuations
—_——— dw  x'"(w) .
z(t)x(0)) = 2kpT | — et
(a(2(0)] = 2457 [ 3= X
N——
dissipation
Fig. 10.1 Fluctuations in a classical harmonic oscillator are directly related to the dissipative
response function via the “fluctuation dissipation theorem”.
X(w) = x(w)f(w)
x() = [M(w§ - &?) o] ™ (10.1)

Herey(w) is the response function , or susceptibility to the extefore. The imaginary part of the suscep-
tibility governs the dissipation and is given by

¥'(@) = 2 5 = (@) (10.2)

M(w3 — w?) + w?n?

Now let us consider the fluctuations in thermal equilibri@wer long time periods, we expect the two-point
correlation function to be purely a function of the timéfeience:

XOX()) = (x(t = t)x(0))
The power spectrum of fluctuations is defined as
@) = [ dixoxone
and the inverse relation gives

oxen = [ % e ().
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Now in thermal equilibrium, the equipartition theorem salis that

mw ke T
ERhire
or
dw dw kgT
2y _ [ Yw 2y _ [ Y@ 2 2y _ KBl
0= [ Goamen = [ Gt = 2
Since the integrand is very sharply peaked around= wo, we replace| f(w)|?) — {|f(wo)|?) in the above

expression. Replacing(w)P? — ﬁ)(”(‘”) we then obtain

KeT _ (I (wo)P f do (@) _ |f(wo)?
oW 2nmw€

mw? 2
so that the spectrum of force fluctuations is determined byiscosityn
(f(wo)®) = 2nkeT.

Now if we assume that the noise spectrum it depends only oprtierties of the viscous medium in which
the oscillator is embedded, and that it does not depend oprthgerties of the oscillator, then we expect
this expression holds for any frequeney, and since it isndependenof the frequency, we conclude that
the power spectrum of the force is a flat function of frequeeaabling us to replacey, — w in the above
expression. This implies that in thermal equilibrium, tieecE coupling the system to the environment is a
source of white noise of amplitude which depends on the sigcof the medium
2nkgT
, do iog-t) 777 v ,
(FOT(E) = fge -0 (£ (@)P) = 20ksTo(t - 1)

We can now compute the noise spectrum of fluctuations, wkigfiven by

() = (X)) = WA @P = AR ~ 26T,

This expression relates the thermal fluctuations of a aaksystem to the dissipation, as described by the
imaginary part of the response functigif,(w).

10.3 Quantum Mechanical Response Functions.
I ———

Suppose we couple a fordeto variableA. For later generality, it suits our need to consider a fondeath in
real and imaginary time, with Hamiltonian

H = Ho — F(DA

H = Ho - f(D)A. (10.3)

We shall now show that the response to these forces are given b
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(A@M) = (A) + f B x(t=t)f()dt

B
(A(T)) = (A) + f Y@ =) fE)de (10.4)
0
x(t-t) = i[AQ), A)Dot-t)
M =7) = (TADAE)D - (A (10.5)

where(A) is the value ofA in thermal equilibrium. Let us begin in real time. Using théeraction represen-
tation, we know that

An(®) = U A U,

where

U(t) = T expi f dtAE) ().

Remembering that the interaction representation corregsptm the Heisenberg representationHgr we can
drop the subscript oA (t) = A(t), so that to linear order ifi(t),

UM) =1+i fm dUAT) (),
Uity =1-i ft dUAT) ()
so that
Aq(t) = At) +i fl dr[AQ), A)] f(1),
In thermal equilibrium if{(A(t)) = (A) , so the response to the applied force is given by
<M®=W+Ifﬁw—ﬂm%

where

x(t=1) = K[AD). Aot - )

is the “retarded response function”, also known as the “dyinal susceptibility”. The above equation is
particularly interesting, for it relates a quantum-medbalresponse function to a correlation-function.
Let us now consider imaginary time. In this case, the partifunction in the presence of the perturbation
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Z=Zo(Texp f def (@A @)
0
The expectation value &(r) is then given by

sz _(TA@) expfoﬁ de' f(7)A(7'))
of@  (Texpfldri@)AE))

Jr—7)

(A() =

:<A)+fﬂdf’ [<TA(T)A(T’)>*<A>2]f(r’)+0(f2) (10.6)
0
so that
F(@) = (TADAQ) - (A?
= (T(A(@) = (A)(A©O) — (A))) (10.7)

where the expectation values are to be taken in thermalilequih for Ho.

10.4 Fluctuations and Dissipation in a quantum world

Unlike classical mechanics, the quantum Boltzmann fortiaieof many body physics is naturally tailored
to a discussion of the statistics of fluctuations and disg&ipaQuantum systems are naturally noisy, and
there is no need for us to add any additional noise sourcedmiee the deep link between flucutations
and dissipation in a quantum many body system. Indeed, thetgon fluctuation dissipation theorem can be
derived in rather mechanistic fashion by carrying out oupectral decomposition of the various response
and correlation functions. The procedure is formally maredl that its classical analogue, but the algebra
tends to hide the fact that the underlying physics holdsipecthe same link between fluctuations- now
both thermal and quantum in character- and dissipation.

To derive the quantum fluctuation theorem, we must first spigtdecompose the correlation function
S(t - t’) and the response functigift — t').

10.4.1 Spectral decomposition I: the correlation function S(t-t)

This is the easiest decomposition of the three to carry oetbégin by expanding the response function in
terms of a complete set of energy eigenstates which satisfy

Hl = Eild),
D=1,
A
QIAWDI) = </l’éH'Ae"H‘|§> = /GBI (1A 0.
Using these key results, we make the expansion as follows,

S(t-t) = (AMAL))

= > e D AWM (£ |A)
AL

1)
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— Z e AE-F) KZ 1A /1>|2 e I(E~E)(t-t) (10.8)
pv3

If we now Fourier transform this expression, the frequerggathdent correlation function can be written

S(w) = f B dte“'s(t)

= S e P A DR 2O ~ Ey - ). 109)
AL

This is the frequency spectrum of the correlations.

10.4.2 Spectral decomposition II: the response function xt-1t)

We now use the same spectral decomposition approach foe#pemse function. In this case, we need to
take care of two operator orderings inside the commutatoictwyield

)= (AAM)

xt-t) =i ) ePEPQIADI (]AT) O IAOID} Bt - 1)
AL

=iy (e - e F) (g | P e EEN (- 1),
AL

By introducing the spectral function

K@) = x(1- 7)Y K IN DR ow - (B, - Ep]e ™), (10.10)
g
we see that the retarded response function can be written,

XG):i“fdweﬁmeﬁyvxw) (10.12)

Fourier transforming this result, using

i fm dtd@-o it _ 1
o W -w-is’

we obtain
4 1
Wl W) (10.12)

xw) = | ——
T W —w

This “Kramers-Konig” relation can be used to extend the response functiortie complex plane. Notice
that because the response functioreigrdedy(w) is analytic in the upper-half complex plane and the poles
lie just below the real axis, at= w’ —i¢. Finally, taking the imaginary part of this expressionnasthe Dirac
relationlm[1/(«’ — w —i6) = 76(w’ — w), we are able to identify

X () = Imy(w +i6)

as the dissipative part of the response function.
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10.4.3 Quantum Fluctuation dissipation Theorem

If we compare the relations (10.10 ) and (10.9), we see that
2 "
S(w) = @X ().
If we restoren, this becomes

Sw) =7 "(w) = 211 + ng(hw)] x" (w). (10.13)

2h
pTeg

Thus, by carrying out a spectral analysis, we have been ald@dctly link the correlation functio(w)
with the dissipative part of the response functidw).

10.4.4 Spectral decomposition III: fluctuations in imaginary time

For the final of our three decompositions, we move to imagitiare, and writeg — 7/ > 0,

xr-7) = ePEPADIO (¢ [A)] )
AL

- Z e AE-F) g (Ei-E)(r-7) KZ1A /l>|2 .
AL

Now
f ’ e e EEr _ 1 (1 - e EER)
b (E;—Er—ivm) ’
SO

B .
X(ive) = fo dr e"y(0)

1
= e PE-F) (1 _ gBE~E) 1A /1>\2 I S—
/lZ(: ( e (E; —Ea—ivn)
Using (10.10 ), we can write this as
} d 1,
x(ive) = f L2 w) (10.14)
T w-=lvy

so thaty(ivn) is the unique analytic extension gfw)into the complex plane. Our procedure to calculate
response functions will be to wrisg(iv,) in the form 10.14, and to use this to readl @’ (w).

10.5 Calculation of response functions

Having made the link between the imaginary time, and rea tiesponse functions, we are ready to discuss
how we can calculate response functions from Feynman diagyr@ur procedure is to compute the imaginary
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Table. 10.0 Selected Operators and corresponding responienction.

Quantity OperatoA AK) Response Function
Density A0 = v (X (X) Pap = Oap Charge susceptibility
Spin density  S(X) = o' (X) (%)M3 wp(¥) Map = padap Spin susceptibility

Current density 2y (X) (—ih v —eA') w(X) 7= ew = eVe Conductivity

Thermal current %«/ﬁ(x) ;31 W(X) TT = iwnVk = iwnVe  Thermal conductivity

(Wheregz %(9 - %), 5(5 %(51 - 51))

time response function, and then analytically continuestd frequencies. Suppose we are interested in the

response function foA where,
AKX = ¢ (A0
(See table 10.0). The corresponding operator generateeittex
(o}

X:Aaﬁ

A (10.15)

where the spin variabless are to be contracted with the internal spin variables of gagman diagram. This
innevitably means that the variab#g; becomes part of an internal trace over spin variables. If xpaed
the corresponding response functjgix) = (A(x)A(0)) using Feynman diagrams, then we obtain

x(7) = (A(AQ)) = Z closed linked two-vertex diagrams

For example, in a non-interacting electron system, the inaayg time spin response function involves
A(X) = ppda’ (X)oap¥s(X), SO the corresponding response function is

273

bk . pdf

December 1, 2011

Chapter 10. ©Piers Coleman 2011

abry, — 2 a
XX =X) = pg % OGB

Trace over B
spin variables

= Tt [o?G(x - X)oG(X — ¥)]
= —0®236(x - X)G(X - X) (10.16)

Now to analytically continue to real frequencies, we neetldnsform to Fourier space, writing

(@ = f dxe ¥y (x)

where the integral over timeruns from 0 tg3. This procedure converts the Feynman diagram from a real-

space, to a momentum space Feynman diagram. At the measunegmtex at positiorx, the incoming and
outgoing momenta of the fermion line give the following iptal

f d*xe g kn—kouX = BV 5H(kout — kin + 0.

As in the case of the Free energy, b\ term cancels with the /I8V) > terms associated with each pro-
pogator, leaving behind one factor of(8V) = T/V per internal momentum loop. Schematically, tikeet
of the Fourier transform on the measurement vertex at poksttiis then

jawng ]: )

(10.17)

k+q
For example, the momentum-dependent spin response faraftibe free electron gas is given by
K
b
@) =y x o o
k+q
1
o ; Tr| oGk + oG] = 6*%(0) (10.18)
where

x(Q,ivr) = —szaﬁT Z Gk + d,iwn +iv)G(K, iwn) (10.19)

iwn

When we carry out the Matsubara summation in the above expndsg a contour integral, (see Chapter 9),
we obtain

-T Zg(k + O, iwn +iv)G(K, iwp) = — j; %f(z)g(k +0,z+iv)G(Kk,2)
”" (b
B (5k+q — &) =i ’
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whereC’ encloses the poles of the Green functions. Inserting ttogi0.19), we obtain(q, ivi) = x(q, 2)|z=iy, . Wwhere

fk - fk,
@ =24 [ (s (10.21)
Kk (5k+q — &) —ive
From this we can also readfdhe power-spectrum of spin fluctuations
X (@ w) = Imy(d, w +i5) = 2u3 f 6k — & — W) [fk - fm] (10.22)
q

When we come to consider conductivities, which involve thepomse function of current operators, we
need to know how to deal with an operator that involves spaiiatemporal derivatives. To do this, it is
convenient to examine the Fourier transform of the oper&(y,

[ atxe o 00mi = 3 o k- ar2mutcr /2)
k

In current operatordis a function of gradient terms suchﬁandst. In this case, the use of the symmetrized
gradient terms ensures that when we Fourier transform, ¢higative terms are replaced by the midpoint
momentum and frequency of the incoming or outgoing electron

f d*xe Y (A1 V.1 G909 = 3 0 (k= Q/2AK iwnu(k +q/2)
k

for example, the current operatdfx) = % (—i G) becomes

I = ) el (k- /2 (k + q/2),
k
wherevy = ”;‘f is the electron velocity. For the thermal current operef{()f) = % (;3‘)

> .
3@ = D iwn—u' (k= a/2u(k + q/2)
k

Example 10.1: Calculate the imaginary part of the dynamic susceptibility for non-interaet@grons
and show that at low energies<< er,

X@w) _ [ i3 (@< 2)
w 0 @>2)

wherevg = 7ike /mis the Fermi velocity.
Solution: Starting with (10.22) In the low energy limit, we can write

27 f _ f
lim Xi(g’ O 2 f5(€q+k —g)
q

w—0 € — €k+q

= ZHZB £5(5q+k — &) (—%)

fq‘—n[deN(e)Ii ngS&

(10.23)

Replacing

we obtain
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" 1
lim £(@) _ ngN(O)f deosh; & dke o)
w -1

w0 2 2m m
_ 22N 2 (NO
- 28NO —d(he) @<z (10.24)

10.6 Spectroscopy: linking measurement and correlation
I ———

The spectroscopies of condensed matter provide the eslsgimtdow on the underlying excitation spectrum,
the collective modes and ultimately the ground-state ¢atioms of the medium. Research in condensed
matter depends critically on the creative new interpretetigiven to measurements. It is from these interpre-
tations, that new models can be built, and new insights desenl, leading ultimately to quantitative theories
of matter.

Understanding the link between experiment and the micpsagorld is essential for theorist and experi-
mentalist. At the start of a career, the student is often flatmya seminar room, where it is oftenfiiiult to
absorb the content of the talk, because the true meaningaftéctroscopy or measurements is obscure to
all but the expert - so it is important to get a rough idea of lama what each measurement technique probes
- to know some of the pitfalls of interpretation - and to haweidea about how one begins to calculate the
corresponding quantities from simple theoretical models.
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Table. 10.1 Selected Spectroscopies .

NAME SPECTRUM A Questions and Issues

Surface probel ~ 0 measurement.
ST™M 3—\'/ 3—\'/()() o A(X, )|w=ev w(X) Is the surface dierent?
ARPES 1(k, w) o« f(—w)AK, —w) Cko(t)  p. unresolved.

Surface probe. No magnetic field
Inverse PES I (w) o« Z[l — f(w)]AK,w) cfys(t) punresolved.

K
Surface probe.
do , 1
XbC xoc= | —x"(@=0,w) M X ~ i local moments.
Tw
Uniform Susceptibility X ~ cons paramagnet
Inelastic Neutron
Scattering What is the background?
d?o 1

Jgo __ o : 5
dode S(q, w) =X (,w)  S(g,t) Quality of crystal?
NMR
Knight Shift Kecontact X|ocal S(x,t) How is the orbital part subtracted?
S T fF(q)w How does powderingféect sample?
T q W =oy

What is the resistance ratio?

o 1 .
Resistivityp p=— i(@=0) (Rsoo/Ro)
o(0)

Reflectivity:

Optical o(w) = Ii [ (=N J(w)  How was the Kramer's Kinig done?
—lw
Conductivity Spectral weight transfer?
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Fundamentally, each measurement is related to a givenatorefunction. This is seen most explicity in
scattering experiments. Here, one is sending in one a beaarti¢les, and measuring the flux of outgoing
particles at a given energy transterand momentum transfey. The ratio of outgoing to incoming particle
flux determines the dierential scattering cross-section

d?c_ Outward particle flux

dQdw  Inward particle flux

When the particles scatter, they couple to some microscapiable A(x) within the matter, such as the
spin density in neutron scattering, or the particle fieldlfté&(x) = ¥(x) in photo-emission. The fierential
scattering cross-section this gives rise to what is, inressa measure of the autocorrelation functioef)

at the wavevectoq and frequency, = E/# inside the material,

&’
dQdw

~ f d*X(A(X, )A(0))e @) = 5(q, w)

Remarkably scattering probes matter at two points in sgdoed can this be? To understand it, recall that the
differential scattering rate is actually an (imaginary) pathefforward scattering amplitude of the incoming
particle. The amplitude for the incoming particle to scattea forward direction, contains the Feynman
process where it omits a fluctuation of the quanfitgat positionx’, travelling for a brief period of time as
a scattered particle, before reabsorbing the fluctuation @he amplitude for the intermediate process is
nothing more than

k

k-q
A(X)

A(X)
amplitude for fluctuation

litude= . glax=x)-w(t-t)]
amplitude= (A(X)A(X})

(10.25)

amplitude for particle to scatter at x,
and reabsorb fluctuation atx

(In practice, since the whole process is translationalfgiiiant, we can replaceby x — X’ and set’ = 0.)
The relationship between the correlation function andteday rate is really a natural consequence of
Fermi’s Golden rule, according to which
d’o

2n 2
Jodo ~T-1=F Z plCFIVIDS(Er — Ei)

wherep; is the probability of being in the initial statg. Typically, an incoming particle (photon, electron,
neutron) with momenturk scatters into an outgoing particle state (photon, electrentron) with momen-
tumk’ = k — g, and the system undergoes a transition from a $tate a final staté’):

[iy = 1K), [F) = 1)K’
If the scattering Hamiltonian with' ~ gfxp(x)A(x), wherep(x) is the density of the particle beam, then the
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scattering matrix element is
(V) = g [ &I = & [ A (10.26)
so the scattering rate is
Tiog = 3—22 f  PrUARI XA AN 2n6(Ey — By - ) (10.27)

wherep, = e#®€-F) is the Boltzmann probability. Now if we repeat the spectratamposition of the
correlation function made in (10.9)

[ atdetae 9A0¢.0 = 26 3 AR IAGKDO(E - Ex - o)

A

we see that
2 . » )
Fing ~ g—z f dte“'(A(x, t)A(X’, 0)ye 19 xX)
V2 Jew
2 N
-Z f Pxclte @D (A, HAO))
0

where the last simplification results from translationakiiance. Finally, if we divide the transition rate by
the incoming flux of particles 1/Vo, we obtain the dierential scattering cross-section.

For example, in an inelastic neutron scattering (INS) expent, the neutrons couple to the electron spin

densityA = S(x) of the material, so that
d?r

dQdw

wherey(q, w) is the dynamic spin susceptibility which determines thgnedizationM(q, w) = x(q, w)B(q, w)

@)~ f d*X(S_(x, S, (0)e @ (0 w)

1-epo

by a modulated magnetic field of waveveatpfrequencyw. By contrast, in an angle resolved photo-emission
(ARPES) experiment, incoming X-rays eject electrons fréma material, leaving behind “holes”, so that
A = y is the electron annihilation operator and the intensityrafteed electrons measures the correlation

function
f-w)
1
N Y Fitkx-ot) _
Ik.o)~ [ o cowone -

where the Fermi function replaces the Bose function in thetdltion dissipation theorem.

A, -w)

10.7 Electron Spectroscopy

10.7.1 Formal properties of the electron Green function

The spectral decomposition carried out for a bosonic véialis simply generalized to a fermionic variable
such agy,. The basic electron “correlation” functions are

(GO0 (0)) = f L6, (e
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(e (0)ko (1)) = f %’& (k, w)et (10.28)

called the “greater” and “lesser” Green functions. A spgladecomposition of these relations reveals that

Go(k,w) = )" PakdIc ko DP2r5(E; - Ey - w)
AL

Gk, w) = ), Palldlok P2 (E; - Ej +w)
e

describe the positive energy distribution functions fortigkes (G.) and the negative energ distribution
function for holes G.) respectively. By relabelling < 1in (10.29) it is straightforward to show that

G.(k,w) = €G- (k, )
We also need to introduce the retarded electron Green mdiven by
) B d
Grk.) = (G (0. S (OO = [ Sk, e ™

(note the appearance of an anticommutator for fermionslandhinus sign pre-factor) which is the real-time
analog of the imaginary time Green function

Gk, 7) = (TG (e (O) =T ) Gk, iwp)e ™

A spectral decomposition of these two functions revealstttey share the same power-spectrum and Kramer’s
Kronig relation, and can both be related to the generalizedrGenction

G(k,2 = fd—wiA(k, w) (10.29)
nTZ-w
where
Gtk o) = Glow+io)= [ Atw)
d7r w—w +10
6K, iwn) = Gk, Db = | —- A, o)., (10.30)
T lwy—w
and the spectral functioA(k, w) = %G(k,w —i6) is then given by
electron addition electron removal
Ak, w) = Z P |KLIC kol )PS(w — Ef = En) + [k l)Po(w + E; - E))
A&
1
= 5, [G-(k.w) + Gk )] (10.31)

is the sum of the particle and hole energy distribution fiomst. From the second of (10.31) and (10.28), it
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follows thatA(k, w) is the Fourier transform of the anticommutator
{Cko(t). ko (O} = f dwA(k, w)e (10.32)
At equal times, the commutator is equal to unjtk,, c¢'x,} = 1, from which we deduce the normalization

fda)A(k,w) =1

For non-interacting fermions, the spectral function is eepdelta-function, but in Fermi liquids the delta-

function is renormalized by a fact@rand the remainder of the spectral weight is transfered toe@whierent
background.

Ak, w) = Zxé(w — Ex) + background

G (kW : ARPES G, (k.w: IPES
K_J\/_JR

AK, w)
s
Q. particle
Pole, sfrength
Zy
0

w

Showing the redistribution of the quasiparticle weight into an incoherent background
in a Fermi liquid.

e relations
G.(k,w) = ——AK, w) = 2(1 - f(w))AK, w)
o 1+ ehw ’ ’

Go(k,w) = TZZMA(k,w) = 2f(w)AK, w)

are the fermion analog of the fluctuation dissipation theore

(particles)

(holes) (10.33)
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10.7.2 Tunneling spectroscopy

Tunneling spectroscopy is one of the most direct ways ofipgpthe electron spectral function. The basic
idea behind tunneling spectroscopy, is that a tunnelingpgiie close enough to the surface that electrons
can tunnel through the forbidden region between the protesarface material. Traditionally, tunneling was
carried out using point contact spectroscopy, whereby ggrabe is brought into contact with the surface,
and tunneling takes place through the oxide layer separatiobe and surface. With the invention of the
Scanning Tunneling Microscope, by Gerd Binnig and Heinfghrer in the 80’s has revolutionized the
field. In recent times, Seamus Davis has developed thismtmki method that permits the spectral function
of electrons to be mapped out with Angstrom level precisiooss the surface of a conductor.
In the WKB approximation, the amplitude for an electron tortelrbetween probe and surface is

- [ Voo

where the integral is evaluated along the saddle-point petiveen probe and surface. The exponential de-
pendence of this quantity on distance means that tunnedidgrinated by the extremal path from a single
atom at the end of a scanning probe, giving rise to Ardgstr level spatial resolution.

The Hamiltonian governing the interaction between the erad the sample can be written

(X1, X2) ~ exp (10.34)

V= Z tic ke [C’*kgpkr(r + HC.] .
K.k’

wherety - is the tunnelling matrix element between the probe and satest’,,, and p'y,. create electrons
in the sample and the probe respectively. The particle ntiofeelectrons from probe to sample is given by

ips =21 PP It PKE ¢1C ke Proerld, A)PS(E, + By — By — Ey)
kKL AN o

where|, ')y = ||y and|, ') = 0|y refer to the joint many body states of the sample (unprimed) a
probe (primed), and we have droppetfom the equation. This term creates electrons in the sarigzleing
behind holes in the probe.

Now if we rewrite this expression in terms of the spectralctions of the probe and sample, after a little
work, we obtain

ip-s =40 ) sl [ dwAs(io) Anl o)1= F(@) (e,

kK

whereAp(k, w) and fp(w) are the spectral function and distribution function of votage-biased probe. We
have doubled the expression to account for spin. You cark¢hewalidity of these expressions by expanding
the spectral functions using (10.31), but the expressisimiply recognized as a product of matrix element,
density of states and Fermi-Dirac electron and hole ocaupfattors.

Similarly, the particle current of electrons from sampletobe is

is.p=2r1 PP Mk P C 10 0o Cerld. VMPS(E, + Epr — By — E)
Kk LTl
= 42 Y f dwAs(k, w)An(K', W)L — fo(@)] f(w). (10.35)
K.k’
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Subtracting these two expressions, the total electricakotl = &(ip_,s — is—p) from probe to sample is

I =4re ) ckl? f dwAs(K, w) Ap(K’, w)] fo(w) — f(w)]. (10.36)
k.k”

The dfect of applying a voltage biag > 0 to the probe is to lower the energy of the electrons in the
probe, so that both the energy distribution functip(w) and the spectral function of electrons in the probe
Ap(k, w) are shifted down in energy by an amoUef¥’ with respect to their unbiased values, in other words
fp(w) = f(w +1elV) = f(w - eV) (e = —l&) andAp(k’, w) = Ap(K’, w — &V), so that

I =4re ) fickl? fdes(k,w) Ak, w — eV)[ f(w — eV) — F(w)]. (e=—le)) (10.37)
k.k’

We shall ignore the momentum dependence of the tunnelingxneements, writingt|> = [t |2, and
>k AlK’, w) = N(0), the density of states in the probe, we obtain

—_
1(V) = 2e2xlt2N(0) f dwAs(@)[f(w - V) - f(w)]. (10.38)

and

As(@) = )" As(k,w)
K
(10.39)
is thelocal spectral functions for the sample. Typically, the probe mmetal with a featureless density of
states, and this justifies the replacembiti) ~ N(O) in the above expression. The quantitgt?N(0) =

I is the characteristic resonance broadening width createttiebtunnelling out of the probe. If we now
differentiate the current with respect to the applied voltagesee that the ffierential conductivity

~6(w-eV)

At low temperatures, the derivative of the Fermi functiovegia delta function in energy, so that

GM:ﬁg%M

lw=eV

Thus by mapping out the fierential conductance as a function of position, it beconussiple to obtain a
complete spatial map of the spectral function on the suréatiee sample.

10.7.3 ARPES, AIPES and inverse PES

ARPES (angle resolved photoemission spectroscopy), A@E§le integrated photoemision spectroscopy)
and inverse PES (inverse photo-electron spectrosopyheternative ways of probing the hole and electron
spectra in matter. The first two involve “photon in, electmrt”, the second “electron in, photon out”. The
coupling of radiation to light involves the dipole couplitegm

H =- f d*xj(x) - A(X)
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Wheref(x) = i%w”"'(xﬁw‘,(x) is the paramagnetic electron current operator. Unlike SfMeutron scat-
tering, this is a strongly coupled interaction, and the agstion that we can use the Golden Rule to relate the
absorption to a correlation function is on much shakier gtbl\RPES spectroscopy involves the absorption
of a photon, and the emission of a photo-electron from therizt The interpretation of ARPES spectra is
based on the “sudden approximation”, whereby it is assuimatttie dipole matrix element between the in-
tial and final states has a slow dependence on the incomirtgpkaergy and momentum, so that the matrix
elementisi.e

(€.k+ql - A1ay ~ A, &)Ll

On the assumption that is weakly energy and momentum dependent, we are able tatlgiretate the
absorption intensity to the spectral density beneath theifenergy,

Y in e out

IarpegK, w) o f(~w)A(K, ~w)
(10.40)

The appearance of the Fermi function masks states abovesthe Energy, and sometimes causes problems
for the interpretation of ARPES spectra near the Fermi gneparticularly for the estimation of anisotropic,
superconducting gaps. There is a large caveat to go wittethuation: when photo-electrons escape from a
surface, the component of their momentum perpendiculdréstirface is modified by interactions with the
surface. Consequently, ARPES spectroscopy can not regmveomenta of the spectral function perpen-
dicular to the surface. The other consideration about ARFPERat it is essentially a surface probe - X-ray
radiation has only the smallest ability to penetrate sasglethat the information obtained by these methods
provides strictly a surface probe of the system.

In recent years, tremendous strides in the resolution of B&RRave taken place, in large part because of
the interest in probing the electron spectrum of the quasi-dimensional cuprate superconductors. These
methods have, for example, played an important role in éihgothe anisotropic d-wave gap of these mate-
rials.

Inverse photo-electron spectroscopy probes the speatrelibn above the Fermi energy. At present, angle
resolved IPES is not a as well developed, and most IPES wedkies unresolved momenta, i.e

ein Y out

lipes(®) & Y [1 = FW)AK, w)
k
(10.41)

In certain materials, both PES and IPES spectra are awilabtlassic example is in the spectroscopy of
mixed valent cerium compounds. In these materialsQtatoms have a singly occupied f-level, in the*4

configuration. PES spectroscopy is able to resolve the grierghe hole excitation
afy —» 4f%+ e, AE = -E;

whereE;y is the energy of a single occupied fevel. By contrast, inverse PES reveals the energy to add an
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electron to the 4! state,
e +4f, — 4f2, AE) =Ef+U

whereU is the size of the Coulomb interaction between two electioms f-state. By comparing these two
absorption energies, it is possible to determine the sizkeo€oulomb interaction energy

10.8 Spin Spectroscopy

10.8.1 D.C. magnetic susceptibility

If one measures the static D. C. magnetization of a mediumj®omeasuring the magnetic response at zero
wavevectorg = 0 and zero frequency = 0. By the Kramer's Kénig relation encountered in (10.12), we

know that
fdw)(”(q =0.w)
XpC = e —
n w

So the static magnetic susceptibility is an economy-clasasurement of the magnetic fluctuation power
spectrum at zero wavevector. Indeed, this link betweenvtberteasurements sometimes provides an impor-
tant consistency check of neutron scattering experiments.

In static susceptibility measurements, there are two itaporimiting classes of behavior, Pauli para-
magnetism, in which the susceptibility is derived from tradapization of a Fermi surface, and is weakly
temperature dependent,

(2
y ~ =B ~ constant
€F

(Pauli paramagnetism)

and Curie paramagnetism, produced by unpaired electroaiZed inside atoms, commonly known as “local
moments”. where the magnetic susceptibilty is inversefpprtional to the temperature, or more generally

MSH
e e
2uj(j+ 1
x(T)~n (%]XT +1T* (local moment paramagnetism)

wheren; is the concentration of local moments ami,f is the dfective moment produced by a moment
of total angular momentuny, with gyromagnetic ratiog. T* is a measure of the interaction between local
moments. For Ferromagne®®;, = —T. < 0, and ferromagnetic magnetic order sets iif at T, where the
uniform magnetic susceptibility diverges. For antiferamnetis,T* > 0 gives a measure of the strength of
interaction between the local moments.

10.8.2 Neutron scattering

Neutrons interact weakly with matter, so that unlike elesror photons, they provide an ideal probe of the
bulk properties of matter. Neutrons interact with atomiclgii via an interaction of the form

A =a f & N (N (IP(X),
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wherep(x) is the density of nucleii ang(X) is the field of the neutrons. This interaction produces laypo
ized scattering of the neutrons, with an inelastic scattecross-section of the form (see example below),

s ki (amN )2 S(q, E)

dQdE = k \27h2)  2x
whereS(q, E) is the autocorrelation function of nuclear density flutirgs in the medium. Where do these
come from? They are of course produced by phonons in theatry&te neutrons transfer energy to the
nucleii by exciting phonons, and we expect that

S(a, E) ~ (1 + ns(E)S(E — hwg)

wherewg, is the phonon dispersion spectrum inside the medium.
The second important interaction between neutrons anémistproduced by the interaction between the
nuclear moment and the magnetic fields inside the mateti@ nfagnetic moment of the neutron is given by

M = yun s
YHNZ

wherey = —1.91 is the gyromagnetic ratio of the neutron and= % is the neutron Bohr magneton. The
interaction with the fields inside the material is then gibgn

=280 [ w(9hun(9 - B0,

The magnetic field inside matter is produced by two sour¢esdipole field generated by the electron spins,
and the orbital field produced by the motion of electrons. Weonly discuss the spin component here. The
dipole magnetic field produced by spins is given by

B(x) = f dBXV(x - x') - M(X)
Wherel\?i(x) = upy’ (X)F¥(X) is the electron spin density and
Z _Ox x| Ho
V(X) =-VxV X(47r|x\)

We can readily Fourier transform this expression, by makivegeplacements
1 1

vold @ @ (1042
so that in Fourier space,
1 A
V@], = ko|ax ax (@)] = 101X 8Ly
b
Pal@
= 110 [0ab — Gallo] - (10.43)

The only dfect of the complicated dipole interaction, is to remove thponent of the spin parallel to the
g-vector. The interaction between the neutron and elesfppandensity is simply written

Hi =g [ on(-a2@ - Sio) 9= oy
q
Apart from the projector term, this is essentially, a “pairteraction” between the neutron and electron spin
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density. Using this result, we can easily generalize ourezaxpression for the nuclearftérential scattering
to the case of unpolarized neutron scattering by replaeing g, and identifying

S.(0. E) = Pap(6)S™(a. E)

as the projection of the spin-spin correlation functiorpeerdicular to the g-vector. For unpolarized neutrons,
the differential scattering cross-section is then
&’ ki,
—— =—15S.(0,E
dodE k' ° 1(9,E)

where

1
Ineg

(57)-3 (22) 5
€
-()me

is, apart from the prefactor, the classical radius of thetede.

Rl

o =

2
(10.44)

Example 10.2: Calculate, in the imaginary time formalism, the self-energy of a neutronaictiag
with matter and use this to compute thefeliential scattering cross-section. Assume the interaction
between the neutron and matter is given by

B =w f P (XY (%)

wherey(x) is the neutron field angd(x) is the density of nuclear matter.
Solution:
We begin by noting that the the real-space self-energy of the neutroreis gy

2(x - X) = a2(3p(X)5p(X NG(X - X)
where(sp(X)dp(X)) = x(x — X) is the real-time density response function of the nuclear matter. (Note

that the minus sign ir-o? associated with the vertices is absent because the propagator used here
(6p(X)3p(0)) contains no minus sign pre-factor. ) If we Fourier transform this esgiom, we obtain

Q/2
0= gy ; Gk - (@)

= a? fq T 6(k- (@

vn

(10.45)

Carrying out the Matsubara summation, we obtain
dE’ 1+ n(E’) — fi_
sk2)=a? | — 9 (g, E7
(a=o* [ @ E)
whereE; is the kinetic energy of the neutron and the Fermi funcfioaf the neutron can be ultimately
set to zero (there is no Fermi sea of neutrofis)>> 0, so that
S(q.E)

e ETENEE)

i m 2= (Exq+ E)
From the imaginary part of the self-energy, we deduce that the lifetiofehe neutron is given by

2
12 sk E—if) = ﬂf S(k - k', Ey — Ex)
T N e

2(k.2) = a?
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where we have changed the momentum integration variabledrtmit’ = k — g. Splitting the momen-
tum integration up into an integral over solid angle and an integral oveggnee have

_ (ke
fkff(&ﬂhz)dEdQ

from which we deduce that the mean-free pathfithe neutron is given by

1ol ok Ee—i6) = fdnk,dEk, ><
I wr W

Ke (amy)\?

— === S(a.E

k (2nh2) @)

whereq = k — k’ andE = E, — E» andvy = 7ik;/my is the incoming neutron velocity.

Normally we writel = 1/(njo) , whereo is the cross-section of each scatterer aris the concentration
of scattering centers. Suppase=Tno is the scattering cross-section per unit volume, iven /1, so
it follows that

.1 e K [ amy\2
7= amk. Ek—ns)_fdﬂk,dEk,x[E (W) S(. E)]

from which we may identify the diierential scattering cross-section as
&G ke (amN

2
dOdE K ﬁ) S(@.B)

10.8.3 NMR

Knight Shift K

Nuclear Magnetic resonance, or “Magnetic resonance ingddMRlI), as it is more commonly referred
to in medical usage, is the use of nuclear magnetic absarpities to probe the local spin environment in
a material. The basic idea, is that the Zeeman interactianrafclear spin in a magnetic field gives rise to
a resonant absorption line in the microwave domain. Theast®n of the nucleus with surrounding spins
and orbital moments produces a “Knight shift” this line analso broadens the line, giving it a width that is
associated with the nuclear spin relaxation rafg 1

The basic Hamiltonian describing a nuclear spin is

H= —ynr- §+ Hht

wherelis the nuclear spiny, is the nuclear magnetic moment. The teHp; describes the “hyperfine”
interaction between the nuclear spin and surrounding spgress of freedom. The hyperfine interaction
between a nucleus at sitand the nearby spins can be written

Hnt = —1; - Bne(i)

Bur) = Ao Si + A -Gt DAL= ])- Sy (10.46)
i

whereB¢(i) is an dfective field induced by the hyperfine couplings. The thremsdn this Hamiltonian are
derived from a local contact interaction, with s-electranshe same site, an orbital interaction, and lastly,
a transfered hyperfine interaction with spins at neighlgpsites. The various tensofsare not generally
isotropic, but for pedagogical purposes, let us ignore thgogropy.

The Knight shift - the shift in the magnetic resonance lisdasically the expectation value of the hyperfine
field By In a magnetic field, the electronic spins inside the mategabme polarized, witts;) ~ yB, where
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x is the magnetic susceptibility, so in the simplest situgttbe Knight shift is simply a measure of the local
magnetic susceptibility of the medium. n turn, a measuréefelectron density of statébl(e)), thermally
averaged around the Fermi energy, so

K~ Bni ~ xB ~ (N(e))B.

One of the classic indications of the development of a gaperetectron excitation spectrum of an electronic
system, is the sudden reduction in the Knight shift. In mane@plex systems, where there ar@elient spin
sites, the dependence of the Knight shift can depart fronglihteal spin susceptibility.

Another application of the Knight shift, is as a method toedemagnetic, or antiferromagnetic order. If
the electrons inside a metal develop magnetic order, theptaduces a large, field-independent Knight shift
that can be directly related to the size of the ordered magmetment

K~ (Siocal

Unlike neutron scattering, NMR is able to distinguish betwé&omogeneous and inhomogeneous magnetic
order.
Relaxation rate 1/T;
The second aspect to NMR, is the broadening of the nucleanaese. If we ignore all but the contact
interaction, then the spin-flip decay rate of the local spidetermined by the Golden Rule,
1 2n
ﬁ = ?leguntac[SJrf(w)

wherewy is the nuclear resonance frequency and

w=wn

S (@) = f [1+ N()] ¥/_(@, )
q

dq 1
~T 2 .
[ G @o
at frequencies ~ wy, so for a contact interaction, the net nuclear relaxatioaisathen

1 2n dq 1,
-?1 = ?legonlachT f@;x\ﬂﬁ(qsw)

(10.47)

w=wn

In a classical meta” (w)/w ~ N(0)? is determined by the square of the density of states. Thitsleman
NMR relaxation rate

1 kgT
= « TN(OY ~ =~
€

2
T 2

Korringa relaxation

This linear dependence of the nuclear relaxation rate opéeature is name a “Korringa relaxation” law,
after the Japanese theorist who first discovered it. Koariredaxation occurs because the Pauli principle
allows only a fraction fractiof N(O) ~ T/e of the electrons to relax the nuclear moment. In a more génera
Fermi system, the NMR relaxation rate is determined by teentially averaged square density of states.

1 df(w)
T—l~Tf(—W)N(w)2~T><[N(w~kBT)]2

In a wide class of anisotropic superconductors with linesafes along the Fermi surface, the density of
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states is a linear function of energy. One of the classicadiges of these line nodes across the Fermi surface
is then a cubic dependence ofT} on the temperature

. . 1
line nodes in gap= N(e) « e, > T3
1
In cases where the transferred hyperfine couplings are tamothe non-locality introduces a momentum
dependence intA(k) = Y5 A(ﬁj)e"k‘ﬁithese couplings. In this case,

1 2n d*q 1
== —IZXTI—A PZx (g,
"% @07 (@7~ xi-(a )WN
These momentum dependences can lead to radicdiBrelnt temperature dependences in the relaxation
rate at diferent sites. One of the classic examples of this behaviaireda the normal state of the high
temperature superconductors. The active physics of thederials takes place in quasi-two dimensional
layers of copper oxide, and the NMR relaxation rate can besared at both the oxygei®t’) and copper
sites.

1 1
—_ ~ constant —| ~T,
(Tl )Cu ( Ty )O

The appearance of two qualitativelyfidirent relaxation rates is surprising, because the phystbs copper-
oxide layers is thought to be described by a single-band maité a single Fermi surface that can be seen
in ARPES measurements. Why then are there two relaxatiosrate

One explanation for this behavior has been advanced by MilaRice, who argue that there is indeed a
single spin fluid, located at the copper sites. They notibetl whereas the copper relaxation involves spins
at the same site, so that

Acu(q) ~ constant

the spin relaxation rate on the oxygen sites involves afeasd hyperfine coupling between the oxyggror
py orbitals and the neigboring copper spins. The odd-parigymfor py orbital means that the corresponding
form factors have the form

Ap(q) ~ sin(gxa/2).

Now high temperature superconductors are doped insuldiotise insulating state, cuprate superconduc-
tors are “Mott insulators”, in which the spins on the Coppiggssare antiferromagnetically ordered. In the
doped metallic state, the spin fluctuations on the coppes siill contain strong antiferromagnetic correla-
tions, and they are strongly peaked aro@d~ (r/a, 7/a), wherea is the unit cell size. But this is precisely
the point in momentum space where the transfered hyperfingliogs for the Oxygen sites vanish. The ab-
sence of the Korringa relaxation at the cupper sites is tAkentas a sign that the copper relaxation rate is
driven by strong antiferromagnetic spin fluctuations whidchnot couple to oxygen nucleii.
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10.9 Electron Transport spectroscopy
|

10.9.1 Resistivity and the transport relaxation rate

One of the remarkable things about electron transportaisahe of the simplest possible measurements - the
measurement of electrical resistivity, requires quite ghssiicated understanding of the interaction between
matter and radiation for its microscopic understanding.siél cover this relationship in more detail in the
next chapter, however, at basic level, DC electrical rig#ligtcan be interpreted in terms of the basic Drude
formula

0= —Ty

where Yty is the transport relaxation rate. In Drude theory, the ebecscattering ratey, is related to the
electron mean-free patlvia the relation

| = Ver

wherevg is the Fermi velocity. We need to sharpen this understandordl/z is not the actual electron
scattering rate, it is the rate at which currents decay imtheerial. For example, if we consider impurity
scattering of electrons with a scattering amplitui® which depends on the scattering an@l¢he electron
scattering rate is

1

; = 2N (O)W

where
— 1 dcosy
e = [ S5 .
-1

denotes the angular average of the scattering rate. Honaveve shall see shortly, the transport scattering
rate which governs the decay of electrical current contamextra weighting factor:

Ti = 2an;N(0)|u(8)12(1 — cosb)
tr

1
[u(B)[2(1 - cosb) = f dCTOSG\u(e)\Z(l - cosf). (10.48)

-1

The angular weighting factor (1 cost) derives from the fact that the change in the current catiedn
electron upon scattering through an anggeis eu(1 — cosd). In other words, only large angle scattering
causes current decay. For impurity scattering, this distn is not very important but in systems where the
scattering is concentrated nepe 0, such as scatteringfdferromagnetic spin fluctuations, the {lcoss)
term substantially reduces thfectiveness of scattering as a source of resistance.

At zero temperature, the electron scattering is purelytieland the zero temperature resistaRgés then a
measure of the elastic scattering raféimpurities. At finite temperatures, electrons also expegenelastic
scattering, which can be strongly temperature dependem.cbthe most important diagnostic quantities to
characterize the quality of a metal is the resistance réatie +atio of resistance at room temperature to the
resistance at absolute zero
R(300K)

R(0)

RR= Resistance Ratie
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The higher this ratio, the lower the amount of impurities &mel higher the quality of sample. Hardware
quality copper piping already has a resistance ratio ofraxdlBousand! A high resistance ratio is vital for the
observation of properties which depend on the coherengtizaihotion of Bloch waves, such as de-Haas van
Alphen oscillations or the development of anisotropic sapeductivity, which is ultra-sensitive to impurity
scattering.

With the small caveat of distinction between transport aradtering relaxation rates, the temperature de-
pendent resistivity is an excellent diagnostic tool for @rsianding the inelastic scattering rates of electrons:

m 1
AT = e > (n,(T))
There are three classic dependences that you should béafawith:

e Electron phonon scattering above the Debye temperature

El = 2nAkgT

Ttr
Linear resistivity is produced by electron-phonon scatteat temperatures above the Debye tempera-
ture, where the cdgcient 1 is the electron-phonon coupling constant defined in theipusvchapter.
In practice, this type of scattering always tends to satuosice the electron mean-free path starts to
become comparable with the electron wavelength. It is §pe tof scattering that is responsible for
the weak linear temperature dependence of resistivity inynmaetals. A note of caution - for linear
resistivity does not necessarily imply electron phonoritsdag! The most well-known example of lin-
ear resitivity occurs in the normal state of the cuprate sxgreluctors, but here the resistance does
not saturate at high temperatures, and the scattering misahas almost certainly a consequence of
electron-electron scattering.

e Electron-electron or Baber scattering

2~ TIONOPNO)keT)?
T
where
TNV > 9% "2
[UN(O)* = N(0)7 | - =IU(k — k')I*(1 - cosl)
is the weighted average of the electron-electron intevattiq). This quadratic temperature dependence
of the inelastic scattering rate can be derived from the &oldle scattering rate
1 4
- = % Z Uk - k/)|2(l — €08k k')A — fir)(X = fir) fier sk (e + € — €r)
k’ k"

Tir

where the # = 2 x 2r prefactor is derived from the sum over internal spin indifese neglect the
momentum dependence of the scattering amplitude, thermttastity is determined entirely by the
three-particle phase space

Ti o« [ dede’(1— FENL- Fe))f(=€ — )

tr
1 1 1 n?
_T2 _T
=T dedy(l—ex)(l—ery)(l—er<x+Y))_ rl

In practice, this type of resistivity is only easily obsetvi@ strongly interacting electron materials,

(10.49)
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where it is generally seen to develop at low temperaturesnaieandau Fermi liquid develops. THé
resistivity is a classic hallmark of Fermi liquid behavior.
e Kondo spin-flip scattering
In metals containing a dilute concentration of magneticuntjes, the spin-flip scattering generated
by the impurities gives rise to a temperature dependentestag rate of the form

1 o1
Tir l In? (TT—K)
whereTk is the “Kondo temperature”, which characterizes the chertic spin fluctuation rate of

magnetic impurity. This scattering is unusual, becausedbimes stronger at lower temperatures, giving
rise to a “ resistance minimum” in the resistivity.

In heavy electron materials, the Kondo spin-flip scatteigrgeen at high temperatures, but once a coher-
ent Fermi liquid is formed, the resistivity drops down agairiow temperatures, ultimately following &
behavior.

10.9.2 Optical conductivity

Probing the electrical properties of matter at finite fretgies requires the use of optical spectroscopy. In
principle, optical spectroscopy provides a direct probtheffrequency dependent conductivity inside a con-
ductor. The frequency dependent conductivity is definechbyrélation

fw) = r(W)EW)

Modern optical conductivity measurements can be made frewuencies in the infra -red of order ~
10cnT! ~ 1meV up to frequencies in the optical, of order,800cnT® ~ 5eV. The most direct way of
obtaining the optical conductivity is from the reflectivityhich is given by

1-nw) 1- Ve(w)
1+nw) 1+ Ve(w)

wheren(w) = Ve(w) is the difractive index and(w) is the frequency dependent dielectric constant. Now
e(w) = 1+ y(w) wherey(w) is the frequency dependent dielectric susceptibilitywince the polarization
P(w) = y(w)E(w), and since the current is given py= 4;P, it follows that j(w) = —iwP(w) = —iwy(w)E(w),

so thaty(w) = o(w)/(-iw) and hence

r(w) =

ew)y=1+ M
—iw
Thus in principle, knowledge of the complex reflectivity elehines the opical conductivity.

In the simplest measurements, it is only possible to meatréntensity of reflected radiation, giving
Ir(w)[?. More sophisticated “ elipsometry” techniques which meashe reflectivity as a function of angle
and polarization, are able to provide both the amplitudepdrasbe of the reflectivity, but here we shall discuss
the simplest case where only the amplityd@)| is available. In this situation, experimentalists use the
“Kramers’ Kronig” relationship which determines the imaaiy partoz(w) of the optical conductivity in
terms of the real partri(w), (Appendix A)

o) = wfo‘” dw’ o1(w)

T - w?
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This is a very general relationship that relies on the ref@ndature of the optical response. In principle,
this uniquely determines the dielectric function and reity. However, since the range of measurement
is limited below about &V, an assumption has to be made about the high frequency befwdthe optical
conductivity where normally, a Lorentzian form is assumed.

With these provisos, it becomes possible to invert the feagy dependent reflectivity in terms of the
frequency dependent conductivity. We shall return in thet mbapter for a consideration of the detailed
relationship between the optical conductivity and the oscopic correlation functions. We will see shortly
that the interaction of an electromagnetic field with matteolves the transverse vector potential, which
couples to the currents in the material without changingctierge density. The optical conductivity can be
related to the following response function

70 = 5| % - iy

This expression contains two parts - a leading diamagnaetit; which describes the high frequency, short-
time response of the medium to the vector potential, and @ansk¢paramagnetic” part, which describes the
slow recovery of the current towards zero. We have used thettend

(@) =i fo "t 0, j(O)he

to denote the retarded response function for the “parantagmert of the electron current densifyx) =
SETALZE)
m

10.9.3 The f-sum rule.

One of the most valuable relations for the analysis of optioaductivity data, is the so-called “f-sum rule”,
according to which the total integrated weight under thedcetivity spectrum is constrained to equal the

plasma frequency of the medium,
* dw né
I Fotar=T = vhe

wheren is the density of electronic charge ang is the Plasma frequency. To understand this relation,
suppose we apply a sudden pulse of electric field to a conducto

(10.50)

E(t) = Eod(t), (10.51)

then immediately after the pulse, the net drift velocity loé telectrons is changed to= eEy/m, so the
instantaneous charge current after the field pulse is

j(0%) = nev= %Eo, (10.52)

wheren is the density of carriers. After the current pulse, thetelecurrent will decay. For example, in the
Drude theory, there is a single current relaxation time rateso that

né&

i) = — @t/
j®) = m e VT Ey (10.53)
and thus
ot-t) = %e‘(“”/’"é)(t -t) (10.54)
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and by Fourier transforming we deduce that
1

1
Ty —lw

o= [ ot =" (10.55)
o m

Actually, the f-sum rule does not depend on the detailed fafrthe curent relaxation. Using the instantaneous

response in (10.52) we obtain

ne& E

J(t=0") = Eyor(t = 0%) = Eo f dz‘”e*i%(m) =—

= (10.56)

is a consequence of Newton’s law. It follows that (indepentigeof how the current subsequently decays),

f d—wn'(w) = ﬁ = 600)’23
0 s

- (10.57)

where we have identified)wg = % with the plasma frequenay,, of the gas. This relationship is called the
f-sum rule, and it is important because it holds, indepetigefthe details of how the current decays.

The important point about the f-sum rule, is that in prinejghe total weight under the optical spectrum,
is a constant, providing one integrates up to a high-enonghgg. When the temperature changes however,
itis possible for the spectral weight to redistribute. Irnragle metal, the optical conductivity forms a simple
“Drude peak” - Lorentzian of width /Iy, around zero frequency. In a semi-conductor, the weightiegiis
peak decays as®/T, whereA is the semi-conducting gap. In a simple insulator, the aaof spectral
weight must then reappear at energies above the direct gagyeky. By contrast, in a superconductor, the
formation of a superconducting condensate causes theapeeight in the optical conductivity to collapse
into a delta-function peak.
©

(@ ()

METAL INSULATOR

SUPERCONDUCTOR

Hlep il The f-sum rule. lllustrating (a ) the spectral weight transfer down to the condensate in

a superconductor (b) the Drude weight in a simple metal and (c) The spectral weight
transfer up to the conduction band in an insulator. )
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Appendix A: Kramer's Kr dnig relation

The Kramer’s Kbnig relation applies to any retarded linear response ifiomdbut we shall derive it here in
special reference to the conductivity. In time, the cureerd electric field are related by the retarded response
function

t
j@®) = f dt'o(t - t')E(t) (10.58)
which becomeg(w) = o(w)E(w) in Fourier space, where(w) is the Fourier transform of the real-time
response function-(t — t’)

o(w) = j:ﬂ dtd“'or(t).

This function can be analytically extended into the uppaf-tomplex plain ,

(@) = o(x+iy) = fo " dtéo() = . fo " dtd Vo).

So long azlies above the real axis, the real payt of the exponent is negative, guaranteeing that the integral
o(2) is both convergent and analytic. Providedz, > 0, then the conductivity can be written down using
Cauchy’s theorem

dz o(2

o(z) = C'ﬁ2720

whereC’ runs anti-clockwise around the poizt By distorting the contour onto the real axis, and neglectin
the contour at infinity, it follows that
“ dw o(w)

_mﬁw'fzo

() =

Takingzg = w + id, and writingo(w + i6) = o1(w) + io2(w) on the real axis, we arrive at the “Kramer's

Kronig” relations
“ do’ o1(w’)
o2(w) :’f o o = 2 _ 2
. W -w b T W -w
“ do’ oa(w’) fm do’ w'oa(w’)
o 2T W —w b T w?-w?

do’ o1(0’)

oi(w) =

(10.59)

Exercises

Exercise 10.1 Spectral decomposition. The dynamic spin susceptibilitg magnetic system, is defined
as

X0t = t2) = i([S7(q. 1a). S (-0, ©2)] > 6(ta - t2)

whereS*(q) = Sx(q) +iSy(q) are the spin raising and lowering operators at wavevegtoe

(10.60)

S*(q) = f d®e*s* (x) (10.61)
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so thatS(g) = [S*(~q)]’. The dynamic spin susceptibility determines the respohtieeamagnetiza-
tion at wavevectog in response to an applied magnetic field at this wavevector

M(a.1) = (gue)? f dty(q.t - )B(Y). (10.62) References
(i)Make a spectral decomposition, and show that
x@0 = o) [ @) (1069
wherey” (g, w) ( often called the “power-spectrum” of spin fluctuatiorspiven by
X' (@) = (1-e7) ) ePEPs* (-l Prslw - (E; - EN] (10.64)
v

andF is the Free energy.

(ii)Fourier transform the above result to obtain a simpkegnal transform which relategq, w) and

X" (9,w). The correct result is a “Kramers Kronig” transformation.

(iii)In neutron scattering experiments, the inelasticttrang cross-section is directly proportional to a
spectral function calle&(q, w),

d2
ﬁ o S(q, w) (10.65)

whereS(q, w) is the Fourier transform of a correlation function:
s@) = [ des (@95 (a0 (10.66)
By carrying out a spectral decomposition, show that

S(d, ) = (1+n(@)x’ (g, w) (10.67)

This relationship, plus the one you derived in part (i) cambed to completely measure the dynamical
spin susceptibility via inelastic neutron scattering.
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Electron transport Theory

11.1 Introduction

Resistivity is one of the most basic properties of condctBurprisingly, Ohm's law
V=IR

requires quite a sophisticated understanding of the quanteny body physics for its understanding. In the
classical electron gas, the electron current density

(%) = —nev(x)

is a simple c-number related to the average drift velodig) of the negatively charged electron fluid. This
is the basis of the Drude model of electricity, which Paul @runtroduced shortly after the discovery of
the electron. Fortunately, many of the key concepts evoiretie Drude model extend to the a quantum
description of electrons, wherix) is an operator. To derive the current operator, we may dpipethe
continuity equation, or alternatively, we can take thedgive of the Hamiltonian with respect to the vector
potential,

fog = -2

SA(X)

where
2
H=[ d3x[§nw<x> (-0 - o9 wt - w(x)w*(x)w(x)] +Vinr

where the Hamiltonian is written out for electrons of chaygee = —|e|. Now only the Kinetic term depends
onA, so that

- ien .o &\
=—— — = | Al 111
109 = ~5 0 (9 () (m) (900, a1y
wherev= % V- V)isthe symmetrized derivative.
The discussion we shall follow dates back to pioneering viayrkritz London[1, 2]. London noticed in
connection with his research on superconductivity, thectirrent operator splits up into components, which
he identified with the paramagnetic and diamagnetic respohthe electron fluid:

09 = 1p0) + Jo(x) (11.2)
where

00 = 25100 § w0 113
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and

> &\ o

o) = - 5} o0, (1.4)
Although the complete expression for the current densitinvariant under gauge transformatiop&) —
€90y (x), A(x) —» A~ LV4(x) the separate parts are not. However, ispacificgauge, such as the London
or Coulomb gauge, wheré- A = 0, they do have physical meaning. We shall identify this fesh as the
term responsible for the diamagnetic response of a condaatd the first term, the “paramagnetic current”,
is responsible for the decay of the current a metal.

Fig. 11.1 (a) lllustrating the diffusion of electrons on length-scales large compared with the

December 1, 2011

mean-free path |, (b) The Drude frequency dependent conductivity. The short-time
behavior of the current is determined by Newton’s law, which constrains the area

under the curve to equal fdwo-(w) = n%, a relation known as the f-sum rule.

In a non-interacting system, the current operator commuitssthe Kinetic energy operatddy and is
formally a constant of the motion. In a periodic crystal,célen momentum is replaced by the lattice mo-
mentumk, which is, in the absence of lattice vibrations, a constdrthe motion, with the result that the
electron current still does not decay. What is the origin etelcal resistance?

There are then two basic sources of current decay insideductor:

o Disorder - which destroys the translational invariancehefdrystal,
e Interactions - between the electrons and phonons, and betthe electrons themselves, which cause the
electron momenta and currents to decay.

The key response function which determines electron ctiseéhe conductivity, relating the Fourier compo-
nent of current density at frequeney to the corresponding frequency dependent electric field,

j(w) = F(w)E(w)

We should like to understand how to calculate this responsetibn in terms of microscopic correlation
functions.

The classical picture of electron conductivity was devetbpy Paul Drude, shortly after the discovery of
the electron. Although his model was introduced before theat of quantum mechanics, many of the basic
concepts he introduced carry over to the quantum theory mdwctivity. Drude introduced the the concept
of the electron mean-free palth the mean distance between scattering events. The chéstctémescale
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between scattering events is called the transport saajtéme ;.. ( We use the “tr” subscript to delineate
this quantity from the quasiparticle scattering timebecause not all scattering events decay the electric
current.) In a Fermi gas, the characteristic velocity ofetms is the Fermi velocity and the mean-free path
and transport scattering time are related by the simpl¢ioela

I = Very

The ratio of the mean-free path to the electron wavelengtheisame order of magnitude as the ratio of the
scattering time to the characteristic timescale assatiatth the Fermi energyi/er is determined by the
product of the Fermi wavevector and the mean-free path

I kel Ty €Ty
A 2t hlee  h
In very pure metals , the mean-free path of Bloch wave elastr@an be tens, even hundreds of microns,
| ~ 10m, so that this ratio can become as large adrGeven 16. From this perspective, the rate at which
current decays in a good metal is very slow on atomic timéesca

There are two important aspects to the Drude model:

o the difusive nature of density fluctuations,
o the Lorentzian line-shape of the optical conductivity

né 1

m ‘rgl—iw

o(w) =

Drude recognized that on length scales much larger than gen+free path multiple scattering events
induce difusion into the electron motion. On large length scales, tineeat and density will be related by he
diffusion equation,

j(x) = ~DVp(x).

whereD = 12 = 127, which together with the continuity equation
¢.j=-%

at
gives rise to the diusion equation
a
-— +DV?[p=0.
[ +ovl
The response functiop(q, v) of the density to small changes in potential must be the @danction for
this equation, so that in Fourier space
[iv - Del(g) = 1
from which we expect the response function and densityitjeosrrelation functions to contain aftlisive
pole

1
5 5p(—0, —v)) ~ ——
(0p(a.)op(=q. =) ~ = b
The second aspect of the Drude theory concerns the slow décayrent on the typical time-scatg, so
that in response to an electric field puBe= Eqd(t), the current decays as

=6+
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In the last chapter, we discussed how, from a quantum penepeibis current is made up of two components,
a diamagnetic component

né né

joia=-"—A=—Eo (t>0)

and a paramagnetic part associated with the relax9atidrea¢lectron wavefunction, which grows to cancel
this component,

. neé _ . .
jPARA= HEo(e Ve~ 1), (t>0)

We should now like to see how each of these heuristic feakme=ges from a microscopic treatment of
the conductivity and charge response functions. To do tresneed to relate the conductivity to a response
fucntion - and this brings us to the Kubo formula.

11.2 The Kubo Formula
|

Lets now look again at the form of the current density opera#tocording to (11.1), it can divided into two
parts

0 =7e+To (11.5)
where
> ih .o e .
jp= _%w () v ¢(x) paramagnetic current
R P A .
fo=-— fd xp(X)A(X)  diamagnetic current (11.6)

are the “paramagnetic” and “ diamagnetic” parts of the aurr€he total current operator is invariant under
gauge transformationg(x) — €My (x), K(x) > A+ lﬁaﬁ(x) and speaking, the two terms in this expression
for the current can’t be separated in a gauge invariantdasiiowever, in a specific gauge. We shall work in
the London gauge

> o

V-A=0 “London Gauge”

In this gauge, the vector potential is completely transy@}sA(d) = 0. The equations of the electromagnetic
field in the London Gauge are

1 > o,
(5% - ¥7) A = woit
Va9 = £
€
so that the potential field(x) is entirely determined by the distribution of chargesdesihe material, and the
only independent external dynamic field coupling to the mialtés the vector potential. We shall then regard
the vector potential as the only external field coupling ®rtaterial.
We shall now follow Fritz London’s argument for the inter@aigon of these two terms. Let us carry out a
thought experiment, in which we imagine a toroidal piece efah as in Fig. 11.2 in which a magnetic flux
is turned on at = 0, passing up through the conducting ring, creating a vexitemtial around the ring given

(11.7)

302

155



(©2011 Piers Coleman Chapter 11.

by A = Agf(t) = ﬁe(t), wherer is the radius of the ring. The Electric field is related to tk&eeal vector
potential via the relation

oA
E= 5 =
SOE = —Ad(t) is a sudden inductively induced electrical pulse.

—Aod(t)

B(t) = Bob(1)

E0)
Ao+

Jo

Schematic diagram to illustrate diamagnetic current pulse produced by a sudden
change of flux through the conducting loop.

Suppose the system is described in the 8dimger representation by the wavefunctigit)), then the
current flowing after time t is given by

(3t = w el () - %Aae(t)

where we have assumed th@(x)) = n is the equilibrium density of electrons in the material. Vée s
that the second “diamagnetic” term switches on immediadégr the pulse. This is nothing more than the
diamagnetic response - théext of the field induced by Faraday'fect. What is so interesting, is that this
component of the current remainwdefinitely, after the initial step in the flux through the toroid. But the
current must decay! How?

The answer is that the initial “paramagnetic” contributtorthe current starts to develop after the flux is
turned on. Once the vector potential is present, the waegfum|y(t)) starts to evolve, producing a param-
agnetic current that rises and in a regular conductor, ateiy exactly cancelthe time-independent diamag-
netic current. From this point of view, the onlyfifirence between an insulator and a metal, is the timescale
required for the paramagnetic current to cancel the diaetagoomponent. In an insulator, this time-scale is
of order the inverse (direct) gagy, 7 ~ 7i/Ag, whereas in a metal, it is the transport relaxation timery,.

These arguments were first advanced by Fritz London. Heetbtitat if, for some unknown reason the
wavefunction of the material could become “rigid”, so thtawvould not respond to the applied vector poten-
tial. In this special case, the paramagnetic current woelgtnbuild up, and one would then have a perfect
diamagnet - a superconductbets now look at this in more detail. We need to compute

(11.8)

J(x0) = (Jp(x 1) - %K(x, t)

Now if we are to compute the response of the current to theexpfield, we need to compute the build up
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of the paramagnetic part of the current. Here we can userliesaonse theory. The coupling of the vector
potential to the paramagnetic current is simplj dxj(x) - A(X), so the response of this current is given by

(Jp) = f! td3>(dt’i<[i’p'>(><), ROODA(X) (11.9)
In other words, we may write
j=- f d2Q(1 - 2)A(2)
Q*(1-2)= %6”"6(1 -2)-i[j5Q). Dot - to). (11.10)

The quantityQ(1-2) is the “London response” Kernel. In the most general dageresponse is non-local in
both space and time. In a metal, this response is non-loealotistance given by the electron mean-free path
| = V7. In @ superconductor the response to the vector potentiridocal over the “Pippard coherence
length”, & = v /A, whereA is the superconducting gap. We can write the above resuttimiér space as

jla) = ~Q@A()

where
ne? e
Qo) = 6" = i@, Pl-a)
and we have used the cavalier notation,

0@, ) = f dx fo " dtj(x 0, POpe @,

Finally, if we write E = — 2, or A(q) = £ E(q), we deduce that

j(@) = o(AE()

Kubo formula

@ =20 = = {5 -igir (@ o) GEREY

This is the famous “Kubo formula’[3] that allows us to relaterrent fluctuations to the conductivity. In
practice, the high velocity of light means that v/c << kg is much shorter than an electronic wavevector,
so that in electronic condensed matter physics, we may @entie limitg = 0, writing o-(v) = o(d = 0, ).
This is the quantity that is measured in optical condugtirieasurements. The D.C. conductivity is given by
the zero-frequency limit of the uniform conductivity, i€pc = Lt,_o0(v).

In a regular conductotrpc is finite, which implies thaQ(v = 0) = 0, so that in a conductor

iK[j°(@). JP(-alg-o = %M

We shall see that this identity breaks down in a system withdam gauge invariance - and this is the origin
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of superconductivity. In a normal fluid however, we can use itlentity to rewrite the expression for the
conductivity as

v

() = i[—K[i”(V'). Fevn| (11.12)

- =0
A practical calculation of conductivity depends on our @pito extract this quantity from the imagi-
nary time response function. We can quickly generalizeesgion (11.10) to imaginary time, by replacing
i{[A(L), B(2)]) — (T A(1)B(2)), so that in imaginary time,

f1)=- f d2Q(1 - 2)A(2), (1= (%, m)

ne s
Q*(1-2)= Fé"ﬁé(l -2~ (Tip)inE) (11.13)
so that in Fourier space, our expression for the optical gotidty is given by
V' =ivp
o (ivy) = Ll 0" j‘*(—v’))] (11.14)
Vn V=0

where we have used the short-hand notation

APEfCin = [ @ rOro

11.3 Drude conductivity: diagramatic derivation

In the last section we showed how the fluctuations of the etettcurrent can be related to the optical
conductivity. Let us now see how these fluctuations can bected using Feynman diagrams in a disordered
electron gas with dispersian = ;—fn First, let us review the Feynman rules. We shall assumentbdtave
taken the leading ordeffects of disorder into account in the electron propagatarotisl by

1
=G(K) = - - T
iwn — & + iSgnwn

The current operator ig'(q) = >, e%n/ﬁk,q/zwkm/gm which we denote by the vertex

k(r

o =e—

m

The set of diagrams that represent the current fluctuatiansten be written
k
(@f(-ay =« B
k+q
+a B + a B+
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+“"!ii" e ‘!IE!" .

In the above expansion, we have identified three classesgfatns. The first diagram, denotes the simplest
contribution to the current fluctuation: we shall see slydttht this is already dficient to capture the Drude
conductivity. The second set of diagrams represent thélgampurity corrections to the current vertex: these
terms take account of the fact that low-angle scattering doedfect the electric current, and it is these terms
that are responsible for the replacement of the electrottesizay rater by the transport relaxation ratg .
We shall see that these terms vanish for isotropicaly s@agtenpurities, and justifying our neglect of these
contributions in our warm-up calculation of the condudivi

The last set of diagrams involve crossed impurity scattelimes - we have already encountered these
types of diagrams in passing, and the momentum restricisseciated with crossed diagrams lead to a
reduction factor of orde@(k%,) ~ 4 or the ratio of the electron wavelength to the mean-freb.petiese are
the “quantum corrections” to the conductivity. These maadlyncrossed diagrams were first investigated by
Langer and Neal in 1966, during the early years of reseatohelectron transport , but it was not until the
late 1970's that they became associated with the physidectien localization - more on this later.

Using the Feynman rules, the first contribution to the curflectuations is given by

(11.15)

1w,

a B = (i) iP(=iva))

=-28T ) %G(k,iw, +ivn)G(K. iwr)

Kiwr

i, +i y (11.16)

where the minus sign derives from the fermion loop and theofaaf two derives from the sum over spin
components. The fierence between the fluctuations at finite and zero frequeisctaen

[0 jﬁ(—v»]io”” =-2¢T )’ Lﬁf [ Gk, iw; +iva)G(K, iwr) — {ivg — 0} (11.17)

K.iwr

Now the amplitude at current fluctuations at any one frequémmlves electron states far from the Fermi
surface. However, thdifferencebetween the current fluctuations at two low frequencies elanmut most

of these contributions, and the only important remainingtgbutions involve electrons with near the Fermi
surface. This observation means that we can replace the mtiomesummation in (11.17) by an energy
integral in which the density of states is approximated bymstant, and the limits are extended to infinity,

as follows
kekb 4niedk [ dQg keke
I Iy e LTI
S VEN©) [
_”sﬁFTL’de[ ] (11.18)
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The London Kernel then becomes e Transverse current fluctuations are ndfufive - this is not surprising, since transverse currentifftons
A2ZN(0) do not involve any fluctuation in the charge density.
Q% (ivn) = 25"”%T Z X

To improve our calculation, let us now examine the vertexaxiions that we have so far neglected. Let

wr

Poles on opposite sided; > ur Poles on same side us now re-introduce the “ladder” vertex corrections showr(11.15). We shall write the current-current
e
o 1 1 . correlator as
2f de ( " ( - - Ivh — 0
oo iwf — e +isgrwf /27 ) \iwr — € +isgnu /27
K
We can now carry out the energy integral by contour methodsshéll assume that, > 0. Now, provided (@F(-qp=a B
thatiw; > 0 andiw; < 0, the first term inside this summation has poles on oppoisies ©f the real axis, at (11.21)

k+q

€ =iwr +i/2r ande = iw, — 1/27, whereas the second term has poles on the same side of tlisedlhus, where the vertex correction is approximated by a sum of ladigrams, as follows

when we complete the energy integral we only pick up contidms from the first term. (It doesn’'t matter
which side of the real axis we complete the contour, but if Weose the contour to lie on the side where
there are no poles in the second term, we are able to immbdsste that this term gives no contribution. )

The result of the integrals is then B = [3 + = el
02
< (11.22)
) 2e2N(0) 2ri . . .
Qb (ivy) = 6% —3 T o= We shall re-write the vertex part as a self-consistent Dyspration, as follows:
0>w>—vp, N
né
R i (11.19)
m 1+,
) ) ) . eAv; = (11.23)
Converting the London Kernel into the optical conductivity
1 né& 1
aBliy, ) — = OB(i L
a®(ivy) VnQ (ivn) m L= i(ivn)
Finally, analytically continuing onto the real axis, we aipt whereq = (0,ivn) andp’ = (B’ iwy). The equation for the vertex part is then
e Awr, vi) = e + 1 ) IU(B- B)PG(B’, 1w )G(B, i) Alwr, vo)e vt (11.24)
o i NE 1 T ductivi v
ol +id) = - ransverse conductivity Assuming that the vertex part only depends on frequenaieshas no momentum dependence, we may then
write
dcosg d*p ) )
A=1+ Anif lu(o)? cosef ng(ﬁ’,lw,*)G(ﬁ’,lw,)
There are a number of important points to make about thigtresu 2 (27)
. . . ) . We can now carry out the integral ovgr as an energy integral, writing
e Our result ignores thefkects of anisotropic scattering. To obtain these we needdade the “ladder”
vertex corrections, which we will shortly see, replace N(O)deG(e iw)G(e, iwr) = N(O)fde 1 1
’ ’ i —€iion—€
1 1 ———— "
e 27 N(0)(1 — cosd)|u(b)[2, (11.20) where we use the short-hand
r
- . 1
where the (1- cosf) term takes into account that small angle scattering doésetax the electrical n = wn + S|grwn(§). (11.25)
current. Carrying out this integral, we obtain
e Our result ignores localizationffects that become important Wth ~ 1. In one or two dimensions, ying gral,
i : i izi . . NO)—:; - 0
the dfects of these s_caner_lng event_s accumulates at long déstaaltimately localizing electrons, no N(O)deG(s, i0)G(e, i) = 7N( )Vn” T —Vn<wr <_
matterhowweak the impurity scattering. 0 otherwise
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so that
:l:—l
A=1 +( 1)1\9%,“,
Vn+ 17
wherer! = 2zniN(0)cosd|u(d)2 andé,, ., = 1if —vy < wr < 0 and zero otherwise, so that
A ;::"1 “Vn<wr <0 (11.26)
1 otherwise
where
Tyt =1 =1 = 2iiN(0)(1 - cos)|u(9) -
when we now repeat the calculation, we obtain
) & ~ ) ) ) -
Q) = " 0¥T Y [ delB(eiafBleion - (v - O Allwr i)
iw VT
i -1
= @6%TZ< 27Tl| 1Vn+r ;
m v+t v+ 1y
&
= ( 'n 1)@*’3 (11.27)
m \vp + Ty
So making the analytic continuation to real frequenciesphtain
n 1
(v +i6) = ne —
m rt—iy

Note that

e We see that transverse current fluctuations decay at aate 7. By renormalizingr — 7y, we take
into account the fact that only backwards scattering reldixe currentr; andr;, are only identical in
the special case of isotropic scattering. This distinchetween scattering rates becomes particularly
marked when the scattering is dominated by low angle saagterhich contributes te~*, but does not
contribute to the decay of current fluctuations.

e There is no diusive pole in the transverse current fluctuations. This issooprising, since transverse
current fluctuations do not change the charge density.

11.4 Electron Diffusion
|

To display the presence offtlision, we need to examine the density response functioneRéer that a
change in density is given by
—-eV(q)
. ——
(p(q)) = K[p(). p(-=a)]) 6(c)

whereV is the change in the electrical potential and

iK[e(@). p(-q)]) = f d*xdtifo(x. 1), p(O))e !
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We shall calculate this using the same set of ladder diagramsow using the charge vertex. Working with
Matsubara frequencies, we have

k+q
(@ ivp(=0, =ive)) = Q + + o
©
where the current vertex

k+q
k k
> .
k+q k+q

Let us now rewrite (11.28) and (11.29) as equations. Fron2@)lthe density-density response function is
given by

(11.28)

= —eAc(k Q).
k'+q (11.29)

(G iva)p(=g, =iva)) = 2T 3 Gk + DGIAc(K, O).
k

From (11.29), the Dyson equation for the vertex is

Aclk @) = 141, ) Ju(k = k)PG(K +QG(K)A(K. 6) (11.30)
e

For convenience, we will assume point scattering, souhatu, is momentum independent so tha(k, )
only depends ok through its frequency componeiat;, SOA(K, q) = A(iwr, Q)

Adlior, @) = 1+ Y G(K +QG(K)Ac(iwr. o)

e
=1+ (iwr, Q) Ac(iwr, q) (11.32)
or
) 1
Al = T iGor g
where the polarization bubble is given by
(i, 6) = Mg ) G(K + A)G(K)
P
dQ 1 1
— 2 =
- n‘uoN(O)f = fdcw P o (11.32)

(Note the use of the tilde frequencies, as defined in (11).28w if iv, > 0, then the energy integral in
n(iwr, q) will only give a finite result if-v, < w; < 0. Outside this frequency ranggjwr, q) = 0 andA. = 1.
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Inside this frequency rang#i(iwr, ) = I1(q) is frequency independent, and given by

Y2n) i
1
Hw= ”'”oN(O)f T A
[e[0}

In l+vn‘r— iq- Vet (11.33)
Now we would like to examine the slow, very long wavelengtarge flucations, which means we are inter-
ested ing small compared with the inverse mean-free pgtk< I=* = 1/(v7), and in frequencies that are
much smaller than the inverse scattering length << 1. This permits us to expard in powers ofg. We
shall take the first non-zero contribution, which comes iorderg?. With these considerations in mind, we
may expand]I as follows

I1(q) = fi—ir)(l—vnT+iﬁ-VpT+iz(Vp -q)272+...)

VET 2
:(1—Vnr—?q‘r+“‘) (11.34)
where we neglect terms of ord®tg?vy). We may identify the combinatiorfr/s’ = Dinthe second term with
the difusion constanD. Note that had we done this integraldrdimensions, the “3” in the denominator of
the second term above would be replaced dyut the general form for thefilision constant i dimensions
isD = v%-r/d, so that in any dimension, we obtain

1(0) = (1 - var — Defr + ... (11.35)
We then obtain
A()—#—L (=vn < wr < 0) (11.36)
=177 T v r D s o=t :
Summarizing then, the long-wavelength, low frequency gaaertex has the form
ir!
: e, (- 0)
A g) =1 o (=Ivnl < sgnfm)wr <
(lor.a { 1 otherwise
and thus the dynamic charge correlation function is given by
Kk
(@) = = -2NOT Y} [ deGte w6l iw)Aclion
iwy
k+q 11.37)

Now if we evaluate this quantity at zero frequengy= 0, whereA. = 1, we obtain the static susceptibility
1
=-2T ) —
x0= 21 ) ey

1 1
‘ZdeN(e)f i ){<m+i/(2r>—e)2’(w—i/(ZT)—aZ}
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~2iA(e.w)

dw df(w) 1 1
‘ZdeN()f 21 do {(a)+l/(2‘r)—e) (w—i/(ZT)—E)}

=N(w)
e
=2 f dw(—%) f deN@ e w)=2N©)  unrenormalized
[} T

so that the static charge susceptibility is fieeted by the disorder. This enables us to write

(11.38)

Plap-a)) = xo - 2T Y [ N(de[Gle.iw Jole.ion)c(ar, ) = v = O]

iwr

Since this intgeral is dominated by contributions near teerft energy, we can extend the energy integral

over the whole real axis, replacing
fN(e)de - N(O)f de

enabling the energy integral to be carried out by contouhoud, whereupon,

DA =10~ 2TNO) Y, [ delGleiwf (e iwn)Adlwr, ) = o = O

[
—vnT

_ VTN

TXoTXo Vn+ 71| vy + DG
where, again, in the last step we have assungtl << 1. The Matsubara form for the charge susceptibility
is then

L Dg?
Xo(d.ivn) —Xom

Analytically continuing this result, we finally obtain

2
x(r+i6) =xo 5o ) (11.39)

. Note that:

e Density fluctuations are flusive. Indeed, we could have anticipated the above form aridie grounds.
The solution of the dfusion equatioDV?p = ”” is, in Fourier space,

p(d.v) = D _i,P@

Dq2
wherep(q) is the Fourier transform of the initial charge distributidf we requireo(d, v = 0) = xoU(d),
whereU(q) is the Fourier transform of the applied potential, thes thiplies (11.39)

e The order of limits is important, for whereas

lim lim x(q.v) =
qHOMO}((Q v) = xo
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which is the response to a static potential of large, butfiwiavelength,
limlim y(q,v) =0
VﬁOQﬁOX(q V)

which states that the response to a uniform potential ofstamgly small frequency is zero. The dif-
ference in these two response functions is due to the caatsmmof charge - if one wants to change
the charge density in one place, it can only be done by rdulising the charge. If one applies a static
uniform potential, the charge density does not change.

e We can use these results to deduce the longitudinal condyctithe current response to a longitudinal
electric field for whichq - E # 0. Letg(q) be the electric potential, theip(q) = y(q)ep(q), So that

Vo=-E()
D¢? Diq - (id¢(q))
5p(q) =)(0m9¢(’~1) = _XOW
Did
1o ) - E@ (11.40)
Now since? = —ivp(), it follows that
. Dvg
po) = @Yo(iqu = iv) -E(0). (11.41)
Now by continuity,e?2 = -V - j(g) = —id- j(q), where] is the charge current, so by comparing with
(11.41) we deduce that the longitudinal current is
. iv
ju(@ = eZXOD(m) E(q).

so the longitudinal conductivity contains dfdisive pole
i
oLonc() = €xoD (ﬁ)

Note also that aj = 0, o = €yoD, which can be written as the Einstein relation

né o )
o =€&yD = T Einstein Relation

11.5 Weak Localization

We should like to finish our brief introduction to electroansport by touching on the concept of electron
localization. The disorder that has been considered inctfégoter is weak and the electron states we have
considered are delocalized. We have remarked on a few ocsaiat disorder is like a kind of “attractive”
but infinitely retarded interaction, and like other attieeinteractions, it has the capacity to induce new kinds

313

bk . pdf

December 1,

2011

Chapter 11. ©Piers Coleman 2011

of collective behavior amongst the electrons. Infact, disoactually gives rise to collective interference ef-
fects within the electron gas, which ultimately lead to theallization of the electron wavefunction. This idea
was first proposed by Anderson[4] in 1958, but it took two dkesafor the idea to gain acceptance in the
physics community. Our modern understanding of electrealipation was greatly aided by a conceptual
break-through on this problem made by Liciardello and Thass{5] who proposed that the resistance of a
material, or rather, the inverse resistance, the condedane 1/R is a function of scale. Thouless'’s idea,
initially proposed for one dimension, was taken up by thealted “Gang of Four”, Abrahams, Anderson
Licciardello and Ramakrishnan[6] and extended to higheredisions leading to the modern “scaling theory”
of localization[7]. One of the ideas that emerged from thisalz-through, is that electron localization results
from the coherent interference between electron waveshndtilong-distances ultimately builds up to pro-
duce a disorder-drive metal-insulator transition - a kifighliase transition in which the order parameter is
the conductance. Like all phase transitions, localizaisosensitive to the dimensionality. Whereas in three
dimensions, electron localization requires that the dispexceed a critical value, in two and one dimension,
an arbitrarily small amount of disorder isfBuient to localize electrons, and the leading ord&eas of lo-
calization can already be seen in weakly disordered mégeiiaese ideas can all be developed for weakly
disordered conductors by a simple extention of the Feynriegraim methods we have been using.

To develop a rudimentary conceptual understanding of reledbcalization, we shall follow a heuristic
argument by Altshuler, Aronov, Larkin and Khmelnitskii[?&ee also Bergman [??]) who pointed out that
weak localization results from the constructive interfer® between electrons passing along time-reversed
paths. Consider the amplitude for an electron to returrststérting point. In general, it can do this by passing

Scattering of an electron around two time-reversed paths

around a a sequence of scattering sites labelled 1 throuah shown in Fig. 11.3, where we identify= 1
as the same scattering site. The amplitude for scattermgarthis loop is

Ap = Ggr(n,n—1)Gr(n—1,n-2)...Ggr(2,1)

where
_ (4% 1 Rsu-%)
8= | e
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is the retarded propagator describing the amplitude folleairen of frequency to propagate between two
sites. Now for each path P, there is a corresponding timersed path?. The amplitude for the same electron
to follow P starting at 1= n, is

As = Ggr(1,2)Gr(2,3)...Gr(n-1,n)
The total propability associated with passage along bathsga given by
P =1Ap + As = |Ap + |As + 2Re[AsAp]

Now if Ap = mé“’l andAs = /P2€2 then total probability to scatter back to the starting pwiatthe two
paths,

Prot = P1+ P2 + 2+/P1P2 COSE2 — ¢1).

contains an interference term/p1 Pz cos@2 — ¢1). If the two paths were unrelated, then the impurity average
of interference term would be zero, and we would exfzet p; + p,. However! The two pathare related

by time-reversal, so thas = Ap, with precisely the same magnitude and phase, and so thertwegses
alwaysconstructively interfere

prot = 4p1

Without the interference termror = 2ps1, SO we see that constructive interference between timersed
paths doubles the return probabilty.

This means that an electron that enters into a random medasmah quantum-mechanicanhanced
probability of returning to its starting point - quantum @t®ns “bounce back” twice as often as classical
electrons in a a random medium! The same phenomenon caeskghthfrom a car’'s headlamps to reflect
backwards in a Fog. Thesé&ects tend to localize waves - causing light localizatiorhia tase of fog - and
electron localization in disordered conductors. We shedl that the return probability is enhanced in lower
dimensions, and in one, or two dimensions, theBects innevitably lead to the localization of electrons, for
arbitrarily small amounts of disorder.

Let us now make a diagramatic identification of these interfee terms. The complex conjugate of the
retarded propagator is the advanced propagator

Gr2-Lw) =GR2-Lw+id) =GR2-1w-is) == Ga2 - 1, w)

so the interference term
n-1

AsAe = [ | Gr(i + L jw)Ga(i + 1. jiw)
j=1

which is represented by a “ladder diagram” for repeatedtesgag of electron pairs. The sum of all such

i -

. I
()]
02
n-th order contribution to the “Cooperon”

diagrams is called a “Cooperon”, because of its similarityttte pair susceptibility in superconductivity.
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Notice that the lower electron line involves the advancembpgatorGa, whereas the upper involves the
retarded propagat@r. In the Matsubara approach the distinction between thes@topagators is enforced
by running a frequenciw; = iw; + iv, along the top line, and a frequeniy; along the bottom. When,

is analytically continued and ultimately set to zero, thifoeces the distinction betwen the two propagators.
Now if we twist the Cooperon around, we see that it is equiveie a maximally crossed, or “Langer-Neal”
diagram

n

A twisted cooper diagram forms a maximally crossed diagram.

Let us now compute the amplitudes associated with thesédatian corrections to the conductivity. We
begin by denoting the Cooperon by a sum of ladder diagrams

q k k k’
Co=~o~me=T A+ L+
2 —k+q —k+q —k'+q
L (11.42)
1-Ti(a)

where
f1(0) = nu§ ) Gr(k)Ga(-k+ A)
k

where we have denoté8k(k) = G(k. iw;) andGa(k) = G(k, iwy), implicitly assuming thaty; andw; are of
opposite sign. Now if we look carefully &, we see that it is identical to the particle hole bubliléhat we
encountered when computingditisive charge fluctuations in (11.32 ), excepting that in thle line has been
replaced by a particle line, and in so doing, we replaeeq — —k + g in the momentum of the propagator.
However, thanks to time-reversal symmetry holds, this tliss not change the value of the polarization
bubble, and we conclude that
fi(g) = (1- var - DePr +...)
and thus
, ot 1 1
niug =
DA? + [val - 27N(0)r2 DG? + [vn
We shall redraw the maximally crossed contributions to thedaictivity as follows

++
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k —k+q k

—k+q k

—k+q

k -k+q k —k+q k -k+q
k —k+q

= (11.43)
k —k+q

Written out explicitly, this gives

ab
Ac(ivy) = AS
ZeznT N _ N _ .
=T D W [CEG (MG (G (~k+ QG (~k+ ) - (iva — O]
N k=(Kiiw)
q

At this point, we can simplify the diagram by observing theaéxktract the most singular, long-distan¢keets
of localization, we can ignore the smoajtdependence of the conduction electron lines. By setlirg0
along the conduction lines, we decouple into a product of two terms

—m 2 5o [
abg; ZezT + 2(— 2 H
A (iv) = == > C@) YWV [(G"R)(G (W) - (iva — O]]
n q K
ne? s L dig 1 de
m° 2aN©0)2 J (209 DR+ ol J 27

The energy integral in the second term yields
I%GZR(G)Gi(E) =275

We need to consider the upper and lower bounds to the momentegral. The upper bound is set by the
condition thatDg? = 772, the elastic scattering rate. The lower bound is set eithehé size of the system
L, in which casey = L2, or by theinelasticscattering rate; . We may define

- D _
Tl = max(ﬁ, 7t

as the inverse time-scale associated with the lowerfcttbe quantity

GE(e)GA(e)

(11.44)

D
Ewn = hp

is called the “Thouless” energy, and corresponds to theggnscale associated with the phase-coherent
diffusion of electrons from one side of the sample, to the otheanl ultra-pure, or small system, it is this
scale that provides the infra-red cuf-to localization &ects. We may then write

LCZT 1 (D7) 2 ddq 1
m ) 2aN(0) J(pryy12 (2n)d D? - iv

AC(r) = 6ab( (11.45)
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If we apply a sudden pulse of electric fidid= Eyd(t), giving rise to a white noise field spectrul(y) = Eo,
the current induced by localizatiofffects has a frequency spectrum

©) g 1
j(v) = A E(v) = A E v i
i) = AOEC) = b0 B0 [ et
In highly phase-coherent systems, the characteristicdirake of the localization back-scattering response in
the current pulse is given by~ D/L? which we recongnize as the time for electrons tfiusie across the
entire sample. This is a kind of backscattering “echo” pastliby the phase-coherenffdsion of electrons
along time-reversed paths that cross the entire samplembneentum integral il\o- is strongly dependent
on dimensionality. in three and higher dimensions, thisitisrfinite, so that the weak-localizatioffects are
a perturbation to the Drude conductivity. However, if thedhsiond < 2, this integral becomes divergent,
and in a non-interacting system, it is cut only by the frequency, or the finite sizeof the system. In two

dimensions,
[ St doney
Oy vz (203D —iv 47D 1o

giving rise to a localization correction to the static coaiikity that is

_ nétr 1 70
A= "( m )SKZN(O)D (=) (11.46)
Replacingnt/m — 2N(0)D, we obtain
B & T 1 (e 70
A== (Tﬂz) G~ "2 (z) () aLan

where we have restorgdinto the expression. The quantigy = % ~ ﬁ)(m)-l is known as the universal
conductance.
There are a number of interesting consequences of thedesresu

e By replacing ZN(0)D = %k}:l, the total conductivity can be written

1 To
——— In2
2rkel ( T )]
We see that the quantum-interference correction to theudivity is of orderO(1/(kgl)), justifying
their neglect in our earlier calculations.
o If we consider the case where inelastic scattering is niedgigthe localization correction to the conduc-
tivity in two dimensions is

1 (11.48)

o =0y

1 1
o =09 [1— ekl |n(§)]
~ 09 [1— 1 In(E)J (11.49)
kel

so that the conductivity drops gradually to zero as the sizbe®sample increases. The conductivity
becomes of ordeiE at the “localization length”

Le ~ lefe!

independently of the strength of the interaction. In two elisions, resistivity and resistance have the
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same dimension, so we expect that when the size of the systequal to the localization length, the
resistivity is always of order I®! At longer length-scales, the material evolves into intarla

e The weak localization corrections are not divergent for efisions greater than 2, but become much
stronger in dimensions belod = 2. It was this observation that led the the “Gang of Four”, &br
hams, Anderson, Licciardello and Ramakrishnan, to proffesscaling theory for localization, in which
d. = 2 is the critical dimensionality.

_din@

B(g)

“dint

Metal

o ~L @2

Insulator
-L/L.)
g ~e ¢

The scaling function 5(g) deduced by Abrahams et al. for a non-interacting metal. For
d > 2 there is critical conductance g. which gives rise to a disorder-driven
metal-insulator transition. In d < 2, disorder always gives rise to localization and the
formation of an insulator.

We shall end this section by making a brief remark about tladirgg theory of localization. Stimulated
by the results in two dimensions, and earlier work on one dsimnal wires, by Thouless, Abrahams et al.
were led to propose that in any dimension, conductance,verse resistanc& = 1/R could always be
normalized to form a dimensionless parameter

o = S0

=P

which satisfies a one-parameter scaling equation

ding(L)
dinL

=59
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. - &1 d-
When this quantity is large, we may use the Drude model, satht= %Ld 2 and
B(g) = (d-2), (9— )

is independent of. When the conductance was snwls 0, on scales longer than the localization lenigth
they argued thag(L) would decay exponentiallg(L) ~ e™“/*, so that for small conductance,

B(@) ~ -Ing, (9-0)

By connecting up these two asymptotic limits, Abrahams eeaboned that the beta function for conduc-
tance would take the form shown in Fig. 11.6. In dimensidns 2, theps(g) is always negative, so the
conductance always scales to zero and electrons are ale@lized. However in dimensions> 2, there is

a disorder-driven metal-insulator transition at the caticonductanceg = gc. As the amount of disorder is
increased, when the short-distance conductargasses below,, the material becomes an insulator in the
thermodynamic limit. These heuristic arguments stimulaéite development of a whole new field of research
into the collective &ects of disorder on conductors, and the basic results ofctilng theory of localization
are well-established in metals where thEeets of interactions between electrons are negligiblerést in
this field continues actively today, with the surprise disgy in the late 1990s that two dimensional electron
gases formed within heterojunctions appear to exhibit ahiesulator transition - a result that confounds
the one-parameter scaling theory, and is thought in sorokesito result from electron-electron interaction
effects.

Exercises

Exercise 11.1 (Alternative derivation of the electrical conductivity. )
In our treatment of the electrical conductivity, we derived

o®(ivy) = eZVIn k%“ VW G(K, iy + ivn)G(K, ) — GK, i)

This integral was carried out by first integrating over motnem then integrating over frequency. This
techique is hard to generalize and it is often more conveigeintegrate the expression in the opposite
order. This is the topic of this question. Consider the casera

) 1
S )
andX(iwy) is any momentum-independent self-energy.

1 By rewriting the momentum integral as an integral over &menergye and, angle show that the
conductivity can be rewritten ag?®(iv,) = 6o (iv,), where

o(iwn) = %71” fo de T Z [Gle.iwr +ivn)G(e, iwr) - Gle, iwr)?].

iwy
and

G&”Ezfiﬁ
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2 Carry out the Matsubara sum in the above expression torobtai

o(iwn) = ﬁi IM d7a) f def(w) [Gle, w + ivn) + G(€, w — ivn)] A€, w),

m v,

whereA(e, w) = IMG(e, w - i8). (Hint - replaceT ¥, — — [ ${(z), and notice that whil& (e, z)
has a branch cut alorm= w with discontinuity given byG(e, w — i6) — G(e, w + i6) = 2iA(e, w),
while while G(e, z + ivn) has a similar branch cut alorg= w — ivn. Wrap the contour around these
branch cuts and evaluate the repult

Carry out the energy integral in the above expression taiobt

. n& 1 dw
o(iwn) = o) 7f(w)
1
x ivn — (Z(w + ivp) — Z(w —6)) T ive- E(w +i6) = Z(w —ivn) | (11.50)
Carry out the analytic continuation in the above expresgidinally obtain
o(v+i6) = Ef dw[—f(w —v/2)- fw+v/2) X
m J o v
1
—iv+i(Z(w+v/2+i6) - Z(w - v/2-i5))" (1151
Show that your expression for the optical conductivity bamewritten in the form
. _g flw-v/2)- f(w+v/2) 1
o(v+i6) = m ) dw [ " o) = Z@) (11.52)
where
7 Hw,v) = IM[Z(w - /2 - i6) + Z(w + v/2 - i6)] (11.53)

is the average of the scattering rate at frequenoies//2 and
1
ZHw,v) - 1= —SRe[S(w - v/2) = X(w + v/2)]

is a kind of “wavefunction renormalization”.
Show that if thew dependence a andr~* can be neglected, one arrives at the phenomenological
form

né

m

__r

() —ivZY(v)

This form is often used to analyze optical spectra.

Show that the zero temperature conductivity is given bytlieemal average

o) =

(v +i6) = ﬁmr (11.54)

wherer™! = 2ImZ(0 - ié).
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Phase Transitions and broken

symmetry

12.1 Order parameter concept

The idea that phase transitions involve the development ofder parameter which lowers, or “breaks” the
symmetry is one of the most beautiful ideas of many body misysn this chapter, we introduce this new
concept, which plays a central role in our understandinghefitay complex systems transform themselves
into new states of matter at low temperatures.

Landau introduced the order parameter concept in 1937[d asans to quantify the dramatic transforma-
tion of matter at a phase transition. Examples of such teansdtions abound: a snowflake forms when water
freezes; iron becomes magnetic when electron spins altgraisingle direction; superfluidity and supercon-
ductivity develop when quantum fluids are cooled and bosonmabs of fermions condense into a single
quantum state with a well-defined phase. Phase transitem®wen take place in very fabric of space, and
there is very good evidence that we are living in a broken sgiryruniverse, which underwent one, or more
phase transitions which broke the degeneracy between tigarfoental forces[2], shortly after the big bang.
Indeed, when the sun shines on our faces, we are experieth@rgpnsequences of this broken symmetry.
Remarkably, while the microscopic physics of each casdflierdnt, they are unified by a single concept.

Landau’s theory associates each phase transition witheve@bment of an “order parameter’once the
temperature drops below the transition temperafire

vl _ { 0 (T>Te)
ol >0 (T <Te)
The order parameter can be a real or complex number, a vecaéosminor that can, in general, be related to
an n-component real vect@(x) = (y1,¥2. .. yn). For example:

Order parameter  Realization Microscopic origin
m=y Ising ferromagnet (G2)
U=y + i Superfluid, Superconductor  (dg), (1)
M = (y1.¥2,13) Heisenberg Ferromagnet (&)
grtival) e (<a‘s+>)
O = . H Fiel ~
(¢3+Iz//4) igg’s Field @)

Microscopically, each order parameter is directly relaiedhe expectation value of a quantum operator.
Thus, in an Ising ferromagnetrt = (o4(x))" is the expectation value of the spin density along a paldicu
anisotropic axis, while in a Heisenberg ferromagnet, thgmegization can point in any direction, so that the
order parameter is a vector pointing in the direction of thie slensitym = (¢*(x)). In a superconductor or
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Sl “Broken symmetry”. The development of crystalline order within a spherical

December 1, 2011

waterdroplet leads to the formation of a snowflake, reducing the symmetry from
spherical symmetry, to six-fold symmetry. (Snowflake picture reproduced with
permission from K. G. Librrecht.)

superfluid, the order parameter is a complex number relatéldet expectation value a bosonic field in the
condensate.

The emergence of an order parameter often has dramatic scagio consequences in a material. In zero
gravity, water droplets are perfectly spherical, yet ifleaidthrough their freezing point they form crystals of
ice with the classic six-fold symmetry of a snowflake. We deat the symmetry of the water has “broken
the symmetry”, because the symmetry of the ice crystal ngdoenjoys the continuous rotational symmetry
of the original water droplet. Equally dramatiffects occur within quantum fluids. Thus, when a metal
develops a ferromagnetic order parameter, it spontangdesklops an internal magnetic field. By contrast,
when a metal develops superconducting order, it behavespasfect diamagnet, and will spontaneously
expel magnetic fields from its interior even when cooled inagnetic field, giving rise to what is called the
“Meissner dfect”.

Part of the beauty of Landau theory, is that the precise reompic expression for the order parameter is
not required to development a theory of the macroscopicezprences of broken symmetry. The Ginzburg-
Landau theory of superconductivity pre-dated the micrpictheory by seven years. Landau theory provides
a “coarse grained” description of the properties of mattegeneral, the order parameter description is good
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<=
I
o

Yru # 0

Fig. 12.2 (a) In a normal metal, there is no long-range order. (b) Below the Curie temperature

T, of a ferromagnet, electron spins align to develop a ferromagnetic order parameter.
The resulting metal has a finite magnetic moment. (c) Below the transitition
temperature of a superconductor, electrons pair together to develop a
superconducting order parameter. The resulting metal exhibits the Meissner effect,
excluding magnetic fields from its interior.

on length scales larger than

& = “coherence length” (12.1)

On length-scales longer than coherence length, the intetmature of the order parameter is irrelevant and
it behaves as a smootly varying function that has forgott®ugits microscopic origins. However, physics
on scales smaller thaf requires a microscopic description. For example, in a aguetuctor, the coherence
length is a measure of the size of a Cooper pair - a numberdhadiehundred or thousands of atom spacings,
while in superfluidHe — 4, the coherence length is basically an atom spacing.

325

bk . pdf

December 1, 2011

Chapter 12. ©Piers Coleman 2011

12.2 Landau Theory
|

12.2.1 Field cooling and the development of order

The basic idea of Landau theory, is to write the free energyfaactionF[y] of the order parameter. To keep
things simple, we will begin our discussion with the simpesse wheny is a one-component Ising order
parameter representing, for example, the magnetizati@ndéing Ferromagnet. We begin by considering
the meaning of an order parameter, and the relationshipectheiafree energy to the microscopic physics.
We can always induce the order parameter to develop by @paiithe presence of an external figid
that couples to the order parameter. In general, the indpendence of the field on the order parameter,
h[y] will be highly non-linear, but once we know it, we can coriviéle dependence of the energy loto a
function ofy. Broken symmetry developsif remains finite once the external field is removed.
Mathematically, an external field introduces a “source ténto the microscopic Hamiltonian:

H->H —hfd3x$(x).

The fieldh that couples linearly to the order parameter is called thgugate field. For an magnet, where
¥ = M is the magnetizatiorh = B is the external magnetic field. For a ferro-electric, whgre= P is
the electric polarization, the conjugate figld= E is the external electric field. For many classes of order
parameter, such as the pair density of a superconductdre staggered magnetization of an antiferromagnet,
although there is no naturally occuring external field tiwatpies linearly to the order parameter, but the idea
of a conjugate field is still a very useful concept.

The free energy of the system in the presence of an extermdlisi@ Gibb’s free energy which takes
account of the coupling to the fiefg[h] = F[y¢] — Vyh. G[h] is given by

Glhl = —ksT In(Z[h]) = —ksT In(Tr [e*ﬂ“"*hf ) (12.2)

where the partition functio&[h] involves the trace over the many body system. If wigedentiate (12.2) with
respect tdh we recover the expectation value of the induced order pasamfh] = (J)

19g1h]
-G

e (12.3)

1 TN
v(OV) = ZaTr [e T u 0] =
It follows that—6G = yVéh.

In a finite system, the order parameter will generally dis@ppnce we remove the finite field. For exam-
ple, if we take a molecular spin cluster and field-cool it belts bulk Curie temperature it will develop a
finite magnetization. However, once we remove the exterell, fthermal fluctuations will generate domains
with reversed order. Each time a domain wall crosses theisyshe magnetization reverses, so that on long
enough time scales, the magnetization will average to Barbas the size of the system grows beyond the
nano-scale, two things will happen - first infinitesimal feeldill prevent the thermal excitation of macro-
scopic domains - and second - even in a truly zero field, thiegndity to form these large domains becomes
astronomically small. (See example Ex. 12.2.1) In this veagken symmetry “freezes into” the system and
becomes stable in the thermodynamic limit.

From this line of reasoning, it becomes clear that the devetnt of a thermally stable order parameter
requires that we take the thermodynamic liMit> o before we remove the external field. When we “field
cool” an infinitely large system below a second-order phesesttion, the order parameter remains after the
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external field is removed. The equilibrium order paramedé¢nén defined as

o= m fm 4t
To obtain the Landau functiof,[y], must writeg[h] in terms ofy and then,

aG[h
FIul = 61h] + Vi = 6Tr] ~n 20,

This expression foF[y] is a Legendre transformation ¢fih]. SincesG = —Vyéh, 6F = 6G + Vo(hy) =
Vhsy, so the inverse transformationfis= V‘l%. If h=0, then
_F_
"
which states the intuitively obvious fact that when= 0, the equilibrium value ofs is determined by a
stationary point of[y].

hv 0

Example 12.1: Consider a cubic nanomagnet®f= L2 Ising spins interacting via a nearest neighbor
ferromagnetic interaction of strength Suppose the dynamics can be approximated by Monte Carlo
dynamics, in which each spin is “updated” after a a tirgeAt T = 2J, (the bulkT. = 4.52J) estimate

the time, in units ofro required to form a domain that will cross the entire sample; ¥ 1ns estimate

the minimum sizd_ for the decay time of the total magnetization to become comparable with the time
span of a Ph. D. degree.

Solution: To form a domain wall of are& ~ L2 costs an free energgF ~ 2JL2, occuring with
probability p ~ e ¥/, The time required for formation may be estimated to be

o 2
T~ 1opt ~ 10T,

where the most important aspect of the estimate, is that the exponerstwith L2. Our naive estimate
does not take into account the configurational entropy (the numbeaysf of arranging a domain wall),
but it will give a rough idea of the required size. Putting~ 10°sandr = 5y ~ 10°s for a typical Ph.

D, this requires/7o = 10 ~ €', thusL ~ V40 ~ 6. Already by about. = 40°2 ~250 spins the time
for the magnetization to decay is of the order of yearsNBy 500, this same timescale has stretched
to the age of the universe.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of smathudaciously expanding the free energy of the many
body system as a simple polynomial:

1
L) = FI = S0 + 0 (12.4)

e The Landau free energy describes the leading dependerteetotal free energy on. The full free energy
is given by i = fo(T) + f[] + O[y*], wheref, is the energy of the “normal” state without long range
order.
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(@ FW) (b)
\l,T>TC lIJ

Fig. 12.3 (a) The Landau free energy F(¥) as a function of temperature for an Ising order
parameter. Curves are displaced vertically for clarity. (b) Order parameter ¢ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0*.

e For an Ising order parameter, both the Hamiltonian and the énergy are an even functionyafH[y] =
H[-y¢]. We say that the system possesses a “gl@balymmetry”, because the Hamiltonian is invariant
under transformations of th& group that takeg — +y.

Providedr andu are greater than zero, the minimum f@fy] lies atyy = 0. Landau theory assumes that
the phase transition temperutureghanges sign, so that

r=a(T -Te)

as illustrated in Fig. 12.3 (a). The minimum of the free egergcurs when

df s { 0 T>To)
—=0=ry+w’=y=

dy +,[30=T) (T<To)

so that forT < T¢, there are two minima of the free energy function (Fig. 12)3.(Note that:

(12.5)

o if we cool the system in a tiny external field, the sign of thdesrparameter reflects the sign of the field

(Fig. 12.3 (b)):
o=sonty (A

This branch-cut along the temperature axis of the phaseaiiags an example of a first-order phase
boundary. The point = T, h = 0 where the line ends is“aritical point” .

e If u< 0 the free energy becomes unbounded below. To cure thisggmlhe Landau free energy must be
expanded to sixth order in:

(T <To. (12.6)

1
101 = SFW = S0+ 0 + 0

Whenu < 0 the free energy curve develops three minima and the phasstion becomes first order;
the special point at = h = u = 0 is a convergence of three critical points called-@ritical point (see
exercise 12.3).
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Ciritical Point
P >0

=3

P <0

‘e
First order line

Fig. 12.4 Phase diagram in an applied field. A first order line stretches along the zero field axis,

h = 0 up to the critical point. The equilibrium order parameter changes sign when this
phase boundary is crossed. (a) Three dimensional plot showing discontinuity in order
parameter as a function of field . (b) Two dimensional phase boundary showing first
order line.

12.2.3 Singularities at the critical point.

At a second order phase transition, the second derivatiibe &-ree energy develop singularities. If we plug
(12.6) back into the Free enerdp{y] (12.4), we find that

- 0 (T>Te)
“{—%ﬁm—ﬂz (T<T)

In this way, the free energy and the entrdpy- —% are continuous at the phase transition, but the specific
heat

o’F
T2

0 (T>To)

Cy=-To— =Co(T) +
' 0 {Z—T (T<To

(12.7)
whereCy is the background component of the specific heat not assdoith the ordering process. We see
thatCy “jumps” by an amount
a’T,

2u
below the transition. The jump sizeCy has the dimensions of entropy per unit volume, and sets actear

istic size of the entropy lost per unit volume once long-engder sets in.
At a second-order transition, matter also becomes infinitesceptible to the applied field as signalled

ACy =
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by a divergence in susceptibiligy = %ﬁ To see this in Landau theory, let us introduce a field by @péa

r u
) = T =ty = g2+ 2t~y (12.8)
A finite field h > 0 has the fect of “tipping” the free energy contour to the right, prefetially lowering
the energy of the right-hand minimum, as illustrated in Fl@.4). Forh # 0, equilibrium require$f /oy =
ry+uy® —h = 0, which we can solve far = 5 —4uy?. Above and belowl, we can solve fog by linearizing
wlh] = 6y + wo around theh = 0 value given in (12.6), to obtaisy = x(T)h + O(h®), (See Fig. 12.3(b))
where

dy 1 {1 T>To (12.9)

dh ~ AT -T 1 (T<T)

x(T) =

describes the divergence of the “susceptibility” at théaal point. When we are actually at the critical point
(r = 0), the induced order parameter is a non-linear functionedd fi

h 1/3
o= (3

The divergence of the susceptibility at the critical poirgans that if cool through the critical point in the
absence of a field, the tiniest stray field will produce a hutiece tipping the system into either an up or
down state. Once this happens, we say that the systefishpastaneously broken th& inversion symmetry”
of the original Hamiltonian.

The singular powerlaw dependences of the order parampifis heat and susceptibility near a second
order transition described by Landau theory are preservedah second-order phase transitions, but the
critical exponents are changed by thféeets of spatial fluctuations of the order parameter. In geénere
write

(T=To) (12.10)

Cv o (T-Td)
(T~ TY

v { !

X (1T

(Specific heat)
(Order parameter) (12.11)
(Susceptibility)

which Landau theory estimatesas= 0,5 = 1/2,§ = 3 andy = 1. Remarkably, this simple prediction of
Landau theory continues to hold once the full-fledg#eats of order parameter fluctuations are included, and
still more remarkably, the exponents that emerge are fooihe tuniversal for each class of phase transition,
independently of the microscopic physics[3].

12.2.4 Broken Continuous symmetries : the Mexican Hat Potential

We now take the leap from a one, to an n-component order p&earivée shall be particularly interested
in a particularly important class of multi-component or@ewhich the underlying physics involves a con-
tinous symmetry that is broken by the phase transition. is ¢hse, thex — componenbrder parameter
W = (1...yn) acquires both magnitude and direction, and the dis@gtaversion symmetry of the Ising
model is now replaced by a continuou®(N)” rotational symmetry. At a phase transition the breakifig o
such continous symmetries has remarkable consequences.

The O(N) symmetric Landau theory is simply constructed by replggiti — |2 = (wi A=y,
taking the form
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fu[d] = %(.17 D)+ %[(J D O(N) invariant Landau theory

where as before = a(T — T¢). This Landau function is invariant und€{(N) rotationsyy — Ry that
preserve the magnitude of the order parameter. Such syimmem not occur by accident, but owe their
origin to conservation laws which protect them in both thenmscopic Hamiltonian and the macroscopic
Landau theory. For example, in a Heisenberg magnet, thesmonding Landau theory h@%3) symmetry
associated with the underlying conservation of the total spgnetization.

OnceT < T, the order parameter acquires a definite magnitude andidinggiven by

PN
“Nu

whererfis a unit (n-component) vector. By acquiring a definite diret, the order parameter breaks MEN)
symmetry. In a magnet, this would correspond to the spontandevelopment of a uniform magnetization.
In a superconductor or superfluid, it corresponds to theldpaeent of a macroscopic phase.

A particularly important example of a broken continuous eyetry occurs in superfluids and supercon-
ductors, where the the order parameter is a single compber garameter composed from two real order
parameterss = 1 + iy» = [y|€”. In this case, the Landau free energy takes the form

flyl =r(y'y) + g(d/*z//)z, U(1) invariant Landau theory

W=+ v = e (12.12)

Fig. (12.5) shows the Landau free energy as a functign afhere the magnitude of the order paramefgis
represented in polar co-ordinates. The free energy sudiapéays a striking rotational invariance, associated
with the fact that the free energy is independent of the dlpbase of the order parameter

fly] = f[e"y].

This is a direct consequence of the globdl) invariance of the particle fields that have condense@velop
the complex order parameter. Fo T, the negative curvature of the free energy surfage-al0 causes the
free energy surface to develops the profile of a “Mexican Haith a continuous rim of equivalent minima
where

U(1) gauge invariance

_ Mgs
Y= Ué

The appearance of a well-defined phase breaks the contiti@d}symmetry.

The “Mexican hat” potential illustrates a special propesfyphases with broken continuous symmetry:
it becomes possible to continuously rotate the order paeamfim one broken symmetry state to another.
Notice however, that if the order parameter is to maintaireb-defined phase, or direction then it is clear that
there must be an energy cost for deforming or “twisting” tirection of the order parameter. This rigidity

1 For complex fields, it is more convenient to work without thetdéaof 1/2 in front of the quadratic terms. To keep the numerology
simple, the interaction term is also multiplied by two.
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U1

(a) V=1 (b) ¥ =1+t

Fig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter

December 1, 2011

¥ = Y1, showing two degenerate minima and (b) complex order parameter
U=yr+igs = [¢|€, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase ¢ of the uniform order parameter.

is an essential component of broken continuous symmetrsuprerfluids, the emergence of a well-defined
phase associated with the order parameter is intimatedyecto persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow dgglo

rx Vq)

To describe this rigidity, we need to take the next steppahicing a term into energy functional that keeps
track of the energy cost of a non-uniform order parametes [Bads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order
|

Landau theory describes the energy cost of a uniform ordempeter: a more general theory needs to ac-
count for inhomogenious order parameters in which the @og#ivaries or the direction of the order param-
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eter is “twisted”. This development of Landau theory is @dlfGinzburg Landau” theofy after Ginzburg
and Landau[5], who developed this formalism as part of thrgicroscopic theory of superconductivity. We
will begin our discussion of Landau Ginzburg theory with #implest case a one-component “Ising” order
parameter.

Ginzburg Landau theory[5] introduces an addition energst &b o |Vy/|? associated with gradients in the
order parameterfg [y, Vy] = §|Vl//|2 + fL[y(X)]. For a single, Ising order parameter, the Free energydin “
dimensions) is given by

Fouly] = f X o[, Vo), hO)]
foLlu Yy bl = (V) + 507 + L0t = hw

Ginzburg Landau Free energy: one component order|

(12.13)

There are two points to be made here:

e Ginzburg Landau (GL) theory is only valid near the criticalimt, where the order parameter is small
enough to permit a leading order expansion.

« Dimensional analysis shows thaj [[r] = L? has the dimensions of length-squared. The new length-scale
introduced by the gradient term, called the “correlatiorgti”

&M = \/%40'1—%

sets the characteristic length-scale of order-parameietufitions, where

-1
2

correlation length (12.14)

S

coherence length
aT. 9

fo=&T=0)=
is a measure of the microscopic coherence length. Nearahsition,&(T) diverges, but far from the
transition, it becomes comparable with the coherence engt

The traditional use of Ginzburg Landau theory, is as a aarational principle using the condition of
stationaritydF /sy = 0 to determine non-equilibrium configurations of the ordengoneter. Landau Ginzburg
theory is also the starting point for a more general analgbthermal fluctuations around the mean-field
theory. We shall return at the end of this chapter.

12.3.1 Non-uniform solutions of Ginzburg Landau theory

There are two kinds of non-uniform solutions we will conside

1 The linear, but non-local response to a small external.field
2 “Soliton” or domain wall solutions, in which the order pareter changes sign, passing through the maxi-
mum in the free energy &t = 0. (Such domain walls are particular to Ising order ).

2 The idea of using a gradient expansion of the free energyafiiseéars in print in the work of Ginzburg and Landau. Howeyerms
of this theory are contained in the work of Ornstein and Zgaajwho in 1914 developed a theory to describe criticalegzance[4].
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To obtain the equation governing non-uniform solutions ywrige

afiy]
WX |

Since the Ginzburg Landau free energy must be stationalyresipect to small variations in the field:

—sV2y(X) + (12.15)

6FeL = f d¥% 6y(x)

OFeL 2 afL[v] _
0 sV + o 0 (12.16)

or more explicitly

[(-sv2 1)+ uwZJ w(¥) —h(x) =0 (12.17)

Susceptibility and linear response

The simplest application of GL theory, is to calculate timedir response to a non-uniform applied field. For
T > T, for a small linear response we can neglect the cubic termad+cV? + r)y(x) = h(x). If we Fourier
transform this equation, we obtain
(SCF + g =y (12.18)
oryq = xqhg, where
1 1
T sqrr T (@ ED)

is the momentum-dependent susceptibility &ne /s/r is the correlation length defined in (12.14). Notice
thatyq-o = 1/[a(T — To)] = r~t is the uniform susceptibility obtained in (12.9) earlieorFargeq >> &7,
x(@) ~ 1/g? becomes strongly momentum dependent: in otherwords, 8monse to an applied field is
non-local up to a the correlation length.

(12.19)

Example 12.2:
(a) Show that ird = 3 dimensions, fol > T, the response of the order parameter field to an applied
field is non-local, and given by

w9 = [ Extx=00)

X(x=x) = %{2% (12.20)
(b) Show that provideti(x) is slowly varying on scales of order the linear response can be approxi-
mated by
¥(x) = xh(x)
Solution:
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(a) If we carry out the inverse Fourier transform of the respar{sg= x(q)h(g), we obtain
w9 = [ = x0000)
o
In example (4.6) we showed that under a Fourier transform
e™FT_4n
1| o + 42

so the (inverse) Fourier transform of the non-local susceptibility is
¢! FTY 1 ek X e

- — 5

4rs |X| 4rE2 |X

(b) At smallg, we may replace/(q) ~ y, so that for slowly varyingh in real space we can replace
x(x = X) = y6@(x - x). So that providedh is slowly varying over lengths longer than the
correlation lengthy(x) = yh(x).

—1y Yo

—y

Soliton solution of Ginzburg Landau equations. (a) The evolution of i in one
dimension is equivalent to a particle at position ¢, moving in an inverted potential
V[y] = —fL[y]. A soliton is equivalent to a “bounce” between maxima at ¢ = +yo of
V[¢]. (b) The “path” that the particle traces out in time “t” = x defines the spatial
dependence of the order parameter ¥[X].

Domain Walls

OnceT < T, itis energetically costly for the order parameter to devggeriously from the equilibrium values
¥o. Major deviations from these “stable vacua” can howevee falce at “domain walls” or “solitons”, which
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are narrow walls of space which separate the two stable &/aafiopposite sign, wheng = +y. To change
sign, and Ising order parameter must pass through zero agtiter of the domain wall, passing over the
“hump” in the free energy.

We now solve for the soliton in one dimension, where the Qinglh.andau equation becomes

dfi[y]

dy -
This formula has an intriguing interpretation as Newtoalw lof motion for a particle of massmoving in
an inverted potentiaV[y] = —f_[¢]. This observation permits an analogy between a solitoneemdmotion
in one dimension which enables us to to quickly develop atgwldor the soliton. In this analogy; plays
the role of displacement whibe plays the role of time. It follows tha;(c//)2 is an dfective “kinetic energy”
3 and the ective “energy”

o =

(12.21)

&= W) - iyl

is conserved and independentofWith our simple analogy, we can map a soliton onto the probié¢ a
particle rolling df one maxima of the inverted potenthd]y] = —f_[], “bouncing” throughy = 0 out to the
other maxima (Fig12.6). Fixing the conserved initial eyembe& = —f_[y], we deduce the “velocity”

N _ Yo v
v=2- e - @[1—(0—%],

To make the last step we have replagdd= & and¢ = \/% Solving fordx = (V2¢/wo)[L — (/w0)2] 2 dy
and integrating both sides yields

V% dj
X0 Jo 15 Gier

wherex = X is the point where the order parameter passes through zetioats

= V2t tantr(y/vo).

“soliton”

W) = o tanh(‘é").

This describes a “soliton” solution to the Ginzburg Landecekted ak = Xo.

Example 12.3: Show that the Ginzburg Landau free energy of a Domain wall can be mritte
u
aF = A5 [ dug - (o)
whereA = L4 is the area of the domain wall. Using this result, show that surface tensiohF/A

3 This can be derived by multiplying (12.21) by the integratiagtory’ then

dfy d
owu)-w T - 22w - ] -0
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is given by
o= ?fuw‘&
Solution: First, let us integrate by parts to write the total energy of the domain in the form
F= Afdx[—gww” + 1] (12.22)
where forr <0, fi[y] = —Qy* + 44 Using the GL equation (12.21)
s = ‘;f; =iy + w.

Subsituting into (12.22), we obtain

_ 1 3y IMA U,
F= —Afdx[—én//(—W+ uy )_%4' Z(//
=—UA f dxp*(x) (12.23)
Subtracting & the energy of the uniform configuration, we then obtain
u
aF = A7 [ axui- ')

To calculate the surface tension, substitut®) = o tanhfx/( V2£)], which gives

o= 55 = 0t [ a1 - anhi/ (V22
8/3
& AL

—
=G fm dut - tanh) = —=¢uyg. (12.24)

12.4 Landau Ginzburg Il: Complex order and Superflow

12.4.1 “A macroscopic wavefunction”

We now turn to discuss the Ginzburg Landau theory of compmeiywo component order parameters. Here,
we shall focus on the use of Ginzburg Landau theory to unaledssuperfluids and superconductors. At the
heart of our discussion, is the emergence of a kind of “maoiis wavefunction” in which the microscopic
field operators of the quantum fluf(x) acquire an expectation value

(X)) = w(x) = y(x)e® “Macroscopic wavefunction”

complete with phase. The magnitude of this order parametermines the density of particles in the super-
fluid

W/(X)‘z = Ng(X)
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while the twist, or gradient of the phase determines ther$luji velocity.

vs(9 = Lvg(x).

The idea that the wavefunction can acquire a kind of Newtoreality in a superfluid or superconductor
goes deeply against our training in quantum physics: atdiggtt, it appears to defy the Copenhagen in-
terpretation of quantum mechanics, in whigtx) is an unobservable variable. The bold idea suggested by
Ginzburg Landau is that(x) is a macroscopic manifestation of quintillions of pae&l bosons - all con-
densed into precisely the same quantum state. Even thefigyeags of the field - Landau himself - found
this hard to absort, and debate continues today. Yet ondug j$istory and discovery appear to consistently
have sided with the bold, if perhaps naive, interpretatibihe superconducting and superfluid order param-
eter as a essentially real, observable property of quanuidsfl. It is the classic example of diemergent
phenomenon® one of the many collective properties of matter that we &lledsscovering today which is a
nota priori self-evident from the microscopic physics.

Vitalii Ginzburg and Lev Landau introduced their theory 85D, as a phenomenological theory of super-
conductivity, in whichy(x) played the role of a macroscopic wavefunction whose mep origin was,
at the time, unknown. We shall begin by illustrating the &mlon of with an application of this method to
superfluids. For a superfluid, the GL free energy density is

12
fou[0. 0] = o IVu? + 1l + Sl (12.25)

GL free energy: superfluid

Before continuing, let us make a few heuristic remarks abmiGL free energy:

e The the GL free energy is to be interpreted as the energy tgleofsa condensate of bosons in which
the field operator behaves as a complex order parameterleBtus us to identify the cdigcient of the
gradient term

PR PP
svul = 5 (Vi'vi) (12.26)

as the kinetic energy, so that ;’—;

e Asin the case of Ising order, the correlation length, or “ZBirg Landau coherence length” governing the
characteristic range of amplitude fluctuations of the op#gameter is given by

s 72 T\

4 On more than one occasion, senior physicists advised theiests and younger colleagues against such a brash irttgipne One
such story took place in Moscow in 1953. Shortly after Ginglitandau theory was introduced, a young student of Landbaxeh
Abrikosov showed that a naive classical interpretatiomefdrder parameter field led naturally to the predication eftjaed vortices
and superconducting vortex lattices. Landau himself cooldbning himself to make this leap and persuaded his studerhteives
the theory. It was only after Feynman published a theory dices in superfluid helium, that Landau accepted the idearioig the
way for Abrikosov to finally publish his paper. [6]
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whereé&y = (T = 0) = Jﬁ:ﬂc is the coherence length. Beyond this length-scale, onlg@filactua-
tions survive.

e Ifwe freeze out fluctuations in amplitude, writiggx) = vAs€?™, thenVy = iV¢ ¢ and|Vy|? = ns(V¢)?,
the residual dependence of the kinetic energy on the twibteiphase is

V2
s
—_——

WPns, o, mn(h 2
= (e

Sincemny is the mass density, we see that a twist of the phase resultsiicrease in the kinetic energy
that we may associate with a “superfluid” velocity

h
Vs = quﬁ.

12.4.2 Off-diagonal long range order and coherent states

What then, is the meaning of the complex order paranyeétis tempting to associate it with the expectation
value of the field operator

W 0) = w(x1)

Yet, paradoxically, a field operator, links states witffetient particle numbers, so such an expectation value
can never develop in a state in a state with a definite numbpanicles. One way to avoid this problem,
proposed by Penrose and Onsager, is to define the order garaméerms of correlation functions[7, 8].
The authors noted that even in a state with a definite partisheber, broken symmetry manifests itself as a
long-distance factorization [9] of the correlation furetiy ' (X)y(X)):

X' =X|=>¢&

W) ———— ¥*(X) ¥(x) + small terms (12.28

Off-diagonal long range order.

in terms of the order parameter. This property is callefi-tiagonal long range order” [10](ODLRO).

However, a more modern view is that in macroscopic systeragiam’t need to restrict our attention to to
states of definite particle number, and indeed, once we farisgstem into contact with a bath of particles,
quantum states of indefinite particle number do arise. Biisd also arises in a ferromagnet where, the analog
of particle number is the conserved magnetizaSgalong the z-axis. A ferromagnet bf spins polarized in
thezdirection has wavefunction

=111
i T.N

However, if we cool the magnet in a field aligned along the is;ecoupled via the Hamiltoniad = —2BS, =
-B(S* + S7), then once we remove the field at low temperatures, the magneins polarized in th&

direction:
ID+1b
X) = —) = LELEALE. <8 b
) ];[\ ) ]_[( 7 )i
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Thus the coherent exchange of spin with the environmensl&ad state that contains an admixture of states
of differentS,. In a similar way, we may consider cooling a quantum fluid ineddfithat couples to the
superfluid order parameter. Such a field is created by a “pritxieffect” of the exchange of particles with a
pre-cooled superfluid in close vicinity, giving rise to adiéérm in the Hamiltonian such as

H = -A f XY () + (9]

When we cool below the superfluid transition temperafuren the presence of this pairing field, removing
the proximity field at low temperatures, then like a magnieg, tesulting state acquires an order parame-
ter forming a stable state of indefinite particle numSefo describe such states requires the many body
equivalent of wave-packets: a type of state called a “cotiestate”.

Coherent states are eigenstates of the field operator

G = Y(R)).

These states form an invaluable basis for describing sujzesiiates of matter. A coherent state can be simply
written as

(12.29)

)y ~ VN |0y coherent state (12.30)

where

o1 (g o
b = Mfd X Y97 (4,

coherently adds a boson to a condensate with with wavefumg(ix). Here,Ns = fddxlqp(x)\2 is theaverage
number of bosons in the superfluid and the normalizationdseh so thatd, bf] = 1. (See example 13.4 and
exercise 13.12.6.)

Similarly, the conjugate statg/| = (OleV=b diagonalizes the creation operator:

WP () = v (¢l

However, it not possible to simultaneously diagonalizéntwoeation and annihilation operators because they
don’t commute. Thug/) only diagonalizes the destruction operator &ptl only diagonalizes the creation
operator.

Coherent states are really the many body analog of “wavkeatsit with the roles of momentum and
position replaced byN and¢ respectively. Just ap generates spatial translatiors®2/%|xy = |x + a), N
translates the phase (see exercise 12.1), soétﬁhb) = |¢ + a). (Notice the diference in the sign in the
exponent). For an infinitesimal phase translatigr 64| = (¢|(1 — i64N), soi%(qbl = (¢|N, implying

(12.31)

This is the many body analog of the idenmys‘—ihd%. Just as periodic boundary conditions in space give
rise to discrete quantized values of momentum, the peritatiere of phase, gives rise to a quantized particle
number. It follows that

[N.g] =i
5 One might well object to this line of reasoning - for clearleating a state with a definite phase requires we have anuti@ooled

superfluid prepared in a state of definite phase. But whatdrepip we have none to start with? It turns out that what weyeain
do, is to control the relative phase of two superfluids. Bydfieboling, and it is the relative phase that we can actuallgsuee.
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implying phase and particle number are conjugate variaktésh obey an uncertainty relatién
AGAN 1

A coherent state trades in a small fractional uncertainairticle number to gain a high degree of precision
in its phase. For small quantum systems where the uncertaimtarticle number is small, phase becomes
ill-defined. If we write the uncertainty principle in term§tbe relative errone = AN/N, thenAg¢Ae > 1/N

we see that oncll ~ 107, the fractional uncertaintly in particle number and thegghean be known to an
accuracy of order 183, In the thermodynamic limit this means we can localize andsugng both the phase
and the particle density with Newtonian precision.

Example 12.4: The coherent state (12.30) is not normalized. Show that the propemiyatized co-
herent state

lp) = e™s2e V5" 0),

b = \lﬁ f Y099 (12.32)

is an eigenstate of the annihilation operak¢x) with eigenvaluay(x), whereNs = [ d?x|y(x)[2.

Solution:

1 First, sinced(x), ) (x)] = 6@(x - x), we note that
.6(“)(x X)

b.b7] = — f YO () [509, 57 ()] =

f WOIE =

so thatb andb’ are canonical bosons.

2 To obtain the normalization of a coherent state, let us expand the exjne|z) = &' |0y in terms
of eigenstates of the boson number operatert'b, |n), as follows:
P
zl ' (b
|z)—Z( Y1) = Z—Q| >-Z—|n>
Since(n’|n) = 6, taking the norm, we obtain
N
(d2) = i d
n
Placingz = VN;, it follows that the normalized coherent statgyis = e Ns/2gVNab' |0y
3 Sincey(x)|0y = 0, the action of the field operator on the coherent state is

JOW) = €M, eV 10)
To simplify notation, let us denote’ = +/Ngbf. The commutator

(12.33)

5@ (x-x)

[0(%.a'] = f V) (0. 5 ()] = ¥(¥)

which in turn implies thatf(x), (@')'] = ry(x)(a')"1. Now expanding
o 1 .
¢ =) 5
T
6 The strict relation iA\¢AN > %\[@, N]\ B % As in the case of wavepackets, in heuristic discussion,nap the factor of one half.
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we find that

2 (ahy-1
[90.¢] = Z Liaco.@y1=ue Y, B < pioe
r=1

(r—1)!
so that finally,

By = eN(x), e N']10) = y(x)e™ /2 N |0) = y(x)1y). (12.34)

Ginzburg Landau energy for a coherent state

We shall now link the one-particle wavefunction of the camstee to the order parameter of Ginzburg Landau
theory. While coherent states are not perfect energy eigisstat high density they provide an increasingly
accurate description of the ground-state wavefunctiorcofalensate. To take the expectation value of normal
ordered operators between coherent states, one simpcespihe fields by the order parameter, so that if

L2 . o o
= 203 00909 + (V00 - i)' () + 5 - (' 0T (12.35)

is the energy density of the microscopic fields, whel) is the one-particle potential, then the energy
density of the condensate is

2
WIHIG', Gy = Hw" y] = Zh—m\wx)l2 + (U - wly(P + gww(x)r‘.

which we recognize as a Ginzburg Landau energy density with
2

s:;—m, r(x) = U(X) — u.

At a finite temperature, this analysis needs modificatiom.iffstance . will acquire a temperature depen-
dence that permits(T) to vanish aftT,, while the relevant functional becomes free enefgy- E — TS.
Finally, note that at a finite temperaturg(T) only defines the superfluid component of the total particle
densityn, which contains both a normal and a superfluid component(T) + nn(T).

12.4.3 Phase rigidity and superflow

In GL theory the energy is sensitive to a “twist” of the phaseve substitutey = |y|é¢ into the GL free

energy, the gradient term becon®g = (V|y| + iVe|y|)€?, so that

KE: phase rigidity amplitude flucts
et N

o= TCUREOR | e R + St (12.:36)

2m 2m 2
The second term resembles the Ginzburg Landau functionalnfdsing order parameter, and describes the
energy cost of variations in the magnitude of the order patamThe first term term is new. This term
describes théphase rigidity” . As we learnt in the previous section, amplitude fluctuatiofi the order
parameter are confined to scales shorter than the correlatigthé. On longer length-scales the physics is

entirely controlled by the phase degrees of freedom, so that

foL = —(Vd:)z + constant (12.37)
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The quantityp, = %ns is often called the “superfluid phasefBiess”.

From a microscopic point of view, the phase rigidity termimsgly the kinetic energy of particles in the
condensate, but from a macroscopic view, it is an elastiocggressociated with the twisted phase. The only
way to reconcile these two viewpoints, is if a twist of the densate wavefunction results in a coherent flow
of particles.

To see this explicitly, let us calculate the current in a e¢ehestate. Microscopically, the current operator
is

so in a coherent state,

Ch e o
WAl = ~in (v - Vury) (12.38)
If we substitutes(x) = Vns(X)€*™ into this expression, we find that
h
Js= nsaV(ﬁ (12.39)

so that constant twist of the phase generates a flow of meftéing Js = nsvs, we can identify

h
Vs = ﬁngi
as the “superfluid velocity” generated by the twisted phdgbe condensate. Conventional particle flow is
acheived by the addition of excitations above the grouatesbut superflow occurs through a deformation
of the ground-state phase and every single particle movesrfiect synchrony.

Example 12.5:

(a) Show that in a condensate, the quantum equations of motion for tee phé particle number can
be replaced by Hamiltonian dynamics[9]:

dN oH
hgp = NI =50
d . __oH
hgp =ilg.Hl = =5 (12.40)

which are the analog af = 4% andp = —41.
(b) Use the second of the above equations to show that in a superfliidrataal potential;, the equi-

librium order parameter will precess with time, according to
U(x.t) = wex, 0

(c) If two superfluids with the same superfluid density, but iedent chemical potentials andy, are
connected by a tube of lengthshow that the superfluid velocity from % 2 will “accelerate”
according to the equation

dvs _ _E#Z —H

dt T m L

Solution:
(@) Since . N] = i, there are two alternative representations of the operators:
d 2

N=-i—. é=9¢

% (12.41)
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or, in the case thall is large enough to be considered a continuous variable,

~ .d o
¢ = 9N N=N (12.42)
Using (12.41), the Heisenberg equation of motionNigt) is given by
dN i i .d 10H
i %[N, H] = %[—I%, H(N, ¢)] = " op (12.43)
while using (12.42), the Heisenberg equation of motionsfay is given by
dg i i.d 10H
i %[@ H] = #'m,H] = haN (12.44)

(b) Inabulk superfluidZ = 4, so using (12.44 Y = u/h, and hence(t) = =4 + ¢o, or

Y1) = y(x, 0)e "

(c) Assuming a constant gradient of phase along the tube connectitgdfseiperfluids, the superfluid
velocity is given by

h h
Vs = EW’(‘) = a(‘l’z(t) - ¢()/L
But ¢(2) — ¢(1) = —(uz — pa)t + cons, hence
dvs _ hpe—m

dt - m L

Vortices and topological stability of superflow

Superflow is stable because of the underlying topology ofistéat order parameter. If we wrap the system
around on itself then the the single-valued nature of thempdrameter implies that the change in phase

around the sample must be an integer multiplemof 2

A¢=§dx-v¢:2n><n¢

corresponding ta, twists of the order parameter. But sinee = %W&, this implies that line-integral, or

“circulation” of the superflow around the sample is quardize

h
wzggdx-vszaxn‘,,
(noteh without a slash). Assuming translational symmetry, thiplies

vez U
Sl

quantization of circulation

quantization of velocity

a phenomenon first predicted by Onsager and Feynman[1ITH@jhumber of twists of the order parameter
n, is a “topological invariant” of the superfluid condensaiags it can not be changed by any continuous
deformation of the phase. The only way to decay the superfiote create high energy domain walls: a
process that is exponentially suppressed in the thermaigdimit. Thus the topological stability of a twisted

order parametery sustains a persistent superflow.

Another topologically stable configuration of a superfligdai“vortex”. A vortex is a singular line in the

344

December 1, 2011 176



(©2011 Piers Coleman Chapter 12.

superfluid around which the phase of the order parameteepses by an integer multiple of 2f we take a
circular path of radius around the vortex then the quantization of circulation iepl

w= m(%) = éd»vs(x) = 271IVs

— h 1 >
Vs*”ﬁx(a)?» (rze

This formula, where the superfluid velocity appears to djeeat short distances, is no longer reliable for
r <&, where amplitude variations in the order parameter becampeitant.

Let us now calculate the energy of a vortex. Suppose thewirtentered in the middle of a large cylinder
of radiusR, then the energy per unit length is

F_pe z_@fR 2\ in(R)xre
L= Zfd X(V¢) = 2 J, 2nrdr o =npgIn ‘ X NG.

In this way, we see that the energyrgfisolated vortices with unit circulation, ig, times smaller than one
vortex with ny-fold circulation. For this reason, vortices occur withgdequanta of circulation, and their
interaction is repulsive.

or

12.5 Landau Ginzburg Ill: Charged fields

12.5.1 Gauge Invariance

In a neutral superfluid the emergence of a macrosopic waggfumwith a phase leads superfluidity. When
the corresponding fluid is charged, the superflow carriesgehdorming a superconductor. One of the key
properties of superconductors, is their ability to activekclude magnetic fields from their interior, a phe-
nomenon called the “Meissneffect”. Ginzburg Landau theory provides a beautiful accofitiis effect.
The introduction of charge into a field theory brings witthiéthotion of gauge invariance. From one-body
Schibdinger equation,
Loy [ n?

e \?
in i —Fn(VﬂﬁA) +ap(x)]¢

whereg is the scalar electric potential, we learn that we can chahgehase of a particle wavefunction
by an arbitrary amount at each point in space and tinfe,t) — €°Oy(x,t) without without altering the
equation of motion, so long as the change is compensated byresponding gauge transformation of the
electromagnetic field:

hda
Ay S
This intimate link between changes in the phase of the wawtion and gauge transformations of the electro-
magnetic field threads through all of many body physics and tfieory. Once we second-quantize quantum
mechanics, the same rules of gauge invariance apply to ttle ff@t create charged particles, and when these
fields, or combinations of them condense, the corresporafingged order parameter also obeys the rules of
gauge invariance, with the proviso that the chaggés the charge of the condensate field. These kinds of

ASA+ Zvd, (12.45)
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arguments imply that in the Ginzburg Landau theory of a aeduguantum fluid, normal derivatives of the
field are replaced by gauge invariant derivatives

ie*
V-D=V-—A
- n
wheree" is the charge of the condensing field. Thus the simple replanée

foLly, V¢l — foLly, Dy]

incorporates the coupling of the superfluid to the electigmesic field. To this, we must add the energy
density of the magnetic fielB?/(2uo), to obtain

fy

Flu, Al = fddx[%'(V— i%*A)w

2 2
SR+ Sl + (VZXHA) | (12.46)
Nyl

fem

GL Free energy: charged superfluid.

whereM is mass of the condensed field avick A = B is the magnetic field.

Note that:

e Solong as we are considering superconductors, where thikensimg boson is a Cooper pair of electrons,
€" = 2e. Although there are cases of charged bosonic superfluids,asia fluid of deuterium nucleii, in

whiche" = e, for the rest of this book, we shall adopt
e =2 (12.47)

as an equivalence.
e Under the gauge transformation

W(¥) = Y)W,

Dy — €*@Dy, so thatDy/|? is unchanged and the GL free energy is gauge invariant.
e F[y, Al really containsgtwo intertwined Ginzburg Landau theories fgrand A respectively, with two cor-

A—>A+EV(X
e*

responding length scales: the coherence legigth , lﬁzm governing amplitude fluctuations ¢f and
and the “London penetration depth{, which sets the distance a magnetic field penetrates intsuthe
perconductor. In a uniform condensagte= /s, the free energy dependence on the vector potential is
given by
2

(VxA) . A

2 2
wherecy = io andrp = % This is a Ginzburg Landau functional for the vector poi@ntith a
characteristid.-ondon penetration depth

Ca M
A== =7
a Ns€ “uo
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(12.49)
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12.5.2 Ginzburg Landau Equations

To obtain the equations of motion we need to take variatidribeofree with respect to the vector potential
and the order parametgr Variations in the vector potential recover Agrgs equation, while variations in the
order parameter lead to a generalization of the non-linelrdglinger equation obtained previously for non-
uniform Ising fields. Each of these equations is of great irgee - non-uniform solutions determine the
physics of the domain walls between “normal” and “superemtidg” regions of a type Il superconductor,
while the Ginzburg Landau formulation of Arape’s equation provides an understanding of the Meissner
effect.
If we vary the vector potential, thefF = 6F, + 6Fem, where

J(X)

OF, = —f&A(x)~ _in (Vg —Vuy) - eﬁw
=) oM v v v
is the variation in the condensate energy and
=0
N
1 1 1
6FEM=—forSAB:—fV~(5A><B)+—f6A(x)~(V><B)

Ho Ho Jx Ho Jx

is the variation in the magnetic field energy. Setting thelteariation to zero, we obtain:

SF v
Y J(X¥) + =0 (12.51)
where
ieh, o 2 . 2
I = = (V0 =V v) = LA, (12.52)

is the supercurrent density. In this way, we have rederivethée’s equation, where the current density
takes the well-known form of a probability current in the 8alinger equation. Howeveg(x) now assumes
a macroscopic, physical significance - it is literally, tmedcroscopic wavefunction” of the superconducting
condensate. We will shortly see how Eq. (12.51) leads to thisdmer fect.

To take variations with respect g it is useful to first integrate by parts, writing

72 e u
Fom [ Ly iv-Sapyrreu+ Sw 2]‘ 1253
o= [ g 9 - S e S (1253)
If we now take variations with respect#d andy, we obtain
d | P o € 2
6F = | d|6y"(X) m(—lV— EA) Y(X) + ry(X) + uly ()@ (x) | + H.c
7 The variation ofFgy is tricky. We can carry it out using index notation to intetgréFey by parts as follows:
1 1 =—cha
0Few = - [ eandTo0A)Ba = = | e | Vo) oA
= [ A0ecoaToBa = — f SA() - (V x B) (12.50)
Ho Jx Ho Jx

where we have set total derivative terms to zero.
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implying that

2 *
o (7 =TS AV + 1009 + U 9PY(9 = O (1254)
This “non-linear Schroedinger equation” is almost idegitio (12.17) obtained for an Ising order parameter,
but herev? — (V — i%A)2 to incorporate the gauge invariance arid— |y|%y takes account of the complex
order parameter. We will shortly see how this equation cangeel to determine the surface tensiap of a
drop of superconducting fluid.

12.5.3 The Meissner Effect

We now examine how a superconductor behaves in the preseaaeagnetic field. It is useful to write the
supercurrent (12.52)

300 =~y 50— r) - o
in terms of the amplitude and phase of the order paranjetefy|€? (c.f. 12.36). The derivative terg Vi
can be re-written
vV = eV (yle?) = ilpiPTg + iVl
so that the terny*Vy — H.c = 2i|y|?V¢ and hence

*h 2
300 = SRV - SwlA

Vs

e —
= e
=e'ng W (V¢ - EA) = e"'NgVs (12.55)
where we have replacegl|? = ns and identified
h =
Vo= b (v¢ -Sa). (12.56)

as the superfluid velocity. Note that in contrast with (12.8&her a twist in the phase, or an external vector
potential can promote a superflow. Under a gauge transf@mat— ¢+a, A — A+£Vu, this combination
is gauge-invariant. Written out explicitly, Angpes equation then becomes

nee'? h
VxB=- A-—V 12.57
xB = e (A~ 2v0) (1257
If we take the curl of this expression (assuminds constant), we obtain
w2
Vx (VxB)=puoV xJ=-H€ g (12.58)

where we have used the identiyk V¢ = 0 to eliminate the phase gradient. Buk (VxB) = V(V-B)-V2B =
—V2B, sinceV - B = 0, so that
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1 .
V2B = /TZB’ Meissner Effect
L
1 yonse*z
= = = 12.59
A2 M ( )

This equation, first derived by Fritz London on phenomenigliggrounds[13], expresses the astonishing
property that magnetic fields are actively expelled fromesapnductors. The only uniform solutions that are
possible are

B=0,ns>0,
B+#0,ns=0,

superconductor

normal state (12.60)

One dimensional solutions to the London equatés = B//lf take the formB ~ Boe’ﬁ, showing that near
the surface of a superconductor, magnetic fields only patee#r distance depth into the condensate. The
persistent supercurrents that screen the field out of trersapductor lie within this thin shell on the surface.

As we shall see however, in the class of type Il supercondsictohere the coherence length is small
compared with the penetration depth € 1,/ V2), magnetic fields can penetrate the superconductor in a
non-uniform way as vortices.

Lastly, note that in a superconductor, whée= 2m. ande” = 2e are the mass and charge of the Cooper
pair respectively, whileg = %ne is half the concentration of electrons in the condensate,

ne?  3nede  n.e
M~ 2m m

so the expression for the penetration depth has the samenfbem written in terms of the charge and mass
of the electron.

1 ne
2 Hm

The critical field H¢

In a medium that is immersed in an external field, we can dithéemagnetic field into an “external” mag-
netizing fieldH and the magnetizatiod . In Sl units,

B = pio(H + M)

wherejext = V x H is the current density in the external coils gng = V x M are the internal currents
of the material: in a superconductor, these are the superdsr Now the ratioy = M/H, is the magnetic
susceptibility. Since the magnetic fidBd= 1o(M +H) vanishes inside a superconductor, this implies: —H,

so that®
xsc=-1 Perfect diamagnet

In other words, superconductors aerfect diamagnets which shielding supercurrendg; = VxM provide
a perfect Faraday cage to screen out the magnetic field frerimtérior of the superconductor. However, the

8 Most older texts use Gaussian units, for whigh: = ’Tln in a superconductor. In Gaussian urts= H + 47M = (1 + 4ny)H. If
B = 0, this implies thayS© = - & in Gaussian units.
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external fieldH can not be increased without limit, and beyond a certaiicatifield [H| > H¢, the uniform
Meissner €ect can no longer be sustained.

To calculate the critical field, we need to compare the ersrgf the normal and superconducting state.
To this end, we separate the free energy into a condensate &eld componentF = F, + Fgy, where
5F,/6B(X) = —M(X) is the magnetization induced by the supercurrents wifiley/6B(x) = o *B(X) is the
magnetic field. Adding these terms together,

oF
B(x)
Now the magnetizing fieldH is determined by the external coils, and can be taken to bstaonover the

scale of the coherence and penetration depth. Since it exteenal fieldH that is fixed, it is more convenient
to use the Gibb’s free energy

-M(x) + iB(x) =H
Ho

G[H.y] = F[B,w]—fd3xB(x)-H

which is a functional of the external field and independent of the— field (§G/6B = 0). The second term
describes the work done by the coils in producing the cohsteiernal field. This is analogous to setting
G[P] = F[V] + PV to include the workPV done by a piston to maintain a fluid at constant pressure. In a
uniform superconductor,
_G_ o U ., B
9=y =Wl + 3+ 5~ BH
In the normal state) = 0, B = uoH, so that

Mo\ 2
=-——H
2

whereas in the superconducting st&8es 0, andjy| = o = V-r/u, so that

On

u r?
Osc = Y4 + 5%‘ =
Clearly, if gsc < gn, i€, if
r2 " )
H<Hc=+|— critical field (12.61)
Ho U

the superconductor is thermodynamically stable. The freegy density of the superconductor can then be
written

r? Ho
Osc = T2 B
Surface energy of a superconductor.

When the external field{l = Hc, the free energy density of the normal state and the supéuctor are iden-
tical, and so the two phases can co-exist. The interfacedsetithe degenerate superconductor and normal is
a domain wall, where the Gibb’s energy per unit energy definesurface energy

AG/A = osp
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whereA is the area of the interface. At the interface the supercctimyiorder parameter and the magnetic
field decay away to zero over length scales of order the caberengthé and penetration depth , respec-
tively, as illustrated below.

Yo

Schematic illustrating a superconductor-normal metal domain wall in a type |
superconductor, where & >> 1.

The surface tensionrs, (surface energyyrns of the domain wall between the superconductor and normal
phase has a profound influence on the macroscopic behavéoswberconductor. The key parameter which
controls the surface tension is the ratio of the magnetiefation to the coherence length,

AL
K=—,

3
There are two types of superconductor (see Fig. 12.8):

Ginzburg Landau parameter.

1 « < -~ Type I superconductors with a positive domain wall energy. In type | supercondistmagnetic
fields are vigorously excluded from the material by a thirfae layer of screening currents (Fig 12.9(a)).
At H = H, there is a first order transition into the normal state.

2 k> % Type Il superconductors, with a negative surface tensiang, < 0). In type Il superconductors, the
surface layer of screening currents is smeared out on the stthe coherence length, and the magnetic
field penetrates much further into the superonductor (Fi§(b3). In type Il superconductors, there are
now two critical fields, an “upper” critical fieltH, > Hc and a lower critical fieldHg < Hc. Between
these two fieldsHy < H < Hep the magnetic field penetrates the bulk, forming vortices it the high
energy of the normal core idfset by the negative surface energy of the layer of screeninmgmts.

The domain wall energy between a superconductor and a ntétakaH. is the excess energy associated
with a departure from uniformity:

BZ
2u0

we see that the last three terms can be combined into onbtdamo

—ljﬁwvka—EA)r+nF+9\ﬁ+ ~B.H,- ] (12.62)
Ons = A 2M 7 4 % 2 % ¢~ Osc .

InsertingHc = Be/uo andgsc = *z%g.,'

B N B B N S Y Gl -9
ym_Aj}bekv—hAm‘Hw|+£m4- @0] (12.63)
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- Type | SC b
Hc2

Type Il SC

Normal state

Normal state

Te

Te

Contrasting the phase diagrams of type | and type Il superconductors. (a) In type |

December 1, 2011

superconductors application of a high field converts the Meissner phase directly into
the normal state. (b) In type Il superconductors, application of a modest field

(H > Hg1) results in the partial penetration of field into the superconductor to form a
superconducting flux lattice, which survives up to much a much higher field Hcp.

By imposing the condition of stationarity, it is straightfeard to show (see example 12.6) that the domain
wall energy of a domain in the y-z plane can be cast into thepemtform

g o545

This compact form for the surface tension of a supercondwetio be loosely interpreted as théfeience of
field and condensation energy

(12.64)

Osn = f dx[field energy- condensation energy

In the superconductor at the critical field, these two terensé directly cancel one another whereas in the
normal metal both terms are zero. It is the imperfect balafickese two energy terms at the interface that
creates a non-zero surface tension. In a type | supercaitiog healing lengtt for the order parameter is
long so the condensation energy fails to compensate forahiehergy generating a positive surface tension.
By contrast, in a type Il superconductor, the healing lerfgththe magnetic fieldl_ is large so the field
energy fails to compensate for the condensation energynig&ol a negative surface tension. In fact, within
Ginzburg Landau theory, the surface tension vanishes=atl/ V2 (see example 12.7), so= 1/ V2 is the
dividing line between the two classes of superconductanr8arizing:

Interface condensation energyield energy os,> 0
Interface field energy condensation energyos, < 0

(k< 1/V2)
(k>1/v2)

Type I

Type II: (12.65)
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(@) Type |l : 0sn>0 (b) Type ll : 0sn< 0

A @ik

A @00

(o}

O
@ | [®
(0]

RN ER O

K>>1/N 2

K<< 1/4 2

Fig. 12.9 Superconductor-normal domain wall in type | and type Il superconductors. (a) For

K= % < -L | the superconductor is a type | superconductor. In the limit x — O
illustrated here, the magnetic field drops precipitously to zero at x = 0. In the extreme
type | limit x >> 1/ V2, the magnetic field and the screening currents extend a

distance of 4. >> ¢ into the superconductor.

One of the most dramatidfects of a negative surface tension, is the stabilizatioroafuniform supercon-
ducting states at fields over a wide range of fields betv&grand Be,, whereBe, = V2«B, is the “upper
critical field”, andBgy ~ Be/( \/Z() is the “lower critical field”.

Let us estimate the surface tension in extreme type | andibgeperconductors (Fig. 12.9). In the former,
wherel. << ¢, the length scale over which the magnetic field varies isigié relative to the coherence
length(see Fig. 12.9(a)), so that the magnetic field can peoajmated by a step function

B(x) = Bet(X).

Forx > 0, B(x) = B is constant, which implies th&” o« 2B, = 0, so thaiy(x) = 0 for x > 0. Forx < 0, on

the superconducting side of the domain walk= A = 0 and in the absence of a field, the evolution equation
for y is identical to an Ising kink treated in section (12.3.1),vidnich the solution isy /o = tanh(/( V2£)).
Substituting into (12.64), the surface tension is then

Extreme type I.

o :Bif dx[l-tanhw(«&g))“]:igxwgf
sn 2#0 . 2}10 ’

For an extreme type Il superconductor, the situation isreage now the longest length-scale is the penetra-

(12.66)
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tion depth. Unfortunately, since the vector potential nfiedithe equilibrium magnitude of the order parame-
ter, A, sets the decay length bbththe field and the order parameter. Let us nevertheless astthmasurface
tension by treating the order parameter as a step fungii®n~ yof(—x). In this caseA” = %z(l///lﬁo)zA, SO

3
that

B e/ (x<0)
B(X) = Bg x { 1 (x>0) (12.67)
Substituting into (12.76 ), this then gives
B2 (° B2 3
n o Pc S _ 12 1] = ——C =
Tn* 5 f ) dx{(e — 12 - 1] 7 < S (12.68)

showing that at large, the surface tension becomes negative. The result of a netegletl calculation
(example 12.8) replaces the factor g2y (8/3)(V2 — 1) = 1.1045 [14].
Summarizing the results of a detailed Landau Ginzburg taticm,

B2 1.89¢
7= S0y X{ ~1101,

(extreme type I)
(extreme type I1)

Example 12.6: Calculate the domain wall energy per unit avga of a superconducting-normal inter-
face lying in they — z plane, and show that it can be written

2 Lol

Solution: Consider a domain wall in the— z plane separating a superconductox at 0 from a metal
atx > 0, immersed in a magnetic field along the axis Let us take

A(¥) = (0.A(X.0),  B(x) = (0.0,A(x)).
seeking a domain wall solution in whief(x) is real. Our boundary conditions are then

(12.69)

woo. Ao ={ o) 5273 (12.70)
The domain wall energy is then
G w2 [(dy\ e?A , 2 U, (B-B)
”“‘K‘ﬂfd4ﬁﬁﬁaﬂ R W}+W 2 o @z

Notice that there are no terms lineard/dx, because the vector potential and the gradient of the order

parameter are orthgonaly - A = 0). Let us rescale theco-ordinate in units of the penetration length,

the order parameter in units ¢f and the magnetic field in units of the critical field, as follows:

A B_
B.

>

LoX .y ~
== =¥ =2
X A v Yo BedL

In these rescaled variables, the Gibb's free energy becomes

BZ/IL 2‘1/2 2,2 2 2 q 2
2;0 fdx[7+An// +(W?-1P-1)+ (A - 1) ]
where for clarity, we have now dropped the tildes. The rescaled boyindaditions arey, A) — (1,0)
in the superconductor at<< 0, and {/, A) — (0, x) deep inside the metal at>> 0.

Taking variations with respect i gives

.
S SRy - 1w =0

B= =A.

Q.‘Q.
xu

Tsn =

(12.72)

(12.73)
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while taking variations with respect #gives the dimensionless London equation

Ay -AN' =0 (12.74)
Integrating by parts to replacg’(> — —y” in (12.72 ), we obtain
—R2y2-2(y2- 1)
——
2 7"
e = D24 f d;{z‘L‘przw (@217 -1+ (A - 1)2] (12.75)
20 K

where we have used (12.73) to elimigté. Cancelling theA’y? andy? terms in (12.75), we can then
write the surface tension in the compact form

B2,
2u0 J-
Restoringx — TXL A(X) > % andy/(x) — %) we obtain (12.64).

(12.76)

Osn=

B dx[(A(9 - 12 = w(¥"].

Example 12.7: Show that the domain wall energy changes sign-atl/ V2.
Solution: Using equation (12.76), we see that in the special case where theestefssionrs, = 0, is
zero, it follows that

A(X) =15 p(x)?

where we select the upper choice of signs to give a physical solutiorevihe field is reduced inside
the superconducto’( < 1). Taking the second derivative, giva8 = —2y)’. But sinceA” = y? A, it
follows thaty’ = —2Ay. Now we can derive an alternative expressionyfoby integrating the second
order equation (12.74). By multiplying (12.73) by’4 using (12.74) we can rewrite (12.73) as a total
derivative
L2 g+ Moy g2 - 17 - A2| =0
dx| «2

from which we deduce that
—%(u//)z + A%y + (y? - 1)> - A2 = constant= 0 (12.77)
K
is constant across the domain, where the value of the constant is obtgip&tingy = 1, A= A’ =
on the superconducting side of the domain. Substituding (1-y?), the last two terms cancel. Finally,
putting ')> = 2(A)?, we obtain
1
(1_ i)(M)Z =0, (12.78)

showing thak. = 1/ V2 is the critical value where the surface tension drops to zero.

Example 12.8: Using the results of the example 13.6, show that within Landau Ginzbuegythiae
surface tension of an extreme type Il superconductor is [14]

_ B 8 B?
Tna= g% é(\/2—1)/1L Yoo X 1.101,

355

bk . pdf

December 1, 2011

Chapter 12. ©Piers Coleman 2011

Solution: We start with equations (12.73) and (12.74)

L+ 3R+ (7~ 1y =0 (12.79)

K2
AR -A' =0 (12.80)

For an extreme type Il superconducter>> 1 allowing us to neglect the derivative term in the first
equation. There are then two solutions:

o= 1-1iA (x< 0)
v = 0, A=x+12 (x> 0) (@2)
For (x < 0), substituting into (12.80), we then obtain
Al -A?/2)= A" (12.82)

Multiplying both sides by the integrating factoA2 we obtain
d d .
— (A2(1- A%/4)) = —(A)?
5 (K- R/a) = T (A)

or A%(1 — A?/4) = (A')? + cons, where the integration constant vanishes becAas® A’ both go to
Z€ero asx — —oo, S0 that

A =AVI-A/4  (x<0) (12.83)
Now using (12.81) in (12.76), the surface tension is
B2A.
= x|
O'sn 2%0
= f [(A - 17— (1 - A2/2)] dx (12.84)
Substituting forA” using (12.83) then gives
0
I= f [(AVI=A2/4- 1) - (1- A2/2)?] dx
0
= f [2A2(1 - A2/4) - 2A\1 - P2/4] dx
o
= f [2(A" - 1)] A'dx
g .
= f 2[(AyV1-AZ/4-1)|dA= % (V2-1) ~ -11045 (12.85)
0

where we have used the fact that= 0, A = V2 atx = 0. It follows that in the extreme type Il
superconductor

£ x (1.104,).
Ogn= ——— . .
sn 20 L,

12.5.4 Vortices, Flux quanta and type-Il superconductors.
OnceH > Hg, type Il superconductors support the formation of supettocimg vortices.
In a neutral superfluid, a superconducting vortex is a lineeatearound which the phase of the order
parameter precesses by, ®r a multiple of Z. In section (12.4.3), we saw that this gave rise to a quaitdiza
of circulation. In a superconducting vortex, the rotatitecgic currents give rise to a trapped magnetic flux,
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quantized in units of the superconducting flux quantum

Og =

Q|
B>

This quantization of magnetic flux we predicted by London @msager[13, 15].

ok
fd:}:-v_,—M

—\—

(a) Superfluid vortex (b) Superconducting vortex

=lo, 2ol Contrasting (a) a vortex in a neutral superfluid with (b) a vortex in a superconductor,
where each unit of quantized circulation binds one quanta of magnetic flux.

To understand flux quantization, it is instructive to costra neutral superfluid with a superconducting
vortex (see Fig. 12.10). In a neutral superfluid, the supdrffalocity is uniquely dictated by the gradient
of the phaseys = %W:, so around a vortex, the superfluid velocity decays/ag\s = n x %). Around a
superconducting vortex, the superfluid velocity contaimadditional contribution from the vector potential

o e
=—V¢p- —A.
M VALY
In the presence of a magnetic field, this term compensatabégrhase gradient, lowering the supercurrent
velocity and reducing the overall kinetic energy of the gartOn distances larger than the penetration depth
A the vector potential and the phase gradient almost coniplsiacel one-another, leading to a supercurrent
that decays exponentially with radiug, oc e/t
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If we integrate the circulation around a vortex, we find

Ag=2m @
— —

h e
w:ﬂ{)‘dx-vszmggdx-ﬁﬁ—mﬁdx-A

where we have identifieﬁdx . % = 2z x n as the total change in phase around the vortex, vfld& A=
fB -dS = @ is the magnetic flux contained within the loop, so that

(12.86)

SPLICL

w = M M .
In this way, we see that the presence of bound magnetic flucesdthe total circulation. At large distances,
energetics favor a reduction of the circulation to zeroglimw = 0, so that around a large loop

h €0
0= "™
or
O = n(ﬂ) =ndg (12.87)
e*

wheredq = g is the quantum of flux. In this way, each quantum of circulatienerates a bound quantum of
magnetic flux. The lowest energy vortex contains a single faxllustrated in Fig. 12.10 A simple realization
of this situation occurs in a hollow superconducting cyin@Fig. 12.11). In its lowest energy state, where
no supercurrent flows around the cylinder, the magnetic flappted inside the cylinder is quantized. If an
external magnetic field is is applied to the cylinder, anchtlater removed, the cylinder is found to trap flux
in units of the flux quantun®y = zﬂe [16, 17], providing a direct confirmation of the charge of thooper
pair

In thermodynamic equilibrium, vortices penetrate a tymifperconductor provided the applied fieldies
between the upper and lower critical fields, andH¢ respectively. In an extreme type Il superconductor,
He, andH differ from H, by a factor ofc = %:

Helnk

vk
Heo = V2kHe.

Hep ~ (k >> 1) (12.88)

(12.89)

Below He; and aboveH, the system is uniformly superconducting and normal resgyt In between,
fluxoids self-organize themselves into an ordered trisangialttice, called the Abrikosov Flux Lattice. Thus
He is the first field at which it becomes energetically advantageto add a vortex to the uniform super
conductor, wheread; is the largest field at which a non-uniform superconductwigt®on is still stable.

For an extreme type Il superconductbly; can be made calculating the field at which the Gibb’s Free
energy of a vortex

AG\/ = EvL* H-
= eyl — HdpL,

d*xB(x)
(12.90)

becomes negative. Hekds the length of the vortex ang) is the vortex energy per unit length. For an extreme
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=l il Flux quantization inside a cylinder. In the lowest energy configuration, with no

supercurrent in the cylinder walls, the A¢ = 2zn twist in the phase of the order
parameter around the cylinder is compensated by a quantized circulation of the vector
potential, giving rise to a quantized flux. The inset shows quantized flux measured in
reference [16].

type Il superconductor, this energy is roughly equal to the lostleosation energy of the core. Assuming

the core to have a radigsthis is
2 2
r B;
ey ~ — X nfz = —Cmfz.

2u 210
Vortices will start to enter the condensate whe®sy, < 0, i.e when

B 2
Ha®o ~ % X ES.

PuttingHe1 = Bei/uo, and estimating the area over which the magnetic field isaspte berA?, so that the
total flux, ®o = Bey x 742, we obtain
Ha 1

He «

so thatHq << Hc for an extreme typel superconductor. A more detailed calculation gives the answ
quoted in (12.88).
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To calculateHc,, consider a metal in which the applied field is gradually eegtlifrom a high fieldH will
be the field at which the first non-uniform superconductifgtimn becomes possible. Non uniform solutions
of the order parameter satisfy the non-linear Schroediageation (12.54),

2 *
o 17 = S AU + 1009 + U () = 0. (1291)

Since the developing superconducting instability will @avery small amplitude, we can ignore the cubic
term. ChoosindA = (0,0, Bx), let us now seek solutions gfthat depend only or, so that
Ly + Y2y = x) (12.92)
wherew, = %B. This as the time-independent Schroedinger equation far@dnic oscillator with energy
E = —r. Since the smallest energy eigenvalu€is- %hwc, it follows that—r = %hwc. Now according to

(12.27), the coherence length is givendly= ﬁzm so thatr| = 2&; =122, so that

h
27Bepé? = P D (12.93)

wheredq = g is the superconducting flux quantum. At the uppercriticadifia tube of radiug contains half
a flux quantagpy/2.
Using (12.93), the upper critical field is given by

o1
Beo = pioHe2 = — \2M[r].

ee et
By contrast, using (12.61) and (12.49) the critical fiBlds given by

r2 1
Hc = —=—+MIr
HoHc Ko = e Irl
so that the ratio

He \/’/IL
—2 = V2o = V2
He 3

Thus provideck > % the condition for type Il superconductivity, the uppeitical field H., exceeds the
thermodynamic critical fieldHe, > Hc (see Fig. 12.8).

12.6 Dynamical effects of broken symmetry: Anderson Higg’s

mechanism
|

One of the most dramaticffects of broken symmetry lies in its influence on gauge fields$ douple to
the condensate. Thidtect, called the “Anderson Higg's mechanism”. not only liehind the remarkable
Meissner &ect, but it is responsible for the short-range charactehefieak nuclear force. When a gauge
field couples to the long-wavelength phase modes of a changlst parameter, it absorbs the phase modes
to become a massive gauge field that mediates a short ranger{ed) force:

gauge field+ phase— massive gauge field
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Superconductivity is the simplest, and historically, thetfivorking model of this mechanism, which today
bears the name of Anderson, who first recognized its morergksignificance for relativistic Yang Mills
theories[18], and Higg’s who formulated these ideas in @imadormulation [19]. In this section, we provide
an introduction to the Anderson Higg's mechanism, usingnapke time-dependent extension of Ginzburg
Landau theory that in essence, applies the method used lysHig] to the simpler case of d(1) gauge
field.

12.6.1 Goldstone mode in neutral superfluids

In the ground-state, Ginzburg Landau theory can be thougis describing the “potential energy[y] =
FoL[¥]lT-0 associated with a static and slowly varying configuratiotheforder parameter. At scales much
longer than the coherent length, amplitude fluctuation$iefdrder parameter can be neglected, and all the
physics is contained in the phase of the order parametea Reutral superfluiy = %ps(V(P)Z, whereps is
the superfluid sffness, given in Ginzburg Landau theory by = % But to determine the dynamics, we
need the Lagrangian = T -V associated with slowly varying configurations of the ordagmeter, where
is the “kinetic” energy associated with a time-dependeid fienfigurations. The kinetic energy can also be
expanded to leading order in the time-derivatives of thespl{aee exercise 13.8), so that the action governing
the slow phase dynamics is

Y Ve

S= % fdtdsx[(éﬁ/C*)z - (Vo)

In relativistic field theory,c* = c is the speed of light, and Lorentz invariance permits théoadp be
simplified using a 4-vector notation(Vl,$)?as shown in the brackets above. The relativistic action and
the Ginzburg Landau free energy can be viewed as MinkowskiiEuclidean versions of the same energy
functional:

(12.94)

Minkowski Euclidean

S-= JLZS f d*X(V,4)2 > F = % f (V)2

However, in a non-relativistic superfluid; is a characteristic velocity of the condensate. For exaniple
paired fermionic superfluid, such as superfltie— 3, ¢* = V3vg, wherevg is the Fermi velocity of the the
underlying Fermi liquid. If we take variations with respéats, (integrating by parts in space-time so that
VgV =— —64V%p, andspd — —56d), we see thap satisfies the wave equation

2
c:*LZ(;Tf =0 Boguilubov phase modew = c’q
corresponding to a phase mode that propagates at a spedus mode, often called a “Boguilubov mode”
is actually a special example of a Goldstone mode. The igfimévelength limit of this mode corresponds
to a simple uniform rotation of the phase, and is an exampleairally gapless mode that appears when a
continuous symmetry is broken in a system governed by shage forces.

(12.95)

V2 —

Example 12.9: If density fluctuationsing(x) = ns(X) — ns are included into the Hamiltonian of a
superfluid, the ground-state energy is given by

H= fd%[% + 220y

361

bk . pdf

December 1, 2011

Chapter 12. ©Piers Coleman 2011

wherey = dN/du is the charge susceptibility. From (see Ex. 13.5) we learned that densitptese
are conjugate variables, which in the continuum satisfy Hamiltons equatibatifans(x) = u(x) =
—nig(x). Using this result, show that that the Lagrangiaa fd3><5r'f:(‘x) dng(X) — H can be written in the
form

L=2 [ ex[Grer- oy
where €2 = ps/(¢1).

Solution: By varying the Hamiltonian with respect to the local density, we obtain the kduaical
potential of the condensate

w0 = 2= ong0.

Py (12.96)

L

. et o) 5
By writing the condensate order parameterés t) = y€“*) = ye'I"!, we may identify“t) = —¢

as the rate of change of phase, thus from (12.96), we obtain
hig = —xong(x)
so that §ns)?/(2y) = %(¢)? and the Lagrangian takes the form

L= f Px(-ngon) ~H = 5 f Ex|(d/¢) - po(VOY]

Replacingi?y = ps/c*?, we obtain the result.

12.6.2 Anderson Higgs mechanism

The situation is subtlely ffierent when we consider a charged superfluid. In this casegekan phase of the
order parameter become coupled by the long-range eleagreetia forces, and this has th#ezt of turning
them into gapped “plasmon” modes of the superflow and coradercharge density.

From Ginzburg Landau theory, we already learned that in agehfield, physical quantities, such as the
supercurrent and the Ginzburg Landau free energy , depettteahe gauge invariant gradient of the phase
V¢ — ZA. Since the action involves time-dependent phase configustit must be invariant under both
space and time-dependent gauge transformations(12.45),

h h.
¢ — ¢+ a(xt), A— A+ gVa/, poe- g (12.97)
which means that time derivatives of the phase must occheigauge-invariant combinatign+ %:Lp, where
¢ is the electric potential. The action of a charged superoid involves two terms

S= s,/, + SEM
where
2
_ Pl L (0 E ) _we- Ay
S, 7fdtd3x2 [C*Z (¢+ h¢) (V¢ hA) (12.98)
is the gauged condensate contribution to the action and
1 E\?
Sem = —fdtd%([(f) —BZ] 12.99
e = 5 . (12.99)
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is the electromagnetic Lagrangian, whére= —% — V¢ andB = V x A are the electric and magnetic field
respectively.

The remarkable thing, is that since the scalar and vectengiat always occur in the same gauge invariant
combination with the phase gradients, we can redefine thereteagnetic fields to completely absorb the
phase gradients as follows:

, h , h- h
A'=A- quﬁ, ¢ =p+ gqﬁ, (A — EV“w)
Notice that in (12.98), the vector potential, which we agsecwith transverse electromagnetic waves, be-
comes coupled to gradients of the phase, which are longili character. The sum of the phase gradient
and the vector potential creates a field with both longitatland transverse character. In terms of the new
fields, the action becomes

Ly Lem

R e e LR
2upa?\ et 2uo [\ C

where ]/(yo/lf) = (ps€)/(h?) = nse*?/M defines the London penetration depth and we have dropped the

primes ony andA in subsequent equations.

Amazingly, by absorbing the phase of the order parameterrviee at a purely electromagnetic action,
but one in which the phase Stiess of the condensaltg imparts a new quadratic term in the action of the
electromagnetic field - a “mass term”. Like a python that haallewed its prey whole, the new gauge field
is transformed into a much more sluggish object: it is heawd/\seak. To see this in detalil, let us re-examine
Maxwell's in the presence of the mass term. Taking variatioith respect to the fields, we obtain

(12.100)

Sy = fdtd3x(6A(x) J(X) = Se(X)p(X)) (12.101)
where
1 1
j=———A, =0, 12.102
i ol g ® ( )
denote the superfluid velocity and the voltage-induced gaamcharge density, while
5SEm = ifdtd3x oa-(1E_vxB +5¢iV~E . (12.103)
Ho c? c?
SettingsS = 6S, + 6Sem = 0, the vanishing of the cdiécient of ¢ gives Gauss’ equation
§ =eV-E-p=0, (12.104)
o
while the vanishing of the cdigcient of 5A gives us Amperes equation,
S 1(1. .
— =—|5E-VxB =0. 12.105
e[ e) uz09)

SinceV - (V x B) = 0, taking the divergence of (12.105) and using (12.104)ptaeV - E = p/e, leads to a
continuity equation for the supercurrent
g 1

Vij+—=-—|(V-
I+ 5 W{f(

-0,

! a“’) (12.106)

Lo ¥
c2 at
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excepting now, continuity also implies a gauge conditioat ties¢ to the longitudinal part oAA. For the
relativistic case €¢* = c) this is the well-known Lorentz gauge conditiov, &' = 0).
If we now expand Amperes equations in termg\ofve obtain

1 1a9/( oA
VxB=V(V-A)-VPA=-_A+-—_[-==-V 12.107
XxB=V(V-A) - +sz( ia w), (12.107)
and using the continuity (12.106) to eliminate the potéméian, we obtain
1 ¢\
o - 7JA = 1—(7) V(V-A), (12.108)
AL c

whereo? = V2 - ?12% In a superconductor, wheg # ¢, the right-hand side of (12.108) becomes active
for longitudinal modes, wher® - A # 0. If we substituteA = A,®*-E/ g into (12.108) we find that the

dispersiorE(p) of the transverse and longitudinal photons are given by

[(mac®)? + (pc)?]¥2, (@ Lp longitudinal)

E(p) = (12.109)

[(Mac®? + (p94¥2, (@ Ip  transverse)

Remarks:

e Both photons share the same mass gap but they have widkgyinly velocities[18, 20]. The slower lon-
gitudinal mode of the electromagnetic field couples to dgrikictuations: this is the mode associated
with the exclusion of electric fields from within the supendactor, and it continues to survive in the
normal metal abov@. as a consequence of electric screening.

e The rapidly moving transverse mode, which couples to ctsrehis is the new excitation of the supercon-
ductor that gives rise to the Meissner screening of magfietets.

e For arelativistic case, the right-hand side of (12.108)sfa&s and the longitudinal and transverse photons
merge into a single massive photon[19, ], described by aifiBordon” equation

2 (MaC)?
[D ( F )
for a vector field of mass = 7/(4.c). The generation of a finite mass in a gauge field through the

absorption of the phase degrees of freedom of an order pteamt® a gauge field is the essence of the
Anderson Higg’s mechanism.

A=0 (12.110)

12.6.3 Electroweak theory

The standard model for electroweak theory, developed bgt®la, Weinberg and Salam[21, 22, 2] provides a
beautiful example of how the idea of broken symmetry, dgwedifor physics in the laboratory, also provides
insight into physics of the cosmos itself. This is not alitphysics, for the sunshine we feel on our face is
driven by the fusion of protons inside the sun. The rate iirgiprocess is the conversion of two protons to a
deuteron according to the reaction

P+p— (P +€ +ve

where theve is a neutrino. This process occurs very slowly, due to thel@oh repulsion between protons,
and the weakness of the weak decay process that convert®a prim a neutron. Were it not for the weakness
of the weak force, fusion would burn too rapidly, and the swult have burnt out long before life could
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have formed on our planet. It is remarkable that the phybkiasrhakes this possible, is the very same physics
that gives rise to the levitation of superconductors.

Electroweak theory posits that the electromagnetic andv@ae derive from a common unified origin,
in which part of the field is screened out of our universe tgiothe development of a broken symmetry,
associated with two component complex order parameter igy'sifield”

v=(y)

that condenses in the early universe. The coupling of its@headients to gauge degrees of freedom generates
the massive vector bosons of the weak nuclear force via thieion-Higg's &ect, miraculously leaving
behind one decoupled gapless mode that is the photon. Bliars in the amplitude of the Higg’s condensate
are predicted to give rise to a massive Higg's particle.

The basic physics of the standard model can be derived usingethniques of Ginzburg Landau theory,
by examining the interaction of the Higg's condensate withgg fields. In its simplest version, first written
down by Weinberg [2], this is given by (see example 13.9)

Sy=— fd"x[% (v, — i) WP + %(qf"w - 1)2],

where relativistic notatiofV,¥|? = [V¥|? — [¥12 is used in the gradient term. The gauge figiglacting on a
two component order parameter is a two dimensional matridemep of a U(1) gauge fielB, that couples
to the charge of the Higg's field and an SU (2) gauge fﬁéJd

Ay = g'&u T+9gB,
where? are the Pauli matrices arﬂ = (A,}, Aﬁ, Aﬁ) is a triplet of three gauge fields that couple to the isospin
of the condensate. When the Anderson Higdfea is taken into account, three components of the Gauge
fields acquire a mass, giving rise to two charyétiwith massMy and one neutra boson of mas#; that
couples to neutral currents of leptons and quarks.

(12.111)

Z, W*
ﬂ#ﬁ{ A

WhenSy is split up into amplitude and phase modes of the order pawraniedivides up into two parts (see
example belowp = Sy + Sy, where

Sy = _% fd4x[(vu¢"')2 + mzH(ﬁa]

describes the amplitude fluctuations of the order pararastaciated with the Higg's boson, wheng = 4u
defines its mass, while

neutralcharged vector bosons
photon

(12.112)

Sw = —% f d*x | MG, (W', W) + M2(Z,24)] (12.113)

determines the masses of the vector bosons.
The ratio of masses determines the weak-mixing af\gle

Mw
cosfw) = My
Experimentally,M; = 9119 GeV/c? andMy, = 80.40 GeV/c?, corresponding to a Weinberg angletyf ~
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28°. The Higg's particle has not yet been observed, and estinediies mass vary widely, from values as low
as 80GeVY?, to values an order of magnitude higher.

From the perspective of superconductivity, these two numbdefine two length scales: a “penetration
depth” for the screened weak fields of order

"
dw = —— ~2x10"%m
mwe

which defines the range of the weak force. At present, theéiaice length” of electroweak theory. If one
uses the estimated Higg's mass, this is a length of order[23]

h
myc

&= ~2x1078-2x10%m.
This very wide range of scales leaves open the possibikitytife condensed Higg's field is either weakly type
1, or strongly typell in character, an issue of importance to theories of the esmilyerse. The microscopic
physics that develops below the coherence leggtlis also an open mystery that is the subject of ongoing
measurements at the Large Hadron Collider.

Table Il contrasts the physics of superconductivity with éhectroweak physics.

Superconductivity Electro-weak
Order Vo
parameter W v
1,
Pair condensate Higg's condensate
Gauge fielgSymmetry ¢, A) A, =gB, +9(A, - 7)
u(@) U (1)xSU(2)
Penetration depth AL ~10"m Aw ~ 10718m

Coherence length £=%~10°-10"m ey~ 108 -10"m

Condensation mechanism pairing unknown

Screened field B WE, Z

Massless gauge field None Electromagnetm
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Ly
Example 12.10: 1 < 1
(a) Suppose the Higg's condensate is writif®) = (1+¢y(X))U (X)Wo, whereg, is a real field, describ- = —Elﬂ;‘{‘olz -3 [(Vugi)? + 2] (12.117)
ing small amplitude fluctuations of the condenséakgs) is a matrix describing the slow variations
in orientation of the order parameter atg = (é) is just a unit spinor. Show that the the action
splits into two termsS = Sy + Sy, where

Ly

which when integrated over space-time, gives the results (SH) anddubp
(b) Written out explicitly, the gradient appearing in the gauge theory massise

_ 1 4 2 2 =
Su=-5 fd X[(Vupr)? + M| (12.114) Ao = B, + A, 7] o
) ) ) : L (B Al Al —iA2\] (1
describes the amplitude fluctuations of the order parameter associatetheitfigg's boson, =lg|™ B |*9|a “iAz "0 o
wheren®, = 4u defines its mass, while . b AR Al
L - (9( o )) (12.118)
Sw=-3 f d*XA Wol2. (12.115) oA, +IA
so that the mass term of the gauge fields can be written
determines the masses of the vector bosons.
(b) By expanding out the quadratic term in (12.115), show that it is dialized in terms of two gauge L= —}Iﬂ WP = 1 [(g/'\? +gB)? + gzw 4 iA2|2]
fields 2 z W . 2 4. "
1 =Mz Mwyyp
Sw=-3 f dix MG W, W) + M2(Z, 24 =5 4 W (12.119)
and give the form of the fields and their corresponding masses in tdrthe original fields and where
coupling constants. W, = A, +iA%,
Solution: 1 AG)
Z,= gA9 + gB, (12.120)
(a) Let us substitute ,/gz+(gr)2( A )
W(x) = (1+ ¢u(x))U(x)¥o are respectively, the chargall and neutralZz bosons which mediate the weak fordd, =

whereWo = (3), into (12.111) Sincel™¥ = (1+ ¢1)*¥o'UTUW, = (1 + ¢u)?, SO to quadratic P 7 ity = @)= Emstit, ity (s Weiey e 2 CEinmiee] by
order, the “potential” part 0By can be written as costy = L'

Ungt o _ U 2v2_ MH o 3 e

SO 1P = 5@0n+ 6 = SHE +OWR). (= 4u)
The derivatives in the gradient term can be expanded as

YV, — AN = (V,, — iA,)U¥g + V, 4 (U o). . N
SO R ER L R 12.7 The concept of generalized rigidity

Since the derivative of a unit spinor is orthogonal to itself, the two termseratiove expression
|

are orthogonal so that when we take the modulus squared of the atjression, we obtain

ﬂ","‘fi The “phase rigidity” responsible for superflow, the Meigseféect and its electro-weak counterpart, are each
(Vi = IA)EP = (Ve = iA)UEoP + (V) U Fol? consequences of general property of broken continuous gjries. In any broken continuous symmetry,
= U (A, +iV,)U¥P + (V) (12.116) the order parameter can assume any one of continouous naitlieections, each with precisely the same
Here, we have introduced a pre-facidr into the first term, which does not change its magnitude. energy. By contrast, it always costs an energy to slowly tBiehe direction of the order-parameter away
Now the combination from a state of uniform order. This property is termed “gatieed rigidity” [24]. In a superconductor or
A, =U'(A, +iV,)U superfluid, it costs a phase bending energy

is a gauge transformation &f, which leaves the physical field€,, = V, A, -V, A, —i[A,, A,]) 1
and the action associated with the gauge fields invariant. In terms of thigonames! field, the U(X) ~ Zps(Vo(X)?, (12.121)
gradient terms 06y can be written simply as 2
. 2 w2 2 to create a gradient of the phase. Th@edtential ofU with respect to the phase gradigit/(isV¢) defines
(V= AP = |7 ¥l + (V). " « [he pnas . ! !
the “superflow” of particles is directly proportional to thenount of phase bending, or the gradient of the
so that the sum of the gradient and potential terms yields

phase
L= 31 (%~ i) ¥P + 5 (¥ - 1)° YU _psy (12.122)
Is=s5ve =7 " :
367 368
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This relationship holds because density and phase aregairjvariables. Anderson noted that that we can
generalize this concept, to a wide variety of broken symiestieach with their corresponding phase and
conjugate conserved quantity. In each case, a gradienedairtter parameter gives rise to a “superflow” of
the quantity that translates the phase(see table 1).

For example, broken translation symmetry leads to the flopeof momentum, or sheer stress, broken
spin symmetry leads to the superflow of spin or spin superfltvgre are undoubtedly new classes of broken
symmetry yet to be discovered - one of which might be brokee translational invariance (see table 1).

Table. 1. Order parameters, broken symmetry and rigidity.

Name Broken Symmetry Rigiditgupercurrent
Crystal Translation Symmetry Momentum superflow
(Sheer stress)
Superfluid Gauge symmetry Matter superflow
Superconductivity E.M. Gauge symmetry Charge superflow
Antiferromagnetism Spin rotation symmetry Spin superflow
(x-y magnets only)
? Time Translation Symmetry  Energy superflow ?

12.8 Thermal Fluctuations and criticality
|

At temperatures that are far below, or far above a criticalfpthe behavior of the order parameter resembles
a tranquil ocean with no significant amount of thermal norséts fluctuations. But fluctuations become
increasingly important near the critical point as the datien length diverges. At the second-order phase
transition, infinitely long-rangécritical fluctuations” develop in the order parameter. The study of these
fluctuations requires that we go beyond mean field theorte&usof using the Landau Ginzburg functional as
a variational Free energy, now we use it to determine thezBalhin probability distribution of the thermallly
fluctuating order parameter, as follows

plv1 = 2777 = Zexpl-p [ (3 [002 + 9]+ uucor)|
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whereZ = ¥, e#Fel¥l js the normalizing partition function. This is the famou# field theory” of statistical
mechanics (where we ugein place of¢.)

The variational approach can be derived from the probgiigtribution functionp[{}], by observing that
the probabilitly of a given configuration is sharply peakeouad around the mean field solutian= vo. If
we make a Taylor expansion around around a nominal meanefelfiguration, writings(x) = yo + sy(x),
then

=0
—_—

SFoL 1 52FoL

w2 L O S ey

where the first derivative is zero because the Free energgtisrgary for the mean-field solutiaiF/sy = 0,
which implies

Fouligl] = Frni + f aw(x)

ﬂ +

oYXy (X')

The first non-vanishing terms in the Free energy are secatel eerms, describing a Gaussian distribution
of the fluctuations of the order parameter about its average

Y = v(X) — o

The amplitude of the fluctuations at long wavelengths besopagticularly intense near a critical point.
This point was first appreciated by Ornstein and Zernickey wiserved in 1914 that light scatters strongly
off the long-wavelength density fluctuations of a gas near titiealrpoint of the liquid-gas phase transition.
We now follow Ornstein Zernicke's original treatment, artddy study the behavior of order parameter
fluctuations above the phase transition.

To treat the fluctuations we Fourier transform the orderpatar:

= i q-x - i d X
¥(¥) W;‘ﬂqe‘ . W Wfd X (x)e T,

Here, we use periodic boundary conditions in a finite box déiv® V = L9, with discrete wavevectors
q= %(Il,lz,...ld). Note thaty_q = g, sincey (or each of itsn— components) is real. Substituting 12.123
into 12.15, noting that{sv? + r) — (sq + r) inside the Fourier transform, we obtain

E= % ; ql? (S(f + r) + ufddx\w(x)l‘\

so that the quadratic term is diagonal in the momentum-spmesentation. Notice how we can rewrite the
GL energy in terms of the (bare) susceptibility = (s¢f + r)~* encountered in (12.19), as

1
F=3 Zq] Walgt +u f XU

so the quadratic cdicient of the GL free energy is the inverse susceptibilty.

Suppose > 0 and the deviations from equilibriuga = 0 are small enough to ignore the interaction,
permitting us to temporarily set= 0. In this casef is a simple quadratic function af) and the probability
distribution function is a simple Gaussian

Pl = Z’lexp{—g D gl (st + )
q

Foullol] = Flual + 5 [ suau00)

(12.123)

(12.124)

(12.125)

=Z"lexp _Z @
= (425,
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where
keT ~ ksT/C

=2 (12.126)

Sq = <|Wq|2) =

is the variance of the fluctuations at wavevegand¢ = +/s/r is the correlation length. This distribution
function is known as the “Ornstein-Zernicke” form for the Baian variance of the order parameter. This
quantity is the direct analog of the Green'’s function in mhaygy physics. Note that

e Forg>> ¢, Sq o« 1/0? is singular or “critical”.

e Using (12.19) we see that the fluctuations of the order paemaee directly related to its static suscepti-
bility. Sq = kgTxq. This is a consequence of the fluctuation dissipation tednethe classical limit.

e Sy resembles a Yukawa interaction associated with the viewahange of massive particles/(q) =

1/(¢? + n?). Indeed, short-range nuclear interactions are a resglaahtum fluctuations in a pion field
with correlation lengtt¥ ~ m™2.
Next, let us Fourier transform this result to calculate thatigl correlations:
1 Sadg-q’
S(x = X) = GUXITUX) = §; D W-qire) €4
aa
- ddq ksT/c =%
@) P ve?

(12.127)

where we have taken the thermodynamic limit> co. This is a Fourier transform that we have encountered
in conjunction with the screened Coulomb interaction, anthiee dimensions we obtain
kBT e"x”‘"/f

S(x-x)=— s
(x=x) 4rs X — X'|

(d=3)

Note that:

e The generalization of this result tbdimensions gives

PR3
S(x) ~ v
where Ginzburg Landau theory predigts: 0.
e S(x) illustrates a very general property. On length scalesvbéhe correlation length, the fluctuations are
critical, with power-law correlations, but on longer lehgicales, correlations are exponentially sup-
pressed. (See Fig. 12.12).

e Ginzburg Landau theory predicts that the correlation lemtjterges as
Goc(T=To)™

wherev = 1/2. Remarkably, even though Ginzburg Landau theory negteetson-linear interactions
of critical modes, these results are qualitatively corriftdre precise treatments of critical phenomenon
show that the exponents depart from Gaussian theory in diioesd < 4.
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critical, with universal power-law correlations. On length-scales larger than the
correlation length &, fluctuations are exponentially correlated. On length scales
shorter than the coherence length &, the order parameter description must be
replaced by a microscopic description of the physics.

12.8.1 Limits of mean-field Theory: Ginzburg Criterion

What are the limits of mean-field theory? We studied the flu@ina at temperatures > T, by assuming that
the non-linear interaction term can be ignored. This is ¢mig provided the amplitude of fluctuations igfsu
ciently small. The precise formulation of this criterionsifast proposed by Levanyuk[25] and Ginzburg[26].
The key observation here, is that mean-field theory is offlgcged by fluctuations on length-scales longer
than the correlation lengtk >> £. Fluctuations on wavelengths shorter than the correldéngth are ab-
sorbed into renormalized Landau parameters and do not peadiepartures from mean-field theory. To filter
out the irrelevant short-wavelength fluctuations, we neetbnsider a coarse-grained averagef the order
parameter over a correlation volurs& The Ginzburg criterion simply states that variance of theraged
order parameter must be small compared with the equilibrialue, i.e

Sy? = id ; dIx(y(x)w(0)) << v3 (12.128)
X|<é

I3
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Since correlations decay exponentially on length-scalegdr tharg, to get an an estimate of this average,
we can remove the constraint < £ on the volume integral, to obtain

1 S¢=0 kgT,
- d q=0 _ keTc
7~ 5 [ Exanoouoy ~ 250 = 5
Now substitutings? = i ~ £ we obtain

L’ZZ _keTeu <1

g o et e i
or

d
e eTo

Let us try to understand the meaning of the length-scale eféfbry this expression. Multiplying by this
expression byg*“, whereg, = v/s/(@Te) is the coherence length, we obtain the dimensionlesgiorite

(aTe)?
£\ 4 6" a?T,
(5) et e

Now from (12.11 ) we recognize the combina’[iézﬁxrc = 8ACy as the jump in the specific heat, so that the
Ginzburg criterion can be written in the form

S = ACvéS Ginzburg Criterion (12.129)

f 4-d SG
HI

where we have dropped the factor of 8. The quarSity= ACv.fg, has the dimensions of entropy, and can
be loosely interpreted as the entropy reduction per coberwlumefg associated with the development of
order, so thaBg/kg = InW is a logarithmic measure number of degrees of freetldmssociated with the
fully-developed order parameter.

For models withd > 4, the Ginzburg criterion implies that large correlationdéhs are good and in this
situation, as the correlation length diverges close to thieal point, mean-field theory becomes essentially
exact. The dimensiody, = 4 is called the upper critical dimension. In a realistic afton, whered < dy = 4
d < 4, £+9 diverges as the critical point is approached, sodfor dy = 4, the Ginzburg criterion sets an
upper bound on the correlation length and lower bound onidtartte from the phase transition. If we rewrite
£/&o = |AT/Tc|"Y/2, the temperature deviation frofia, AT must satisfy the requirement

AT
B> (so/key 92
c

(12.130)
for mean-field theory to be reliable.

From the above discussion, it is clear that systems withgelaoherence length will deviate from mean-
field theory only over a very narrow temperature window. Egbs of systems with large coherence lengths
are superconductors, superfliig — 3 and spin density waves, where the ratio between the tiamsem-
perature and the Fermi temperature of the fky@l./er << 1. For example, in a superconductor, the entropy
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of fondensation per unit cell is of ord&g(e/A), whereA ~ 3.5kgT, is the gap, while the coherence length
is of orderve /A ~ a(er/A), whereve ~ erais the Fermi velocity, so that the entropy of condensatian pe
coherence length is of order

ASg/ks ~ (Afer) X (er /A)® ~ (er /A)?
and the Ginburg criterion is
|AT] 4
—_— A
T >> (A/er)
in three dimensions. Similar arguments may be applied togehand spin density wave materials. For a
typical superconductor witfi, ~ 10K, A ~ 30K, er ~ 10°K, this gives%‘ ~ (10°%)* ~ 10°?°, far beyond
the realm of observation. By contrast, in an insulating neaghe coherence length is of order the lattice
spacinga and the “Ginzburg entropy” is of order unity &0 /T; ~ 1. These discussions are in accord with
observations. Superconductors and charge density watensyslisplay perfect mean-field transitions, yet
insulating magnets and superfliige— 3 display the classi¢-shaped specific heat curves that are a hall-mark
of a non-trivial specific-heat exponemt

Exercises
|

Exercise 12.1 Show that the action dﬂ(zp)e‘"”:‘ on a coherent statgs) = UT(¢)lw) uniformly shifts the
phase of the order parameter dyi.e.

U(9)I6) = w(x)E€1e)
so that
—iiw ) = Nig)
ag! = Nie
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Solution:
(@) Let us begin by showing that(¢)J (U T(¢) = €aif(x). Sincey’ adds a particle to a state, it
follows that

' (Wla.N) = |3.N + 1).
wherela, Ny and|8, N + 1) are states wittN andN + 1 particles, respectively. But then

e N|B N+1)
&N (0N a, N) = 4N D (9™ Mo, N) = €57 (] N)
Since this holds for all states, N, it follows that
U@ ()U"(9) = €47 (%)
(b) Letus write outp) = U(¢)ly) explicitly:

U@ = U(¢)exp[ f x93 ()| UT(#)0)

where we have sneaked ifd () just before the vacuum, sint& (¢)|0) = |0). Using the identity
UetUT = eUAY" we can move the unitary operators inside the exponential

901 (x)
U@ = exp f dxs(9) U@ (U (@)|[0)

= exp[ f AU ()Y (%) |10) (12.131)

corresponding to a coherent state whet&) — y(x)€¢ has picked up an additional uniform
phase. .
(c) Sincelp) = €”Njyy, differentiating both sides with respectfpwe obtain
iNgen

d

iy - ; [¢°8] 1wy = Nig).

dop d
Since this holds for all such coherent states, it follows tha: —it%.
Exercise 12.2 Consider the most general form of a two component Landauyheo

0] = 503+ U3) + 303 = U3) + WA + 037 + v — 04 + vyl

1 Rewrite the free energy in terms of the amplitude and phee®rder parameter to demonstrating
that if s, up or uz are finite, the free energy is no longer gauge invariant.

2 Rewrite the free energy as a functionjoéndy*.

3 If s> 0, what symmmetry is broken when< 0?

4 Write down the mean field equations & 0,r < 0.

5 Sketch the phase diagram in the,(s) plane.

Exercise 12.3 Consider the more general class of Landau theory where thegtionu can be negative:

1
H9 = GFIV] = 507+ wag + ey — b
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1 Show that foth = 0, u < O, r > 0 the free energy contains three local minima, ong at0 and two
others aiy = +yo, where

PRI (A
0= 3Ue_ 3U6 6U6'

2 Show that for < r¢, the solution aiy = 0 becomes metastable, giving rise to a first order phase

transition at

re= L
c= ZTJs
(Hint: Calculate the critical value af by imposing the second conditiofiy;;] = 0. Solve the

equationf[y] = 0 simultaneously witH '[yo] = 0 from the last part. )
3 Sketch theT, u) phase diagram fdn = 0.
4 Forr = 0 buth # 0 show that there are three lines of critical points whetfg] = f”[¢] = O
converging at the single point= u = h = 0. This point is said to be a “tricritical point”.
5 Sketch thelf, u) phase diagram far = 0.
Exercise 12.4 We can construct a state of bosons in which the bosonic figddadgr has a definite expec-
tation value using a coherent state as follows

) = exp[ f d%@*(x)] 0.

The Hermitian conjugate of this state(ig = (Oje/ 0¥

1 Show that this coherent state is an eigenstate of the fisluéion operatord (X)) = y|v).

2 Show that overlap of the coherent state with itself is gibgruly) = €V, whereN = V|y|? is the
number of particles in the condensate.

3 If

2
= [0~ 7 -9 + U 0/ w2
is the (normal ordered) energy density, show that the erdeggity f = %(H), where

_ WiHW

H
0 ly)

is given by
f = —uly? + Uy,
providing a direct realization of the Landau Free energyfiamal.
Exercise 12.5 (Systematic derivation of the Ginzburg criterion).

1 Show that the Ginzburg Landau free energy (12.125) can btewm the form
F= %fd“x’ddw(X)Xgl(x’ = Xy(X) + ufddmp(x)‘ﬂ (12.132)

where
Xor(X = X) = 6%(x— X) [—SVZ + r]

is inverse of the susceptibility. The subscript “0” has badded toy~* denoting that is the “bare”
susceptibilty, calculated far= 0.
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2 By identifying the renormalized susceptibility with thecend derivative of the free energy, show
that when interactions are taken into account
5°F
X = X) & (———) = 69X = X) [-sV? + 1 + 12u?)
X' =2 = (s = 80 =) | |
(Hint: differentiate (12.17) with respect ¢gx) and take the expectation value of the resulting ex-
pression), so that in momentum space

Xq = SO+ 1+ 12up%) T

where(y?)t = S(x—x')lxx is the variance of the order parameter at a single point ioesgvaluated
at temperaturd .

3 Show that the féects of fluctuations suppre3s, and that at the new suppressed transition tempera-
ture Ty

. diq keT;/c
r=ro=a(Ts - Te) = ~12u(y?)r; = —meW q; .

so that
Xt = s+ (r = ro) + 12u[@? - WA
Notice how the subtraction of the fluctuationsTa& T; renormalizes — r —ro = a(T — T¢). What

is the renormalized correlation length?
4 Finally, calculate the Ginzburg criterion by requiringitir — ro| > 12u[(w2> - <¢12)Té], to obtain

Ir=rol _ d’q keTg | &7
4u @) o |f+é?
The term inside the square brackets on the right hand sidisé®om the renormalization of — r—
ro. Notice how this term only involves fluctuations wigtt £-1, i.e the long-wavelength fluctuations
of wavelength greater thanh What has happened to the short wavelength fluctuations

5 By approximately evaluating the integral on the rightdhaide of (12.133) obtain the Ginzburg
criterion:

(12.133)

Ir—rol __keTg 1

u s fd—z

Exercise 12.6 Properties of a coherent state.
Show that a coherent stajie) = €0y can be expanded as a sum of Harmonic oscillator states
ny = %(a*)”m), as follows

lay = |O>+a/|1>+...%\n>

2 Show thate*|a) = €3, so that a normalized coherent state is given by
= e 2 jay
3 Show that the probabilty of being in a state witparticles is a Poisson distribution
/l n
p(n) = %e"'”, A=laf?

Note that a Poission distribution has equal mean and vaiaiiey = (6N2) = 1
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4 Show that wher = v/Ng, ‘%2 = N{
5 Show that when the superconducting order parameter igewiit terms of its amplitude and phase,
¥ = |yl€?, that the Ginzburg Landau free energy of a superconducparates into a phase and an

amplitude component.
o9 = e o )]
= (VW2 + P (Vo - JA)

Use this expression to rederive an expression for the duimeterms of the phase gradient of the
order parameter.

(12.134)
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[26] V. L. Ginzburg. Some remarks on phase transitions ofsteond kind and the microscopic theory of
ferroelectrics.Sov. Phys. JETP-Solid,St:1824, 1960.

References

L. D. Landau. Theory of phase transformatiofhys. Z. Sowjunl1(26):545, 1937.

Steven Weinberg. A model of leptonBhys. Rev. Lett19(21):1264-1266, Nov 1967.

N. Goldenfeld. Lectures on Phase Transitions and the Renormalization BrdRerseus Publishing,
1992.

L. S. Ornstein and F. Zernikd2roc. Sect. Sci. K. Akad. Wet. Amsterddm 793, 1914.

V. L. Ginzburg and L. D. Landau. On the theory of superaartiVity. Zh. Eksp. Teor. Fiz20:1064,
1950.

Alexei A. Abrikosov. Type Il Superconductors and the Vortex Lattid®bel Prize Lecture iLes Prix
Nobel published by the Nobel Foundation, Stockhgbages 59-67, 2003.

0. PenroseOn the Quantum Mechanics of Helium Rhil Mag,, 42:1373, 1951.

O. Penrose and L. OnsageBose Einstein Condensation and Liquid Heliufhys. Rey.104:576,
1956.

P. W. Anderson. Considerations on the flow of superfluii Heev. Mod. Phys38:298, 1966.

C. N. Yang. Concept of fi-diagonal long-range order and the quantum phases of liggiend of
superconductorsRev. Mod. Phys34:694, 1962.

L. Onsager. Statistical hydrodynamidsuovo CimentpSuppl. 6:279, 1949.

R. P. FeynmanProgress in Low Temperature Physigslume 1. North Holland, Amsterdam, 1955.
F. London.Superfluids Dover Publications, New York, 1961-64.

D. Saint-James and G. SarmB/pe Il SuperconductivityPergamon Press, 1969.

L. Onsager. Proceedings of the International Conference on Theolddbgsics, Kyoto and Tokyo,
September 19535cience Council of Japan, Tokymages 935-6, 1954.

B. S. Deaver and W. M. Fairbank. Experimental evidermegfiantized flux in superconducting cylin-
ders.Phys Rev Let7:43, 1961.

R. Doll and M. Nabauer. Experimental proof of magnetic flux quantizatioa superconducting ring.
Phys Rev Leff7:51, 1961.

P. W. AndersonPlasmons, Gauge Invariance, and Ma¥sys. Rey.130(1):439-442, Apr 1963.
Peter W. Higgs.Broken Symmetries and the Masses of Gauge BosBhygs. Rev. Lett13(16):508—
509, Oct 1964.

P. W. Anderson. Random-Phase Approximation in the Theory of Supercondticti Phys. Rey.
112(6):1900-1916, Dec 1958.

Sheldon Glashow. Partial-symmetries of weak intéoast Nuclear Physics22(4):579-588, Feb 1961.
A. Salam and J. C. Ward. Electromagnetic and weak intenas. Phys. Lett13:168, 1964.

Marcela S. Carena and Howard E. Haber. Higgs boson yreamt phenomenologyProg. Part. Nucl.
Phys 50:63-152, 2003.

P. W. AndersonBasic Notions of Condensed Matter PhysiBenjamin Cummings, 1984.

A. P. Levanyuk.Sov. Phys. JETR6:571, 1959.

bk.pdf December 1, 2011 194

380



13

381

Path Integrals

13.1 Coherent states and path integrals.

In this chapter, we link the order parameter concept withrasicopic Many Body Physics by introducing the
path integral formulation of quantum many body theory. Theemence of a macroscopic order parameter
in a quantum system is analogous to the emergence of clasgchanics in macroscopic quantum systems.
The emergence of classical mechanics from quantum mechanimost naturally described using wave-
packets and the Feynman path integral. We shall see thailarsapproach is useful for many body systems,
where the many body “wave-packets” states are coheremssgigenstates of the quantum fields.

Chapter 12 introduced Landau’s concept of broken symmetnjgracing the idea of an order parameter
Y(x). The beauty of the Landau approach, is that it is a macrasctgscription of matter: a length scales

beyond the microscopic coherence lengththe emergence of an order parameter does not depend on the

detailed microscopic microscopic physics that gives risi.tin this chapter we go beneath the coherence
length, to examine the connection between the order paearaet! the microscopic physics of a many body
system.

The basic idea of Feynman'’s path integral[1, 2, 3], is toorulate the quantum mechanical amplitude
as sum of contributions from all possible paths, in which ¢tessical action plays the role of the phase
¢ = Span/T associated with the path. The amplitude for a particle inxatb@o from statdi) to state|f) is
given by

Spath
h

(te'fiy= >

exp[i
Paths — f

where

t
Spatn= [ d(pa- Hip.) (as1)
The Feynman formulation is a precise reformulation of ofmerquantum mechanics. In the classical limit
7 — 0, the path integral is dominated by the paths of stationaagp, which correspond to the classical path
which minimizes the action.
Feynman’s idea can be extended to encompass statistichlames by treating the Boltzmann density

matrix as a time-evolution operator in imaginary time. Treeé over the density matrix is then the sum of
amplitudes of paths that return to the initial configuratidter an imaginary time = ing3:

z=Tr[e?] = > et

1 t=—ing

(13.2)

By changing variables tiv/ — 7, so thatidt/i# — dr, andpgdt — pgdr we obtain we see that we can write
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(g(r), p(m)

q

Fig. 13.1 lllustrating a periodic path in imaginary time that contributes to the partition function of
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a single particle.

this quantity as
Z=) expl-Se]
periodic paths
where

Se = fd‘r(—%p{ifq+ H[p,q])A (13.3)

We will now discuss a sophisticated extension of this ideadoy body systems, in which the path integral
sums over the configurations of the particle fields rathen tihe trajectories of the particles themselves.
The key innovation that makes this possible, is the use ot states, which are literally, eigenstates of
the quantum field. In quantum optics, such states, sometialésd “Glauber states”, are used to describe
“minimum-uncertainty” wave-packets of photon fields[4drR single boson field, a coherent state is given
by

by = €0y (13.4)

where in this chapter, we use the ronteandb’ to denote boson operators, reserving the itabedb for the
corresponding eigenvalues. N¢dy is a harmonic oscillator ground-state definedil)) = 0, and it forms a
a minimum uncertainty wavepacket centred around the odfjphase space. By contrast, the stbids the
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result of translating0) so that it is centered around the poigt§) in phase space, wheke= (q + ip)/ V2i
incorporates both variables into a single complex varigse problem 14.1). Paradoxically, though the state
isan eigenstate df = (§+ip)/ V2, itis not an eigenstate of eithgof f. In a many body problem the fields
J(x) are defined at at each point in space and in the correspondhegent statg)

W(X)I6) = ¢(X)|). (13.5)
We can still use the definition (13.11) for a coherent staienbw
b~ [ @' (900, (13.6)

coherently adds a boson to a condensate with wavefung(in (See example 12.33 and exercise 12.12.6.)
These states are the “wavepackets” of many body physic Wdite, we can use them as a basis set in
which the matrix elements of the Hamiltonian are obtaineapsy by replacing the field operators by their
expectation values. Using this procedure, the partitiorcfion can be re-written as a path integral in which
(%, t) defines a “history”, or path over which the field at pokgvolves, and (Fig. 13.2),

zZ= g Seléd], (13.7)
periodic paths

By convention, we denote the complex conjugatesof) by ¢(x). In chapter 3, we introduced motivated

Fig. 13.2 lllustrating how the operator field at each point in space is represented by a trajectory

inside the path integral.
particle field operators of particles as the quantizatiothefsingle particle wavefunction, identifyingx) ~
q, ing'(x) ~ p as the corresponding canonical position and momenta doades. Using this analogy the
many-body analog of the kinetic term in (14.3) is
i _
P30 ~ B(9:0(x). (138)
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so the many-body analogue of (13.3) is expected to take the fo

B _ _
Se = [ drdx(3e 00.0(x.1) + HIG. 1] (13.9)

0
whereH is the many-body Hamiltonian, with field operators replabgdhe c-numbers ande. Infact, as
we'll see, this is precisely the form that is obtained whendbantum partition function is expanded in terms
of coherent statdg(x, 7)) [5, 6, 7]. Furthermore, time-ordered Green’s functions&@lan be re-written as an
average under the path integral, so that

DI =5 " ex]-Spanp1502)
z path
wherey(2) is the complex conjugate @f(2). In this way, the quantum mechanics of the many body syste
is transformed from an operator formalism, intst@tisticaldescription, with each with each space-time
configuration of the fields weighted by the action.

Remarkably, this approach can be extended to include fasniesing an idea of Julian Schwinger [8]
that generalizies the concept of “c-numbers” to includécamimuting Grassman numbers. For fermions,
the numbers/(x) appearing in the coherent states masticommutenith each-other. They are thus a new
kind of number, which requires some new algebraic tricksrédwer, we'll see that that we can evaluate the
corresponding path integral fafl non-interacting problems. This is already a major achie@m

Afinal aspect of path integrals, is that interacting proldexan be transformed, by the method of “Hubbard
Stratonovich” [9, 10], into a problem of “free” particles ming in a fluctuating &ective field. This technique
provides an important tool for the study of broken symmetrgge transitions.

Zinteracting_’ Z[path integral of fermions moving in field (13.10)
]

where{A} denotes a given configuration of the symmetry breaking field

13.2 Coherent states for Bosons
-____________________________________________________________]
To demonstrate the path integral approach, and its desivatsing coherent states, we will start with the

bosonic path integral. As a warm up for path integrals, wedrteeestablish a few key properties of the
bosonic coherent state. We start by considering the cohstae of a single boson operatsi; given by

by = €”*[0), (13.11)

whereb is a complex number. This state is an eigenstate of the datniim operator
biby = bjb). (13.12)

We can also form the conjugate state

(bl = (0. (13.13)
which is the eigenstate of the creation operator,

(bl = (bib,
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whereb is the complex conjugate df. Althoughb andb are complex conjugates of one-another, they are
derived from two independent real variables, and when vwegiate over them we need a double integral in
which we treab andb as independent variables. The “bar” notation is adoptedolnyention to emphasize
this linear independence.

A coherent state describes a condensate with an indefintielpanumber. If we decompose it into eigen-
states of particle numberby expanding in powers df we obtain

p" fien B p"
by = Z S ®)10 = Z Im—= (13.14)

wherelny = %lO) is the eigenstate of the number operatos B'D. In this way we see that the amplitude
for a coherent state to be in a state witharticles is

$n(b) = (nlb) = — (13.15)
Similarly,
"
— (13.16)
e
and
bl i 3
= — 13.17
(bm) = ( )
From (13.14) and (13.16), the overlap between the two sthteand|by) is given by
—— b (b1bz) _ P
(bulbz) = Z = <m| ) Z (13.18)

13.2.1 Matrix elements and the completeness relation.

Remarkably, even though coherent states are non-orthbgbey can be used to greaffectiveness as a
basis (an overcomplete basis), in which the field operatersiagaonal. There are two important properties
of the coherent state that we shall repeatedly use to greahtabe:

o Matrix elements. Matrix elements of normal ordered operat@fb’, b] between two coherent states are
obtained simply by replacing the operatbrandb‘ by the c-numberb andb respectively:
(by|O[B*, Bl bz) = O[by, by] x (blbz) = O[by, by] x €2 (13.19)

e Completeness
The unit operator can be decomposed in terms of cohereesstatfollows

1= boybl
bb
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wheré
dbdb _bb
Z S € (13.24)
b.b
is the normalized measure for summing over coherent states.

We present a detailed derivation of these two results inrgtigel4A, continuing now to use them to derive
a path integral.

pm)
0.12

0.10
0.08
0.06
0.04

0.02

1234567 8 910111213 14151617 18 19 20 21 22

Probability distribution function for a coherent state with bb = ng = 10.

December 1, 2011

Example 13.1: Prove that in a coherent sta, the probabilityp(n) to be in a state witim particles is
a Poisson distribution with average particle numies (f) = bb, and variancésn?) = no, where

1 — _
p(n) = ﬁ(bb)"e‘bb, (13.25)
Solution:
To calculate the normalized probalility to be in a stae we calculate
Knb)? 1 =1 g
n) = = —(bb)"e™.
P = " = @
1 Note:In quantum optics, one often encounters the “normalized&oet or Glauber state,
1 -
b, by e bbbibgy _ = g bb2)y 13.21
N Vari 32
This dfords the advantage of a simpler completeness relation
1= fdﬁdmb, by (b, bin, (13.22)
but unfortunately, the matrix elements of normal ordered dpesaow assume a more complex form,
(b1, b1IO(B, B)lbz. by = €102 Pibe/2-0202/20(p, b, (13.23)

The prefactor in this expression vanishebiif= by, but our use of completeness in the derivation of the pathyiatdorces us to
include paths wherb, andb; are completely independent. For this reason, while Glaulagessare a useful mnemonic device for
remembering completeness, this book chooses to use coherestwithout the normalizing pre-factor.
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. . Table. 1. Boson Calculus.
The average particle number is

- - 1 e - phe i_n__ _
= n;wnp(n) - n;o T A n:zu‘:o g =l (blby = €™ Over-complete basis.
Now _ 1 - _ Completeness f—dbqbe’a’lb)@l =1 Completeness relation.
(@ -f)y= 3" n(n-1)pn) = (bb)* >’ m(bb)"’ze’b” = (bb)? =2 27i =

e mae Al = f qube’%@[\\b) Trace Formula.
so that(A?) = no(no + 1) and hence&sn?) = (A?) — n2 = no. Notice that(on?)/(n)? = 1/n. Whenn, is 2ni

large, the distribution function becomes Gaussian and resembles a deliarfiin the thermodynamic
limit.

e[JT'A’l'J'J
detA

dojdb;, e ap
Gaussian Integrals fﬁ #e*[b"’*bfl'b*b'l] =
j

Example 13.2: Using the completeness relation, prove that(if) = (f|e) is the overlap of coherent

state|a) with state|f), then .
f(a) = f dodby pyepio-o), (13.26) . . .
2 13.3 Path integral for the partition function: Bosons

Solution: Write the functionf () as the overlap of statg| with statela), f(e) = (f|e). Now insert the S
completeness relation into this expression to obtain

flay = (flile) = dbdb fby(blayeB® We now develop the path integral expression for the pantitimction of a single boson field, with a normal-
(fla) = (fllla) o (fIb)(bla)e I P . .
dEdIb ~ ordered Hamiltoniat[b', b]. Our key result, to be derived is
- (@-b)

f = f(b)ePe D, (13.27)
Note the useful identity _ R

_ (9 g Z= f Dib, bje”

5(@—-b) = ﬁe"‘ . (13.28) s -

Example 13.3: Using the completeness relation, prove that the trace of any operatargoessarily S= j; d‘r(bz?,b +Hib, b]) (13.32)

normal-orderedf[b’, b] is given b
AL bisg D Path integral for the Partition Function

AL = Y (BiAb) = [ e EAD (1329)
R All of our results can be simply generalized to include maiffedent bosons. We begin by writing the trace
Solution: In the particle-number basis, the trace ofés given by required for the partition function in a coherent state faes
THA] = > (njAn) = Som 13.30 g dodb 5, —
Al Zn]<n| In) ;mm (13.30) 7= Tre?] = f e (bl o) (13.33)

From completeness, H[B™.B] i
Unfortunately,e”™(0"8] is not a normal-ordered operator, so we can't just replaeebtison operators by

Jnm = %wbxblm} their c-number equivalents. To achieve such a replacemerdjvide the Boltzmann fact@®" = U(g) (Fig
13.4) into a large numbe\ tiny time-slices of duratior = /N,

so that N
TIA = <nlb)bImymAN) &M = (e™) (13.34)
=1 -1 SinceH is normal orderedg™™ = 1 - A7 : H : +O(A7?) so thate®™ and :e*™ : only differ at second
= Z (bjmym| An)(n| by order inAr. Thus, to an accurad®(Ar?) = O(1/N?) per time slice, we can replace the boson operators by
bbmn _ c-numbers in each time slice.
A _ [dbdb g - _ . _ _
_%(blAlm: [ S (13:31) B, = explBiby - ATH[B, byl + (A% (13.35)

This is a huge step forward, which transforms the time-siitea purelyalgebraiexpression.
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r=p

> byl =1 \N
E.’iabz N

6Bj bj—1—ATHI[bj,b;j_1] T_]{]

IAT

7=0
1
lllustrating the division of the trajectory into N time slices.
Let us now put this all together. The time-sliced partitiandtion (13.33 ) is first written
dondby = anN by
Z- f P bl () ooy (13.36)

where we have relabelldd — by, b — b in (13.33). Next, between each time slice, we now introdbee t
completeness relation,

- dbjdby, 5y -
1:f7|bi>e ®i(bj| = 1. (13.37)
so that the partition function becomes
Z= fdb;jbo<5N|e‘“H X... 1% e % Ly x--x1yx e 07H|pgyerbubo
N = —
= f Dy[b.b] ]_[ €10 (bjle 2™ by_y). (13.38)

=1

Notice that we have identifieloly = by andEN = 50. We have also introduced the short-hand notation

N
= 1 dodby
Dy[b.b] = H o (13.39)
for the measure.
Inserting expression (13.35) into (13.38), we then obtain
N
zZ= fz)N[E, b] exp|- Z (bj(bj — bj_1) + ArH[bj, bj_1]) | + O(NAT?), (13.40)

=1
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where we have grouped the errors fromMllime slices into a final term of ord@(NA7?) = O(1/N). Since
this error vanishes in the limi — oo, we may thus write

Z= mquDN[B, b] exp[-Sn]

N
_ (b —bi_ _
Sy = Zm(bji( s D 4 Hiy by ]
= T

(13.41)
This is the path integral representation of the partitiarcfion for a single boson field. Let us pause to reflect
on this result. The integral represents a sum over all plestistories” of the field,

b(r)) = (b, bz ... ),

b(rj) = (b1, bz... by), (13.42)

This kind of integral is also called a “functional integrabecause it involves integrating over all values of
the functionsb(r). When we take the thickness of each time slice to zero, theetis functiond(r;) = b
become functions of continuous time. Our identificatiom@& by and hencda?g = EN implies that the set of
complete functions that we sum over is periodic in time:

b(r) = b(r + ). b(z) = b(z + ).

This is a new type of integral calculus - rather than intéggabver all points on a line, we are integrating
over all possible values of a function. We call these intisghigath integrals” or “functional integrals”. Just
as in conventional integral calculus, at some point we wesarspecial notation for the continuum limit

(13.43)

Dy[b.b] - D[b.b.

Assuming that the continuum limit is indeed a well-definexitj we now replace

N
ZAT—)de,
1 0

bj — b(7),
HIb;, bj-a] — H[b,b].

— (b —b;_ _
bji( d AT’ v, bo.b,

(13.44)

These brash replacements hide a mountain of subtlety. & alikonventional integral, there is no sense of
“continuity” associated with the fielt(r): inside the functional integral the paths we sum over aggga
noisy objects. However, if we look at their typical noise p&, they have a characteristic frequency. For
a Harmonic oscillator, this is just the frequency of ostitla w, but if we include interactions, there will
typically be a spectrum of such frequencies with some mininftequencywy. The continnum limit will
develop providedAt << 1.

The limiting value of the path integral is then written

z-= f D[Z bleS

S-= foﬂdT(Ea,M HIb, b])

The simplest example of such a path integral is the nondnterg Harmonic oscillator, in whicH = eb'b.

(13.45)

390

199



(©2011 Piers Coleman Chapter 13.

For this case,

B
—f deb) a,+e)b
0

This is an example of a “Gaussian” path integral, becausadtien is just a quadratic function of the fields,
and we'll shortly see that we can evaluate all such path iategn a close form. It should be clear that this
derivation does not depend on whether there are interatgtiars in the Hamiltonian. We could equally well
consider the case of the anharmonic oscillator, writteroimmal-ordered form as

Z= f@[ﬁ bl exp

(13.46)

H=eb'b+g:(b+Db")*:
The partition function for this case is now
_ ' _ —
Z= fD[b, b] exp[— f dr (b(z?r +eb+gb+ b)“)
0

This is probably the simplest example of an “interactingthpiategral.

13.3.1 Many bosons

The derivation of the last section is easily generalized¢tude many bosons, with a Hamiltoniatﬁﬁf,l, B,(],
by using a multi-variable coherent state

b = explz Bnb/l] :
A

Since this is just a product of coherent states, we can siexignd the completeness relationship as product
of the measures for each individual boson

i=3"Ib)bl (13.47)
bb

where now _
- abadby o,
Z‘f [[=e
b 1

The procedure of developing the path integral is exactlyséume: we subdivide the interval intd time
slices, approximating ™" by its normal ordered form. The resulting path integral isrfally very similar,

Z= fD[B, ble S

S:fd‘r( Eﬁrb/+Ht_)/,b)
b Z: A A [l /l]

Path integral for the partition function: many bosons.

(13.48)

where the measure is now a product of the measure for each fiekh

DIb,b] = [ | Dby, b]
a
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For example, the path integral for a gas of free bosons withitianianH = Y wi b’ by has the action

S= f {Z t_)k((?, + Luk)bk:| .
k

13.3.2 Time-ordered expectation values

In addition to providing equilibrium thermodynamics, thatip integral can also be used to calculate time-
ordered expectation values. The division of time iNtéime-slices using coherent states can also be carried
out for the evaluation of arbitrary time-ordered produdt§ieids - and when we do so, we discover that the
time-ordered product of fields maps onto a path integral twercorresponding c-number product of fields.
Thus for the two-point Green’s function

~ [ DIb, ble-Sb(2)b(1)

oo (13.49)

G(2-1) = —(Th(2)b'(1)) =

where we have used the notatiors: {71, X1, {11}) to denote the continuous and discrete variables assdciate
with the boson fieldln this way, time-ordered products of operatdrscome weighted averages of c-numbers
inside the path-integrallhe operator form for the Green’s function is written innterof the Heisenberg
fields and to convert it into a path integral, we need to renttie Heisenberg field operators in terms of the
Schibdinger fields,

b (2) = e'2bg(2)e M7

where the time argument, of the Schodinger fieIdBS(Z) is a dummy variable. Now with this device, the
Green’s function can be transformed to the $climger representation as follows

G(2- 1) = - e T{B (2B u V)]
= _%Tr[e’ﬂHT{e’zH bs(2)e e g(1)e M }]
= —%Tr[T{U([S - b5 (2 - T)B's(WU(r)})
= THT{UEbs@b's(1)) (13.50)

whereU(r) = e is the time-evolution operator. To write the Green’s fuoctas a path integral, we
now expand the time-ordered trace in termd\ofime slices, introducing the Schrodinger operators at the
time-slicesr; andr, which corresponding te; andr, respectively. Here’s where coherent states work their
marvellous magic, for we can rewrite the destruction operas

. - docbe 5 —
Ba(n) = Ba(n) x 1, = [ e iby buby (35
and similarly
dbjb; ¢ -
b's(r)) = 1; xb's(r)) = fT;ln Lerbibijh,y by (b, (13.52)
392
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so that inside the path integrék (2)bs(1) — b(2)b(1) and
TT{UEBs(@B'sW)] = [ DIb.ble*b(2)B()

from which the path integral expression for the Green'’s fiamc(13.49) follows. We can easily extend these
results to all higher moments, quite generally, mappingtordered Green functions onto the corresponding
moments under the path integral

[ Dlb,ble"Sh(1)b(2). .. b(2')b(1)
[ DIb,bles

(Th(1)b(2)...b"(2)b (1)) = (13.53)

In this way, the path integral maps a system of interactingighes onto a statistical mechanics problem,
with distribution functiore™S.

13.3.3 Gaussian path integrals

An important class of path integrals are the “Gaussian pargrals”, in which the action is a quadratic
functional of the fields. For example, for for free bosons limian H= b*,yhaﬁbﬁ the action is

B _
Sg = f drh, (0: + hop)bs = fﬂdrb(a, +h)b (13.54)
0 0
Remarkably, all Gaussian path integrals can be evaluatedliosed form and the key result is
Zo = f D[b.b] exp[— fu drb(o; + Db] = [det@. + h)]* (13.55)
0

Bosonic Gaussian Integral

To understand this result, it is helpful to think of the funatb,(r) = b; as a huge vector labelled by the
indicesa’ = (a, 7). From this perspective, a Gaussian action is a vast maitimebr

Se= ), bu(@My(rt)bs(r) =b-M-b, (13.56)
(7). (B.7)
where
Mas(,7') = 6(7 = ') (0 + Nap)- (13.57)

You may be worried about the notion of treating time-intéigraas a summation. To assuage your doubts,
it is useful to re-writeSg in the frequency domain, where summations over time arecepl by discrete
frequency summations. Sinbér) = b(r + ), the Bose field can always be represented in terms of a thscre
set of Fourier components,

1 )
bo(7) = —= Y by (ivy)e™. 13.58
@ wzn] (ivo) (13.58)
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In this basis
M7 = 7')]op = 6(r = T') (@ + hop) = (=1vndap + hag) = M(ivn) (13.59)
so the action becomes a discrete summation over Matsuleayaeincies
Se=> Ea(ivn)(—ivnéuﬁ + haﬁ)bﬁ(ivn) =b-M-b (13.60)

vy
To integrate a Gaussian path integral, we employ the gemesalt for a multi-dimensional Gaussian
integral

db,dby, G, 1
flj i "= et (13.61)

whereM is a matrix with non-zero eigenvalues. To prove this resdttransform to a basis whetd is
explicitly diagonal. Leb = U - a, andb = a- U", whereU = U,,, is the unitary matrix that diagonalizés,
then sincaJ MagUpr = i, Wwhere them, are the eigenvalues o,

b Mosbs = aymay

is explicitly diagonal. Furthermore, under a unitary tfansation, the measure remains unchanged. To see

this, we write the transformed measure using a Jacobian,
S slo.b] 7. Ut ol e
[:] db,db, = ﬂ da,da, x 5= = ]_[ da,da, H 0 U H = ﬂ da,da,
where unitarity guarantees that the Jacobian is unity:
Ut o
0 u

Under these transformations, the Gaussian integral bexdiagonal and can be explicitly evaluated:

db,db, 5 s daday s, _ o1
[T e () -y

2ni Det[M]
where, in the last step, we have identified the determinakt wfith the product of its eigenvalues, DBt] =
[T, m,. Finally, if we now replacéM — 8. + h, we obtain the general relationship given in (13.55).
1

=Det[UiU] = 1.

(13.62)

= 13.63
% Det[d; + h] ( )
We can equally well write this in the frequency-domain, wehiire determinant can be explicitly evaluated:
= = . . 1 1
Zg = fZ)[b, blexp|- ; b(ivn)(—ivn + h)b(ivn) | = Dt + ) - Thnaivn+ €) (13.64)

where thee, are the energy eigenvaluestofThis expression is most usefully re-written as an expoestir
the Free energy

Fo=-TInZg=T Z Trin(h — ivy)d"™® =T Z In(e; — ivn)e"®
n

nAa
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where we have used the identity In Bet TrIn Aand have introduced the convergence tefm’. This term
is motivated by the observation that derivatives of theifiant function represent equal time expectation
values, which are the expectation values of time-orderedatprs at an infinitesimally negative time.

In ending this section, we make one last identification. Fdingonalized non-interacting Hamiltonian, the

bosonic Green'’s function is given by
Guv(ivn) = v (iva—e) ™" (13.65)

So we can identify{iv, + ) = —G(ivy) = -G 1, as the inverse Green’s function. Since this identity holds
in any basis, we can identify

@ +h) = (bliv)bive)) = -G (13.66)
in the time domain. An alternative expression for the Garssitegral is then
= = 1
— _ _-1 - -
Zg = fD[b, b] exp[ j:b( G )b] Del-G 1] (13.67)

If we take logarithms of both sides, we may write down the Fneergy in terms of the one-particle Green’s

function
F =TInDef-G™*] = TTrin[-G™}]. (13.68)

This expression enables us to relate the Green’s functidriFege energy without having to first diagonalize
the HamiltoniarG™.

Example 13.4: Use the equation of motio, .b(1) = [H.b(1)] to confirm that for a free system of
bosons, wherél = bthb = bf,h,,b;, the Green's function is given b = —(a, + h) ™.
Solution: The boson Green’s function is given by

G(1-2) = ~(Th(1)b(2)) (13.69)

The time-dependence of the Green'’s function has two components eatfggnvarying term derived
from the time-evolution of the bose field and a discontinuous term derieed the derivatives of the
time-ordering operator. To see this, let us first expand the time-oglepiarator in terms af functions,

G(1-2) = ~(B(L0! (2))6(r1 — 2) - (B' (B> — 71) (13.70)
If we now take the derivative w.r.t. time, we must take account of theodignuity in the theta functions.
Using ,8.0(t1 — 12) = 6(r1 — 72) andd.O(r, — 71) = —(r1 — 72), we obtain
(BB @otrs ~ v2) + (B (@B - 72)) - (TP (2)
5(1-2) [Hb)

~([b(2), 5 (2)])é(r1 - 72) ~(T 3.B(1)b' (2))
-6(1-2) - (T[H, b)]b'(2)). (13.71)

where we have simplified the first term using the canonical commutaticioresa
(Ib(2).B'(@)o(r1 ~72)),, = [Bu Bylo(r1 = 72) = Spdlr1 = 72) = 6(1~ 2)y5,

and used the equation of motiahb(1) = [H, b(1)]. The commutator between the Hamiltonian and the
boson field is

9,G(1-2)

Saa

[H,b(1)]. = [H, B,] = ~[Bs, B 1hyBs] = — [Ba B 1] iy = ~hosby = ~[h - B(L).
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so putting this all together, we have

8:6(1-2)=-5(1-2)-h-G(1-2) (13.72)
or
@, +h)G(1-2)= -6(1-2) (13.73)
If we write this expression succinctly as
@: +h)G = -1. (13.74)
we see that
G=—(0, +h™ (13.75)

If you are uncomfortable with treating integrals over the time-domain astexnmaultiplication, you
can Fourier transform (13.72), writing

Gr-7)=T Z G(ivn)e ™) (13.76)
n
so thatd, — —iv, and then (13.74) becomes
(iva =) - G(ive) = 1 (13.77)
and hence
Glivy) = (iva — )% (13.78)

which is the Fourier transform of (13.75).

Example 13.5: Calculate the free energy of free bosonic gas, wiiere ¥, &b’ by using the path
integral method.
Solution: We begin by writing the action in the Frequency domain as

= > bk, ive) Gk, ive) bk, ive)
Kivn

G(K,ive)™ = (ivy - &). (13.79)

The partition function is given by

1
PE .~
e G (13.80)
so that
F = TInDet-G™] = TTrIn[-G ] =T § In(ex — iva)e"™®", (13.81)

Kiivn

where we have introduced the convergence fagtdf and used the identity In De&] = Trin A.
Carrying out the frequency summation using complex contour methalsave

- 95 %n(z) In(e — 2) (13.82)
k

where the integral is anticlockwise around the branch-cut on the risalfdis branch-cut runs out from
w = ¢ to positive infinity, with a discontinuity of 2 Rewriting the integral along this discontinuity,
we have

2 O(w—ec)
—wlefmﬁlefwf‘(S:f 0admzu
F=-3 [ gane|te—win e ~o -] == 3, [ donte)
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-7 Zk:[ln(l - e’ﬁ“’)]: =T Zk:[ln(l — ety (13.83)

13.3.4 Source terms in Gaussian integrals

Source terms provide a means of probing the correlationdlacaiations described by a path integral. For
Gaussian path integrals, the result of introducing sowes can be evaluated to obtain

ZelJ. 1] = f DIb. b]exp{— f: a1[b(o, + n)b—T(l))-b(l)—B(l)»J(l)]}

expl- f d102i(1)6(1 - 2i(2)

= Dot 1] (13.84)

Bosonic Gaussian Path Integral with source termg

where we have used the schematic notatien (1, X1, {11}), 2 = (12, X2, {11}), to denote the time, position
and all other relevant indices of the boson field fﬁdﬁl =2 foﬂ drlfddxl to denote the corresponding
integration over continuous variables and summation oigarete quantum numbers. The expansion of the
left and the right-hand sides of this expression as a poagessprovide the Wick expansion of multi-particle
Green’s functions of the Boson field. fBérentiating first the left and then the right-hand side wétbpect to
j(1) we obtain

[ DIb. ble Sb(1) 1 6zl ] fﬂ _
— = =— d2G(1 - 2)j(2).
Tobbes ~ Zelil ol o PEHT A

Taking second-derivatives and setting the source termertowe obtain

_ &Z3[J, i1
Zg[], j1 6120}, =0

by =

(13.85)

o [DbHeShube 1
(Th(1)b*(2)7j=0 = [ DIb,bjes
)

=-G(1-2

(13.86)
while higher-order dferentials give us the Wick expansion,

1 6z ]]

Zh 0@ o0k o
p : : ,,_ J DIb.bleb(1)b(2)....b(2)b(1)
(-1) ZP:G(l— P)G(R2-P})...G(n—P,) = ToMbbles

= (Th(1)b(2)...b'(2)b (1')).

(13.87)

In this remarkable fashion, the correlation functions af-iateracting bosons in imaginary time are identified
with the classic properties of Gaussian-distributed ramgtariables.

To prove (13.85), we take (13.61) and shift the integratianables inside the integral
b—b- TM -

b—b-M71j, (13.88)
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Under this simple shift, the measure remains unchangedg wig action ternb - M - b becomes

b-M-b=(b-jMY) - M-b-MT1)=b-M-b—(j-b+b-j)+j-ML.| (13.89)
Since the integral is unchanged under this change of vasallfollows that
i db,db, _ TboBi 1
—i'Mj o (e Magbp—jaba—baja) —
€ f U 2 © DetiM] (13.90)
in other words,
db,db, (5 m,0, 70, 51) _ €
fl_[ 2 C = detm] (1391

If we rewrite this expression by replacimg — -G = (9, + h), we obtain the key result (13.85). As usual,
if you are uncomfortable with the change from discrete, toticmious variables, this procedure can first be
carried out using the discrete variables in Fourier spatievied by an inverse Fourier transformation back
into real space.

13.4 Fermions: Coherent states and Grassman mathematics
|

We now generalize the results of the last section to fermiasisg Grassman numbers to set up a completely
parallel derivation of the fermionic path integral in terofsoherent states.

Feynman'’s original derivation of path integrals appliedghyto bosonic fields and its extension to fermions
was begun in the 1950s. The idea of using anticommuting ntsnbeth as eigenvalues of fermion fields and
as fermionic source terms was proposed in a seminal papeuliay Bchwinger in 1953[8]. Early propos-
als for path integrals for fermions were made by P. Matthemgs Abdus Salam in 1955[11] and by David
Candlin in 1956 [5]. The first explicit formulation of the faionic action in terms of Grassman numbers,
with a derivation using fermion coherent states was madeyhy. b. Martin in 1959[6]. The mathematical
foundations of fermionic path integrals were extensivadyaloped in the 1960s by Felix Berezin[12] and the
extension of the fermionic path integral to imaginary timel éinite temperature was later provided by David
Sherrington and Sam Edwards(7, 13]. However it is only inlése few decades that the method has become
a commonly used tool in quantum many body physics.

To illustrate the basic approach, we shall consider a aesifegiionic fielde’. The coherent state for this
field is

o) = &(0)
and its conjugate is
(@l = (0™

In this text we've reserved roman symbdlsand¢ for the creation and annihilation operators, to delineate
them from their expectation valuesndc. Herec andc are anticommuting “Grassmann numbers”. Note that
in common usage the notatighis often used interchangeably to describe both the opezatbits Grassman
counterpart.”

There are a number of caveats you need to remember aboun@ssOn the one hand, the quantities
andcare numbers whichommutewith all observable®, cO = Oc. On the other hand, to correctly represent
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the anticommuting algebra of the original Fermi fields, Gragn numberanticommutemongst themselves
andwith other Fermi operators, so that

cc+cc=0, cl+yc=0, (13.92)
But ¢ must also anticommute with itself, which means that
2=3=0, (13.93)

But how can we possibly deal with numbers which when squaied,zero? Though this seems absurd, we'll
see that anticommuting or “Grassman” numbers do form a rigialtcalculus and that ultimately, the leap to
this new type of number is no worst and no more remarkabletti@jump from real, to complex numbers.

The main &ect of the anticommuting properties of Grassmans is to idedlst reduce the set of possible
functions and the set of possible linear operations one eary out on such functions. For example, the
Taylor series expansion of Grassman functions has to ttematdirst order in any particular variable. Thus a
function of two variablesf (c, c)

f[c,c] = fo+Cfy + fic+ faCC
only has four terms! The coherent state also truncatesaso th

[c) = |0y + &'cl0)

=10) +|1)c (13.94)

so that the overlap between the' fermion state ( = 0, 1) and the coherent state is given by
(ncy = c", (n=0,1)

To develop a path integral representation for fermions @®ela to know how to carry out Grassman calculus.
The key properties of Grassman algebra are summarizedienat particular, you will notice that thenly
formal difference with bosons, is that the measure containfereint normalization

- dbdb ~bb _ Sdeece
Z = fﬁe — Z = fdcdce . (13.95)
bb cc
that the trace formula contains an additional minus sign
Tr[Als = ) (biAl) — Tr[Alr = > (~GA). (13.96)
bb cc
and that both the Jacobian and the Gaussian integral arevérsef their bosonic counterpart.
13.4.1 Completeness and matrix elements
Coherent states are over-complete, for
(cley = (01 + CB)(1 + E'C)|0y = 1+ Cc = €. (13.97)

Notice the formal parallel with the overlap of bosonic carstates. To derive the completeness relation,
we start with the identity

f dcdee e = G, (n,m=0,1) (13.98)
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then by writingc” = (n|c), c™ = (c/m) we see that the overlap between the eigenstatex definite particle
number is given by
Som = (M) = f dedee ®(njcy(@m) = (n| f dcdee® [y |m) (13.99)

from which it follows that

f dedde)(@e™ = |0)(0] + [1)(1] = L. (13.100)

Completeness relation

Alternatively, we may write
Dllexd=1
cc

where
(13.101)

e f dedce™
c.c
is the measure for fermionic coherent states. The expaidatitore ¢ = 1/(c/c) provides the normalizing
factor to take account of the over-completeness.
Matrix elements between coherent states are easy to evalfian operatoA[¢, &] is normal ordered
then since the coherent states are eigenvectors of thewpdieids, it follows that

(@AIc) = (TRYA[T, ¢] = €°A[T. ], (13.102)

(@Alc) = € x c-number formed by replacing[¢’, &] — A[C, d]. (13.103)

This wonderful feature of coherent states enables us at aswio convert normal-ordered operators into
c-numbers.
The last result we need is the tracefofWe might guess that the appropriate expression is
THAl = > (@lAlc)
cc
actually - this is almost right, but infact, it turns out thlae anticommuting properties of the Grassmann'’s
force us to introduce a minus sign into this expression

TrA] = Z<—E|A|c> = f dedce(—gAlc) (13.104)

Grassman Trace formula
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Table. 2. Grassman Calculus .

C1C = —C2C1

anticommute with Fermions and other Grassman
numbers

Algebra A - ~ commute with bosons, anticommute with Fermi
cb=bc cy=-yc
operators.
. _ _ ~ _ Sincec? = 0, truncate at linear order in each
Functions flc.c] = fo+ Cfy + fic+ froCC X
variable.
ot = —f1 - fioC
— Differentiation
of = f1 + f1oC
Calculus
fdcl =9:1=0
fdc =0c
fdcc: dc=1
(clcy = € Over-complete basis.

Completeness

f dedce®icNd = 1

Completeness relation.

THA] = f dcdce ™Al

Trace Formula.

Change of variable

-1

(clmc,)_ 9Ct...C
& &) o6 &

Jacobian - inverse of Bosonic Jacobian.

Gaussian Integrals

f]—[ dgjder (A5 ie-cil = detax 4]
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which we shall shortly see, gives rise to the antisymmewiartalary conditions of fermionic fields. To prove
the above result, we rewrite (13.99) as

Som = (M) = f dedee “(—gmy(nic) (13.105)
where the minus sign arises from anticommutirandc. We can now rewrite the trace as
TrA = Z(mlA\n)énm
nm
= > [ dedoe-gmmiAny iy
nm
= f dedce®(—clAlc)
We shall make extensive use of the completeness and tranelfo (13.100) and (13.104) in developing the

path integral. Both expressions are simply generalizedaoyrfieldsc; by making the appropriate change in
the measure and by replacingin the exponent, by the dot product,

dcde— | | dgdc;,

j
cc— ZEjCJ'
i

13.4.2 Path integral for the partition function: Fermions

(13.106)

(13.107)

This section very closely parallels the derivation of thediuc path integral in section (13.3), but for com-
pleteness, we include all relevant steps. To begin with, evesicler a single fermion, with Hamiltonian

H=et't (13.108)
Using the trace formula (13.104), the partition function
Z = TreH (13.109)
can be re-written in terms of coherent states as
Z=- f dende e (cyle ™ cy), (13.110)

where the labeling anticipates the next step. Now we expamétponential into a sequence of time-slices

N
e =(et™) . ar=pN. (13.111)
Between each time slice we introduce the completenessorelat
f dc;dalcy,aXEle % = 1 (13.112)
so that
_ N-1 B N
Z=- f dendare™ | | dgjdegae®e [ [(Cjle ey (13.113)
i=1 j=1
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where the first integral is associated with the trace andubsejuent integrals with thé¢ — 1 completeness
relations. Now if we define

C1 = —Cns1 (13.114)
we are able to identify thl th time slice with the 0 th the time-slice. In this way, theeigital associated with
the trace

- f dendey €yl .. [cy) = f dendoy. 1€ NSy . .. [cr) (13.115)

can be absorbed into the othdr— 1 integrals, and furthermore, we notice that the fields érgento the
discrete path integral aantiperiodic
With this observation,

N
zZ= f ]_[d@dcjﬂe*f'%@|e*HAT\c,-> (13.116)
j=1

Provided each time-slice is of ficiently brief duration, we can replaeg”™ by its normal ordered form, so
that

(©ile MAT[ey) = g HlGelaT 4 o(Ar?), (13.117)

whereH|[c, c] = eccis the normal-ordered Hamiltonian, with Grassman numbeptacing operators.

- / de dele)(ele=*—
P J-

Division of Grassmanian time evolution into “time-slices”

Combining (13.110) and (13.113) we can write

Z = LtnsolN
N
Zy = fl_[dEjdcj ex;{—SJ
j=1

N
S= Zlcj-(cJ+1 —¢j)/AT+ ech,-‘Ar,
j=1

(13.118)
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As in the bosonic case, this path integral represents a sematipossible values “histories” of the fields:

(13.119)
(13.120)

c(rj) = {C1.C2...Cn}s
C(rj) = {C1.C2...Cn}
as illustrated in Fig. 2. This kind of integral is also caledfunctional integral”, because it involves inte-
grating over all possible values of the functiarfs) andc(r). When we take the thickness of the time slices
to zero, the discrete functiort§r) andc(r) become functions of continuous time. The boundary coorliti
(13.114) implies that the set of complete functions whichswe over must satisfy anti-periodic boundary
conditions
c(r +pB) = —c(7),

In the continuum limitN — co, we now replace

C(r +p) = —c(7)

Cj(cj - ¢j_1)/At — Cd-C,
B
ZAT—)f dr.
7 o

The sense in whicle; becomes “close” t@j,; needs to be carefully understood. Suppose we rewrite the
antiperiodicc; in terms of their frequency components as

1
cj=— c(iwn)e ',
\F'B \n\gZN/Z

(13.121)

then in this new basis,
eriondt _ 1
At

D GCa-c)= ) Tiwn)
J

Inl<N/2

] C(iwn)

In practice, the path-integral is dominated by functiopwith a maximum characteristic temporal frequency
max|wnl) ~ €, so that ad\r — 0, we can replace

[efiwnA-r -1

y } — —iwn

which is the Fourier transform af;.
With these provisos, the continuum limit of the action anthpategral are then

S= fom d‘r[(?([i, + e)c],

Z= fD[E,c] exp[—S]

Dc.c = ﬂ dc(r)do(m)

(13.122)

where we use the notation

At first sight, it might seem a horrendous task to carry outitiegral over all possible functioregr). How
can we possibly do this in a controlled fashion? The clueimpgioblem lies in the observation that the set of
functionsc(r) (and its conjugates(r) ) are spanned by discretebut complete set of anti-periodic functions,
as follows

1 ciwnt
Whﬁgm,
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We can integrate over all possible functiags) by integrating over all possible values of the fimgentsc,
and since the transformation which links these two basesifany, the Jacobian which links the two bases is
unity, i.e.

Dlc,d = ﬂ deade,
n
It is much easier to visualize and work with a discrete baaks.can transform to this basis, by replacing
8. — —iwy in the action, rewriting it as
S= ) Cl-iwn + )y
n

Now the path integral is just a discrete Gaussian integral

z- fﬂ d&dc, exp[— 3 (iwn + E)Cn] =[]ciwn+o
n n n
so that the Free energy is given by
F=-TInZ=-T Z In(e — iwp)e“n®
n
Here we have added a small convergence fagtof’ because the time-evolution from= O tor = B is
equivalent to time evolution from=0tor =0".

We can show that this reverts to the standard expressionnfeparticle free energy by replacing the
Matsubara sum with a contour integral:

d .
F- nggzif(z)ln[q _ge?

where the contour integral passes counter-clockwise drthenpoles of the Fermi function at= iw,, and
the choice off () is dictated by the convergence factor. We take the logariih have a branch cut which
extends frone = ¢, to infinity. By deforming the integral around this branch ag obtain

Fo- fw % f@)inte - w-i0) - (cc)|

= f dof(w)
= STin[L + &)

(13.123)

(13.124)

which is the well-known Free energy of a single fermion.

Of course, here we have used a sledge-hammer to crack a walntie virtue of the method is the ease
with which it can be generalized to more complex problemse&hmportant points need to be made about
this result:

e This result can easily be generalized to an arbitrary nurmbEermi-fields. In this case,

s= fom dT[; G+ HIEd|

and the measure for the path integral becomes

Dc.d = [ | deu(mdeim)
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e The derivation did not depend on any detailskbf and can thus be simply generalized to interacting
Hamiltonians. In both cases, the conversion of the normadsHamiltonian occurs by simply replacing
operators with the appropriate Grassman variables.

HI[E, ) > H[CT.q]

e Because the Jacobian for a unitary transformation is uwigycan change basis inside the path integral.
For example, if we start with the action for a gas of fermions

S:fd'r Ck(0r + &)k,
X Zk: ( )

wheree, = (k?/2m) — u, we can transform to a completely discrete basis by Fourstorming in
time,

1
& = —= ) Ckn€“,
V25

0 = —iwn

Dlc.d - ]_[ dCkndoin. (13.125)
k,n

In the this discrete basis, the action becomes
S= Z(Ek — iwn)CknCkn
k.n

This basis usually proves very useful for practical caltates.
e We can also transform to a continuum real-space basis, las/fol

o = %szd%p(x)e‘ik'x,

& > —=— —U

2m
DIE, ] = DIy y]. (13.126)
In the new basis, the the action becomes
S= f dr f d3xJ(x)[6T— v —yJ.//(x).
o 2m
The discrete and continuous measures, (13.125) and ()3afi2eéquivalent

[ ] d6doa = Dlg. ui.
k,n

because the space of continuous functig( is spanned by a complete, but discrete set of basis func-
tions.

1 .
X, 7) = Cx el(ko(—m,.r)’
w(x,7) szn) n

We can integrate over all possible function, 7) by integrating over all values of the discrete vector
Ckn-
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13.4.3 Gaussian Path Integral for Fermions

For non-interacting fermions the action only involvesi®lars of the Fermi fields, so the path integral is
of Gaussian form and can always be evaluated. To discussdkegeneral case, we shall include “source
terms” in the original Hamiltonian, writing

H(T) = Y laé e - h@e - & @)

A

wheret," is Schdinger field that creates a fermion in the eigenstate witigye,. With source terms, the
partition function becomes a “generating functional”

215l :Tr[Texp{—fdrH(r)}].

Derivatives of the generating functional generate theluroible Green’s functions of the fermions, for in-
stance,

&%T_([% - (1) (13.127)
nzZ[j,j]
oD (TIe()e' @)]) — (c@)c (1)) (13.128)

where

(4..>:Zﬁ[:'—,ﬁTr[Texp[—f:drH(r)]u.]

Transforming to a path integral representation, now
Hﬁhfbmﬁs (13.129)
S= fd‘r[(?(‘r)(t?, + h)e(r) - (e - D)) (13.130)

wherehaﬁ = €,04p IS the one-particle Hamiltonian. One can carry out funclaterivatives on this integral
without actually evaluating it. For example, we find that

_ 1 = -S
(c(1)y = 70l fD[c,c]c(l)e (13.131)
(Tle)e @) = TEJ] f DIE, (1)) (13.132)

Notice how the path integral automatically furnishes uhwiine-ordered expectation values.
Fortunately, the path integral is Gaussian, allowing ussethe general result obtained in Appendix 14D,

f]_[ dZ;0¢; expl-é - A-£+ - £ +&- j] = detAexp[j - AL j]. (13.133)
J

In the case considered hefe= 9. + h, so we can do the integral, to obtain
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21i.11 = [ Dicaex- [ oo + (o) - et - doio)|
= detjo, + hl exp[— f drd J(1)GIr 7] j(‘r’)] (13.134)

where
Glr—7]=-@:+h™* (13.135)

By differentiating (13.134) with respect jand j, we are able to identify

§?Inz

—_— =(; +h)™* = (c()c' (7)) = =G[r - 7], 13.136
ST g = = e = Gl (13.136)

so the inverse of the Gaussian ffagent in the action-[d, + h]~* directly determines the imaginary time
Green-function of these non-interacting fermions. Highreler moments of the generating functional provide
a derivation of Wick’s theorem.

From the partition function in (13.134), the Free energhéantgiven by

F = -TInZ = -TIndet, + h] = —=TTrIn[d, + h] = TTrin[-G™}]

where we have used the result IndgtE Trin[d; + h].
To explicitly compute the Free energy it is useful to transféo Fourier components,

cur) = \/i/? > cie e,

. 1 .
)= 75 ; jnete, (13.137)
In this basis,
(0: + €2) = (—iwn + €)
G=-(0:+e) " — (iwn-e)" (13.138)
so that
S= Z[[_iwn + €&]CinCin — j_,{nc,m - E,{nj/ln] (13.139)
An
whereupon,
detp. + hj = = [ [(-iwn +€))
An
205.10 = [ [ ion + e exd Y ion + €0 inin (13.140)
An An
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If we setj = 0in Z we obtain the Free energy in terms of the Fermionic Greertifumc
F=-T Z IN[iwn + €]
An
As in the case of a single field, by replacing the Matsubarawitima contour integral we obtain
dz
F=T —f(2! - 13.141
3§ o f@nte -2 (13141)
=-T Z In[1 +e#<] (13.142)
A
If we differentiateZ with respect to its source terms, we obtain the Green'’s fanct

§2InZ .
= [Glanw = 6100nn -

Simdiim lwn — €

13.5 Effective action and Hubbard Stratonovich transformation
|

13.5.1 Heuristic derivation

The “Hubbard Stratonovich” transformation [9, 10], praesda means of representing the interactions be-
tween fermions in terms of an exchange boson. It is in essena@y of replacing an instantaneous inter-
action by a force-carrying boson that describes the fluicmatof an emergent order parameter. Using this
method it becomes possible to formally “integrate out” theroscopic fermions, rewriting the problem as an
effective field theory describing the thermal and quantum fatans of the order parameter as a path integral
with a new “dfective action”. The method also provides an important forasis for the order-parameter
and mean-field description of broken symmetry states.

To motivate this approach, we begin with a heuristic deigvatConsider a simple attractive point interac-
tion between particle¥(x — x’) = —gd(x — X’), given by the interaction Hamiltonian

H= -3 f (2. (13.143)
2 X
We can write the partition function as a path integral,

2= [ Dtwtexn

- f P@: + B9 - o7 (13.144)

If we expand the logarithm of the partition function diagraatically, then we get a series of linked-cluster
diagrams,

|n(2/zo):<:>«m© +@+Q:© +@+... (13.145)
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where the point interaction is represented by Feynman alagr

1>vvvv<2 =go(1-2). (13.146)

Rather that thinking of an instantaneous contact intevactive can regard this diagram as the exchange of
force carrying boson, writing the diagram as

—(To(1)6(2)y
R
1>~\,\N<2 = () x-go(1-2) (13.147)
U

vertices
where the vertices-() derive from an interactiols; = fmp(x)¢(x), between the fermions and the boson
with imaginary time Green'’s function
G(1-2) = «(T¢(1)¢(2) = —go(1 - 2) (13.148)

But this implies that the exchange boson has a white noigelation functiorXT¢(1)¢(2)) = 6(1 — 2): these
kind of white noise correlations are exactly what we expectffield governed by a simple Gaussian path
integral, where

[ Dlgle(D)¢(2)e S

=go(1-2) (13.149)
[ Digles:
with the Gaussian action
$(x)*
Sy = f d . 13.150
¢ o T 29 ( )

By addingS, +S; to the free fermion action we can thus represent originaitpnteraction by a fluctuating
white-noise potential
2
P07 (13.151)
2
If we now insert this transformed interaction into the agfithe transformed path integral expression of the
partition function becomes

=200 = P09 +

z- f Dly, glexp

- f OO, + h+ p(IW() + z—lgax)z . (13.152)
Note that:

e Although our derivation is heuristic, we shall shortly skattthe Hubbard Stratonovich transformation
is exactso long as we allow(x) = ¢(x, 7) to describe a fluctuating quantum variable inside the path
integral.

o If we replaceg(x, ) by its average valuep(x,7) — (#(X,7)) = ¢(X) we obtain a “mean-field theory”.
Suppose, instead of carrying out the Hubbard Stratonovihsformation, we chose to expand the
density in powers of its fluctuatiord(x) about its average valug(x)), writing p(x) = (p(X)) + dp(X).

The interaction can then be written

== [0y + op0)2
= -2 [ Teot2 + 20002009] + a9 (13153)
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If we neglect the term second order in the fluctuations, teenbstitutép(x) = p(X) — (o(X)), we obtain

#(x)?

T (13.154)

H == [ (26000 - 0002 = [ [n(x)«»(x) v
X X
where we have replaced)(o(x)) = ¢(x). This approximate mean-field Hamiltonian (13.154) resesb
the result of the Hubbard Stratonovich transformation{%.3)

With care, this kind of reasoning can be extended to a whadé dfdnteractions between various kinds of
charge, spin, current densities, including both non-lagaractions and repulsive interactions. For example,
in the Hubbard and Anderson models, the interaction can iewas an attractive interaction in the magnetic
channel of the form that is factorized as follows:

2

U M
5= n)? = (- )M + ==

55 (13.155)

corresponding to electrons exchanging fluctuations of tagnatic Weiss fieldM. The coupling between the
field M and the electrons can sometimes stabilize a broken symistate/wherévl develops an expectation

value - leading to a magnet. The Hubbard Stratonovich teamettion can also be applied to complex fields,
permitting the following factorization

s = AA

Hi :—gAAHAA+AA+E (13.156)

whereA is a complex field. Notice how we have switchatl— A to emphasize that the replacement is only
exactunder the path integrgbr alternatively, if you wish to switch to operators, undee time-ordering
operator). This kind of interaction occurs in a BCS supedcmtor, where the pairing interaction

A A
I
H = _gZ ¢ ki C kGt = —gZ chuc kg Z CokyCkt -
X K K

In this caseunder the path integréhe interaction can be rewritten in terms of electrons mgwmna fluctu-
ating pair field

— _ AA
H — AZc,kchT + Zcmc,klA + E
k k

Once superconductivity developsdevelops an expectation value, playing the role of an ordeameter.

13.5.2 Detailed derivation

Let us examine the above procedure in detail. To be conaretesider an attractive interation of the form
Hi = —-gX; A"jA;, whereA; represents an electron bilinear (such as the pair densiyindensity of an x-y
spin). Consider a fermion path integral on a lattice witlefattionsH, = —g 3’ ATA;,

Z:fD[E,c]exp{—fdrE(a,+mc—ng:A_jAj ,
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where inside the path integral, we have replagéd— A. The next step is to introduce a “white noise”
variable,o described by the path integral

— aja
Z = f D[, al exp[— Z f d‘r%]. (13.158)
The weight function
B l;(l
expl— Z j(; d‘r%
is a Gaussian distribution function for a white noise fielthwgorrelation functior?
(@i(t)aj(7')) = 96ij6(r - 7). (13.159)
Now the product of these two path integrals
Hi()
ZxZ, = f D[c, ] f Dla,al exp{— f drc(d: + hyc— Z (—gAj»A,» + %) } (13.160)
i

describes two independent systems. As written, tiidritegrals are on the inside of the path so that for all
configurations of therj() field explored in the inner integral, the space-time configuration of thgr) set

by the outer integral are frozen and can hence be regardezbasténts”, fixed at each point in space time.
This permits us to define a new variable

Aj(r) = aj(r) - 9A (1),

and its corresponding conjugai@ =aj- g;j. Formally this is just a shift in the integration variable,the
measure is unchanged and we can wi@, A] = D[a, a]. The transformed interaction becomes

, — (Aj+OA)(A] + gA)
Hi =Z{-9A1A17J Jg — }
]

iy = A
= DA A +AA + .
; ]

In this way, we arrive at a transformed interaction in whielwrvariableA; is linearly coupled to the electron

(13.161)

2 To show this, it is helpful to consider the generating funesil

AL ] :fp[a,a]exp[-zfoﬁdr(‘yg" “rar -a,j,)]

By changing variablesy, — o + gjr, we can absorb the terms linearjirto obtain

rin=efey [ el 1)
r

Differentiating this with respect fp(r), we find that

PN | ,
m = (ar()ar (') = GOy o(r - 7')

j=0
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operatorA,. If we now re-invert the order of integration inside the piaifegral (13.160), we obtain

fD[A Alexp|— Zfa ’A’ fD[cc
f dr (GB.c+ He[A. A]) (13.162)
where
HelA, A] = che + Z{A‘,-A,- +A_JAJ-} (13.163)
]

represents the action for electrons moving in the fluctgafield A;. Notice that sinceA and A represent
fermion bilinear terms, thatlg is itself a bilinear Hamiltonian

a) S[a] b) S[A]

a A=a—-gA

(a) Action for initial white noise variable «. (b) Action for shifted variable A is shifted
off-centre when the related quantity A has a predisposition towards developing an
expectation value.

These noisy fluctuations mediate the interaction betweeffettmions, much as an exchange boson medi-
ates interactions in the vacuum. More schematically,

Z= Zexp[ fdrl i ] [Path integral of fermions moving in field (13.164)
A

where the summation represents a sum over all possible coafigns{A} of the auxiliary fieldA. The
transformed field

Aj=aj—gA

is a combination of a white noise fietd; and the physical field-gA;, so its fluctuations now acquire the
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correlations associated with the electron fluid. Indeed&mthe associated variabAds prone to the develop-
ment of a broken-symmetry expectation value, the distidbufunction forA becomes concentrated around
a non-zero value (Fig. 13.5). We cal| a “Weiss field” after Weiss, who first introduced such a fieldha
context of magnetism.

13.5.3 Integrating out the fermions.

Since the fermionic action inside the path integral is ditu@aussian, we can formerly integrate out the
fermions as follows

g Silaal - f Dlc, cJe® = dety, + he[A, A]] (13.165)
whereh, is the matrix representation &fg. The Full path integral may thus be written
z= f DIA, AJeSelA)
where
Se[ALA] = f dr—— _Indetp, + he[A, A]]
= Z f dr —Trln[ﬁ, +he[AA]] (13.166)
i

where we have made the replacement Ind€tr det. This quantity is called the fiective action” of the field
A. The additional fermionic contribution to this action caofoundly change the distribution of the fiedd
For example, ifSg develops a minima away aroud = A, # 0, theA = —A/g will acquire a “vacuum
expectation value”. This makes the Hubbard Stratonovihsfiormation an invaluable tool for studying the
development of broken symmetry in interacting Fermi system

13.5.4 Generalizations to real variables and repulsive interactions

The method outlined in the previous section can also be egpdi real fields. If we have a real Hamiltonian
we can introduce a real white noise field as follows

2
2, 9 2 g
Z A ZI: { 29} (13.167)
and then by redefining; = Q; + gAj, one obtains
@
-2 ZAZ Z {Q,AJ 5 } (13.168)

For example, we can use the Hubbard Stratonovich transfiamta replace an attractive interaction between
fermions by a white noise potential with variance g:

Z(n Y- Z:V,nJ i
jor

wheren; = nj; +nj;.
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But what about repulsive interactions? These requirele litiore care, because we can't just change the
sign ofg in (13.168) for the integral over the white noise fields will longer be convergent. Instead, after
introducing the dummy white noise fields as before,

2
_ 9, g, Y
H = 5A] HZ{EAJ-+E},

to absorb the interaction, we shift each variable in the pathgralqg;(7) by an imaginary amount(r) =
Qj(7) + igAj(7), to obtain®

(13.169)

%ZA}HZ{inAj +%} (13.170)
] ]
Note finally, that if one replace®; = —iQ;, this takes the form
g . @
éZAf—>Z{(ng,- _273} (13.171)
]

Which first sight, looks like the generalization of (13.168)egativey excepting now, the integrals over the
eachQj(7) traverse the imaginary, rather than the real axis.

Example 13.6: Using the Hubbard Stratonovich transformation, show that the Coulomiaatien
can be decoupled in terms of a fluctuating potential as follows:
e(X)¢(X) — e0o-——

1 , &
ih = 2 Lx/ POPIX )47rEg|X -X| - f,: 2
What is the interpretation of the new term, quadratic in the potential field (Aydsthe sign negative)?

Solution: Because of the non-local nature of the Coulomb interaction, it is morspeaent to make
this transformation in momentum space. Writing

. 1 1 ,
W= [ g™ = f L gaoen
o9 fqp“ alx—x1 J; cf?

where fq = (gz;* , the interaction becomes

(Vo)*

(13.172)

(13.173)

_1 (&0q)(60-0)

H
=2 o €02

We now add in a dummy white noise term,

1 .
H - H = E\fq[%{?q) - &’ Pad-q|.

3 One might be worried about the legitimacy of shifting a realffiey an imaginary quantity. However, just as the integral

00 oo HA
f ngQZ/z:f " doe @z -

co+A

is undfected by a constant shift of the varialffeby an imaginary amoun@ — Q + iA axis, a multi-variable path integral
f D[Qle/ 4?72

is similarly undfected by shifting the integration variab@r) by an amountA(r), Q(r) — Q(r) + iA(7).
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with the understanding that in the path integral, ¢héield is to be integrated along the imaginary axis

g = igq. Now if we shiftgg — ¢q — 25, we obtain

H’=f g~ 2 Pt
| q[(aﬂq) a= 5% q]

Finally, Fourier transforming back into real spaa, > —V?) we obtain

Hy = f [ep(x)¢(x) + %¢v2¢] (13.174)
Integrating the last term by parts gives
—eE2/2
€
Hi = [[erta00-2(vor] (13175)

We can identify the last term in this expression-asE?/2, which is the electrostatic contribution to the
action. The minus sign can be traced back to the fact that inside the elegmetit (Maxwell) action

B2 gFE?
Sew = d3xdr[— = L]
= f 2y 2

the electrostatic contribution to the action enters with the opposite sign to the tieguaré. The com-
plete path integral for interacting electrons in this representation is then

2= [(owv.dlexp|- [ dr [[x(d-omv? +es00 - - 247
o 2m 2

Thus by carrying out a Hubbard Stratonovich transformation, the abéeomes local. This formula-
tion is ideal for the development of RPA approximations to the electronngake mean-field solutions
of this path integral can be used to explore the formation of Wigner crystals

(13.176)

13.6 Example: Magnetism in the Hubbard model.
I —

To illustrate the Hubbard Stratonovich transformation, veev examine its application to the treatment of
magnetism in the Hubbard model. Without spin, all matter iddae magnetically inert (neither diamag-
netic nor paramagnetic). Quantum mechanics provides alareagion of magnetism as a consequence of
the orientational ordering of electron spins. This conioadbetween magnetism and spin is one of the huge
accomplishments of quantum mechanics.

13.6.1 Development of the theory of Itinerant Magnetism

Before our example, let me make a few remarks about the daveelot of the theory of magnetism [14, 15]. A

century ago, the ferro-magnetism of simple metals, suctoascobalt or nickel was an unsolved mystery. In
1906 the French physicist, Pierre Weiss working at ETH,&yriliscovered that if you look at an ferromagnet
on a small enough scale, it consists of magnetic domains.|&tihim to propose the first “mean-field theory”,

introducing the concept concept of an emergent “molecudaritribution to the #ective internal magnetic
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field[16, 17]
molecular Weiss field

—_—
He = H3IM (13.177)

But the origin of the Weiss field was unknown. Worst, it quicklecame clear that magnetism can’t be
understood using classical mechanics: indeed, accorditigt‘Bohr-van Leeuwen theorerihdependently
proven by Neils Bohr and Hendrika van Leeuwen[18, 19] a fldispinless) classical electroms thermal
equilibriumhas zero magnetizatiohgven in a field[20].

This mystery was resolved by quantum mechanics and thewa@iscof “spin”. In 1928, Werner Heisen-
berg, working at Leipzig made the critical link between metigation and electron spin polarization; he also
identified the Coulomb exchange interaction as the drivimge for ferromagnetism [21] and the origin of the
mysterious 1" in Weiss’ theory. In the 1930’s Edmund Stoner at Leeds Ursiitg and John Slater at Harvard
University developed the basis for an itinerant theory ofdmagnetism in metals[22, 23, 24]. A key idea
here, is that strong interactions drive a metal to becom&blestowards the development of a spontaneous
spin polarization. In the simplest case, a ferromagnetldpsebut later Albert Overhauser, working at Ford
Labs in the early 1960s, showed the instability can also roata finite wavevecto® to form aspin den-
sity wavg25], as in the case of metallic chromium. This instabiligcars when the product of the electron
interactionl and “bare” magnetic susceptibility of the non-interactétgctron gas at this wavevectgs(Q)
reaches unity

lovo(Q) = 1,

Later in the 1960s, Junjiro Kanamori[26] at Osaka Univgraitd John Hubbard[27] in Harwell, England
reformulated the theory of magnetism using the model we rafitioe Hubbard model. Sebastian Doniach
and Stanley Engelsberg[28] at Imperial College London, Madnan Berk and Robert Schfier[29] at the
University of Pennsylvannia, refined this work, demonstgathat quantum fluctuations of the magnetization
play a crucial role: these fluctuations act to suppress thgnetization and become particularly strong near
the point of instability or critical point. It is only recdgtthat physicists have been able to experimentally
examine such quantum critical points.

Itinerant magnetism is only one part of the story of magnetifor in magnetic materials where the
electrons are localized, the magnetization derives framédlized magnetic moments”. High performance
neodynium-iron alloy magnets derive their strength frooalized moments on at the neodynium sites. Many
of the most fascinating systems of current study, such akigietemperature cuprate and iron-based super-

(Stoner criterion).

4 The Bohr-van Leeuwen theorem follows simply from the fact the classical partition function of a gas of interactingtjses can
be transformed to show it is entirely independent of the apidield. The classical partition function is written

Z= f ]—I d*pdixe?t

i=LN

(13.178)

where
_ 2
Hip = Y OB 50 )+ en)

i<j

where all the magnetic field dependence lies in the vectomfiatéerm, given byA = 2B x x in the Landau gauge. However, one
can always make the change of variaple= p + eA(x), X’ = X, for which the Jacobian is unity, completely absorbing afiefedence
on the external magnetic field. The equilibrium magnetizatidn= —TsInZ /6B(x) = O is therefore zero. This also implies that the
isothermal magnetic susceptibility of a classical plasmaiis.2¢ote however that a classical electron gas does haveradizetic
response when a field is applied adiabatically, rather thaimérmally.
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conductors appear to lie in a murky region between “intiagiand “localization”, where electrons are on
the brink of localization. This is a topic we shall return teapter 15.

13.6.2 Path integral formulation of the Hubbard Model

We encountered the Hubbard model in Chapter 5. It consists ©ifigle band of electrons moving on a
tight-binding lattice, with a localized interaction of etgthU, described by the Hamiltonian

H= Z &C ko Cho + U Z NNy (13.179)
Ko f

where

1 -
ke = —— . ¢, €T
I
creates an electron of wavevectowith energyec. To explore magnetism in this model we rewrite the
interaction term in terms of the spin operators as follows

U U
Unjenjy = == (njr - n)® + % (it +1yy). (13.180)

where we have used the fact thgt = nj;. Now as written, the above decoupling emphasizes the miagnet
fluctuations along the- axis. Indded, we might have made the decoupling around anysgntization axis,
and since we are interested in keeping track of magnetiaiticins along all axes it makes sense to average
over all three directions, writing the decoupling as
2

Unm, = g (1) + 5+ ), (13.181)
where we have introduced the notation = (c*y,mwcw) for the magnetization at sitp The second term
in this expression can be absorbed into a redefinition of leenical potential, by writingt = p/ + U/2.
The minus sign in this interaction manifestly displays metgnexchangeféect of the Coulomb interaction,
whereby a repulsion between charges leads tattaction between spins

We now formulate the problem as a path integral

Z= f DlcleS

S- foﬁ dr [kz B (0 + 6o %ijz} U

where we have introduced the coupling constaatU/3. At this point, we carry out a Hubbard Stratonovich
transformation. Adding a white noise fiefd into the action, so that

(13.182)

[ [ m?
5 D) =5 ) @)+ fdrz 5 (13.183)
i i i
and then shiftingnj = M — o}, we obtain
I M (r)?
—5(@)° > M@)oy + 'Z(IT) , (13.184)

whereM (7) is a fluctuating Weiss field. We have chosen the sign of thetéra to reflect the role of the
Weiss field as “Bective magnetic field”. The transformed partition function
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fD[M €, cle SleeMl

Slc.eM] = fdr[z o (0r + &)Ckor + Z[fMj o+ MTIJZ]]
ko i

(13.185)

describes electrons moving through a lattice of fluctuatiagnetization. We can emphasize this interpreta-

tion by moving the magnetization integral to the outsideting

= f D[M]e M (13.186)

where the fective action

e SelM] :f [C. e SleeM] (13.187)

describes the action associated with a particular spawedonfiguratiodM ;(r)} of the magnetization. Since
the exponentiaB[c, ¢, M] in (13.187) is a quadratic function of fermion fields, théeigral is Gaussian and

can be evaluted in closed form. To carry out the integrals itonvenient to Fourier transform the fields,

writing cj, = ﬁ Sk €%, so that

Z Mj-oj = Z Mj - (Cjo0rapCip) = Z Cra(Mie—k - 0ap)Cip

jo jo k.k’,or

(13.188)

whereM = Nis ¥.; Mje74Ri is the Fourier transform of the magnetization. THeetive action can be written
in the compact form
M2
e SelM] _ fz)[a ¢l eXp[7 f@dr(c‘(a, +he[M])c+ Z 2—'”
o 2

[helkk = &bk = M «(7) - o

(13.189)

where,
(13.190)

describes thefiective Hamiltonian for the electrons moving in the (time eleglent) magnetization field.
Carrying out the Gaussian integral oweandc using (13.134 ) then gives

&S] - De, + he[M] exp{ > f dr—] (13.191)
or more explicitly,
—InDet[d,+hg]
Se[M] = ~TrIn[(@: + €Sk k — Mok - (r]+2ﬁdr—. (13.192)

Note that
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¢ In general, we can only evaluaB: analytically for simple static configurations bf;(r) = M. These

provide the basis for mean-field theories.

o The factoreS:[M! in (13.191) resembles a Boltzmann distribution in clagsitatistical mechanics. How-

ever, in striking distinction with its classical counterpan certain non-uniform configurations of the
magnetization the weigth functicareIM! acquires negativealues. These configurations are in many

ways, the most interesting configurations of the path imtlegnd when they proliferate, standard Metropo-

lis Monte Carlo approaches become exceedingly inaccurFats.is “the minus sign problem” of many
body physics - one of the major unsolved problems of numiekeeny Body physics.

It is also useful to cast thefective action in terms of Feynman diagrams. To do this, werinsrite the
magnetization in terms of its Matsubara Fourier modes,

B
Mg = Mq(ive) = %fo dr Mg(r)e" (13.193)
In Fourier space, we replade — —iw, in the Fermionic Determinant of (13.192 ) to obtain
M q\
SE[M] = =TrIn [(=iwn + )0k — Mick - o] + NSBZ ) (13.194)
We can factor out{iw + &) inside the logarithm, which permits us to split it into tveans,
1 M q\
SelM] = =TrIn [ (—iwn + a)(1 + (iwn - &) Mick - )] + NSBZ
Trin(1-GoV) M
e e
= -Trin[(-iwn + &)] = Trin[1- Go(k)ka]+NsBZ l ql . (13.195)
where
Go(K) = (iwn — &)™, Vi = ~Mici - o (13.196)

Here we have used the identity Tr[B)] = Trin A + TrIn B to seperate the terms inside the logarithm.
Normalized with respect to the volume of space time, Thetrsh in (13.195) can be normalized to give the
free energy density fo the non-interacting system

S 1

Fo = EOB = —@Trln[( iwn + &)] .

The second term is the change in the Free energy of the fesrdismto the magnetization field: the overbrace
shows how we can rewrite it in terms of the bare propagtoe (iw, — ) and the scattering potential
Vi k = —My k-0 This term can be reinterpreted as an infinite sum of Feynrizgmains, describing repeated
scattering & the exchange field

Trin(l - GoV) = Tr[-GoV — :—ZL(GOV)Z - %(GOV)a +...]
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=Ng m©+«0+ i}v+<>+.... (13.197)

The pre-factoiNg3, the volume of space-time, is included because we are wgikiffourier space, with the
convention that all internal momentum and frequency sureasharmalized with a measur,é/; Ykiw,- The
effective free energy (per sitée[M] = Sg/(NgB) can then be written diagrammatically as

IMqf?
FelM] = Fo— + + + o) (13.198)
q

13.6.3 Saddle point and the Mean field theory of magnetism

To explore broken symmetry solutions, we now make a saddfe ppproximation, approximating the parti-
tion function by its value at the saddle-poMt= Mo

Z= f D[M]e SeM] » g SelMol (13.199)
where
6Se[M]
=0. 13.200
oM M=M©) ( )

Equations (13.199) and (13.200) contain the essence of-fiedrtheory and deserve some discussion.

We discussed in Chapter 13 how a system develops a sponsiynémaken symmetry when the Landau
functional F[M] develops a minimum at a non-zero value of the order param&teill-fledged calculation
of this functional would involve calculating the full pathtegralZ[h] with a symmetry breaking fielt in
place, using a Legendre transformation to calcuftel] = S[h] — h.6S/sh, ultimately takingh to zero
the end of the calculation. The mean-field approach apprateea®[M] ~ Sg[M]. Such “saddle point” or
“mean-field” solutions serve as the staging point to compla¢efluctuations around the broken symmetry
state. The ultimate consistency of any mean-field appraiamalepends on the fluctuations being small
enough that they do not wash out the broken symmetry solution

If we differentiateSg[M] in (13.187), we see that the saddle point condition (13 )2@tplies

OS;AQM
—_
oSe __ 1 ca (M _goc )esEem o Mi_ o ’
M, e fD[c, C](T cjocj|e =T (c ,ac,)hE. (13.201)

where we have used (13.185) to calculéBc, c, M]/6M ;. In this way the saddle point condition (13.200)
automatically satisfies the mean-field relation
6S[M]
oM

©
=0, = M =1 (o,

Mretmoy
M=Mg
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Saddle point condition Mean field theory (13.202)

This makes life a lot easier: instead of labouring to impdseself-consistency condition on the right-hand
side, we can simply generate mean-field solutions by minngithe dfective action. Generally, we're inter-
ested in a static saddle point, whévig(r) = M(jo), In this situation, the féective action is directly related to
the mean-field partition function

e SeMOT = Ty [t | (13.203)

where
0)y2
M)
21 7

A = c'heM@c+ >’ (13.204)
i
is read df from the action in the path integral (13.189).
In a ferromagnet, the magnetization is uniform: for coneene we choose the spin-polarization along the
z-axis, writing

M@ =Mz, (13.205)
orin in Fourier spac#1q = Mdq 2. In this case, the mean-field Hamiltonian is diagonal:
N M2
Hur = D C'ir( ~ o M)Br + Ny (13.206)

ke
sinceMg = Mdgo. We see that wheM is finite, the up and down Fermi surfaces are now exchangebspli
an amountA = 2M. By carrying out the Gaussian integral over the Fermi fieddsubstituting into (13.194)
we can immediately write down théfective action as

2
Se[M] = - Z Trin[e — Mo, — iwn] + Nse'\zil (13.207)

K.iwn

[

0.6

0.4

0.2

QCP

= T 0.4
I I
Fig. 13.6 Phase diagram for 3D “Stoner model” computed using using (13.213) and (13.214).
The horizontal axis is the coupling constant | = IN(0), where the critical value I = 1.
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The result of carrying out the Matsubara sum on this expoeggives the well known form

MZ
Fe[M] = Zm [1+ ePla—oM] 4

"N £ 21
MZ

=-3 f deN(e) ; In[1+eAeoM]y — (13.208)

whereFe = Sg/(BNs) is the Free energy per unit volume, and we have rewrittemtbientum summation
as an integral, over the density of states perNit.
To find the stationary point of the action, weférentiate it with respect tM to get

(%)

fdeN(e)f(e —oM)o

arel
oM

Moot 2

(77+1

(13.209)

or

(13.210)

Z fdeN(e)f(e—o‘M)(r

(r_+1

which expresses the mean-field conditddn= 1{c%). We can obtain the second-order phase transition tem-
peraturel, by lettingM — 0*. Replacingf (e — M) — f(e) — cMf’(€) gives

xo(Te)

—
1=1 fdeN(e) (—?) = lyo(Te) (Stoner Criterion)
€/lr=T,

where we have identified bracketed term as the spin-subdéptof the non-interacting gas &. At a finite
temperature the Stoner Criterion defines the Curie temperdt of the electron gas. In the ground-state at
absolute zero, we can replace the derivative of the Fernaitiom by a delta function-d f/de — 6(¢) so the
Stoner Criterion becomes

IctN(0)=1 (Stoner Criteriom = 0)

wherel = I is the critical value of the interaction beyond which the paramagnetjcound-statdecomes
unstable to magnetism, as shown in Fig (13.6). Thisgsantum phase transitipdriven not by thermal, but
by quantum fluctuations.

Example 13.7: Calculate the magnetic phase bound@l) for the 3D continuum Stoner model,
where the density of staté$(e) = N(0) ;ﬂ, wheree: is the Fermi temperature amd(0) the density

of states at the Fermi surface.
Solution: In three dimensions, the Stoner Criterion can be written

=IN(O)LWdEE%:f(E*#)]
- ‘/;f: dxxsechix - 45c/2]

If we were interested in the problem at constant chemical potential, we smp here, however if we

(13.211)
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wish to take account of the drift of the chemical potential at finite tempezatue need to impose the
condition of constant particle density,

no = N(O)f dE\/Ef(E—/J)

= N(o)EF( ) f dxxfex o (13.212)
At zero temperature, this giveg = %N(O)e,:, so that
,N(o)eF_N(O)eF( ) fmdx\/’exw =
enabling us to writd; as a parametric function gf= u3.
3 [ 1
Te) = & | 5 fo dx«ﬁ(m (13.213)

Inserting (13.213) into (13.211) we can also wiite IN(0) as a parametric function gf= 18,
[ fu dx‘ﬁ(ex Y+1]

5 o dxvxsecix-y/2]

Fig (13.6) shows the phase diagram computed using (13.213) argl {3

1/3

i) = (13.214)

To finish this section, let us calculate the Landau expansfahe Free energy. If we make a binomial
expansion of the logarithm i8g[M] in powers ofM, we obtain

T o MZ d* 1 f(e)
__ Ble—oM)] — _ e
> ZJ'"[“‘* ]=-Tin[1+e ]+rz G (13.215)
where odd powers df1 vanish andf (¢) is the Fermi function. Thus
d- 1f(e)
FIM] = ¢0+Z(zr)l fds O gz 2| (13.216)
If we integrate in (13.216) by parts, we obtain
N@-2)(0)
— T —————
M2 df
FIM] = 5% — fd( ) N@-2) + 13.217
(M] = 7o Z o & @ (13.217)

whereN® = d"N(e)/de" is the r-th derivative of the density of states @@ (0) is its corresponding thermal
average around the Fermi surface. If we take terms Ug*owe obtain
Mm@ -+ o)

=7 {2 ) o a0

2

where(—N"(0)) denotes the thermal average average of the seconatieziof the density of states around
the Fermi energy. This is the Landau energy function predibly the “Stoner theory” of itinerant ferromag-
net. Note that
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e The quartic cofficient in the Free energy is positive, onlyNf’(0) < 0 is negative, i.e, if the density of
states has a downward curvature. If this requirement is et} the ferromagnetic phase transition be-
comes first order. Most transition metal ferromagnets, siscinon and cobalt, involve narrow bands in
three dimensions with a large negative curvature of theiteofstates and the transition is second-
order. However, in quasi-two dimensional systems wherelémsity of states has mostly positive cur-
vature, the ferromagnetic phase transition is expectee fost order.

e The mean-field parameters in the above action are likely tanbdified by fluctuations. In our mean-
field theory, an isotropic decoupling gave- U/3, but had we chosen an Ising decoupling, just inzhe
direction, we would have obtainéd= U, which is most likely an over-estimate bfMean-field theories
can not in general give a very reliable indication of the dltecsize of such parameters.

e There is a formal “largeN limit” in which the above mean-field theory does become exanstead of
the original model, we chose a multi-band (N-band) modeh e action

f dr | 37 o0 + @0~ 5 Z(Zm(n)]

k.o

(13.219)

where the band index € [1,N]. Here the interactiori can be regarded as a “Hund’s” interaction

between the dierent bands. For larghl the action of this model grows extensively with and in

this situation, the path integral becomes saturated byatidls-point solution, so the mean-field theory

becomes exact.

Example 13.8:
(a) Show from the Landau energy (13.218), that near the quantiticatpoint atT = 0,1 = I, =

1/N(0), the magnetic moment is given by
o=
M= (') o - T

(b) By expanding the density of states in a power-series about the Erergy, show that the transition
temperature predicted by (13.218) is

o=\ (7 -NO) ey

Solution: (a) We begin by writing the Landau free energy as

(13.220)

wherer = |7t - N(0), u = —N"(0)/6. At zero temperature,
(11 _ -N"(0)
- (T E)’ "7

wherel. = 1/N(0). SettingdF/dM? = 0, we obtairrM + uM?® = 0, or

Ilc N"(O)
(b) Carrying out a Taylor expansion of the density of states,

N(Q©) = f de(——)[N(0)+eN(0)+ N”(O)] N(0)+—N”(O)
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it follows that at a small finite temperature
1 1 T2,
r(M=(7 -1 +—%—(-N"(0)
| 6
Settingr(T) = 0, it follows that

Te= 7%(% - N(o)) (‘Nil(o))

13.6.4 Quantum fluctuations in the magnetization

M (t)

a) M, =M b) M;(t) = M© +6M;(2)

llustrating (a) mean-field theory (b) fluctuations about mean-field theory.

December 1, 2011

The beauty of the saddle point approach, is that it allowsoge beyond the mean-field theory to examine
the fluctuations in the order parameter. The basic idea iggarel the magnetization in fluctuations around

the saddle point, writing

Mj@) = MO +6M;(@) (13.221)

or in Fourier space

(13.222)

Mg =M (0)6q:0 +0Mg, (a=(a.ivn))

Because thefBective action is stationary with respect to variationdvimat the saddle point, the leading
order corrections to theffective action are quadratic in the fluctuations,

Se[M] = Se[M©)] + = Z aMaoMb ———5M2MP, + O(6M?)

Notice that all linear terms in the fluctuations vanish bytuerof the fact that the mean-field action is sta-
tionary with respect to fluctuations. Provided the fluctoagi are small compared to the order parameter,
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one can use the quadratic approximation to tfiective action to examine the leading fluctuations of the
magenization in the ferromagnetic state.

In a magnet these fluctuations take place agaiigbken symmetrpackground. The electrons scattering
off the fluctuations are partially spin polarized and governgthle “renormalized” propagator, denoted by
the double line

== G(K) = (iwn — & — U'ZM)_1~
k

where we have underling@(k) to emphasize that it is a two-dimensional, albeit diagomaitrix.
Let us now expand theffective actionSg[M] in (13.194) in the fluctuations by substitutingy_, =

M6 + 6My_ic to obtain

J Z IM26q + 6M g2

Fe[M] = —isﬂTrln[ —G(K) 6 — My i - o] + 5 (13.223)

q

If we now expand this expression in powersstd 4, we get a Feynman diagram expansion in terms of the
renormalized propagators, as follows

Fe = —ﬁTrln[—g(k)’l] - IN\O +© + D +.®~ +

M2 + M gf?
+ZM-

13.224
5 (13.224)

q

where the wavy line denotes scatterirfiitbe order-parameter fluctuations. Now since the actioratfostary
with respect to fluctuations, all terms linearsil ; must cancel. which leads to

aeM] = O D Q ]z‘””q'z,

whereAFg[M] = Fe[M] — Fe[M©]. Only first diagram and the final term in this expression, guadratic
in 5M4. Combining them, and dropping the higher order terms, wainlhe “Gaussian action” for the
magnetization fluctuations

(13.225)

k+q
AFG[M] = Z&M @ -0 o®|oME
k
%aMa [@ —,\/ab(q)] M, (13.226)
Gaussian Action of Fluctuations.
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where k+q

9@ = oh= —ﬁ—;s Zk: Tr[(raG(k +QoyG(K) (13.227)
k

is the “bare” susceptibility of the polarized metal. Now fivesence of a magnetization means that tifie o

diagonal termg§ (q) )(5(;)( q) are non-zero. To diagonalize the magnetic fluctuatioris,abnvenient to

work in terms of the raising and lowering components of tlegdrerse spiny. = %((rx + ioy), and the

corresponding components of the magnetization

£ MX+iMY
Mg = MX = iM),

The non-zero components of the transverse susceptibiétjhen

1

O g) = ———

A=z Zk:Tf[mG(lH Q-G

O = -~ 3 Tr[a,G(k + q)me(k)] = 9q) (13.228)

Ns .
where the identity((,ol(q) = X@(—q) follows by changing variablels — k — g inside the sum.
RewritingM - o = MZO'Z + M*o_ + Mo, the Gaussianfiective action then becomes
AFeM] = 5 Z l(SMZ (7 9 (q))éMZ
1 (0) + + (1L 0)
+ oM (5 - A2(@) oM + M7, algr A ) (@) | oMy (13.229)

Now since the magnetization is a real variable, follows thdt, = 6M™_4 (where we use a bar to denote
complex conjugate) so we can rewrite this expression indha f

AFSIM] = ZZ[W‘ (£ -r2@)oms

1 —
)(+_)(q))6M;' +8M* (E - X(_"z(q)) 6Mtq] (13.230)
Itis this quadratic functional that provides the argumenttie Gaussian distribution function of the magnetic
fluctuationsp[Mg] = Z-1e™SIM] = e#N:ATeIMI Now by (13.228) % (q) = x‘2(q) so we can combine the
last terms into one. The final results describing the distitin function for the Gaussian magnetic fluctuations
about the Stoner mean-field theory for an intinerant ferigmeaare

p[Mg] o e ASIM] _ gBNsATG[M]

AFOIM] Z[ N S B FRRGIOIE A

(13.231)

(13.232)

From the Gaussian form of this distribution, we can immealjatead df the fluctuations in magnetization.

428

218



(©2011 Piers Coleman Chapter 13.

Denoting
(GMgoMP ) = ﬁiéqq, X (SMgSM”y) (13.233)
the fluctuations in magnetization are given by
(SMESMZ) = - 1(0)(0‘)
(SMGoM*_g) = s 1(0)(q) (13.234)

Let us now convert these results into spin correlation fionst If we go back to the original Hubbard
Stratonovich transformation, (13.184), we recall that éxalple the interaction, we had to introduce a
dummy white noise variable, let us callri;(r), with distribution function(nﬁ(r)nfi’(r’» = 16%5(r — 7'),

or <nﬁm’2q) = 16%. To carry out the Hubbard Stratonovich transformation vefiaed this varible, writing
mj(r) - Mj - loj. It follows that the variable we are working with is relatedthe original white noise
variable byM j(r) = mj(r) + loj(r). Consequently, the Gaussian fluctuations in the magrtietizare given
by

1570

—~——
(ooPy = TZ (SMESMPy) — (SrEsmTy)

It follows that

1 1 9 -
(0807 = xAQ) = —2[ T I} - (g))( ) (Longitudinal)
11 2
(otoZyy = x+-(Q) = —ZI} = (Transverse) (13.235)
o e 1- 2|X(°)(Q)
RPA spin fluctuations

These are the celebrated “RPA’ spin fluctuations of an indineFerromagnet.

It is particularly interesting to examine the transversia $lpctuations in (13.235). A uniform transverse
spin fluctuation corresponds to a rotation of the magnétizatvhich costs no energy due to the rotational
invariance of the system. If we carry out a slow twist of thegmetization, this costs an energy that goes to
zero as the pitch of the twist goes to infinity. The corresprogdormal mode is the “Goldstone mode” of the
magnet.

One can analtyically calculate the transverse spin fluicinsibf a ferromagnet with a quadratic dispersion

& = ¥ — i, because the bare susceptibiliti¢d(q) can be calculated as Lindhardt functions. The transverse
bare susceptlblllty (per unit cell) is given by k+ql
) = Z [0 Gk + Q) G(K)] = o
SB Kiiwn
w5 L[t aci) K1
k iwn
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Sl kil The energy spectrum of quantum magnetic fluctuations in an intinerant ferromagnet.
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The above spectrum was computed for a magnetization M = 0.9¢g corresponding to
an almost fully polarized Fermi sea.

fir —
—ad | T kel (13.236)
« (€k+ql — &1) = ivn
wheree,, = e<—oM, (o =1, 1). These sort of expressions are a type of Lindhard funcli@ady encountered
in chapter 8. Following the same lines as section 8.62, wétrelly continuing to real frequencies, and
rewrite the integrals as follows

© _ fir fi )
a0 =2 | ((ek+q—EK)—(v M) * lacq—a) + - 2M)
_ Z fkﬁ' k2dk dcose[ 1 ]
2 |(@a—a) -ol-2m

T2 Z (mkcv) (2kw’”V:152FM) (13.237)

whereeg,, = e + oM andkg, = ke (1+ g)% are the Fermi energy and momenta of the spia (1, 1) Fermi
surfaces and

Fa.7] = — |(1- Nn%A+ﬂ+zq

il
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(13.238)

is the Lindhard function.

Fig. (13.8) shows a density plot of the transverse dynarsjuial susceptibility’/_(q, v) = Imy._(q, v—id)
predicted by the Gaussian (RPA) theory. The spectrum of etagfiuctuations about the mean-field theory
is determined by the energies at which one can excite a fgahate pair by flipping a spin. Unlike a non-
magnetic metal, the energy to flip a spincat 0 is twice the Weiss field — e = 2M. The continuum
of spin-flip particle-hole excitations is thus lifted up et momenta, forming what is known as the “Stoner
continuum”. The threshold energy for a spin-flip excitatfsrally drops to zero at the wavevecipe kgy —
kr,. Below the Stoner continuum is a sharp Goldstone mode, l&abély the dotted line in Fig ()13.8),
corresponding to a low-energy pole in the dynamic susciiptilocated at frequencies, determined by the
condition

2lx;-(9, wg) = 1.

A careful evaluation of this condition shows that

2
wq = Z(M/EF)S—m, (13.239)

where

200 = 4+ -(1-%%-5

5| (L+XP2-(1-x32 (13.240)

This is the relation used to determine the dotted line-cunfgg. (13.8).

13.7 Summary
|

Casting many body quantum mechanics as a path integral.@éejytr So second nature, that most condensed
matter physicists use the same notation for the operatatsheir c-number representation inside the path
integral.

With these approaches, one has to have the Hamiltonian forimeof canonical operators. Poses problems
in strongly correlated systems, where the strong intevastbetween the particles force us to introduce new
operators that do not obey canonical commutation relatifeswill return to these issues in Chapter ***,

As an example, we examined how these methods can be appligtant ferromagnetism. In the process,
we encountered the new concept of a “quantum phase trarfsigipoint in the phase diagram where the long
range order is destroyed by quantum, rather than thermabétions. This is a subject of immense current
interest Though we didn't follow it in detail, we remarkedtlthe saddle point could be made exact in the
largeN limit of 1 /N expansion. These methods are believed to break down in twerdiions (ref to Metilsky
and Sun Silk Lee), and the resolution of this situation i time, an unsolved problem of great interest.
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13.8 Appendices
|

Appendix 13A Derivation of key properties of bosonic coherst states.
Here we derive the matrix elements and the completenessipiegpof bosonic coherent states.

Matrix elements. Matrix elements of normal ordered operat@[sff,f)] between two coherent states are
obtained simply by replacing the operatbrandb’ by the c-numberk andb respectively:

(b1/O[B", BlIbz) = O[by. by] x (bulbz) = O[by, by] x P (13.241)

To derive the matrix elements of coherent states, we firgt tiatt the properties of coherent states guarantee
that

(BI(B")"B"b) = (B)"b"(blb) = (B)"b"e™. (13.242)
Thus ifO[b7, b] = 3, Omn(B')™b" is anormal ordereaperator, (all annihilation operators on the right), it
follows that

(BIOIB', B]Ib) = " Omn B™" x (blb) = O[b, bj x €.
mn

or

coherent states

O[b', b O[b. b] x (blb)

Note that if one has an operator that is not nojmal ordere, éine has to normal-order the operator prior to
applying this theorem. For example @= (b + b")?, thenO =: O : +1, and(b|Olb) = [(b + b)? + 1]€".

Completeness

The unit operator can be decomposed in terms of cohereatssiatfollows

1= Ibxbl, (13.243)
bb
where
_ (dbdb g
%‘ = | 5qe (13.244)

is the normalized measure for summing over coherent statedemonstrate the completeness relation, we
will first derive the orthogonality relation between the wawnctionsp,(b) = (n|b) of the coherent states:

dbdb__; =
ton= [ G DN Bm) =

: (13.245)

To prove this, let us substitute = re® andb = re . AIthoughBandb are complex conjugates of each
other, they are derived from two independent real varialaled so the measure for integrating over them is
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two-dimensional. We can transform the measure into polardmates by introducing a Jacobian, as follows:

olb.b)/olr.¢)
e

— & & e —jremi

dbdb= || Ghlldrds = || 5, iy || drdg = 2irdrdg
5t o6 ire

so that (13.245) factorizes into a radial and an angulagrate
smn
— e N
o = — dbdbgmg o . L fm 2rdrr™me ™ x fz: 92 gote-m
ml i ml :
Ty 21 vnim! Jo o 21

where we have substitutéd|b) = \/%b" and(5|m> = ﬁﬁ"‘. The angular integral vanishes unless m.
Changing variableg® — x, 2rdr = dxin the first integral we then obtain

PR
lom = lef dx X¥e ™ = 6pm
n Jo

(13.246)

(13.247)

proving the orthogonality relation. Now sinégy, = (njm), we can write the orthogonality relation (13.245)
as

_ (dodb_ g o= fdﬁdb b
om = [ e <n\b><b|m>—<n|( PP o) 61 1m
Since this holds for all statésy and|m), it follows that the quantity in brackets is the unit operato

i (dbdb g o (dbdblbybl _ <
1_f o e b= [ S _§|b><b|

(13.248)
Completeness relation

Appendix 13B Grassman Dfferentiation and Integration

Differentiation is defined to have the normal linear properti¢lendifferential operator. We denote

0 0
=5 O5= o (13.249)
so that
0cC = 0sC = 1. (13.250)
If we have a function
f(C.C) = fo+ f1C+ Ch + fyoCC (13.251)
then diferentiation from the left-hand side gives
dcf = fi— fioC
Osf = 1+ fioC (13.252)

where the minus sign in the first expression occurs becaeﬁajperator must anticommute with But how
do we define integration? This proves to be much easier fasgBran variables, than for regular c-numbers.
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The great sparseness of the space of functions dramatiesliycts the number of linear operations we can
apply to functions, forcing diierentiation and integration to become g@mneoperation :

fdcz e, de; dc
fdcc: 1, fdc_: fdc:o

(13.253)

In other words,

(13.254)

f deE=1,
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Appendix 13C Grassman calculus: Change of variables
Suppose we change variables, writing
] &1
S=Al: (13.255)
Cr &

whereA is c-number matrix, then we would like to know how to evaluthteJacobian for this transformation,

which is defined so that
fdcl...dc,[...]:fJ(g."“';)dfl...d.{,[...]

Now since integration and flerentiation are identical for Grassman variables, we caluate the fermionic
Jacobian using the chain rule foffidirentiation, as follows

ar
fdcl.“dc,[m]zm[“.]
22(5&31 19§P,) J ]
S\ dcw T dc ) dép, ... 0kp T

) is a permutation of the sequence (1r). But we can order the flerentiation in

(13.256)

(13.257)

1 ...
Pi ... P
the second term, picking up a facterl)” whereP is the signature of the permutation, to obtain

_ p(Oép,  Ofp "
fdclu.dq[...]_zp“(fl) (ﬁcl ﬁcr)m[”']

ar
= Det[A‘l]m [...]

:fDet[A’l]dgl...df,[.u]

whereP = (

(13.258)

where we have recognized the prefactor as the determingmé arfiverse transformatian= A-*c. From this
result, we can readfbthe Jacobian of the transformation as

Ci... acy ...
‘](170") = De[[A]'1 = ‘ - 1 G
1.6 0é1...&
which is precisely the inverse of the bosonic Jacobian. agsimportant implications for super-symmetric
field theories, where the Jacobian of the bosons and ferrpi@tssely cancel. For our purposes however, the
most important point, is that for a Unitary transformatitve Jacobian is unity.

-1

(13.259)

Appendix 13D Grassman Calculus: Gaussian Integrals

The basic Gaussian integral is simply

f dcdce®® = f dcdo(1 - aco) = a (13.260)
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If now we introduce a set dfl variables, then

fl—[ dc;dg; exp—[z a;Cicj] = l_[ aj (13.261)
i i i
Suppose now, we carry out a unitary transformation, for Wiiie Jacobian is unity, then since
c=Us  c=¢Ul,
the integral then becomes
fﬂd?jdfj expl€-A-d =] [y
i i
whereA;j = ¥ UTjqU; is the matrix with eigenvalues. It follows that
f [ ] d&ide; expl-¢ - A- €] = DetA] (13.262)
i
Finally, by shifting the variableg — & + A1, wherej is an arbitrary vector, we find that
7[j] = f | [o&idéjexpl-(¢- A-£+ - ¢ +&- )] = DetfAlexplj- A - ]] (13.263)
i

This is the basic Gaussian integral for Grassman variahletice that using the result InD&{ = Trin[A],

it is possible to take the logarithm of both sides to obtain
S[il = -Inz[j] = ~Trn[A] - - A . (13.264)

The main use of this integral, is for evaluating the Pathgrakfor free field theories. In this case, the matrix

A — —G™! becomes the inverse propagator for the fermions,&ane v(iwy) is the Fourier component of

the Fermi field at Matsubara frequenicy,.
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Exercises
|

Exercise 13.1 In this problem considek = 1. Suppose0) is the ground-state of a harmonic oscillator
problem, wherd|0) = 0. Consider the state formed by simultaneously translakirsgstate in momen-
tum and position space as follows:

[p. x) = exp[-i(xp — pX)]10).

By rewriting b= (%+ip)/ V2,z= (x+ip)/ V2, show that this state can be rewritting as
Ip. %) = &=70)

Using the relatiore”*® = e*ePei(A8l, provided f, [A, B]] = [B,[A, B]] = 0, show thatp, x) is equal to
a normalized coherent state

Ip,X) = |26 %2 = 'Z0ye 2%
showing that the coherent std#e represents a minimum uncertainty wavepacket centeregl pY in
phase space.

Exercise 13.2 Repeat the calculation of section 13.33. without takingaetinuum limit. Show that the

path integral for a single boson with Hamiltoni&h = eb’b with a large, but finite number of time
slices is given by

INZy = ZN: In(s - iVnF(VHAT/Z))
n=1

whereF(x) = (1 - e¥)/x. If you approaximate each term in the sum by its valuaat 0, and then
takeN — oo the result obviously converges to the continuum limit. Bag error contribution from
N such terms appears to be of ord®({N x Ar) = O(1). Use contour integration to show that this is
fortunately an over-estimate, and that the actual err®(isr) = O(1/N).

Exercise 13.3 Using path integrals, calculate the partition function dosingle Zeeman-split electronic
level described by the action

S= f drf:(éa/ﬁ, +00B)fy

Why is your answer not the same as the partition function ofraSp= 1/2 in a magnetic field?
Exercise 13.4 Suppose

M= e% ZijAicic’y

whereAjj is anN x N antisymmetric matrix, and the"'j are a set ofN canonical Fermi creation
operators. Using coherent states, calculate

TrMM']

where the trace is over thé imensional Hilbert space of fermions. (Hint: notice thdM' is already
normal ordered, so that by using the trace formula, you cariteethis in terms of a simple Grassman
integral.)
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Exercise 13.5 Calculate, to Gaussian order, the change in the B@®ve action for a fluctuation in the
gap function of the following form

A(T) = Ao + ‘/iﬁ Zn: SAnE ™™

wherey, = 27T nis the Bose Matsubara frequency akgs a value ofA which minimizes the ective
action. Use your result to confirm that the BCS Free energyupérvolume is accurate t®(1/V),
whereV is the volume.

Exercise 13.6 Re-derive table 1. for the case of bosonic coherent states.

Ib) = € [0)
where the Grassman variable is now replaced by a convehtemamberb.

Exercise 13.7 (a) Supposéd = ec’c represents a single fermion state. Consider the approximtt the

partition function obtained by dividing up the period [0, 3] into N equal time-slices,
Zn = Tr[(e™™)N] (13.265)

whereAr = B/N. By using coherent statés) = €°¢|0), and approximating the matrix element from
timer; to timerj,1, wherer; = jAr by

(Cjeale™Mc)) = €51 1+ O(AT?) (13.266)
wherea = (1 - Are), (Fig. 1.)
C3 o Cy oy @ co = —C3
' (13.267)
B_T3 T T 0
show thatZs can be written as a “toy functional integral”,
1 -a 0](cs
Z3 = degngdEdeszldCl exps—(C3,C2,C1) [0 1 —al|c (13.268)
[ 0 1 C1

(b) EvaluateZs.

(c) Generalize the result fd time slices and obtain an expression Zgr. What is the limiting value

of your result ag\ — co?
Exercise 13.8 Derive the completeness and trace formulae for a set of imsoherent states,
oy = €'910) (13.269)

You may assume the basic result

dbdb 5 o
onm= | ——e """
nm f i

In particular
(a) Show that the completeness relation is given by

Dbl = 1

), 1)

438

December 1, 2011 223



©2011 Piers Coleman

Chapter 13.

_ (dbdb g
Z _fﬁe (13.270)
b), [b)

(b) Show that the trace formula is given by

THA] = " (blAlb)
[b), by
(c) What s the key dierence between the derivation of the Bosonic and the Fefopath integrals?

Exercise 13.9 The one dimensional electron gas is prone to the developofaftarge-density wave in-

stabilities. The treatment of these instabilities beanse&resemblance to the BCS theory of supercon-
ductivity. Suppose we have a one-dimensional conductscrieed by the Hamiltonian

H—uN=Hy+H,
Ho = *tz(wf1+1¢r¢]0'+¢f]a'wj+1a')s
jo

H = —QZ Wi
]

whereg > 0 andy/j, creates an electron with spin = i% at site j. The separation between sites is
taken to be unity and the chemical potential has been chogeszierg giving a half-filled band.
(a) Show thatH, can be diagonalized in the form

Ho = — Z(Zt cosK)C r-Curs
o

(13.271)

(13.272)

wherecy, = % Yivi-e ™, k=2(0, 1, ...N - 1) . Please note that the band is exactly half-filled,
so that the Fermi surfaces are separated by a distamcenomentum space and the average electron
density is 1 per site.

(b) Suppose a staggered poteniiak —(-1)!® is applied to the conductor. This will induce a staggered
charge density to the sample

1 )
(Njoy = 5+ (-1)'Aj/9 (13.273)

At low temperatures, the staggered order will remain evéer #ie applied potential is removed. Why?
If the RMS fluctuations in the staggered charge density cagriweed, show that the interaction Hamil-
tonian can be recast in the form

. A2
H — Z [(—l)JAjﬁj + EJ] +0(602). (13.274)
]
(c) How can the above transformation be elevated to thesstdtan exact result using a path integral?
(Note that the order parameter is no longer complex- dossctiange your discussion?)
(d) Calculate the excitation spectrum in the presence ofitfilermly staggered order parameter =
A. (Hint: write the mean field Hamiltonian in momentum spaced &eat the terms that scatter from
one-side of the Fermi surface in an analogous fashion todfreng terms in superconductivity. You
Cuor

Citror, '
(e) Calculate the Free ener§yA] and sketch your result as a function of temperature. Writerdihe

gap equation for the value @f(T) that develops spontaneously at low temperatures.

may find it useful to work with the spind¥y, = (
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14 Superconductivity and BCS theory

14.1 Introduction: Superconductivity pre-history

Superconductivity - the phenomenon whereby the resistaitetal spontaneously drops to zero upon cool-
ing below its critical temperature, was discovered over adned years ago by Kamerlingh Onnes in 1911.
However, it took another 46 years to develop the conceptaaidéwork required to understand this collective
phenomenon. During this time, many, many great physidistéyding Bohr, Einstein, Heisenberg, Bardeen
and Feynman had tried to develop a microscopic theory of ie@pmenon.

The development in the theory of superconductivity leadm@CS theory really had two parts - one
phenomenological, the second microscopic. Let me mentioresof the highlights of the early period:

e The discovery of the Meissneffect in 1933 by Walther Meissner and Robert Ochsenfeld[1]. Wéhe
superconductor is cooled in a small magnetic field, the fluspisntaneously excluded as it becomes
superconducting (see Fig. 14.1). The Meissiftgat demonstrates that a superconductor is, in essence
a perfect diamagnet.

(a) Metal T>Te (b)SC T<Te

Fig. 14.1 (a) A magnet rests on top of a normal metal, with its field lines penetrating the metal.
(b) once cooled beneath T¢, the superconductor spontaneously excludes magnetic
fields, generating persistent supercurrents at its surface causing the magnet to
levitate.

e Rigidity of the wavefunction. In 1937[2, 3] Fritz London pased that a persistent supercurrent is a
ground-stateproperty that results when the ground-state wavefunctireldps a rigidity to the ap-
plication of a magnetic field. London’s idea applies to thiérfiany body wavefunction, but he initially
developed them using a phenomenological one-particle fiagton y/(x). He noted that the quantum
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mechanical current contains a “paramagnetic” and a “diavatigj’ component, writing
. he, Lo N - A W
= g0 =09 (5w & (aa.)
so that if the wavefunction isgid and hence unchanged to linear order in the magnetic fiekd, =
wo(X) + O(B?), then to leading order in a field, the current carried by thergum state is
P
=—-— A+. ... 14.2
J mW’ol + (14.2)

London’s work forshaddowed Ginzburg Landau Theory.

e Ginzburg-Landau theory [4]. In 1950, Lev Landau and Vitalinfburg in Moscow re-interpreted Lon-
don’s phenomenological wavefunctigifx) as acomplex order parametedsing arguments of gauge
invariance, they reasoned that the Free energy must camtgiadient term that instills the rigidity of
the order parameter,

N PR
f_fd Xo (1Y e Ayl (14.3)

The vitally important aspect of this gauge-invariant fumeél is that onces # 0, the electromagnetic
field develops a mass giving rise to a super-current

oo R 3 Gy
1(x) = =01 /6A0) = — = WI'AK) (14.9)
It is only later that the order parameter was identified withetectron pair condensate, with charge

e =2e

Following the second world war, physicists set to work agdaitry to understand superconductivity. New
mathematical techniques, in particular the arrival of quanfield theory, new experimental techniques, such
as the availability of isotopes after the Manhattan progext microwaves, a biproduct of radar, meant that a
new experimentally driven intellectuaffensive became possible. The landmark events included:

e Theory of the electron-phonon interaction. In 1949-1956rk¢ért Fohlich[5] at Purdue and Liverpool
Universities, formulated the electron phonon interactghowing that it gives rise to a low energy inter-
action

Veri(k,K') = g2 o —— K 145
e R clay oo (4:9)
wheree, ande, are the energies of incoming and outgoing electrons, wihjles the phonon frequency.
Veri(k, k) becomes attractive for low energy transfieks- ec| << wk-k:.

o Discovery of the isotopefect. In 1950, Emanuel Maxwell at the National Bureau of Séads[7] and the
group of Bernard Serin at Rutgers University[8] observeddaction in the superconducting transition
temperature in mercury with the isotopic mass. It now beceal®ar that the electron-phonon interac-
tion provided the key to superconductivity. Indeeuhy theory in which the transition temperature is
proportional to the Debye temperature, the expected deperdn isotopic masdd is given by[9]

1 dinTc 1

e =—c. 14.6

VM dinM 2 (14.6)

Careful analysis showed agreement with #i¢2 exponent[6] (see fig. 14.2), but what was the mecha-

nism?

Te o wp ~
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Fig. 14.2 Superconducting transition temperature as a function of isotopic mass for mercury,
showing the “-1/2” exponent implying phonon-driven superconductivity, after Serin et
al.[6].

e Discovery of the coherence length. In 1953 Brian Pipparti@Qavendish Laboratory in Cambridge, pro-
posed, based on his thesis work on the anamalous skin deglittyiisuperconductors, that the character
of superconductivity changes at short distances, belowla & named the coherence lengf0, 11].
Pippard showed that at these short distances, the Londatiorebetween current and vector potential
is non-local. Pippard’s result means that Ginzburg Landi@ory is inadequate at short distances and
demanding a microscopic theory.

e The gap hypothesis. In 1955, John Bardeen who had recestifynel from Bell Labs to pursue his research
into the theory of superconductivity at the University dinibis in Urbana Champaign proposed that if
a gapA developed in the electron spectrum, this would accountifemtavefunction rigidity proposed
by London and would also give rise to Pippard’s coherencgtlefi ~ vg /A, where  is the Fermi
velocity[12]. What was now needed was a model and mechanisneéte the gap.

e Bardeen Pines Hamiltonian. In 1955 John Bardeen and Dan@bP4i3] at the University of lllinois, Urbana
Champaign rederived the @hlich interaction as a second-quantized model, incotpayhe dfects of
the Coulomb interaction in a “Jelium model” in which the idiesm a smeared positive background.
(See section (9.111)). The Bardeen-Pin@sctive interaction takes the form

v

2 _ .2
vV mq

Vep(d.v) = (14.7)

(0P + «2)

wherex ! is the Thomas Fermi screening length and the phonon freguencs related to the plasma
frequency of the ion&2 = (Z&)?nion/ (€M) via the relationvj = [1+ %]’19% The Bardeen Pines result
demonstrates that a low energy attractive interactioesas the retarded aftermath of an instantanously
repulsive Coulomb interaction.
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The stage was set for Bardeen Cooper Sélaig“BCS” theory.

14.2 The Cooper Instability

In the Fall of 1956, Bardeen’s postdoc Leon Cooper, at thedisity of lllinois, Urbana Champaign, solved
one of the most famous “warm-up” problems of all time. Coesiitly two electrons moving above the Fermi
surface of a metal, Cooper found that an arbitrarily weakted@-electron attraction induces a two-particle
bound-state that will destabilize the Fermi surface[14].

A= [ obx=xylv]x)

Fig. 14.3 lllustration of a “Cooper pair”. (Note: the location of the electrons relative to the pair

wavefunction involves artistic license since the wavefunction describes the relative
position of the two electrons.)

Cooper imagined adding a pair of electrons above the Ferrfaciin a state with no net momentum,
described by the wavefunction
I¥) = ATIFS) (14.8)

where

N = [ ot X000/ ) (14.9)

creates a pair of electrons, whjleS) = [T, c'kic’ |0y defines the filled sea. If we Fourier transform the
fields, writingy® ,(x) = % S c'k-€7%* then the pair creation operator can be recast as a sum dv@irpa

momentum space,
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AT =3 e g (14.10)
k
Cooper Pair Creation operator
where

o = f d®xe X p(x) (14.11)
is the Fourier transform of the spatial pair wavefunctiohisTresult tells us that a real-space pair of fermions
can be decomposed into a sum of momentum-space pairs, egightthe amplitudey,. The properties
of the pair (and the superconductor it will give rise to) areaded in the pair wavefunctiopy. In the
phonon mediated superconductors considered by BES, f(k) is an isotropic, s-wave function, but in a
rapidly growing class of “anisotropically paired supeddisii of great current interest, including superfluid
He?, heavy fermion, and the the iron and copper-based high teanpe superconductors is anisotropic,
changing sigrsomewherén momentum space to lower the repulsive interaction eneiging rise to anodal
pair wavefunction

When an electron pair is created, electrons can only be aduee éhe Fermi surface, so that

W) = AIFS) = " ¢uke), (14.12)
IkI>ke
wherelkp) = |k T, -k |} = c'gc’ | [FS). Now suppose that the Hamiltonian has the form,
(14.13)

H = Z €CherCio + V
K

whereV contains the details of the electron-electron interaciifol¥’) is an eigenstate with ener@then

HIW) = " 2atulke)+ Y IkeXkelVKp)i- (14.14)
ki>ke Ik, k' [>ke
Identifying this withE|¥) = E Y ¢k|kp), SO comparing the amplitudes to be in the stiage
Egk = 2a + . (kelVIKp)o (14.15)

Ik’ [>ke

The beauty of this equation, is that the details of the ebecinteractions are entirely contained in the pair
scattering matrix elementi . = (kp\\7\k’F,>. Microscopically, this scattering is produced by the exae
of virtual phonons (in conventional superconductors), tredscattering matrix element is determined by
electron-phonon propagator

View = g, D(K' — K, & — &) (14.16)

as illustrated in Fig. 14.4. Cooper noted that this matrénent is not strongly momentum-dependent, only
becoming attractive within an energy, of the Fermi surface, and this motivated a simplified modielrac-
tion in which

Vi = { ~Go/V (ledl. lee| < wp) (14.17)

0 otherwise

446

227



(©2011 Piers Coleman Chapter 14. Chapter 14. ©Piers Coleman 2011

E

Fig. 14.4 Phonon exchange process responsible for the BCS interaction. 02 s =
-0.5 . .
Fig. 14.5 Formation of a Cooper pair beneath the two-particle continuum. This density plot
shows the imaginary part of the pair susceptibility y(E, p) (see example 15.1)
obtained from Cooper’s approach. At a finite momentum, the Cooper pair energy

This is a piece of pure physics “Haiku”, a brilliant simplditon that makes BCS theory analytically tractable.
Much more is to come, but for the moment, it enables us to siyndl4.15)

(E - 26)¢x = _% Z b (14.18) defines a collective bosonic mode beneath the quasiparticle continuum with

v O<€ <wp dispersion E, ~ E(0) + Vg|pl.

so that by solving fopy
Go/V 14.1 ) ) o '
bk =— E - 24 P (14.19) Example 14.1: Generalize Cooper’s calculation to a pair with finite momentum. In particular:

O<e <wp (a) Show that the operator that creates a Cooper pair at a finite mompntum

then summing both sides ovierand factoring ou’ ¢« we obtain the self-consistent equation Al(p) = fdgxdax’(b(x XU ()P 2 (14.23)
1
1=-= 5 —gOZsk . (14.20) can be re-written in the form
Oraccen AP = Y K cp/zrC' oy (14.24)
k

Replacing the summation by an integral over ene@E(,«k(mD — N(0) 0"’” whereN(0) is the density of

states per spin per unit volume at the Fermi energy, thetregidquation gives (b) Show that the energg, of the pair state\"(p)|F'S) is given by the rootg = E, of the equation

% 1
1 °  de 1 2wp — E 1 2wp 1+32 [ (14.25)
1= -goN(0 ——— = ——goN(O) In| ———| ~ ==goN(0) In| — 14.21 Vv o 2= (Espj2 + €k-pj2)
30 [ 58 = Janon| 22 E [ < anom|22| sz I e
L . Demonstrate that this equation predicts a linear dispersion given by
where anticipating the smallness|&f << wp we have approximateduy — E ~ 2wp. In other words the )
energy of the Cooper pair is given by Ep = —2wpe VO + ve|p]. (14.26)
-2 Solution:
E=- N | 14.22
Zwpe ( ) (a) Introducing center of mass variabks= (x + x’)/2 andr = x - X', usingd®*xd®x’ = d*Xcfr, we
Remarks: rewrite the Cooper pair creation operator in the form
o . ) ) : Af(p) = fd3rd3X PXp(r) yhy (X +r/2ut (X —1/2) 14.27
o This pair state is a bound-state below the particle-hol¢iconm (see Fig. 14.5). ® v W ) (14.27)
e In his seminal paper, Cooper notes that the Cooper pair isarbdhis changes everything, for as pairs, If we substitutes’ (X) = %v Sk €'k €7, we then obtain
electrons can condense macroscopically 1 e o
. L L . T — . & \ 1K1 (X+r/: (X-r/
o A generalization of the above calculation to finite momentsee example 15.1) shows that the Cooper NP =g fd rdxe? ¢<r>ka CllatCli €7 e
pair has dineardispersiorE, — E = ve p (see Fig 14.5), reminiscent of a collective mode. v
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#((ky1+k2)/2) Op-(k1-k)

+ 1
= Y i f dfr g(r)e" e = f PR dr-lakalx

Kyka
= 3" 8(K) CsprziC kprat (14.28)
k

where we have replacelly(+ k;)/2 — k in the last step.
(b) Denote a Cooper pair with momentymiy

APIFS) = W(E) = ) dulk. p), (14.29)
k

wherelk, p) = ¢kip/21C7 _kip/2i IFS). Applying HI¥(p)) = Eo[¥(p)), using (14.13),
Bo ) o) = D (aprz+ dcp) ko) + > 1K P)K, PIVIK', P
k

k5 >ke KI. K[>k

Assume thatk, p|V|K’, p)¢i = —go/V is independent gb. Comparing coficients oflk, p),

Epb = (awrz—p) b= D, o (14.30)
0<€¢2p/2<wD
Solving for ¢y
v
b= QN e (14.31)
Gerpr2 + Ep2 = Bp o 2

Substituting back into the equation, we then obtain

1
-2 ;) (14.32)

&spj2+ &-p2—Ep
0<exap/2<wD k+p/2 k-p/2 P

Itis convenient to cast this as the zero of the funcoh[Ey, p] = 0, where

Gz Pl = 1~ Goxo(z P), (14.33)
and
1 1
St —_— 14.34
o@n=y ) P —— (14.34)

0<eksp/2<wp

can be interpreted as the bare pair susceptibility of the conduction seatakovge, = k?/2m—p,
in the momentum summation, we must impose the condition

p-ve P
Gup2 = &t £ am > 0 (14.35)
or & > BE|coss| - gﬁm Replacing the momentum summation by an integral over energy and
angles,
(20l = N(0) fl dcosg [P de
o 2 Ja 2 JeEcow-pram 26 + PP/AM—2
_NO * 2wp
= Tj; dcosdln e (14.36)
Finally, carrying out the integral oveét one obtains
NO). [ z pve
- = | 14.37
xo(z p) 5 Xo Py’ D ( )
449
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where
ST (] 1 z p
Folz. Bl —In(ﬁ_i)+[l+fﬁln(l—§)} (14.38)
Thus for smallve p << |E|,
e g GNO) [ 2wp
GE P =1-=—I T=E (14.39)
so the bound-state pole occurggt(E,, p) = 0, or
2
E, = —2wp exp|————= [ + Ve p. 14.40;
P D P[ ggN(O)] FP. ( )
The linear spectrum is a signature of a collective, bosonic mode. Irteifiethe quantity
X"(E.p) = Im[xo(z p)/(1 - Goxo(z P)]l=-is» (14.41)
can be interpreted as a spectral function for Cooper pairs. It is thigtiguehat is plotted in Fig.

(14.5).

14.3 The BCS Hamiltonian

After Cooper’s discovery, it took a further six months ofeinse exploration of candidate wavefunctions,
before Bardeen Cooper and Scffige succeeded in formulating the theory of supercondugtimiterms of a
pair condensatét was the grad student in the team, J. Robert Séleriavho took the next leap.Schrigfer's
insight was to identify the superconducting ground-stata eoherent state of the Cooper pair operator:

l¥ecs) = exp[A'1I0), (14.42)

where|0) is the electron vacuum andd’ = ¥, ¢xCkqC-k, is the Cooper pair creation operator (14.10). If we
expand the exponential as a product in momentum space

Wecs) = | | explbic’ac’ 4]0 = [ [+ dCliac’)I0). (14.43)
k k

BCS Wavefunction

In the second step, we have truncated the exponential tarloveler because all higher powers of the pair

1 Following a conference at the Stephen’s institute in Hobpkéew Jersey on the Many Body Problem, inspired by a waveifamct
that Tomonaga had derived, Sclffé wrote down a candidate wavefunction for the ground-staperconductivity. Schriger recalls
the event in his own words, [15]

“So | guess it was on the subway, | scribbled down the wave functiori ealtulated the beginning of that expectation
value and | realized that the algebra was very simple. | think it was somigitbe afternoon and that night at this friend’s
house | worked on it. And the next morning, as | recall, | did the variatioakulation to get the gap equation and |
solved the gap equation for the ctitpotential.”
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The s-wave BCS Hamiltonian then takes the form

_ i Yo,
H= Z €koC ko Ckor VA A
|ex|<wp. o
Al = Z ey, A= Z Ckri Gt (14.47)
lexl<wp e [<wp
Vi = { _QO/V (|€k| < "‘)D) s-wave BCS Hamiltoniar
’ 0 otherwise

Remarks:

e The BCS Hamiltonian is anodelHamiltonian capturing the low-energy pairing physics.

e The normalizing factor AV is required in the interaction so that the interaction epesgxtensive, growing
linearly, rather than quadratically with volunve

e The BCS interaction takes place exclusively at zero moempand as such involves an infinite range
interaction between pairs. This long-range aspect of thdeinpermits the exact solution of the BCS
Hamiltonian using mean-field theory. In the more microscdpdhlich model the fective interaction
(Fig. (14.6)) is attractive within a narrow momentum shap| ~ wp/Vve, corresponding to a spatial
interaction range of order/JAp| ~ Ve /wp ~ O(er /wp) X &, wherea is the lattice spacing. This length-
scale is typically hundreds of lattice spacings, so theriitdirange” mean-field theory is a reasonable
rendition of the underlying physics.

Fig. 14.6 In the BCS Hamiltonian, the matrix Vi - acts attractively on pairs of electrons within
wp of the Fermi surface. Provided the repulsive interaction at higher energies is not
too large, a superconducting instability results.

14.3.1 Mean Field description of the condensate

operator vanish:(x;¢’_x;)" = 0 (n > 1). This remarkable coherent state mixes statesféreint particle

number, giving rise to a state offediagonal long range order in which The key consequence ofEhe BCS model, is the developmentatfeavgith df-diagonal long-range order (See
12.4.2). The pair operatdk is extensive, and in a superconducting state its expentaéiue is proportional
(WecslC-kiCtlecs) o . (14.44) to the volume of the systei) « V. The pair density
But what Hamilton.ia}n explli.citly gives rise to pairing? A elu:.ame from the (}ooper calculation, which . A=A = —@(& _ —gof ﬂﬂlkickr) (14.48)
showed that the pair instability only depends on the sdag@mplitudeVi k- = (kp|V[K},) between zero-momentum pairs \ lad<wp (27)°
BCS incorporated this feature into a model Hamiltonian: is an intensive property superconductors that has both afitace|A| anda phasep. It is this quantity that
plays the role of an order parameter, setting the size ofdiparythe excitation spectrum, and giving rise to
the emergent phase variable whose rigidity furnishes sopeuctivity.
H= Z €0 C ko Cho — Z Vi €1 € k1 Gt Gy (14.45) Like the pressure in a gas, the order paramateran emergent many body property. Just as fluctuations
ko Kk’ in pressurésP?) ~ O(1/V) become negligible in the thermodynamic limit, fluctuaganA can be similarly
BCS Hamiltonian ignored. Of course, the reasoning needs to be refined to grasma quantum variable, formally requiring a
path-integral approach. We will see that the act®jnA] associated with a small fluctuation inabout the
In the universe of possible superconductors and superfitiidsnteractiorVy - can take a wide variety of equilibrium valuesA = A — Aq scales extensively in volum&[sA] ~ V x 6A? so that the corresonding
symmetries, but in its s-wave manifestation, it is simplyisotropic attraction that develops within a narrow distribution function can be expanded as a Gaussian
energy shell of electrons within a Debye energy of the Feurfase,wp (Fig. 14.6) SA2
PLA] o« €S0 ~ ex 7W]’ (14.49)

Vi :{ GV (e < wo) (14.46)

0 (otherwise) which is exquisitely peaked about its average, with vagaia?) o« 1/V, justifying a mean-field treatment
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Let us now expand the BCS interaction in powers of the flumnatperatoBA = A — (A),
o) o)
— —_——
_BptA = AA+ AT AA Qoo
VAA= DAL ATA LV ToATOA. (14.50)

Now the first three terms are extensive in volume, but si@#€sAy ~ O(V) the last term is intensive
O(1), and can be neglected in the thermodynamic limit. Welsfartly see how this same decoupling
is accomplished in a path integral using a Hubbard Straiehadvansformation. The resulting mean-field
Hamiltonian for BCS theory is then

v - . V-
Huer = D acioCio + Y [ACk G + CiCl i A] + i (14.51)
ko k

BCS Theory: Mean Field Hamiltonian

in which A needs to be determined self-consistently by minimizingftee energy. Notice how thefle
diagonal terms associated with the pair condensate caeskagls to interconvert into holes with the same
momentum and spin, a kind of scattering called “Andreevtedag™. In making this transformation, charge
2eis transferred into the electron condensate.

14.4 Physical Picture of BCS Theory: Pairs as spins
I ——

The pairing terms in the BCS mean-field Hamiltonian (14.51)

Hp(k) = (Zc_klckT + c*ch*_klA) (14.52)

can be thought of in two ways: we can regimklcm as a term that converts two particles into a condensed
pair;

e +e = Pait

Pair creation : (14.53)

alternatively, by writingc_x; = h'y; as a hole creation operatdtip(k) = (h*KTE)ckT + H.c describes the
scattering of an electron into a condensed pair (repredente\) and a hole, a process called “Andreev
reflection”

e = Pai +h*

Andreev reflection : (14.54)

While the first process builds the condensate, the secondsrpiadicle and holes. Later, we will denote
Andreev scattering process by a Feynman diagram

2 Andreev noticed that although the momentum of the hole is theesas the incoming electron, its group velocity(-e k) =
Vk(-e) = —Vke, is reversed. Andreev reasoned that such scattering ahtéeaice of a superconductor leads to non-specular
reflection of electrons, which scatter back as holes movighdropposite direction to incoming electrons.
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electron hole

> LV <
> x <

kw A

-k, -w

Andreev reflection dfers from conventional reflection in two ways

- it “reflects”electrons into holes, reversing their velocigMe_x = —Ve).
- yetit conservespin, momentunandcurrent, for a hole in the statek, |) has spin up, momentusk and
carries a current = (—€) X (—Vex) = eVie.

Now the particle and hole dispersions are given by

particle: &«

hole: (14.55)

—ex
as denoted by the blue and red lines in Fig. 14.7. These tvpexdi®n lines cross at the Fermi surface so
that when Andreev scattering develops, the mixing betwégttrens and holes removes the Fermi surface
degeneracy giving rise to a gap and a dispersion which, wehdlrtly show takes the form

Ex = € + AP

as illustrated in Fig. 14.7. The quasiparticle operatoms hecome linear combinations of electron and hole
states with corresponding quasiparticle operators

(14.56)

a'ke = UcC'ko + SINE)Cokor- (14.57)

An elegant way to understand superconductivity is by anablith magnetism. We now introduce Nambu'’s
spinor formulation of BCS theory which we’ll employ to exgothe beautiful magnetic analogy between
pairs and spins discovered by Yoichiro Nambu[16] workinghe& University of Chicago and Philip W.
Anderson[17] at AT&T Bell Labs. The more precise magnetialague of a superconductor is the anti-
ferromagnet, for both superconductivity and antiferronetgm involve an order parameter which (unlike
ferromagnetism), does nobmmute with the Hamiltonian. Superconductivity involeesanalagous quantity
to spin we will call “isospin” which describes orientatioimscharge space. The pairing fieddcan then be
regarded as a transverse field.

14.4.1 Nambu Spinors

To bring out this aspect of the physics, it is convenient tooiiuce the charge analog of the electron spinor,
the “Nambu spinor”, defined as

electron,

_[ G
Y= (cf,u)’ hole. (14.58)
with the corresponding Hermitian conjugate
v = (i c). (14.59)
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>

Fig. 14.7 lllustrating the excitation spectrum of a superconductor. Andreev scattering resulting

scattering mixes the electron excitation spectrum (blue) with the hole excitation
spectrum (red) producing the gap A in the quasiparticle excitation spectrum. The
quasiparticles at the Fermi momentum are linear combinations of electrons and holes,
with an indefinite charge.

Nambu spinors behave like conventional electron fields waiitlalgebra
{Wkar ¥ kop} = Gapdicis

but instead of “up” and “down” electrons, they describe &tmts and holes. These spinors enable us to unify
the kinetic and pairing energy terms into a singéetorfield, analagous to a magnetic field that acts in isospin
space.

The kinetic energy can be written as

¢ _ t (et & 0| cq
Z &(C'kCk — CkyC gy +1) = (C K1s kal) [0 —ekJ (5«1) + Zk: €

k

(14.60)

(14.61)

where the sign-reversal in the lower component derives fratitommuting the down-spin electron opera-
tors. The energy-« is the energy to create a hole. We will drop the constant nedeaiterm)’ e. We can
now combine the kinetic and pairing terms into a single matri

& D[R + e wia] = )€ 4)(2)

ot €k A1*iA2
=Yk IAl +iA; —€ Yk
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= ¢ leTs + Aty + AgTolyi, (14.62)
where we denotd = Ay —iA,, A= A1 +iA; and we have introduced the “isospin” matrices
S 0 1f [0 -] 1 O
T—(Tl,Tz,Ts)—( 1 0’[i 0 ,[0 1 ) (14.63)

By convention the symbat is used to delineate a Pauli matrix in charge space, fromresspacting in spin
space. Putting this all together, the mean-field Hamiltoi@n now be re-written
> V -
H= Z“’lk (R - D) + —AA (14.64)
M %

where

R = (Ar. Az, &) (14.65)

plays the role of a “field” acting in isospin space.

14.4.2 Anderson’s domain wall interpretation of BCS theory.

B [By|
a)
Tie
k
ke
b) B Byl
K \ /
k
ke

Fig. 14.8 Showing the domain wall configuration of the isospin 7 and direction of pairing field

December 1, 2011

fix near the Fermi momentum. (a) A normal metal, in which the Weiss field By
vanishes linearly at the Fermi energy and (b) a superconductor in which the Weiss
field remains finite at the Fermi energy, giving rise to a gap in the excitation spectrum.

Anderson noted that the isospin operatofgzy, have the commutation algebra of spif2bperators
acting in charge space. The z-component of the isospin is

T3k = lﬁtkTgl//k = (CTkTCkT - c,klciki) = (nkT + Nk — 1). (14.66)
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so the “up” and “down” states correspond to the doubly ocetigind empty pair state,
=411 M) = [2)=CC 0)
14.67
t=-1: [l = [0). ( )

By contrast, the transverse components of the isospinieggair creation and annihilation:

P =yl = e g + CgCg

Fox = T2l = —i(CTk1C iy — CkyCip)- (14.68)

In a normal metal, the isospin points “up” in the occupiedestdelow the Fermi surface, and “down” in
the empty states above the Fermi surface (Fig. 14.8 (a)). $ilooe the Hamiltonian isl = ¥ o/ (i - D),
the quantity

§k = *HK = *(Al, Az, Sk) (1469)

is thus a momentum-dependent Weiss field, setting a natuaaltization axis for the electrons at momentum
k: in the ground-state, the fermion isospins line up with fre&d. In the normal state, the natural isospin
quantization axis is the charge or “z-axis”, but in the sapaductor, the presence of a pairing condensate
tips the quantization axis, mixing particle and hole stgfég. 14.8 (b)).

normal
a) gap |By|
—o—o—o—o—o—l—o—ci(
k
kr
ke
b) [B|
Boguilubov gp
B /o« \\\\\_
b=
k
kr

Fig. 14.9 lllustrating how the excitation of quasiparticle pairs corresponds to a an “isospin flip”,

which forms a pair of up and down quasiparticles with energy 2|B|. (a) Quasiparticle
pair formation in the normal state where the quasiparticle spectrum is gapless (b)
formation of a “Boguilubov” quasiparticle pair in the superconducting state costswhere
the excitation spectrum is gapped

With this analogy one can now identify the reversal of anpgosut of its ground-state configuration as
the creation of a pair of quasiparticles “above” the cond@nsSince this costs an energﬁ@, the magnitude
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of the Weiss field

Ex = Bkl = /€ + A2 = quasiparticle energy

must correspond to the energy of a single quasiparticle.rmetal A = 0), the Weiss field vanishes at the
Fermi surface so it costs no energy to create a quasipaittiete, but in a superconductor the Weiss field has
magnitudgA| so the quasiparticle spectrum is now gapped (Fig. 14.9 (b)).
Let us writeBy, = —Exf, where the unit vector
fo= (B A2 &
S ===

points upwards far above the Fermi surface, and downwardsefzeath it. In a normal metaly {see Fig.
14.8) reverses at the Fermi surface forming a sharp “Iskej-tomain wall, but in a superconductor, the *
vector is is aligned at an anglgo theZaxis, where

(14.70)

(14.71)

€k
Ccostk = B
k

(14.72)
This angle rotates continuously as one passes through the &eergy, so the domain wall is now spread out
over an energy range of ord&r forming a kind of “Bloch” domain wall in isospin space as simoin figure
(14.8).

In the ground-state each isospin will align parallel to tieédfBy, = —Ejfi, i.e.

W'k T) = —fy = —(sinbk, 0, costy), (14.73)

where we have taken the liberty of chosing the phasg &b thatA, = 0. In a normal ground-state (= 0)
the isospin aligns along the z-axigac) = (N; + Ny — 1) = sgnke —K), but in a superconductor, the isospin
quantized axis is rotated through an angleso that the z-component of the isospin is

€Kk

e+ A?

which smears the occupancy around the Fermi surface, Wiglgansverse isospon component, representing
the pairing, is now finite,

(T3k> = <nkT + Nk — l> =- COSGk =- (1474)

. A
(t1) = ((€rct iy + C iy Cp)) = — SN = — \/27 (14.75)
€+ A?
Now since we have choseky = 0, (t) = —i{(c'kC' x| — C_k k1)) = O so it follows that(c_y;Ck) =

—% sindk. Imposing the self-consistency conditian= —% Yk{C_k Ckp) (14.48) one then obtains the “BCS
gap equation”

govo 1 . d3k A
A=-= = Sinf = gof —— (14.76)
v ; 2 oo @ [ p

BCS Gap Equation (T = 0)

Since the momentum sum is restricted to a harrow region d¥¢neni surface, one can replace the momentum

458

233



(©2011 Piers Coleman Chapter 14.

sum by an energy integral, to obtain

D 1 . . 1{WD ZU)D
1=goN = —gN h1<—): N(0) In| 222 14.77
WNO) | ez = QNO@ s (S2 )~ aiN(O)In| 3 (14.77)
so in the superconducting ground-state, the BCS gap is iyen
A = 2wpe BT (14.78)

Remarks

o Note the disappearance of the factor of two in the exponextappeared in Cooper’s original calculation
(14.22).

e The magnetic analogy has many intriguing consequencescéménmediately see that like a magnet,
there must be collective pair excitations, in which the jiBos fluctuate about their ground-state orien-
tation. Like magnons, these excitations form quantizetective modes. In a neutral superconductor,
this leads to a gapless “sound” (Boguilubov or Goldstonejlenout in a charged superconductor, the
condensate phase mixes with the electromagnetic vectenpltvia the Anderson-Higg's mechanism
(see 12.6), to produce the massive photon responsibleddvidissner gect.

14.4.3 The BCS ground-state

In the vacuumO) electron isospin operators all point “down3c = —1. To construct the ground state in
which the isospins are aligned with the Weiss field, we neecbtwstruct a state in which each isospin is
rotated relative to the vacuum. This is done by rotating $lospin at each momentukthrough an anglé,
about they axis, as follows

Ok

.6 .. 6
160 = exp|—i B ryn | 0 = (cos% —isin s ryunc) | o

2 6
= coszk\ ) - smEk\ M) (14.79)
The ground-state is a product of these isospin states
_ _ Hk . Gk + i
IBCS) = U 16k) = U (cosi +sin Ec —kIC kT)lO), (14.80)

where we have absorbed the minus sign by anticommuting theslectron operators. Following BCS, the
cosfficients co§% ) and sin(% ) are labelleds, and . respectively, writing

IBCS) = [ [16 = | | (uk + w1 ¢iq) 0)
k k

(14.81)

where

(14.82)

Remark
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e Dropping the normalization, the BCS wavefunction can beiteem as a coherent state(14.42)

> ochiac i |10), (14.83)
k

IBCS) = [ ] (1+ écirc 1) 10)) = exp
k

wheregy = —% determines the Cooper pair wavefunction.

Uy

We can thus expand the exponential in (14.83) as a coherenvfpair-states
1 1
BCS) = ) —(ANN0y= ) —=In).

whereln) = T%(A"’)WO} is a state containing pairs.

(14.84)

The BCS wavefunction breaks gauge invariance, becausaadtigwvariant under gauge transformations
cks — €7cy, of the electron operators,

) g2n
_ i \ F -
IBCS) — o) = U(1+ 9, Cl,)I0) = Z N In). (14.85)
Under this transformation, the order parametet —go/V Y (@|c_k) Crla), acquires a phaseé — Al
On the other hand, the energy of the BCS state is unchangeddoyge transformation, so the statesmust
form a family of degenerate broken symmetry states.
The action of the number operafdron this state may be represented ascéntial with respect to phase,

Nla) = Z %mézwm = —i%\a). (14.86)
so that
N=oid (14.87)
da

In this way, we see that the particle number is the generdtgawge transformations. Moreover, the phase
of the order parameter is conjugate to the number operatd¥][= i, and like position and momentum, or
energy and time, the two variables therefore obey an unogrtarinciple

AaeAN> 1. (14.88)

Just as a macroscopic object with a precise position has-defihed momentum, a pair condensate with a
sharply defined phase (relative to other condensates) igsigalhstate of matter - a macroscopic Suinger
cat state with an ill-defined particle number

For the moment we're ignoring the charge of the electronphge we restore it, we will have to keep track
of the vector potential, which also changes under gaugsftremations.

14.5 Quasiparticle excitations in BCS Theory
|

Let us now construct the quasiparticles of the BCS HamittonRecall that for any one-particle Hamiltonian
H = y,h,ss, we can transform to an energy basis where the operaters y5(5k) diagonalizeH =
>« Exa’kax. Now the(glk) are the eigenvectors b, since(aHIK) = Ex(alk) = h.s(BIK), so to construct
quasiparticle operators we must project the particle dpes@nto the eigenvectors bfs, a'x = ¢’ 4(8IK).
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The Nambu Hamiltonian,

hk = T3+ A1T1 + Ao = Ekﬁk -7 (1489)
has two eigenvectors with isospin quantized parallel atiparallel tori, 3
,\'ﬁuki Uk ,\'ﬂ—V; 7_—V;
el e

and corresponding energieg, = + /2 + |Ac|2. We can combine (14.90) into a single equation,
(ﬁk . ?)Uk = UkT3 (1491)

wsz’%)
Vi U

is the unitary matrix formed from the eigenvectorshpf If we now projecty’ onto the eigenvectors of,
we obtain the quasiparticle operators for the BCS Hamidtoni

where

(14.92)

+ Uk
a'ky =yl - (Vk) = Cliqlc + Cgg Vi
_V*
ayg = lﬂtk . ( U*k) = c,klu;; = CtkTV; (14.93)
K

Boguilubov transformatio|

This transformation, mixing particles and holes, is namgdrats inventor, Nikolay Boguilubov. If one
takes the complex conjugate of the quasihole operator aretses the momentum, one obtagig;, =
'y Uk — C_k1Vk, which defines the spin down quasiparticle. The generalesspon for the spin up and down
quasiparticles can be written

ke = iU + SYNET)Ck—o Vi (14.94)
Let us combine the two expressions (14.93) into a single Nespmora'y,
Uk
—
t o (al R e A N
a'k = @'k aky) =¥k K= Uk (14.95)
Vi uk
Taking the Hermitian conjugatey = U gy thenyy = Ugay, sinceUUT = 1. Using (14.91),
UkExra
¥ TR 1
¥ ke = @' U 'hUk = ' Exraa (14.96)
so that as expected,
(14.97)

H= Z a'kExrsay
k
3 Here complex conjugation is required to ensure that the comgitenvectors are orthogonal when the gap is complex.
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is diagonal in the quasiparticle basis. Written out explicit

H= Z Ex(@'k1aur — axa k) (14.98)
k

If we rewrite the Hamiltonian in the form

H= Z Ex(@'kr@'ko —
P

1
3

we can interpret the excitation spectrum in terms of quasighes of energyE, = ,/€Z + |A]2 and a ground
state energy
By=-) Ec
K
Now if the density of Boguilubov quasiparticles per spifNgE), then since the number of quasiparticles

states is conservellls(E)dE = Nn(0)d|e| (whereN,(0) = 2N(0) is the quasiparticle density of states in the
normal state). It follows that

(14.99)

dlel

. B B E
N;(E) = Na(O) g = NH(O)(TM\Z]Q(E - 1)) (14.100)

where we have writtes, = Eﬁ —|AJ? to obtaindec /dEx = Ex/ Eﬁ — |AJ2. The theta function describes
the absence of states in the gap (see Fig. 14.10 (a) ). NatigdHe Andreev scattering causes states to pile
up in a square-root singularity above the gap - this featioalled a “coherence peak”.

One of the most direct vindications of BCS theory derivesfitanneling measurements of the excitation
spectrum. in which the fierential tunneling conductance is proportional to the gpaaicle density of states:

dl eV

3y = Ns(eV) = No(0) Aze(evf A]) (14.101)

Vev? -
The first observation of such tunneling spectra in supenectiit aluminium in 1960 by Ivar Giaever[18]
provided the first direct confirmation of the energy gap presdi by BCS theory (see Fig. 14.10 (b) ).

Example 14.2: Show that the the BCS ground-state is the vacuum for the Boguilubov quisies,
i.e that the destruction operatais, annihilate the BCS ground-state.

Solution: One way to confirm this is to directly construct the quasiparticle quasipargcieum,|y)
by repeatedly applying the pair destruction operators to the electronmasaithat if

W =[ [axaqio

k
= aly) =0, (14.102)
for all k, since the square of a destruction operator is zerfy;)ss the quasiparticle vacuum. Using the
form (14.82),
3 = UkCiq + VkC kg
@k = UkCiy — VkCisp, (14.103)
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BCS Theory 25 Sn/Mg0/Mg
] A=0.6meV

Giaever, Hart, Megerle (1962)

Ns(E)/Nn(0)

(41 18V (L 18V

0.0 05 1.0 15 20 0 15 20

Contrasting (a) the quasiparticle density of states with (b) measured tunneling density
of states in Sn-MgO-Mg superconducting normal tunnel junctions after Giaever, Hart
and Megerle[19]. In practice, finite temperature, disorder, variations in the gap size
around the Fermi surface lead and “strong-coupling” corrections to BCS theory lead to
small deviations from the ideal ground-state BCS density of states.

where for convenience, we assume thiaand v are real, we find

L — |
[ Taaalo) = [ [ e = Vi) (Weier + viec ™ )0)
k k
= l—I(UkaQmCT—ki — (Vi)’CTirc’ )10y

k
= Ty x [ Jw + v a0y o BCS) (14.104)
k k
where terms involving the destruction operator acting on the vacuum vamisare omitted. Apart from
normalization, this is the BCS ground-state, confirming that the Boguilubasiparticle operators are

the unique operators that annihilate the BCS ground state.
Example 14.3:

(@) Ifthe Boguilubov quasiparticke’; = ¢y;Ux + C_i Vk@_x;, then starting with the equation of motion
of the Boguilubov quasiparticle,

.. da
[H.a'] = —‘;T” = Eca'yq, (14.105)

show tha(&::) must be an eigenvector bf that satisfies
h(U) = (% A )(%) = g (Y% 14.106
Slvi) T\A —a) i) T TR v (14.106)
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(b) By solving the eigenvalue problem assuming the gap is real, show that

u = % -
€2+ A?
vlli & (14.107)

Solution:
(a) We begin by writing

o'y = ¢ (\%) (14.108)

wherey’y = (i, C_;) is the Nambu spinor. Sincéi[ ¢] = ' h,, it follows that

[H,a"] = 'y h, (5:) (14.109)

Comparing (14.105) and (14.109), we see that the s;(tr@ris an eigenvector dfy,

Ue) (e A ) (u) _ Uy
n)-(5 )= s
(b) Taking the determinant of the eigenvalue equationpget[E,1] = EZ — € — A?>=0, and imposing
the condition thaEy > 0, we obtainE, = /e + A,
Expanding the eigenvalue equation (14.110),

(Ex — eux = Avg,
Aty = (Ex + &)Vk. (14.111)
Multiplying these two equations, we obtaif(— e)u? = (Ex + &)V2, or (U2 + VZ) = & =
Ex(u2 — v2), sinceu? + vZ = 1. It follows thatu? — vZ = & /Ei. Combining this withug + vZ = 1,
we obtain the results given in ( 14.107 ).

14.6 Path integral formulation.
I ———

After our discussion of the physics, let us return to the ntatBxamine how the BCS mean-field theory
is succinctly formulated using path integrals. The appezgaf single pairing fieldé and A" in the BCS
Hamiltonian makes it particularly easy to apply path-in&gnethods. We begin by writing the problem as a
path integral

Z= f DT, e s (14.112)
where
B
7 9o -
S= f ko (07 + &)Ckor — = AA 14.113
A kZ; 0 + &dCo = y; ( )
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Here the conditioney| < wp is implicitly implied in all momentum sums. Next, we carrytahe Hubbard-
Stratonovich transformation, (see chapter 14),

_ — — V-

—gAA - AA+ AA + gTAA. (14.114)
0

where&(r) andA(r) are fluctuating complex fields. Inside the path integra shibstitution is formally exact,

but its real value lies in the static mean-field solution infshes for superconductivity. We then obtain

Z:fD[E,A,E,c]e’S

i _ — V.
S= f dr Z Cho (0 + 6)Cko + AA+ AA + —AA. (14.115)
0 o Yo
The Hamiltonian part of this expression can be compactlyrmetilated in terms of Nambu spinors, following
precisely the same steps used for the operator Hamiltom@transform the Berry phase term, we note that
since the Nambu spinors satisfy a conventional anticomtiutalgebra, they must have precisely the same
Berry phase term as conventional fermionsﬁarr Cko0:Ckor = fdnpka,w 4,
Putting this all together, the partition function and théatcan now be re-written

Z= fD[Z,A,J,w]e’S

— vV —
S= d 9. +h —AA}.
f:’ T{zk: Yi(@r + by + % }

(14.117)

wherehy, = et3 + A17y + ApTa, With A = Ay — A, A = A; +iA,. Since the action is explicitly quadratic in
the Fermi fields, we can carry out the Gaussian integral oF#reni fields to obtain

z= f DIA, AleSerlaa)

eS8 = [ detp, + hy (e 6 (14.118)
k

for the dfective action, where we have separated the fermionic detanhinto a product over each decou-
pled momentum. Thus

Seti[AA] = Vfd'r% + ZTrIn(ﬁT +hy). (14.119)
o Y %

where we have replaced In det Tr In. This is the action of electrons moving intiae-dependerpairing
field A(t).

4 We can confirm this result by anticommuting the down spin Grassrirathe Berry phase, then integrating by parts:

-0
_ _ _ _ —— B _
se=Y f(f dr [ der - Orc)Eaa] = ) f: dr|Srdro + cdiS ~ o) = fo dr [xcdrv] . (14.116)
K K K
The anti-periodicity of the Grassman fields in imaginary timeses the total derivative to vanish.
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14.6.1 Mean Field Theory as a saddle point of the path integral

Although we can only explicitly calculatBes+ in static configurations of the pair field, in BCS theory it is
preciselythese configurations that saturate the path integral irhgrertodynamic limit{ — o). To see this
consider the path integral

zZ= f DIA, AleSer (Al (14.120)

Every term in the fective action is extensive in the volurie so if we find a static configuration df = A,
which minimizesSett = VSp, S0 thatsSet1/5A = 0, fluctuationsyA around this configuration will cost a free
energy that is of orde®(V), i.e. the amplitude for a small fluctuation is given by

&S = e VS+0Vxiand) (14.121)

The appearance &f in the codficient of this Gaussian distribution implies the variancemfll fluctuations
around the minimum will be of ordesA?) ~ O(1/V), so that to a good approximation,

Seri[Ao,Ad]

Z~Zges=€ (14.122)

This is why the mean-field approximation to the path integgassentially exact for the BCS model. Note
that we can also expand th#extive action as a Gaussian path integral

ZBcstD[l;»‘ﬂ]e_SMFT

B _ ,———-/hk\-———\ V —
Suer = f Ard S Gie0r + @t + Arrr + Do + B (14.123)
0 M Yo

in which the saddle point solution©@(z) = A = A; — iA; is assumed to be static. Since this is a Gaussian
integral, we can immediately carry out the the integral tmob

Zpcs = H det@; + hy) exp[—g&AJ
K

Itis far easier to work in Fourier space, writing the Nambidfien terms of their Fourier components

1 ;
(®) = g 2 e (14.124)
LS
In this basis,
8, +h = [~iwy + h]. (14.125)
and the path integral is now diagonal in momentum and frequen
Zgcs = fl_[d([jkndlpkne’SMFT[lljknvdlkn]
kn _
» Tl AA
Swetlin vial = D dhel-icn +hbia + V. (14.126)
kn

Remarks
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e The distribution functiorP[y] for the Fermion fields is Gaussian,

Plukn] ~ €5 o expl-tn(=iwn + h)kn] (14.127)
so that the amplitude of fluctuations (see 13.136) is given by
Wrnthen) = =G (K, iwn) = [-iwn + ] (14.128)

which is the electron Green’s function in the supercondutt@ shall study this in the next section.
e We can now evaluate the determinant

detld, + h] = ﬂ detf-iwn +h,] = ﬂ[wﬁ + & +1A7] (14.129)
n n
With these results, we can fully evaluate the partition fiorc
2, 2 P
Zscs = ﬂ[wn +&+A xe w =S (14.130)
n
and the fective action is then
Fert  Sett T > 2 2, 1A
v =B _—V;In[wn+ek+|A|]+a (14.131)

Free energy; BCS pair condensate

This is the mean-field free-energy for the BCS model. Notiee dppearance of the quasiparticle energy
Ex = ,lef +|Al? inside the logarithm. MinimizingFes ¢ w.r.tEgives us the BCS gap equations

1 dFett 1 A A
il N -+ == 14.132
VoA v % WB+E Qo ( )
or
—=— % —— BCS Gap equation
% BV ; R E ped
If we now convert the Matsubara sum to a contour integral, btaio
1 1 1 1
an:w%‘f’EE_ EZ 7()27EK[Z—EK_Z+E|<
R tanhpEG2)
_ “TCE) — - annbE/2)
= L)~ TCB) 2 = 5, (14.133)

where the integral runs anticlockwise around the poles=atEy. Thus the gap equation can be rewritten as
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BCS Gap Equation Il

1_ f dk [W] (14.134)

9 Jigrewn (21)° 2By

where we have reinstated the implicit energy shell restrid| < wp. If we approximate the density of
states by a consta(0) per spin over the narrow shell of states around the Feunfese, we may replace
the momentum sum by an energy integral so that

tanh Ve? + A2/2)
QoN(O) f [ V2 + A2 ] (14.135)

At absolute zero, the hyperbolic tangent becomes equalitp. Uinwe subtract this equation from its zero
temperature value, it becomes

fo""df[tanhﬁm/Z)_ 1 ]_ (14.136)

Ve2 + A2 [e2 +A2 N

whereAp = A(T = 0) is the zero temperature gap. Since the argument of thgramd now rapidly converges
to zero at high energies, we can set the upper limit of integrdo zero. This is a useful form for the nu-
merical evaluation of the temperature dependence of theRigy§14.11) contrasts the BCS prediction of the
temperature dependent gap obtained from (14.136), withapeneasured from tunneling in lead.

Example 14.4:
Carry out the Matsubara sum in (14.131 ) to derive a an explicit fomthi® Free energy of the super-
conducting condensate in terms of the quasiparticle excitation energies.

d*k 1A
Fett = -2TV [I 2 coshBEy/2 V— 14.137,
an=2rv [ s [mecoshg/2] + viEE (14137)
Solution:
Using the contour integration method, we can rewrite (14.131) as
Ferr = —Zé—f(z)ln[zz E2] +v (14.138)

where the integral runs anti-clockwise around the poles of the Fermiifum The logarithm inside the
integral can be split up into two terms

In[Z - E4] - In[Ex — 2 + In[-Ex - 2] (14.139)
which we immediately recognize as the contributions from fermions withgéee£E,, so that the
result of carrying out the contour integral, is

Ferr = —va (2”)3[In[1 + 5] +In[1 + e“Ek]] + V

AP

2TV [ » (Zﬂ)a[ln[ZCoshﬁEk/Z)]]+V— (14.140)
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F o= = Exp.

— ---BCS

a(m)/a(0)

t=T/T,

=o)Ll Comparing the temperature dependence of the gap on the reduced temperature T/T,

with the gap measured by tunneling in superconducting lead, after [20].

14.6.2 Computing A and T¢

To computeT, we shall take the Matsubara form of the gap equation (14,1@iich we rewrite replacing
the sum over momenta by an integral near the Fermi energy,qiag% k= N(O)fde we get

,—TN(O)Zf w2+ sl 3 w2+A2 (14.141)

Jwnl<wp

where we have extended the limits of integration over enegpfinity. By carrying out the integral over
energy first, we are forced to impose the cfitam the Matsubara frequencies.
If we now takeT — 0 in this expression, we may replace

T Z T Z Aon [ (14.142)

so that at zero temperature and Bet 0, we obtain

(14.143)

1= gN(O)f 7gN(O)[S|nh( )] gN(0)|n(2“'D)

where we have assumgil(0) is small, so thai)D/A >> 1. We may now solve for the zero temperature gap,
to obtain

A = 2wpe T (14.144)
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This recovers the form of the gap first derived in section 24.4
To calculate the transition temperature, we note that jelstbthe transition temperature, the gap becomes
infinitesimally small, so that(T;) = 0. Substituting this into (14.142), we obtain

1 1 &1 1
@@‘”°ZWJVZ“EXE‘%+W) (14.145)

Jwnl<wp n=0

where we have imposed the limit an, by subtracting  an identical term, withv, — wp + wp. Simplifying
this expression gives

1 (1 1
—— == 14.146
aNO) n;,[m; wn+%+§—$€] (14.146)

At this point we can use an extremely useful identity of thgadima function/(2) = §; 4 nr(z),

(1 1
w(z)__c_;(prn_ 1+ n) (14.147)
whereC = 0.577 is the Euler constant, so that
~In(wp/(2Tc))
1 wDe‘“’(%)
_ =In 14.14:
T = u(g + ) U = ( el | (14.148)
We we have approximate#(z) ~ In(2) for large|Z. Thus,
~1.13
———
e (/2 1
c= ( o )wDe BN (14.149)

Notice that the details of the way we introduced the diitrtio the sums fiects both the gap in (14.144)
and the transition temperature in (14.149). However, thie td twice the gap tdc,

ZTA = 8re’(®) ~ 353 (14.150)
c

is universafor BCS superconductors, because the details of thef€eracel out of this ratio. Experiments
confirm that this ratio of gap to transition is indeed obsérivephonon mediated superconductors.

14.7 The Nambu Gor’kov Greens function
|

To describe the propagation of electrons and the Andreetesicey between electron and hole requires a
matrix Greens function, function formed from two Nambu sp# This objuect, written

Gap(K. ) = ~(Tua (D) s (0)), (14.151)
is called the Nambu Gor’kov Greens function. Written out mexplicitly, it takes the form
Cr(7) ) o >
kK, 7)=—(T[~ ® (C'k1(0),cx (0
6cr) == (T(£10 ) o €10 c.a0)
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| (Toq@)c () (Taq(r)er, (0)
=TT @) (TE Mo )] (14.152)
The unusual fi-diagonal componenents
F(k.7) = <(Taq(0)ci(0),  Flk,7) = ~(T¢ 4 (1)C"1 (O)). (14.153)

in G(k, 7) describe the amplitude for an electron to convert to a heleAandreev scattersfbthe condensate.
These Green’s functions are named Gor’kov Greens functions

Now from (13.134) and (14.126) the Green function is giverth®/inverse of the Gaussian actigh=
(8, —H)™%, or in Matsubara space

1

Glkiwn) =liwn =™ = gy

(14.154)
where we use the notatigh = M~ to denote the inverse of the matii. Now sinceh, = er3+A171+A272
(14.89) is a sum of Pauli matrices, its square is diagdifak €2+A2+A3 = E2 and thusiwn—h)(iwn+hy) =
(iwn)? - EZ. Using the matrix identitys = Ags, we may then write

BA’

. 1 (iwn + hy)
K) = (iwn + )= - = 14.155
G = Ceon M G R G + 1)~ [(ion)? ~ E7] (14159

Written out explicitly, this is
. 1 iwn + & A

Kk, i = —_— - . 14.156
o= s R un—a ( )

whereEy = leﬁ + A2 is the quasiparticle energy.
To gain insight, let obtain the same results diagrammayicahdreev scattering converts a particle into a
hole, which we denote by the Feynman scattering vertices

— K A —K —
AC G = —>—KR—<— A
-k A k

ATyl = —<—>%——>— A (14.157)

The “bare” propagators for the electron and hole are theotialgcomponents of the bare Nambu propagator

1 1
GK=——"—= l'“”“k 1 J (14.158)
- lwn — €T3 Tonter
We denote these two components by the diagrams
K 1
——>—=Gg(k) =-
—k lwn — &
———<—— = —Gy(-K) = - (14.159)
lwn + €

(The minus sign in the second term is because we have comrorgation and annihilation operators to
construct the hole propagator. ) The Feynman diagrams éocdhventional propagator are given by

k —k Kk k -k k -k k
-y + +

.. (14.160)
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involving an even number of Andreev reflections. This enabie to identify a “self-energy” term that de-
scribes the Andreev scatter'l(ngfa hole-state,

_k 2
— : Y = T(K) = —4—e x - A
lwn + €

(14.161)
We may then redraw the propagator as
60 = —— + =T D+ T +
1 1 iwn + e
=: — = = — . (14.162)
iwn — & — X(iwn) iwn*fk*% (iwn)? - EZ
In a similar way, the anomalous propagator is given by
-k k -k k -k k
= + +
R SRV (14.163)
so that
A 1 A
F(K) = - — = - (14.164)
iwn + & jwy — g — iWIALk (iwn)? — EE
Example 14.5:

Decompose the Nambu Gor'kov Greens function in terms of its quasilegpidtes, and show that that
the diagonal part can be written

e i
G(K) = - - 5 14.165,
® iwn— B¢ iwn + Ex ( )
Solution:
To carry out this decomposition, it is convenient to introduce the projecti@nators
P0=2A+A7,  P()=3a-09), (14.166)
which satisfyP? = P,, P? = P_andP, + P_ = 1, and furthermore,
P.(K)(fk - 7) = Pu(k),  P-(K)(fi - 7) = —P-(k), (14.167)
so that these operators conveniently project the isospin onto the diregtipns
We can use the projector. (k) to project the Nambu propagator as follows
1
G=CP P —E R
1
-p, o P e (14.168)

we can interpret these two terms as the “quasiparticle” and “quasi-haies pf the Nambu propagator.
If we explicitly expand out this expression, using

. e A A
(£ L B 14.1
8 (Ek,Ek,Ek), (14.169)
then
1 & A
Pi:—;:[% ZE;] (14.170)
2= & =
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whereA = A; - iA,, we find that the diagonal part of the Green’s function is given by
1 €& 1 1 € 1
K ==[|1+= ===
e 2(+Ek)imn—Ek+2( Ek)iwn+Ek
U % @4.171)
= - + - . .
iwg — Bk iwn + Ex

confirming thatu, and \ determine the overlap between the electron and the quasiparticle and quasi-
hole, respectively.

Example 14.6: The semiconductor analogy

One useful way to regard superconductors, is via the “semicondantdogy”, in which the quasi-
particles are treated like the positive and negative energy excitationseshizanductor. Divide the
Brillouin zone up into two equal halves, and redefine a set of positiveagdtive energy quasiparticle
operators according to

alios aly,, 1

o T } (ke 5B2). (14.172)

(a) Rewrite the BCS Hamiltonian in terms of these new operators, and shothéhexcitation spectrum
can be interpreted in terms of an empty band of positive energy excitatimha filled band of
negative energy excitations.

(b) Show that the BCS ground-state wavefunction can be regardedilezissea of negative energy
quasiparticle states and an empty sea of positive energy quasiparticte state

Solution:
(a) Dividing the Brillouin zone into two halves, the BCS Hamiltonian can be igem

H= Z Ev (@ — aa ) + Z (@i — a@lkr)

ke1BZ keiBZ

= Z Ex(a' koo — 8 ks k7)
ke1BZo

= Z E(@ ks ks — @k o) (14.173)
ke3BZo

corresponding to two bands of positive and negative energy quasiesr
(b) Following example (15.2), the BCS ground-state can be written (umtoraalization) as

Wecs) = ), akiaql0). (14.174)
k
Factoring the product into the two halves of the Brillouin zone, we may rethigeas

[Wecs) = l_[ (& a1)(@-ki8«1)I0)
ke3BZ

empty sea of positive energy qp
———

= [] e [] o'l0) (14.175)

keiBZo ke3BZo
—_—
filled sea of negative energy qp

corresponding to an empty sea of positive energy quasiparticles dtetiaéa of negative energy
quasiparticles. (See Fig. 14.12) .
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Filed sea

negative energy quasiparticles

o2l Semiconductor analogy for BCS theory (See example 15.6). The BCS ground-state

December 1, 2011

can be regarded as a filled sea of negative energy quasiparticles. Positive energy
excitations are created by adding positive quasiparticles a . |gcs or or removing
negative energy quasiparticles, a,—|[¥gcs -

14.7.1 Tunneling Density of states and Coherence factors

In a superconductor, the particle-hole mixing transforims ¢haracter of the quasiparticle, changing the
matrix elements for scattering, introducing terms we cabherence factors” into the physical response
functions. Thesefects produce dramatic features in the various spectrossopithe superconducting con-
densate.

Let us begin by calculating the tunneling density of statdsch probes the spectrum to add and remove
particles from the condensate. In a tunneling experimentifierential conductance is directly proportional
to the local spectral function,

:—\l/ o A(w)|w=ev- (14.176)

where
Aw) = Lim Z G(k. w — i6) (14.177)
%

The mixed particle-hole character of the quasipartiéle = ucc’y; + viC_x;, means that quasiparticles can
be created by adding or removing electrons from the condien$aking the decomposition of the Green’s
function in terms of its poles (14.171)
wte 1 €& 1 1 " 1
G(k,2) = =-(1+ = —|1- =
2=z e 2(+EJz—a+2( EJZ+&
ug Vi

= et (14.178)
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it follows that

1 )
AKK,w) = ;ImG(k, w —16) = UZs(w — Ex) + V26(w + Ex) (14.179)

The positive energy part of this expression correspondsegtocess of creating a quasiparticle by adding
an electron, while the negative energy part correspondset@rteation of a quasiparticle by adding a hole.
The amplitudes

Iul” = Kap : kelc ko lscs)
Vil? = Kap :korlc ko Wecs)?
describe the probability to create a quasiparticle thrabghaddition, or removal of an electron, respectively.

In this way, the tunneling density of states contains botjatiee and positive energy components.
Now we can sum over the momenta in (14.177), replacing theenéum sum by an integral over energy.

(14.180)

In thi case,
_ N(©) 0 w+e _ w
Aw) = T'qu ds(w_ié_)z_ez_ T N(0)Im N
2]
= N(O)\ﬁe(lwl -4) (14.181)

where we have used/A2 — (w — i6)? = i Vw? — A2sgng). Curiously, this result is identical (up to a factor

of one half derived from the energy average of the cohereaxterfs) with the quasiparticle density of states,
except that there is both a positive and negative energy onem to the spectrum. In “weakly coupled”

phonon-paired superconductors, such as Niobium, expetahtinneling spectra are in good accord with
BCS theory. In more strongly coupled electron phonon supetactors, wiggles develop in the spectrum
related to the detailed phonon spectrum.

Nb 335mK

dl/dV (au)

Sample Bias (mV)

Sl il Comparison between the experimental tunneling spectrum and the BCS spectrum,

after Eric Hudson et al [21]
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Name A Ak, k) 6  Coherence factor

Density Py SapOk—(k'+q) +1 uu - w’

Magnetization M, (%)o’zw&k_(kwq) B uu -+ w’
Current Jo Gupl(K +0/2) — eAlSk_sqy -1 uu -+ w’

Other forms of spectroscopy probe the condensate by soat&dectrons. In general a one-particle observ-
ableA, such as spin or charge density can be written as

A= 3" Ak, K)C koCip
Ka KB

(14.182)

where Az(k, k') = (kalAjk'ﬁ) are the electron matrix elements of the opersﬁmFor example, for the
charge operatqry = €Y, c*kﬂwck,, Ays(K,K') = €5430k-(k'+q)- (See table 15.1). Let us now re-write this
expression in terms of Boguilubov quasiparticle operasubstitutings’y, = Uxak, —Sgn@)vka «_, (Where
we have taken the gapy andvi to be real), so that the operator expands into the long esjores

A= Ak, k)| (U alkyas — W apa i oa g) - (Wha eal o+ HO)|,
Kak'B

(14.183)

where we have used the short-hand 3gng), 3 = sgnf8) andu = uy, U’ = U, and so on. This expression can
be simplified by taking account of the time-reversal praperofA. Under time-reversald — —ig»ATio, =
6A, whered = +1 is the parity of the operator under time-reversal. In loagd,

Ak, K') = &[i’k,; —a(=K', =K) = 6A5(k, k") (14.184)
Using this property, we can rewrifeas
A= Z AK,K)ap [(ud — 6W)aaup + % (v - ovu)a' ka4 p b + H.c.)] (14.185)

KaKB

5 For example, for the magnetization density at wavevegtohereA(k, k') = F6k-(k'+q), Using the result” = iopctio, we obtain
7i‘r25T(—k’,—k)iz72 = —i02F1020 k'~ (—k+q) = 7&ék,(kr+q), corresponding to an odd time-reversal parity; —1.
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We see that in the pair condensate, the matrix element fosippidicle scattering is renormalized by the
“coherence factor”

Aplk K) = Aug,K') X (Ui = Bvievie), (14.186)
while the matrix element for creating a pair of quasipagsidhas been modified by the factor
Aupk. k') = Agg(k, K') X (UgVic — BVicUic) (14.187)

Remarks

e Atthe Fermi energyluy| = [v| = % so that for time-reverse even operatars-(1) the coherence factors
vanish on the Fermi surface.
o [f we square the quasiparticle scattering coherence fagobtain

(ud — 6w’)? = LA(U')? + V3(V')? = 26(uv)(U'V') ,
1 € € 1 € € A
:Z(“E)(l+E)+Z(1_E)(l_E)_29( )

AEE
S PR
T2 EE EFE

(14.188)

with the notatiore = ¢, € = &, E = Ex andE’ = Ey..
¢ If we employ the semiconductor analogy, using positive:(+) and negative energy quasiparticlas<( —)
(see Example 15.6), with energiEg, = sgn @)Ex (1 = +£) and modified Boguilubov cdgcients,

1 €&
= Y1 &) _a) 14.189
= (1 ) - (14.189)
then
(UVie = BV U )@ k@' i = (Uis U= — BV Vio—) @ s B (14.190)

so that the creation of a pair of quasiparticles can be regead an “interband” scattering of a “valence”
negative energy quasiparticle into a “conduction” positanergy quasiparticle state. This has the ad-
vantage that all processes can be regarded as quasipacdtering, with a single coherent factor for
all processes:

L1 B

A=2 D Ak KUY = W) X a'korior- (14.191)
kod Kot

Once the condensate forms, the coherence factors reneentiadi charge, spin and current matrix elements

of a superconductor. For example, in a metal, the NMR relanatte is determined by the thermal average

of the density of states,

1 df 2 + 2 _ f df 2 _ 2
e [ (g nerestE ve = [(-GE)nE? =nor
at temperatures much smaller than the Fermi energy. Howieveisuperconductor, we need to take account
of the strongly energy dependent quasiparticle densityatés
[El
\/EZ — A2

a77

(14.192)

N(E) - N(0) (14.193)
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while in this case, the matrix elements
KE TIS*IE L = KE TIS*IE DP(U(EY + V(E)?) = 1

are unrenormalized, so that the NMR relaxation rate becomes

1 1 df E? 1/ df E?
(ﬁﬂﬂﬁﬂff”#ﬁﬂﬁiﬁ“a*M:iﬂ“4W§€iﬁ

The NMR relaxation rate is thus sensitive to the coherened pethe density of states, which leads to a
sharp peak in the NMR relaxation rate just below the tramsitemperature, known as the “Hebel Slichter”
peak (Fig. 14.14) By contrast, the absorption diieient for ultrasound is proportional to the imaginary part
of the charge susceptibility gt= 0, which in a normal metal is given by

(14.194)

df _
an(T)«de -3E N(E) KElpg=0lE)I* ~ N(0) (14.195)
but in the superconductor, this becomes
df
as(T)ocde(—ﬁ)Ns(E)\<Ek7q:olE>\2X(U(E)Z—V(E)Z), (14.196)

but in this case, the renormalization of the matrix elemedentitically cancels the renormalization of the
density of states,

N(E)(U? —V?) = N(O)H(E| - 4)

so there is no net coherence factfieet and

as(T) « N(0) f de(—g—é)G(\E\ — A) = N(0)2f(A) (14.197)

so that
ag(T) 2
an(T) T +1
Fig. 14.14 contrasts the temperature dependence of NMRthétliltrasound attenuation for a BCS super-
conductor.

(14.198)

Example 14.7:
a) Calculate the dynamical spin susceptibility of a superconductor usirgaimdu Green’s function,
and show it takes the formu(a) = dany(q), where

1@ =2 Yt + Wy E S

Kt

, 2 ¢,
€€ +A2)) M (14.199)

=22(%(1+ EE )] v-(E-B

K.y’

wheren = +, 5 = + and we have employed the (semi-conductor analogy) notatisruy,, U’ =
Ugsqy s E = Ecsgn @), E' = Ex.qSgn ) and so on.

6 Equation 14.194 contains a logarithmic divergence from teecence peak. In practice, this is ciitny the quasiparticle scattering.
To obtain a finite result, one can replage- E —i/(2r) and use the expressiti(E) = Im(E/ A2 — (E - i/(21))?) to regulate the
logarithmic divergence.
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(z2)./ (@), o}

as(T)
an(T) 08

0.6

04|

02}

02 04 0.6 08 10 12

T

Showing the effect of coherence factors NMR and ultrasonic attenuation in a
superconductor, calculated in BCS theory. Orange line displays the NMR relaxation
rate, showing the Hebel Slichter peak. Blue line, the ultrasound attenuation. The
integrals entering the NMR relaxation rate are formally divergent for T < T and were
regulated by introducing a small imaginary damping rate i to the frequency where
§/A = 0.005

b) Assuming that the NMR relaxation rate is given by the expression

1 P CRED)
== Z A (14.200)
il v—0
show that

1 df 5

= f(—E)N(E) : (14.201)
Solution:

a) The dynamical susceptibility in imaginary time is given by

Xan(@, 1vn) = (Ma(@)Mp(-0)) = f (T Ma(g, 7)Ms(~q, 0))e"" (14.202)

Now since the system is spin isotropic, we can wxitg(q) = dany(d), using thez— component of
the magnetic susceptibility to calculatéy) = (M,(q)M,(—q)). Now in Nambu notation,

M(-q) = Z(Ctk»fmck,r = CkralCt) = Z(CTk»fqukT + 6, Ckrar)
k k
= D (Gt + Co-aiC k)
X

= Z l//km.{ Y
3

(14.203)
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where we have anticommuted the down fermion operators and relakelled-k + g. Thus thez—
component of the magnetization is a unit matrix in Nambu space. The Vertéxe magnetization

is thus G
= M,(-0q) (14.204)

k
and we can guess that the Feynman diagram for the susceptibility is
k+q

(MM~ = = =3 2 TrlG 0+ A W)
k

k
where the fermion lines represent the Nambu propagator.
Let us confirm this result. The dynamical susceptibility is written

(@7 = 3 (Tie—q' (@) - e (1) ¥ q(0) - Yic(O)) (14.205)
kk”

Since the mean-field describes a non-interacting system, we can evieepiession using Wick's
theorem :

L =
X0 T) = D (T kego (O ka0 s (OWis ()
Kk’
== Guplk + 4, T)Gpalk, —7)
k

== > TGk + g, T)G(K, ~7)]. (14.206)
k

Notice that the “anomalous” contractions of the Nambu spinors, su¢hyas (7)yis(0)) = 0 be-
cause these terms describe “triplet” correlations that vanish in a singletsanductor. For example,
(Ta(@w2(0)) = (T Gp(7)CT 1 (0)) = 0.

If we Fourier analyze thisy(q) = x(q,iv) = jf)((q,r)e‘“’, we obtain

PCHIDESEDY f deTr[G(K + A iwm)G (K, iw)| €lremen
knmv0
=T 3 TrlG(k +Q.iwn + )G (K, iwn)]

=-T I%‘nTr [G(k+qG(K)] (14.207)
k
Now if we choose a real gap,
Gk, 7) = “27_73;%“1 (14.208)
we deduce that
Tr[G(K)GK)] = Tr z +;;’23|;EAT1 Z+;:T_3 EEATIJ
_ [(ZZZZ_ . Sf; : AE% (14.209)
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If we first carry out the Matsubara summation in the expression of teeegtbility, then by con-
verting the summation to a contour integral, we obtain

dz AZ+ivy) + Ekeiaq + A
@ =-2 —_f(z)[ (14.210)
« ; ‘¢ 2ni

(Z - E))((z+iv)? - Efm)
where the contour passes clockwise around the poles in the Greectfm

To do this integral, it is useful to rewrite the denominators of the Greertimgcusing the relation
1 1 1 1 1

Z-E2 2B z-E 2B z+E

1 1
= —_— 14.211
A:Zﬂ z—- Exq 2Ex ( )
where we have introduced (c.f “Semiconductor pictuig) = sgn@)Ex. Similarly,
z 1
2-E2 ; 2(z-Ew)
With this device, the integral becomes
dz 1 g +A? 1
=-2 —f@|=+ -
@ k,/l;’:t 2ni ¢ )[4 (4Ex1Ex+qr) | (2= Ex)(Z+ ive — Exaqr)
(uu'+w’)2
_ [} N €k Eicrg + A? f(Exsqr) = F(Exa)
o 12 2EGEkqr | v = (Bcrar — Ba)
f(Exiqr) = F(Exa)
2 q
= P ) 14.212
k,A:Z%»:fuwuwM + ViaVisqu) e — (Exear — Exa) ( )
Thereby proving result (14.199).
If we analytically continue the susceptibility onto the real axis, then
. f(Exsqr) = T(Exa)
v —i6) = UiaUksqur + ViaVisqr o — e~ 22 14.213
x(@ ) m;r:f alsqu + ViaVisqu) Y=16= et = Ex) ( )
Taking the imaginary part,
2 —i f(E - f(E
X"(q,v—io) —r Z (U +wy? (Exa +v) — 1( “)5(Ek+q4' ~E) (14.214)
v v
kd=+A'=+
so that
(q,v — i, df(E
X@r-ig) (-%)ﬁw, ~Ew) (14.215)
v =0 K=t/ =4 2l
Summing over momentum,
1 X'(q.v-i9)
TiT * Zq: v V-0
df(E
= (‘#)‘%Ekmw — Exa)
KA== K/ A=/ dl
2
S IEl V[ df(E)
= 7N(0) de( e AZ) ( = (14.216)
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where we have replaced the summation over momentum and “semitoridndex A by an integral
over the quasiparticle and quasihole density of states:

3 qdeNs(IEI): N(O)de(%)‘

kA=

(14.217)

14.8 Twisting the phase: the superfluid stiffness
I —

One of the key features in a superconductor is the appeacdiaceomplex order parameter, with a phase. It
is the rigidity of this phase that endows the supercondutibrits ability to sustain a superflow of electrons.
This feature is held in common between superfluids and sopductors - and indeed, the liquide — 3
undergoes a pairing instability arounohB, involving a condensation of triplet Cooper pairs.

The feature of superconductors that makes them stand apartffieir neutral counterparts, is our ability
to couple to the phase of the condensate with the electroatiadield. The important point here, is that the
phase of the order parameter, and the vector potentialrdtediby gauge invariance. To see this, consider
that the the microscopic Kinetic energy term

T = [ @t (97 - )7 (0) (14.218)
is invariant under the gauge transformations
W (X) = €Oy ()
AX) — AX) + g%(x) (14.219)
If we now consider the order parameter
Y = W (e (X)) (14.220)

we see that under a gauge transfoliix) — €2®W(x), in other words, the phase of the order parameter
P(x) = [P(x)€X, transforms as

B9 = $(X) + 2a(x)

Now if the phase becomes “rigid” beneakk, then the overall energy of the superconductor must acquire
phase sffhess term of the form

(14.221)

7~ f % (Vo) (14.222)
X
However, such a coupling term is not gauge invariant undectimbined transformation
¢ — ¢+ 2a,
A- A+ Z%(x) (14.223)

Indeed, in order that the Free energy gauge invariant, taeeptiftness must take the form
2, \?
7~ [ (Fo00 - 3R] +Farltl
X
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2
= f Q AX) - Eﬁ(p(x) + Fenl Al (14.224)
x 2 2e
whereFen[A] is the Free energy of the electromagnetic field and we habstisuted
2e)?
(hz) ps (14.225)

SinceFemis invariant under gauge transformations, it becomes plest redefine the vector potential
> o
AX) — AX) - Ziew;(x) (14.226)

to “absorb” the phase of the order parameter. Once the pHabe @rder parameter is absorbed into the
electromagnetic field,

F ~ f 4;§SA(X)2+7-;”{A] (14.227)
and the vector potential has acquired a mass. This phenomemereby the gauge field, “eats up” the phase
of a condensate, losing manifest gauge invariance by dangurmass is called the “Anderson-Higgs” mech-
anism. This is the root mechanism by which gauge fields aegumass in particle physics.

Shortly after the importance of this mechanism for relatici Yang Mills theories was noted by Higgs
and Anderson, Weinberg and Salem independently applieti#izeto develop the theory of “electro-weak”
interactions. According to this picture, the universe we Is a kind of cosmological Meissner phase, formed
in the early universe, which excludes the weak force by nwakive vector bosons which carry it, become
massive. It is a remarkable thought that the very same méerhahat causes superconductors to levitate lies
at the heart of the weak nuclear force responsible for nudileson inside stars. In trying to discover the
Higg’s particle, physicists are irfect trying to probe the cosmic superconductor above its gapg scale.

If we now look back at (14.224), we see that the electricalentrcarried by the condensate is

oF
SR
This permits us to identiffQ with the “London Kernel” introduced earlier in the study d¢éetron transport.
What is diferent here, is that this quantity is now finite in the DC, zeegfiency limit. Thus, once a charged
order parameter develops a rigidity, the matter becomesfagbeliamagnet, developing superconductivity.

Let us now continue to calculate the phasdirstiss or “superfluid density” of a BCS superconductor.
Formally, to twist the phase of the order parameter, we neatidw the order parameter to become a function
of position, so that now the interaction that gives rise foesoonductivity can not be infinitely long-ranged.
In the simplest case, we can simply consider a local intenact

i = - [ a0, 000109019 (14.229)

Under the Hubbard Stratonovich transformation, this bezom

[ ((x) —w(x)) (14.228)

A(x)A(x)

H - f dx [A(x)m(x)m(xww 100w L (9A() + =0 (14.230)

so that now, the phase of the order parameter can develop-anifmmm conflguration. We'll imagine a
superconductor on a torus in which the phase of the ordeniea is twisted, so that(L) = €2/A(0). Let
us consider a uniform twist, so that

A() = €*%Ao, (14.231)
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whered = @” Now by gauge invariance, this twist of the order parameter loe removed by a gauge
transformatlon

A(X) — €FA(X) = Ag
5 5> h
L~ (14.232)

S0 a twist in the order parameter is gauge equivalent to ammifector potentiak = zieé, and vice versa- a
uniform vector potential is gauge equivalent to a twistedkoparameter field.

So to calculate the sthess we need to compute the Free energy in the presence ofoanmuniector
potential. On a taurus, this implies a threaded magnetic fideed, the total change in the phase of the order
paramter is given by

Ap =al = 2—eAL = %QJ 271[ ] (14.233)
n h
2e
where® is the magnetic flux through the torus. The twist angle can biten
Ap = 27r$ (14.234)
[0
where
Dy = I (14.235)
°7 2 ‘

is known as the superconducting flux quantum. Each time tixetfikough the taurus increases by, the
superconducting order parameter is twisted by an additna
Introduction of vector potentiaj; — €,_.4, SO insidehg

€& ok €eR
63— ( K-eA . ‘) - ( K-eA . ‘) = € 4T3 (14.236)
—Kk—eA, +eA/
ie,
he — hlzieA% = 6 ere, T +HATL (14.237)

The Free energy in a field is then

A2
F=-T E Trin[e; .z 7+ Aty —iwp] + — 14.238
Kiiwn (e ' 1l 9 ( )
We need to calculate
1 &F
- _= 14.2
Qab V 9A0A ( 39)

Taking the first derivative with respect to the vector patrgives us the steady-state diamagnetic current

1 0F 1

)= — = Tr|eVae, x Gk — 14.240
W= o = k;%;un) T[eVaci s, Glk — €A (14.240)
where we have introduced the shorth@( — eA) = [iwn — hy_u: 17 = [ilon — €_og, 73 = ATa] ™
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Taking one more derivative,

diamagnetic part  paramagnetic part
—_ =

2 e
1 _oF = ;V D [ VEeTr [736(] + Vo Vog T [GRIG(K)]
k

Qab:v (9Aa(3Ab

(14.241)

A=0

where we first used the relatic;ﬂ;G(k —eA = eVpgG(k - eA? and then sef = 0. We may identify the
above expression as a sum of the diamagnetic, and pararitgopmes, respectively, of the superfluidBiess.
The diamagnetic part of the response can be integrated kg, pagive

& e
ey kzn: V2,6 Tr [13G(K)] = — 7 kzn: Vag Tt [1aV5G(K)]

=- ;V D Vaq Vo6 T [raG (K 7sG(K)] (14.242)
k.n

Notice how this term is identical to the paramagnetic terparafrom thers insertions. We now add these
two terms, to obtain
diamagnetic part paramagnetic payt
& ———— ———
Qab=— N Z Vag:Vbeg | Tr[13G(K)rsG(K)] = Tr[G(K)G(K)] (14.243)
K

Notice, that when pairing is absent, thecommute withG(k), and the diamagnetic and paramagnetic contri-
butions exactly cancel. We can make this explicit, by wgtin

Qb= —% Zk: VagVoe T [[73. GI?]. (14.244)
Now
[r5,G(] = ZiM;‘%EE (14.245)
SO
=Tr{[rs, GIP?| = Sm. (14.246)
so that
Qub = ;;Ev Zk: Vafk‘vbfk’mu (14.247)

Remarkably, although the diamagnetic and paramagnetts pathe superfluid dfiness involve electrons
far away from the Fermi surface, thefféirence between the two is dominated by electrons near timei Fer
surface. This enables us to replace

1v26an

2 o do, 5 ™~
V;Vaegqu{...}:N(O)Imdef 4ﬂkvavb{...}=%bN(O)véImdeL..;.

Note that the factor of two is absorbed into the total derwfistates of up and down electrons. We have taken

(14.248)
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advantage of the rapid convergence of the integrand to @xtenlimits of the integral over energy to infinity.
Replacing%N(O)v,Z: = 1, we can now writéQa, = Qdan, Where

né °° 2A? né A?
M= [t (?)”T 2w

To evaluate this expression, it is useful to note that theraent of the summation is a total derivative so that

(14.249)

né d wn
o= (5 )T 2 n (7 5a) (14250)
Now at absolute zero, we can repldtg, — [ %, so that
=1
e
né “ dw d w né
Q0)= Qo= (?) (7@2 +A2)1,2) = (F) (14.251)

In other words, albf the electrons have condensed to form a perfect diamagoevaluate the dfiness at
a finite temperature, we rewrite the Matsubara sum as a cisekwontour integral around the poles of the
Fermi function
dz d z
am-raf  Eiod( L)
imaxis 2ri " dz\ yAZZ=Z2

By deforming the integral to run anti-clockwise around thertzh-cuts along the real axis, and then integrat-
ing by parts we obtain:

(14.252)

dz d z
QAT) = Qo ﬁeal axis2ti z CTZ( A2 — Zz)

o d z
- LO dof (@) im (Tz - zz)z:w,.(;

oo

z o df(w) z

= f(w)m|— + f dw(—i)lm (7) . (14.253
Q| 1) ( VAZ — 72 )z:m—id o & —oo dw A2 =2 ) o pis ( )

Now a careful calculation of the imaginary part of the inteut gives
Im[ i ]: Im( © ]: (7 lol )9@2 ~ A2 (14.254)

VAZ = (w —i6)? V-(w? - A?) +i6 sgng) Va? - A2
so the finite temperature Btiess can then be written
Q(T) = Qo [1 2 f do (-M) (L)] (14.255)
A(T) dw w2 — A2

where the factor of two derives from folding over the conitibn from the negative region of the integral.
The second term in this expression is nothing more that therthl average of the quasiparticle density of

stateNgp(E) = N(O)‘/ﬁ. This term can thus be interpreted as the reduction in theersate fraction due
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to a thermal depopulation of the condensate into quasgbestiWe can alternatively re-write this expression
as a formula for the temperature dependent penetratioh dept

1 _ 1§ (Nap(E)
2(T)  22(0) [1 2( N(0) ) : (14.256)

@
where J42(0) = “22%

Exercises

Exercise 14.1 Show, using the Cooper wavefunction, that the mean-squadids of a Cooper pair is
given by

E

o JPrrgnR 4(v,: )3
Jerip)r 3
Solution:
If we Fourier transform the above integrals, replaaing) — iVy then
» JEHOR 3, Vi

T [drignE T Zklgkl

Inserting
_ _ %
P = d(a) = % _E (14.257)
then
2= " 1 _NO
= NO) [ e = e
2 M2 2N(OME
Zk: Vigul® = N(0) fo Qo5 = 3E (14.258)
so that
2_ A(Vey?
&= 3( E)

Exercise 14.2 Generalize the Cooper pair calculation to higher angulanerda. Consider an interaction
that has an attractive component in a higher angular momealiannel, such as

-9l + )Pk - k') (lels I} | < wo)
= v ’ > 16 ’
Ve { 0, otherwise (14.259)
where you may assuniés even.

(a) By decomposing the Legendre Polynomial in terms of spakharmonics, 2+ 1P (k, k") =
47 ¥ m Yim(K) Vi, (K), show that this interaction gives rise to bound Cooperspaith a finite angu-
lar momentum, given by

W) = D dknYim(K)Ckr €4y 10)
k
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with a bound-state energy given by
2
E = —2woexp|-—=
° p[ g‘N(O)]
(b) A general interaction will have several harmonics:
Vi = > @i+ 1P,
; \Y

not all of them attractive. In which channel will the pairadeto condense?
(c) Why can’t you use this derivation for the case whénodd?

Exercise 14.3 Generalize the BCS solution to the case where the gap haseaghmise = |Al€?. Show
that in this case, the eigenvectors of the BCS mean-fieldltanizn are

1

. 2
u =214 &
Ik + Ee

%
Vi = e*i¢/2(1_ ,G?k) (14.260)
k
while the BCS ground-state is given by
IBCS(#)) = [ [ (U + vicl wuchin)l0). (14.261)
k
Solution:
Suppose initially we start with a solution with a real gap finase), so that
(0) 14+ %13
he = (\Z lAl), (”(ko)) - [[ * gkk]j]A (14.262)
€k Vi [1- ET] 2
Now apply a gauge transformation,
. . i
he - @973/ — (|A\Eek"“’ léli ) (14.263)
so that nowA = |Al€?. Under this transformation
() i6/2,,0)
u 2 U /2y
(Vt) St a/z(vlﬁ”) - (e" s ‘ﬁko))' (14.264)

so that the new eigenvector is
ud) (€1 + &1
vi) et — g13)
To construct the ground-state, note that the quasipamistgators now have complex d¢heients
and we must write

@ = UG + SINEIVCh i
To construct the BCS ground-state, annihilate the vacuuimtivese quasiparticle states, so that

IBCS(@)) o [ | a-xianqlO)
k
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. .
—
= [ 0k e = vie i) i + vie € -1)I0)
k

= [ Jvic e - ) c )iy

k
= ]_[ Vi X H(UE + Vi€ )10 (14.265)
k k
The normalized state is obtained by dropping the prefactor,
IBCS(¢)) = ﬂ(u& +vic i clip)l0) = ]—[(e’i“’/zuf) + 2Ot )0y (14.266)
k k
Note that in this state
9o 9o «_ o[ 9o 0 1A
A=-= | == = = — 14.267
v Zkkc kG =y Zk:Uka e [V Zk: E (14.267)

confirming that the gap has acquired a definite phase.

Exercise 14.4 The standard two-component Nambu spinor approach doefiowizerotationally invariant
treatment of the electron spin and the Zeeman coupling ofiters to a magnetic field. This drawback
can be overcome by switching to a four-component “Baliantiiéenmer” spinor, denoted by

N CkT

_ C'y _ Cky
Uk = (_iqz(cﬁ.k)T) “l=c | (14.268)

cfip
(@) Show using this notation that the total electron spintmamritten
1
S= 2 Z ARG (14.269)
k
where
¢ 0

Gy = (O &) (14.270)

is the four component Pauli matrix. (You may find it useful s the relationshig™ = io2io).
In practical usage, the subscript “4” is normally dropped.
(b) Show that in a Zeeman field, the BCS Hamiltonian

. — V-
Hmer = C'kol&kSap — Fop g Ckp + AC_y Cxr + CTk CT_k Al+ —AA 14.271
%—1 [edap — Pap - Bl kg Zk:[ 11 1¢ Al ® ( )
can be re-written using Balian Werthammer spinors in thegamhform
1o . N V-
Huer = 5 Zk:w k|h - @ Blun + gOAA (14.272)

whereh, = et1 + A7y + Ap7, as before, but thé now refer to the four-dimensional Nambu

matrices (5 a2 S 2
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(c) Show that the quasiparticle energies in a field are giyesly — oB.

Exercise 14.5 Pauli limited superconductors. The Free energy introdilcekle last problem describes a
“Pauli Limited” superconductor, in which the Zeeman conglof the paired electrons with the mag-
netic field dominates over the orbital coupling to the maigrfeid. In the Flux lattice of a Pauli limited
superconductor, the magnetic field penetrates the coneausd can be considered to be uniform.

(a) Assuming that the orbital coupling of the electron torthegnetic field is negligible, use the Balian
Werthammer approach developed in the previous problemriouiate BCS theory in a uniform
Zeeman field, as a path integral. Show that the free energpeanitten

T R V-
F _—Ezk:Trln[ﬁT+hk—o-4- Bl +§AA

- _% > In[E2 - (iwn - 0B + éEA

Kiiwn,o

(14.274)

(b) Show that the gap equation for a Pauli limited supercotattbecomes
and show that the upper critical field is given by
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Local Moments and the Kondo effect.

15.1 Strongly Correlated Electrons

One of the fascinating growth areas in condensed matterigshgsncerns “strongly correlated systems™
states of matter in which the many body interaction enerd@gsinate the kinetic energies, becoming large
enough to qualitatively transform the macroscopic praperof the medium. Some of the growing list of

strongly correlated systems include

e Cuprate superconductors, where interactions amongdtra@tscin localized 3d-shells form an antiferro-
magnetic “Mott” insulator, which develops high temperatsuperconductivity when doped.

e Heavy electron compounds, in which localized magnetic mamgnmersed within the metal give rise to
electron quasiparticles withfective masses in excess of 1000 bare electron masses.

e Fractional Quantum Hall systems, where the interactiobnwdxen electrons in the lowest Landau level of
a two-dimensional electron fluid generate a incompressiatee with quasiparticles of fractional charge
and statistics.

e “Quantum Dots”, which are tiny pools of electrons in semidoctors that act as artificial atoms. As the
gate voltage is changed, the Coulomb repulsion betweetretescin the dot leads to the a “Coulomb
Blockade”, whereby electrons can be added one by one to #retgm dot.

e Cold atomic gases, in which the interactions between theaetoms governed by two-body resonances,
can be tuned by external magnetic fields to create a whole rad wf strongly correlated quantum
fluids.

In each case, the interactions between the particles haretheed - by electronic or nuclear chemistry,
by geometry or nanofabrication, to give rise to a state oflemsed matter in which the interactions between
the particles are large compared with their typical kinetergy. The next two chapters will introduce a
corner strongly correlated electron physics: the physidsaal moments and heavy fermion compounds. A
large class of strongly correlated materials contain ataitis partially filled d, or f orbitals. Heavy electron
materials are an extreme example, in in which one compori¢hné@lectron fluid is highly localized, usually
inside f-orbitals giving rise to the formation of magnetioments. The interaction of localized magnetic
moments with the conduction sea provides the driving foorelte strongly correlated electron physics in
these materials.

Within the periodic table, there are broad trends that gow#rongly correlated electron behavior. The
most strongly interacting electrons tend to reside in phytfilled orbitals that are well-localized around the
nucleus. The weak overlap between these orbitals and tiitalerbf other nearby atoms promotes the forma-
tion of narrow electron bands, while the interactions betwelectrons are maximized when they occupy the
same, highly localized orbital.
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In order of increasing degree of localization, the unfilleteon orbitals of the central rows of the periodic
table may be ordered

5d < 4d < 3d < 5f < 4f.

There are two trends operating here: first, orbitals witih&igrinciple quantum numbers tending to be more
delocalized, so thatdb< 4d < 3d and 5f < 4f. Second, as we move from d to f orbitals, or along a particular
row of the periodic table, the increasing nuclear chargeices the size of the orbitals. These trends are
summarized by the Kmetko-Smith diagram in Fig 15.1, in whiod central rows of the periodic table are
stacked in order of increasing localization. Moving up amdhie right in this diagram leads to increasingly
localized atoms In metals lying on the bottom-left hand sifiihis diagram, the d-orbitals are highly itinerant
giving rise to the metals exhibit conventional supercotigitg at low temperatures. By contrast, in metals
towards the top right hand side of the diagram, the electiotise rare earth or actinide ions are localized
forming magnets, or more typically, antiferromagnets.

The materials that lie in the cross-over between these tgiome are particularly interesting, for these
materials are “on the brink of magnetism”. With some exa®j it is in this region that the the cerium and
uranium heavy fermion materials, and the iron based supdtazors are found.

ing localizati

Magnetic moments

Increasing
localization

Superconductivity

Q 5f 4f

actinide

transition rare earth

=l e The Kmetko-Smith diagram, showing the broad trends towards increasing electron
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localization in the d- and f-electron compounds.
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15.2 Local moments
|

To understand heavy electron materials, we need to underktav electrons form local moments, and how
those local moments interact with the electrons in the cotidiu sea. The simplest example of a localized
moment is an unpaired electron bound in an isolated atonoro(li5.2 (a)). At temperatures far below the
ionization energyE;|, the only remaining degree of freedom of this localizedtetetis its magnetic moment,
described by the operator

M:/.JB&

whered denotes the Pauli matrices agl = %n is the Bohr magneton. In a magnetic field, the Hamiltonian
describing low energy physics is simply = —-M - B = —uge - B, giving rise giving rise to a “Curie”
susceptibility

M PF

0
=G5~ 5~

The classic signature of local moments is the appearancari @aramagnetism with a high-temperature
magnetic susceptibility of the form

M2

) 2_ 2,2
n|3(.|.+9) M? = g7ugd(J + 1),

X = (15.1)
where,n; is the concentration of magnetic moments whileis the magnetic moment with total angular
momentum quantum numbérand gyro-magnetic ratio (“g-factorg. ¢ is the “Curie Weiss” temperature,
a phenomenological scale which takes account of interasti@tween spidsFor a pure spin) = S is the
total spin andy = 2, but for rare earth and actinide ions, the orbital and spgukar momentum combine
into a single entity with angular momentuin= L + S for which g lies between one and two. For example, a
Cé* ion contains a single unpaired 4f-electron in the stdtl with | = 3 ands = 1/2. Spin-orbit coupling
gives rise to low-lying multiplet withj = 3 - % = g consisting of 2 + 1 = 6 degenerate orbitalgf : Jm),
(my € [-3. 3]) with an associated magnetic momévit= 2.64ug.

Though the concept of localized moments was employed in d@hiéest applications of quantum theory
to condensed mattgra theoretical understanding of theechanisnof moment formation did not develop
until the early sixties, when experimentalists began téesyatically study impurities in metaf$In the early
1960s, Clogston, Mathias and collaborat@fshowed that when small concentratiamsof magnetic ions,
such as iron are added to a metallic host, they do not always foagnetic moments. For example, iron
impurities in pure niobium do not develop a local moment,thay do so in the niobium-molybdenum alloy,
Nb;_xMoy once the concentration of molybdeneum exceeds 40%Q.4). It was these observations that led
Anderson to develop his model for local moment formation.

1 A positived > 0 indicates an antiferromagnetic interaction between spihdle a negative) < 0 is associated with ferromagnetic
interactions. giving rise to a divergence of the suscefiilit the Curie temperaturg; = —6.

2 The concept of a local moment appears in Heisenberg’s origagar on ferromagnetisfi| Landau and éel invoked the notion of
the localized moment in their 1932 papers on antiferromagnetiad in 1933, Kramers used this idea again in his theory of ntiegne
superexchange.

3 It was not until the sixties that materials physicists coudteol the concentration of magnetic impurities in the pags million
range required for the study of individual impurities. Theol of purity evolved during the 1950s, with the developineinew
techniques needed for semiconductor physics, such as Ziamage
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Fig. 15.2 (a) In isolation, the localized atomic states of an atom form a stable, sharp excitation
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lying below the continuum. (b) The inverse of the Curie-Weiss susceptibility of local
moments y ! is a linear function of temperature, intersecting zero at T = —6.

15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 196&lmioes two essential ide&${

e the localizing influence of Coulomb interactions. Peierisl #ott [?, ?] had reasoned in the 1940s that
strong-enough Coulomb repulsion between electrons in@miatstate would blockade the passage of
electrons, converting a metal into what is now called a “Ntwgtilator”. These ideas were independently
explored by Van Vleck and Hurvitz in an early attempt to uistiend magnetic ions in meta®[

o the formation of an electronic resonance. In the 1950'sdetiand Blandin?®, ?, ?] proposed that electrons
in the core states of magnetic atoms tunnel out into the adimiusea, forming a resonance.

Anderson unified these ideas in a second-quantized Hauaifton

Hresonance

H= kZ &Nk + kz VK)o fr + V7 () T o o] Eny + Unging,

(15.2)

Hatomic

Anderson model.

whereHaomic describes the atomic limit of an isolated magnetic ion doitig a Kramer's doublet of energy
E¢. The engine of magnetism in the Anderson model is the Coulatebaction

e

" ey Ir—r|
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of a doubly occupied f-state, whepe(r) = [¥¢(r)|? is the electron density in a single atomic orbitalr).
The operatoc’y,, creates a conduction electron of momentkyspino and energyy = Ex — u, while

i, = f W o (1),

creates an f-electron in the atomic f-state. Unlike thetedeccontinuum in a vacuum, a conduction band in
a metal has a finite energy width, so in the model, the eneegizsaken lying in the rangg € [-D, D].
Hresonancedescribes the hybridization with the Bloch waves of the emtidn sea that develops when the ion
is immersed in a metal. The quantity

(15.3)

V(K) = KiVienl ) = f e Vign (1) ¥4 (). (15.4)

is the hybridization between the ionic potential and a plamage. This term is the result of applying first
order perturbation theory to the degenerate states of théuotion sea and the atomic f-orbital.

A competition between localization and hybridization.

To understand the formation and properties of local momeveseed to examine the two limiting types of
behaviour in the Anderson model:

e Localized moment behavior, described by the limiting cakene the hybridization vanishes.
o Virtual bound-state formation, described by the limitirase where the interaction is negligible.

TEf+U/2

Es+U/2=+U

Charge Kondo
s

Kondo:

flirsl)

Phase diagram for Anderson impurity model in the atomic Limit. For U > |E; + U/2,

the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate
charge doublet provided Ef + U/2 = 0.
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15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by
Hatomic = Efn¢ + Unanu. (15.5)

is the engine at the heart of the Anderson model that drivemeno formation. The four atomic quantum
states are

|£2) E(f?) = 2Ef +U } )
o o non-magnetic
I B =0 (15.6)
1f1 1y, [fL D) E(fY) = E;. magnetic
The cost of adding or removing to the magnéitcstate is given by
adding: E(f?) - E(f}) = U + E¢ U u
removing: E(f% — E(f1) = —E¢ SAE=Z=Eir7 s
In other words, provided (Fig. 15.3)
U/2> |Es +U/2| (15.8)

the ground-state of the atom is a two-fold degenerate magdetiblet. Indeed, provided it is probed at
energies below the smallest charge excitation enexByin = U/2 — |E; + U/2], only the spin degrees of
freedom remain, and the system behaves as a local momentiaattom top”. The interaction between such
a local moment and the conduction sea gives rise to the “Kefidat” that will be the main topic of this
chapter.

Although we shall be mainly interested in positive, reprédi), we note that in the attractive region of
the phase diagrant( < 0) the atomic ground-state can form a degenerate “chargabldb(f°), |f2)) or
“isospin”. ForU < 0, whenE¢ + U/2 = 0 the doubly occupied staté?) and the empty statg®) become
degenerate. This is the charge analog of the magnetic dabhteexists folU > 0, and when coupled to the
sea of electrons, gives rise to dffieet known as the “charge Kondffect”. Such charge doublets are thought
to be important in certain “negatiig” materials, such a$ | dopedPbTe

Example 15.1: Derivation of the non-interacting Anderson model
Consider an isolated ion, where the f-state is a solution of the one-partitiédiuger equation

[92 + Vion] 1) = EP"I), (15.9)

where Vigy(r) is the ionic potential andE®™ < 0 is the energy of the atomic f-level. In a metal, the
positive ionic background draws the continuum downwards to becogeneeate with the f-level as
shown in Fig. 15.4. A convenient way to model this situation is to useffimtin potential”,*

V() = (Vion(r) + W) 6(Ro — 1) (15.10)

equal to the ionic potential, shifted upwards by an amdimside the méin tin radiusR,. The f-state

is now an approximate eigenstatefdf= —V? + V that is degenerate with the continuum.

Derive the non-interacting component of the Anderson model usiggraate perturbation theory,
evaluating the matrix elements @f between the conduction stat&s$ and the local f-statéf). You

may assume that the rfiin tin Ry is much smaller than the Fermi wavelength, so that the conduction
electron matrix elementé » = (k|V|k’) are negligible.

Solution:
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To carry out degenerate perturbation theory/éiwe must first orthogonalize the f-state to the contin-
uum|f) = |f) - ¥ ooy [K)kIT), whereD is the conduction electron band-width. Now we need to

evaluate the matrix elements ®f = V2 + V. If we set
Vik = f dPre® T (Vign(r) + W),
r<Ry

then the conduction electron matrix elements are
(KIHIKY = Exdky + Vikr = Exdikr

while (fi#H|f) ~ E°" is the f-level energy.

The hybridization is given by thefladiagonal matrix element,

V(K) = (KIH|F) = (k| = V2 + VIT) = Bk + KIVIT) = (kIVIF),

(15.11)

(15.12)

(15.13)

where we have used the orthogonalityf) = 0 to eliminate the kinetic energy. Infact, since the f-state
is highly localized, its overlap with the conduction electron states is sikidl} ~ 0, so we can now

drop the tilde, approximatingk|V| ) ~ (k[Vion + W| ) ~ (K[Vion| ), SO that

V() ~ KIVio ) = f ARre K Vign(r)o1 ().

In this way, the only surviving term contributing to the hybridization is the atopaiential - only
this term has the high-momentum Fourier components to create a signdicatap between the low
momentum conduction electrons and the localized f-state.

Putting these results together, the non-interacting Anderson model cabelheritten

. _— o
Flresoance= . (Bk + W= 2) ClioGir +  (V(K)Ckr fr + H.C) + (EP" — ) .
k ko

E¢

(15.14)

P(E)

b
®
w
E¢
ez‘kr
=—
0

Fig. 15.4 (a) The immersion of an atomic f state in a conduction sea leads to hybridization
between the localized f-state and the degenerate conduction electron continuum,

forming (b) a resonance in the density of states.
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15.3.2 Virtual bound-state formation: the non-interacting reson ance.

When the magnetic ion is immersed in a sea of electrons, tiecfrens within the core of the atom can
tunnel out, hybridizing with the Bloch states of surrourgdédectron sea?] as shown in Fig. 15.4.
In the absence of interactions, this physics is described by

Hresonance= Z &Nk + Z[V(k)cfk(r fe +H.c]+ Efny, (15.15)
k.o ko

wherec’y, creates an electron of momentlmspino and energy = Ex — u in the conduction band. The
hybridization broadens the localized f-state, and in thgeabe of interactions, gives rise to a resonance of
width A given by Fermi’s Golden Rule.

A= rrZ IV(K)P5(e — Ex) (15.16)
¥

This is really an average of the density of staig = 3, 6(w — ) with the hybridizatior|V (k). For future
reference, we shall define

A = 7 ) V(K)PS(e — €) = mp(e)VE(e) (15.17)
K

as the “hybridization” function.

Let us now examine the resonant scatterifiggonon-interacting f-level, using Feynman diagrams. We'll
denote the propagator of the bare f-electron by a full lime| #hat of the conduction electron by a dashed
line, as follows:

1

O, =

—_— =

f, w ) w—Ey

----- ——— GOk, w) = . (15.18)
K, w w — €

For simplicity, we will ignore the momentum dependence @f tiybridization, taking/(k) = V(k)* = V.
The hybridization is a kind offi-diagonal potential scattering which we denote by a filleg ds follows:
\

—_—

f k
v (15.19)

- ——

k f

Now the hybridization permits the f-electron to tunnel backi forth into the continuum, a process we can
associate with the “self-energy” diagram

V2

w- &

_\./-_—>——\O/—:Zc(w): > (15.20)
k

, W

We can view this term as arffective scattering potential for the f-electrons, one tedtéquency dependent
and hence retarded in time, reflecting the fact that an firelecan spend large amounts of time out in the
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conduction band. The Feynman diagrams describing thepreuiitattering of the f-electrorfichis potential
are then:

Pt —— - ———+ - - +...
f k’ k’ k"
(15.21)
Each time the electron tunnels into the conduction bandyésdso with a dferent momentum, so the mo-
menta of the conduction electrons are independently sunawverdin the intermediate states. As in previous

chapters, we can sum these terms as a geometric series ito @ffaaniliar-looking self-energy correction to
the f-propagator.

Gi(w) =GY [1 +269 + (260) +.. ] = [w=Ef - So(w)] (15.22)

Now for a broad conduction band there is a very useful appration forZ.. To derive it, we re-write the
momentum sum in the self-energy as an energy integral wétllémsity of states, replacig, — fdep(e),

so that
2
o) = [(Lp0 2 - [0
7T w—€

Tw-—€

(15.23)

whereA(e) = np(e)V2. In the complex planes.(w) has a branch cut along the real axis with a discontinuity
in its imaginary part proportional to the hybridization:

Find(w—e)
. de
IMEc(w +i6) = f—A(e) Im—————, = FA(w). (15.24)
g w—€xio
Consider the particular case wheg) = A is constant foe € [-D, D], so that
o )
Sw+i6) = éf L - é|n[M]
nJpw-—€exid6 n lwxis-D
. O(w/D)
i —iA_o A “" * g‘ FIA0(D - |w]) (15.25)
D } iA D T lw-

which is a function with a branch-cut stretching fram= —D to w = +D. The frequency dependent part of
ReX. = O(w/D) is negligible in a broad band. We can extend this obsemationore general functions(w)
that vary slowly over the width of the resonance (lumping aagstant part oE. into a shift of E¢.) With
this observation, for a broad band, we drop the real paxtofvriting it in the form

Se(w +i0) = —iAsgnE), (15.26)

wherew’ is the imaginary part of the frequency. (at the MatsubamgufeaciesX.(iwn) = —iAsgnu,). On the
real axis, the f-propagator takes a particularly simplenfor

1
(w-Ef —iA)’
that describes a resonance with a widtrcentered around ener@, with a Lorentzian density of states

Gi(w—is) = (15.27)

1 .
pi(w) = ;lme(w— i6) = G Es i
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Now let us turn to see how the conduction electrons scatfethis resonance. Consider the repeated
scattering of the conduction electrons, represented bgldbbed line, fi the f-level as follows:

Pz = — t-——— - - t——— ———— ...
k k’ k k k’ k k" k’
Now using (15.21) we see that third and higher terms can beisely absorbed into the second term by
replacing the bare f-propagator by the full (broadenedpppgator, as follows

== = = - — - + —— e —e—— - —
k k’ k k k’ (15.28)
GK.kw) = 60xGOk w) + GOk w)V2G(w)GOK,w)
We can identify
t(w) = V?Gy(w) (15.29)

as the scattering t-matrix of the resonance. Infact, th&iomship holds quite generally, even when interac-
tions are present, because the only way conduction electam scatter, is by passing through the localized
f-state. The full conduction electron propagator can thewhbtten

G(K', k, w) = 6 kGO K, w) + GOk, w)t(w)GOK', w). (15.30)

Scattering theory tells us that the t-matrix is related &o$hmatrixS(w) = €9« wheres(w) is the scattering
phase shift, by the relatio® = 1 — 2xip t(w + in)(here we use as the infinitesimal to avoid confusion with
the notation for the phase shift), or

1 1 1
t in)=———6w)-1)=—-—X ————. 15.31
(w +in) _2mp( (w)-1) w0~ Coba) <1 ( )
Substituting our explicit form of the f-Green'’s function,
A
2
H(w+i6) = V3G (@ +im = —x—T 1,1 (15.32)
70 w-—Ef+iA o (%)—i
Comparing (15.31) and (15.32), we see that scattering @tafes given by
Ef - w
— cotl _tarrl
§¢(w) = cot ( X ) tan (Ef — w). (15.33)

J1(w) is a monotonically increasing function, rising frafp = 0 atw << 0 to§; = x at high energies. On
resonancej(E¢) = n/2, corresponding to the strongest kind of “unitary scattgti

The Friedel Sum Rule

Remarkably, the phase shift = §;(0) at the Fermi surface determines sets the amount of cliemged
inside the resonance. Here, we can see this by using thecfrap&unction to calculate the ground-state
occupancy:

0
dw A 2 1(E¢ Ot
——————— = —cot =2X —,

o T (W—Ef)2+A% 1« (A) n

0
ng = 2f dwpi(w) =2 — (15.34)
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Note that whers(0) = n/2, ny = 1. This is a particular example of the “Friedel sum rule”, -emyvgeneral
relation between the number of particlés bound in a potential well and the sum of the scattering phase
shifts at the Fermi surface
o
An= Yy 2 (15.35)

s
A

wheres, denotes the scattering phase shift in the partial wave lstagdled by the orbital quantum numbers
15

¥ (r)

§=0 -‘\\'2/\v!/“\ N N\ Pad
NV
\////z/////
5o AN A A
VAR VALV Ve v 7

Nel N N
N —

Fig. 15.5 lllustrating the Friedel sum rule. As the scattering phase shift grows, the nodes of the

eigenstates at the Fermi surface are drawn into the potential well. Each time the
phase shift passes through 7 one more node passes into the well, leading to one
more bound-electron.

We can understand the Friedel sum rule by looking at theesaadt wavefunction far from the impurity.
The asymptotic radial wavefunctions of the incoming andphase-shifted outgoing electrons on the Fermi
surface take the form

ke T e‘”' sin(er + 6
o) ~ Lo & ¢ (krF f)
which corresponds to a radial wave in which the wavefunatibtie electrons is shifted by an amount
Ot A 0%
Ar=——=-"x—.
' ke 2 X T

Thus for a positive phase shift, electrons drawn inwarddy the scattering process. Each tifepasses
throughr, one more node of the wavefunction passes through the bouatiafinity, corresponding to an
additional bound electron. Anderson has called Friedels rule a “node counting theorem”.

5 For a spherical atom, without spin-orbit coupliig= (I, m o), wherel, m ando- are the angular momentum and spin quantum
numbers. With spin orbit coupling, = (j. m) denote the quantum numbers of total angular momerjtum
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Example 15.2: Anderson Model as a path integral
Formulate the Anderson model as a path integral and show that theatmmdelectrons can be “inte-
grated out”, giving rise to an action of the following forah[

Se= > f;"{fiwnJr E —iAsgn@n)}ﬁm+ fdrUnTnl. (15.36)
oiwn 0

wheref,, =72 fﬁ dre“n™ f,(7) is the Fourier transform of the f-electron field.
Solution: \We begln by writing the partition function of the Anderson model as a pathriaiteg

= f D[f, e s (15.37)

where the actiol$ = S, + Sg is the sum of two terms, an atomic term
S=fd‘r f,(0; + Er)f, + Ungn
A= [ZV: ( f) i1011]
and a bath term
SB=jﬂm{E:@A@+€me+V[EQa+@ab& (15.38)
© ke

describing the hybridization with the surrounding sea of conduction eteztro
We can re-arrange the path integral so that the conduction electroraintegarried out first,

i
Z= f DIfle Sk f DicleSe, (15.39)
whereZg[{f}] contains the change to the f-electron induced by “integrating out” theusdiuh elec-
trons. The bath action is free of interactions and can be written schematisallguadratic form
Sg=C-A-C+C-j+]-C (15.40)

whereA = (9. + &)d(r — 7’) is the matrix acting on the fields between the fietds: ¢, (r) and

C = Gk (7), while j(r) = Vf,(r) andj = f,(r)V are source terms. You may find it reassuring to recast
Sg in Fourier space, wher& = (—iw, + &) is explicitly diagonal.

Using the standard result for Gaussian fermion integrals,

Zs= fD[c]e‘E“‘"TC+El = detA x exp[j. AL j].

or explicitly,
Zc=eFFC 2
Zs[{f)] = det; + &] exp{ fa drff,( 6\’7) f,l (15.41)
o 1 Or + &

The first term is the partition functiodc of the conduction sea in the absence of the magnetic ion.
SubstitutingZg[{ f}] back into the full path integral (15.39) and combining the quadratic tehas

gives
— V2
Z=2Zcx fZ)[f]exp[—fd-r f(y(c’i, +Ef — Z m)f,, +Un;n; }

If we transform the first term into Fourier space, substitutipgr) = Y23, fne e, f (1) =
B2 Y 087 so thatd, — —iw,, the action can be written

~isgnion)
. v
Sk = ,Z‘;n . {—Iwn +Ef+ Zk: m} fon + j:dﬂ_“-.ﬂ-,l (15.42)
—_—
-Gl (iwn)
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The quadratic cd&cient of the f-electrons is the inverse f-electron propagator of theimenacting
resonance. We immediately recognize the self-energyXefim,) = —iAsgn,) introduced in (15.20).
From this path integral derivation, we can see that this term accountsefeffétt of the conduction
bath electrons, even in the presence of interactions. If we now use ¢feedand-width approximation
Y(iwy) = —iAsgnu, introduced in the (15.26), the action can be compactly written

Se=)) f;n{—ia),,+ E -iAsgn@n)}f,,,+ fﬁ deUnin,. (15.43)

0

arian

u/A

(A) (B)

w (']
ST Ertl Yo

Er 4

Fig. 15.6 Mean field phase diagram of the Anderson model, illustrating how the f-electron
resonance splits to form a local moment. A) U < rA, single half-filled resonance. B)
U > 7A, up and down components of the resonance are split by an energy U.

15.3.3 Mean-field theory

In the Anderson model, the Coulomb interaction and hybaitiin compete with one-another. Crudely speak-
ing, we expect that when the Coulomb interaction exceedbythgdization, local moments will develop. To
gain an initial insight into theféect of hybridization on local moment formation, Andersoigimally devel-
oped a Hartree mean-field treatment of the repulsivateraction, decoupling

Unn, — Uni(ny) + Unpn, = U (ny) + O(Sn?). (15.44)

We can understand this kind of decoupling procedure as thetref a saddle point description of the path
integral, treated in more detail in the following excercie 16.3. Using this mean-field approximation,
Anderson concluded that for the symmetric Anderson modeglimoments would develop provided

U> U = rA. (15.45)
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Let us now rederive his result. From (15.44), the mean-fiflece of the interactions produces a shift the
f-level position,

Ei = Efr = Ef + U(N{_y) (15.46)
which, using (15.34) implies that the scattering phase &hithe up and down channels are no-longer equal,
but given by

1 (Efo
Sto = COL ) (15.47)

Using the “Friedel sum rule” (15.34), we then obtain the mBeld equations

Ot Ef + U(ni_o
(Nig) = 27 = Ecot’1 (7f ne >)
n bd A

It is convenient to introduce an occupanay = Y, (n¢,) and magnetizatioM = (ng;) — (n¢;), so that
(Nie) = 2t + M) (o = +1). The mean-field equation for the occupancy and magnigtizate then

(15.48)

1 1 Ef + U/2(ns — o M)
=g Y eo (7A (15.49)
-~ 1 1 Et + U/2(ns — o M)
M = ;;lacot (f (15.50)
To find the critical size of the interaction strength where@l moment develops, we ddt— 0" in (15.49)
to obtain &2 — cot(%). Linearing (15.50) ifVl, we obtain
n
e () (15.51)
T, +Un TT.
1+( i - Ii )
so that fom; = 1,
Uc = A (15.52)

For larger values o) > U, there are two solutions, corresponding to an “up” or “dowpin polarization

of the f-state. We will see that this is an over-simplified agsion of the local moment, but it gives us a
approximate picture of the physics. The total density aestaow contains two Lorentzian peaks, located at
Ef +UM:

1 A A

7lw-E—UMz<az t (w_E; +UM2Z+ A2

The critical curve obtained by plottird. andE¢ as a parametric function of; is shown in Fig. 15.6.

The Anderson mean-field theory allows a qualitatively ustierd the experimentally observed formation
of local moments. When dilute magnetic ions are dissolved imetal to form an alloy, the formation of
a local moment is dependent on whether the rbki@A is larger than, or smaller than zero. When iron is
dissolved in pure niobium, the failure of the moment to foefiects the higher density of states and larger
value ofA in this alloy. When iron is dissolved in molybdenum, the lowensity of states causes > Uc,
and local moments form?]

pi(w) =
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Example 15.3: Factorizing the interaction in the Anderson model
a) Show that the interaction in the Anderson model can be decoupled vizbhaktl Stratonovich

decoupling to yield
fﬁdrUnTnl — fﬂdr[@m +¢n; — % (15.53)
0 0

whereg, = ¢o +i(r) — oh(r) is the sum of a real and an imaginary field.
b) Derive the mean-field partition function obtained by assuming that ttieipgegral over can be
approximated by the saddle point configuration wherés independent of time, given by

Ziviz :fD[f]e’SMF[ltavf]

Swr = Z fonl-Grbliomfon + S 161 (1554)
where

Graliwn) = iwn = Ef = ¢ +iASgNEy)
is the inverse mean-field f-propagator

c) Carry out the Gaussian integral in (15.54) to show that the meanfifeglcnergy is

&

1 1
E —kBT';wln[—Gf;(lwn)] - g
and by settingF/d¢, = 0, derive the mean-field equations
* dw A
o= =0 [ g
Solution:
a) The interaction in the Anderson model can be rewritten as a sum of tme,ter

“charge” “spin”
U U
Umn, = j(nT +n)° - z(nT -n)?

that we can loosely interpret as a repulsiion between charge fluctuatidraneattraction between
spin fluctuations. Following the results of Section **.*, inside the path inlegne attractive mag-
netic interaction can be decoupled in terms of a fluctuating Weissfield, while the the repulsive
charge interaction can be decoupled in terms of a fluctuating potentiaksfield= ¢ + iA(r), as

follows
1.U ) h?
=5 X5 =m)" = -h(n —n)) + 2%
2 Y+ 2 ofn Jrn)-"’i2 (15.55)
2 X M) = dlhan 2x(U/2) :

with the understanding that for repulsile> 0, fluctuations ofj(r) are integrated along the imagi-
nary axis#(r) = ¢o + iA(r). Adding these terms gives

a_ @
fﬁdTUnTnl—)fﬁdr[(¢—vh)n,+h ¢ J:fdr[¢1n7+¢lnl+M (15.56)
0 0 u o U

whereg¢, = ¢ — oh. The decoupled path integral then takes the form
N ECIE
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~ V2 1
S fdr{fa(i), YE 4O m)fﬁ - U%%}. (15.57)
15,

Note how the Weiss fields, shift the f-level positionE; — E; + ¢,(7). In this way, the Anderson
model can be regarded as a resonant level immsersed in a white regjsetic field that modulates
the splitting between the up and down spin resonances.
b) Anderson’s mean-field treatment corresponds to to a saddle pgirddmation to the integral over
the ¢, fields. At the saddle pointyS/6¢,) = 0. From (15.57), we obtain
ST 1
— =ffe— =0
6o U ¢
so the saddle point conditiofdSg /¢,y = O implies¢_, = U(n,), recovering the Hartree mean
field theory. We can clearly seek solutions in whigh(r) = ¢ is a constant. With this understand-
ing, the saddle point approximation is

7 Ay = f D[ e SeleM (15.58)
where
= V2 1
= f,(0; + Ef + 6@ — f, — —¢@pO% 15.
Sur fdr{((fn i+ Zk:a,m)‘ 5oV, (15.59)

Now sinces® is a constant, we can Fourier transform the first term in this expressiphacing
8, — —iwy, to obtain

-Gjl(iwn)

Sur = Z fon (—imn +Ep+9 - ; %;k) fon = §¢‘T°’¢i°’, (15.60)
—~isgnn)A
where in the broad-band width limit, we can replace
Git(iwn) = iwn — Er — ¢ + isgnn)A. (15.61)

c) Carrying out the Gaussian integral in (15.58), we obtain

22

Zyr = detf-Gi(iwn)]leb** = [ ] [-Gikliwn)]el ™.
ity
or
A AL
Fur = —kaT InZye = —ksT ;wnln [-Gik(iwn)] € - oo (15.62)

3Gt (iwn) _

where we have included the convergence faetaf”. By (15.61), 3, = —L, so diferentiating

(15.62 ) with respect t@,,, we obtain

. o1
0=keT ; Groliwn)e” ~ T, (15.63)
or
¢ = U(N1y) = UkeT )" Gro(iwon)e .

iwn

Carrying out the sum over the Matsubara frequencies by the stanoafuobic integral method, we
obtain

dz dz
- =-U —f(9Gi,(29 =U — f(9G.(2
¢ %maxisbrI @G @ ﬁeaxiszr' (@G
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:Ui:d%f(w)lme(w—iri)

dw A
=u£7f(w)mA (15.64)

15.3.4 The Coulomb Blockade: local moments in quantum dots

A modern realization of the physics of local moments is fouittiin quantum dots. Quantum dots are a tiny
electron pools in a doped semi-conductor, small enoughegaith electron states inside the dot are quantized,
loosely resembling the electronic states of an atom. Quaxdt behavior also occurs in nanotubes. Unlike a
conventional atom, the separation of the electronic statgsantum dot is of the order of milli-electron volts,
rather than volts. The overall position of the quantum datrey levels can be changed by applying a gate
voltage to the dot. It is then possible to pass a small cuttentigh the dot by placing it between two leads.
The diferential conductanc@ = dl/dV is directly proportional to the density of statefg) inside the dot
G « p(0). Experimentally, when G is measured as a function of galtageV, the diferential conductance
is observed to develop a periodic structure, with a perioal fefv milli-electron volts. P

This phenomenon is known as the “Coulomb blocka@de?] and it results from precisely the same physics
that is responsible for moment formation. A simple modeldajuantum dot considers it as a sequence of
single particle levels at energieg interacting via a single Coulomb potenti#| according to the model

u
Haot = ;(e} +eVgny; + > N(N - 1) (15.65)
wheren,,, is the occupancy of the spinstate of thet level,N = 3, n, is the total number of electrons in
the dot and/q the gate voltage. This is a simple generalization of thelsiapm part of the Anderson model.
Notice that the capacitance of the doOs= €?/U.
The energy dference between theelectron and + 1 electron state of the dot is given by

E(n+1)- E(n) =nU + ¢, — lelVg,

whereq, is the one-particle state into which the n-th electron inbeidded. As the gate voltage is raised, the
quantum dot fills each level sequentially, as illustrateBim 15.7, and whefgVy = nU + ¢,,, the n-th level
becomes degenerate with the Fermi energy of each lead.s\pdit, electrons can pass coherently through
the resonance giving rise to a sharp peak in the conductataeaximum conductance, the transmission
and reflection of electrons is unitary, and the conductafideecquantum dot will reach a substantial fraction
of the quantum of conductance/h per spin. A calculation of the zero-temperature conductahmugh a
single non-interacting resonance coupled symmetricaltyb leads gives

¥ N
h (e, — elVg)? + A?
where the factor of two derives from two spin channels. Thisgrise to a conductance peak when the gate

voltagelglVy = €. At a finite temperature, the Fermi distribution of the elens in the leads is thermally
broadened, and the conductance involves a thermal avelbagéthe Fermi energy

2¢? of A?
Ve T) =5 f de("&) (€1 —1eVg — €2 + A2
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Fig. 15.7 Variation of zero bias conductance G = dI/dV with gate voltage in a quantum dot.

December 1, 2011

Coulomb interactions mean that for each additional electron in the dot, the energy to
add one electron increases by U. When the charge on the dot is integral, the
Coulomb interaction blocks the addition of electrons and the conductance is
suppressed. When the energy to add an electron is degenerate with the Fermi energy
of the leads, unitary transmission occurs, and for symmetric leads, G = 2€?/h.

where f(e) = 1/(€¢ + 1) is the Fermi function. When there are multiple levels, thehesuccessive level
contributes to the conductance, to give

2 ot A?
GV T) =), 5 f df(‘ﬁ) (U + e, —laVg— e + A2

n=0

where the n-th level is shifted by the Coulomb blockade.

The dfect of a bias voltage on these results is interesting. Irsthigtion, the energy distribution function
of the two leads are now shifted relative to one-another. iide model for theféect of a voltage is obtained
replacing the Fermi function by an average over both learthat f'(e) — %Zt f'le+ e‘fﬂ), which has the
effect of splitting the conductance peaks into two, peaked leayes

|elVg = €, + NU + |e]Vsg/2 (15.68)

as shown in Fig. 15.8.
Itis remarkable that the physics of moment formation and@wilomb blockade” operate in both artificial
mesoscopic devices and naturally occurring magnetic ions.
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a decade to resolve. It turns out that the process by whicha lnoment disappears or “quenches” at low
temperatures is analagous to the physics of quark confinteffaray we name it the “Konddiect” after the
Japanese physicist Jun Kondo who calculated the leadiragitbmic contribution that signals this unusual
behaviorp].

The Kondo &ect has a many manifestations in condensed matter physitsinty does it govern the
quenching of magnetic moments in a magnetic alloy or a quadt[?], it is responsible for the formation of
heavy fermions in dense Kondo lattice materials (heavy ifemraompounds) where the local moments trans-
form into composite quasiparticles with masses sometimesgcéess of a thousand bare electron masges.[
We will see that the Kondo temperature depends expongntalthe strength of the Anderson interaction
parametet). In the symmetric Anderson model, whete = —U/2,

2UA U
o=\ exp(—ﬁ). (15.69)

We will derive the key elements of this basic result usingyrative renormalization group reasonirfj, [
but it is also obtained from the exact Bethe ansatz solutidheoAnderson model? 2, ?].

Gate voltage (mV)

Source-drain voltage (mV)

Experimentally measured conductance for a voltage-biased quantum dot after [?],
showing the splitting of the Coulomb blockade into two components, shifted up and
down by the voltage bias, +€eVsg/2. In the white diamond-shaped regions, G(Vsg) ~ 0
as a result of Coulomb blockade. The number of particles N is fixed in each of the
diamond regions. The lines outside the diamonds, running parallel to the sides,
identify excited states.

15.4 The Kondo Effect
|

Although Anderson’s mean-field theory provides a mechafismoment formation, it raises new questions.
While the mean-field treatment of the local moment would be@mate for an ordered magnet involving a
macroscopic number of spins, rigidly locked together, feirgyle magnetic impurity there will will always
be a finite quantum mechanical amplitude for the spin to tline®veen an up and down configuration.
— 1 _. o 1
e +fi=e+f]
This tunneling rate;} defines a temperature scale
h
kBTK = —
Tst

called the Kondo temperature, which sets the cross-overdeet local moment behavior, where the spin is
free, and the low temperature physics, where the spin anduction electrons are entangled. Historically,
the physics of this cross-over posed a major problem forhiberetical physics community that took about
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One can view the physics of local moments from two complirasnperspectives (see Fig. (15.9)):

e an “adiabatic picture” which starts with the non-interagtresonant ground-state (= 0) of the Anderson
model, and then considers th&eet of dialing up the interaction tertj.

e a “scaling approach”, which starts with the interactingt isolated atomV(k) = 0), and considers the
effect of immersing it in an electron sea, gradually “integratut” lower and lower energy electrons.

L] Valence
Fluctuations

Adiabatic

u/A

Fig. 15.9 The phase diagram of the symmetric Anderson model. Below a scale T ~ U local

moments develop. The Kondo temperature Tk plays the role of the renormalized
resonant level width. Below a temperature T ~ Tk, the local moments become
screened by the conduction sea via the Kondo effect, to form a Fermi liquid.

The adiabatic approach involves dialing up the interactasishown by the horizontal arrow in figure
(15.9). From the adiabatic perspective, the ground-stateins in a Fermi liquid. In principle, one might
imagine the possibiity of a phase transition at some finiteraction strengtiJ, but in a single impurity
model, with a finite number of local degrees of freedom, we'tdexpect any symmetry breaking phase
transitions. In the scaling approach, we follow the physiss function of ever-decreasing energy scale, is
loosely equivalent to dialing down the temperature, as shimythe vertical arrow in figure (15.9) The scaling
approach starts from an atomic perspective: it allows usittetstand the formation of local moments, and at
lower temperatures, how a Fermi liquid can develop throhghrteraction of an isolated magnetic moment
with a electron sea.

We shall first discuss one of the most basic manifestatiorthefKondo @ect: the appearance of a a
Kondo resonance in the spectral function of the localizedtebn. This part of our analysis will involve
rather qualitative reasoning based on the ideas of ad@tyatitroduced in earlier chapters. Afterwards we

513

bk . pdf

December 1, 2011

Chapter 15. ©Piers Coleman 2011

adopt the scaling apporach, first deriving derive the Kondadeh describing low-energy coupling between
the local moments and conduction electrons by using a “8tariWolit” transformation of the Anderson
model. Finally, we shall discuss the concept of renormatimeand apply it to the Kondo model, following
the evolution of the physics from the local moment to the Fdiquid.

15.4.1 Adiabaticity and the Kondo resonance

The adiabatic approach allows us to qualitatively understhe emergence of a remarkable resonance in
the excitation spectrum of the localized f-electron - thefido resonance”. This resonance is simply the
adiabatic renormalization of the Friedel-Anderson resoeaeen in the non-interacting Anderson model. Its
existence was first infered by Abrikosov and SuhI7], but today it is colloquially refered to as ti{Kondo
resonance”
To understand the Kondo resonance we shall studyfteets of interactions on the f-spectral function
Ar(w) = 1Ime(ou +in)

s

(15.70)

whereG¢(w — i6) = is the advanced f-Green’s function. From a spectral decsitipp (10.7.1) we know
that:

Energy distribution for adding one f-electron.
2
DAt g 5w ~ [Ex - Eol),
A
D KAUfolgo)? 8~ [Eo - EiD),
A

(w>0)

Ar(w) = (15.71)

(w<0)

Energy distribution for removing f-electron

whereE, and E, are the excited and ground-state energies. For negativgiese < 0, this spectrum
corresponds to the energy spectrum of electrons emittedrayXohoto-emission, while for positive energies
(w > 0), the spectral function can be measured from inverse Xphayo-emission?, ?]. The weight beneath
the Fermi energy determines the f-charge of the ion
0
(ng) = Zf dwAt (w) (15.72)
In a magnetic ion, such as a Cerium atom infa dtate, this quantity is just a little below unity.
Fig. (15.16.) illustrates theffect of the interaction on the f-spectral function. In the #iateracting limit
(U = 0), the f-spectral function is a Lorentzian of widt If we turn on the interactiot, being careful
to shifting the f-level position beneath the Fermi energyraintain a constant occupancy, the resonance
splits into three peaks, two at energies= Es andw = E¢ + U corresponding to the energies for a valence
fluctuation, plus an additional central “Kondo resonanceSaeiated with the spin-fluctuations of the local
moment.
When the interaction is much larger than the hybridizatiodtiniU >> A, one might expect no spectral
weight left at low energies. But it turns out that the spdduaction at the Fermi energy is an adiabatic
invariant determined by the scattering phase shift

Sint§ £
A
This result, due to Langreth[?], guarantees that a “Kondo resonance” is always presene&drmi energy.

As(w=0)= (15.73)
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\nfiee v

Sl kil Schematic illustrating the formation of a Kondo resonance in the f-spectral function

At (w) as interaction strength U is turned on. Here, the interaction is turned on while
maintaining a constant f-occupancy, by shifting the bare f-level position beneath the
Fermi energy. The lower part of diagram is the density plot of f-spectral function,
showing how the non-interacting resonance at U = 0 splits into an upper and lower
atomic peak at w = Ef and w = Ef + U.

Now the total spectral weigl}f_z dwA¢(w) = 1is conserved, so |E¢| andU are both large compared with
A, most of this weight will be lie far from the Fermi energy, V@& a small residu& << 1 in the Kondo
resonance. If the area under the Kondo resonangesice the height of Kondo resonance is fixed/A,

the renormalized hybridization width* must be of ordeZA. This scale is set by the Kondo temperature, so
thatZA ~ Tk.

The Langreth relation (15.73) follows from the analyticrfoof the f-Green’s function near the Fermi
energy. For a single magnetic ion, we expect that the intierebetween electrons can be increased con-
tinuously, without any risk of instabilities, so that thec#ations of the strongly interacting case remain in
one-to-one correspondence with the excitations of theintmacting casé&) = 0, forming a “local Fermi
liquid”. In this local Fermi liquid, the interactions givése to an f-electron self-energy, which at zero tem-
perature, takes the form

S(w—-in) =Z0)+ (1 - ZYw + A, (15.74)
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at low energies. As discussed in chapter 8, The quadratiggdependence & (w) ~ w? follows from the
Pauli exclusion principle, which forces a quadratic enefgyendence of the phase space for the emission of
a particle-hole pair. The “wavefunction” renormalizatidyrepresenting the overlap with the state containing
one additional f-quasiparticle, is less than unitys 1. Using this result (15.74), the low energy form of the
f-electron propagator is

G w—in) = w—Ef —iA -3 () = Z Y w - Z(E; + 2(0))—i ZA —iO(w?)]

Gi(w—in) = (15.75)

w-E; —iA* —i0(w?)
This corresponds to a renormalized resonance of reduceghti< 1, located at postioft; with renor-
malized widthA* = ZA. Now by (15.29) and (15.31 ), the f-Green’s function detemsithe t-matrix of the
conduction electrongw +in) = V2Gt(w +in) = —(1p)1€°“ sing(w), so the phase of the f-Green’s function
at the Fermi energy determines the scattering phase &hifienceG (0+in) = (Gf(0—in))* = —|G¢(0)€°".
This implies that the scattering phase shift at the Fermiggnis

A*
_ -1 ; —tanl
8¢ = Im(In[-G; (w—m)])|w:0_tan (E?), (15.76)
Eliminating E; = A" cotés from (15.75), we obtain
) Z s 1
Gi(0+in) = & fsinds = —Ke sinégy, (15.77)
so that
1 ) sir? §
A¢(0) = ZImG(0—in) = L (15.78)
m A

is an adiabatic invariant.

Photo-emission studies do reveal the three-peaked steuciaracteristic of the Anderson model in many
Cesystems, such &elr, andCeRuy [?] (see Fig. 16.1). Materials in which the Kondo resonanceigew
enough to be resolved are more “mixed valent” materials iitlwvthe f- valence departs significantly from
unity. Three peaked structures have also been observedtaince 5f materials such abl Ptz and UAI,
[?lmaterials, but it has not yet been resolvedliBe;s. A three peaked structure has recently been observed
in 4f Y bmaterials, such aébPd, where the 42 configuration contains a singfehole, so that the positions
of the three peaks are reversed relative to @e [

15.4.2 Renormalization concept

The Anderson model illustrates a central theme of condens#ter physics - the existence of physics on
several widely spaced energy scales. In particular, thie stavhich local moments form is of order the
Coulomb energy, a scale of order IV, while the Kondo &ect occurs on a scale a thousand times smaller
of order 1K ~ 1meV. When energy scales are well-separated like this, we use¢hermalization group”
to fold the key &ects of the high energy physics into a small set of paramétetscontrol the low energy
physics. P, 2, 2, 7]

Renormalization is built on the idea that the low energy ptsyef a system only depend on certain gross
features of the high energy physics. The family of systenth tie same low energy excitation spectrum
constitute a “universality class” of models. (Fig. 15.12¢ Weed the concept of universality, for without
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| L UL L [RURU

(a) CeAl

INTENSITY (arbitrary units)

() CeRuy

ENERGY ABOVE Eg: (oV)

Spectral functions for three different Cerium f-electron materials, measured using
X-ray photoemission (below the Fermi energy ) and inverse X-ray photoemission
(above the Fermi energy) after [?]. CeAlis an antiferromagnet and does not display a
Kondo resonance.

without it we would be lost, for we could not hope to capture fihysics of real-world systems with our
simplified Hamiltonian models. The Anderson model, is ftagknormalized Hamiltonian, notionally derived
from the elimination of high energy excitations from “thefaroscopic Hamiltonian.

To carry out renormalization, the Hamiltonian of interel§D) is parameterized by its cufcenergy scale,
D, the energy of the largest excitations. Renormalizatienlires reducing gthe cufidto a slightly smaller
valueD — D’ = D/b whereb > 1. The excitations in the energy winddi# € [D’, D] that are removed
by this process, are said to have been integrated out of thertispace, and in so doing they give rise to a
new “effective” HamiltonianH, that continues to faithfully describe the the remaining-lemergy degrees
of freedom. The energy scales are then rescaled, to obtagwai(D’) = bH_ and the whole process is

repeated.
Generically, the Hamiltonian can be divided into a blochgtinal form
H i
Z |0 (15.79)
V |Hu

whereH, andHy act on states in the low-energy and high-energy subspaspsatively, andv and V'’
provide the matrix elements between them. The high energgeds of freedom may be “integrated ofitly

6 The term “integrating out” is originally derived from thethantegral formulation of the renormalization group, in wiiigh energy
degrees of freedom are removed by integrating over thesablesiinside the path integral.
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carrying out a canonical transformation that eliminatesdf-diagonal elements in this Hamiltoniad).

H(D) —» H = UH(D)U' = l%

H

iJ (15.80)
H

One then projects out the low energy component of the bldagethalized Hamiltoniai, = PHP. Finally,
by rescaling

H(D’) = bH, (15.81)

one arrives at a new Hamiltonian describing the physics emgtluced scale. The transformation fref{D)

to H(D’) is referred to as a “renormalization group” (RG) transfation. This term was coined long ago,

even though the transformation does not form a real gronpeghere is no inverse transformation.
Repeated application of the RG procedure leads to a familfashiltoniansH(D). By taking the limit

Microscopic Model

Anderson Model

Infinite U Anderson Model
D< EftU

Kondo Model
D”< -Eg EftU

.D” D"

Scaling concept. Low energy model Hamiltonians are obtained from the detailed
original model by integrating out the high energy degrees of freedom. At each stage,
the physics described by the model spans a successively lower frequency window in
the excitation spectrum.

b — 1, these Hamiltonians evolve, or “flow” continuously with Typically, H will contain a series of
dimensionless parameters (coupling constaigt$)which denote the strength of various interaction terms in

the Hamiltonian. The evolution of these parameters withatlits given by a scaling equation. In the the
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simplest case
99
dInD
A negativep function denotes a “relevahparameter which grows as the cuffds reduced. A positivgs
function denotes an “irrelevanparameter constant which shrinks towards zero as the ffuseeduced.
There are two types of event that can occur in such a scalgedure (Fig. 15.14):

=Bilai})

e A crossoverWhen the cut-fi energy scal® passes the characteristic energy scale of a particula ofas
high frequency excitations, then at lower energies, thesigagions may only occur via a virtual process.
When the &ects of the virtual fluctuations associated with these higgrgy process are included into
the Hamiltonian, it changes its structure.

e Fixed Point If the cut-df energy scale drops below the lowest energy scale in the gmglthen there
are no further changes to occur in the Hamiltonian, which malv remain invariant under the scaling
procedure (so that the function of all remaining parameters in the Hamiltonian tmemnish). This
“Fixed Point Hamiltonian'lescribes the essence of the low energy physics.

Local moment physics involves a sequence of such cross-@vay. 15.12.). The highest energy scales in
the Anderson model, are associated with “valence fluctngtimto the empty and doubly occupied states

fl = 2

fl= 0

AE =U+Ef>0

AE =-E;>0 (15.82)

The successive elimination of these processes leads tortves-overs. SupposgE, is the largest scale,
then onceD < AE,, charge fluctuations into the doubly occupied state areimdited and the remaining low
energy Hilbert space of the atom is

D<Ef+U: 1%, |fYho) (o =+1/2) (15.83)

The operators that span this space are called “Hubbardtopgi{&], and they are denoted as follows
Xo0 = |1, o)(f0 = P, Xor = [fO(fL, 0 = f7,P.

Koo = [F1,o)(FL, | (15.84)

whereP = (1 - n¢;:ng;) projects out doubly occupied states. (Note that the HubbperatorsX,o = Pf,,
can not be treated as simple creation operators, for theptkatisfy the canonical anticommutation algebra.)
The corresponding renormalized Hamiltonian is the “Inérit Anderson model”,

H =" adier + [VOC ko Xor + V) Xo0Gker] + Er D Koo (15.85)

k.o

Infinite U Anderson model

In this model, all the interactions are hidden inside the lbéuld operators.
Finally, onceD < AE;, the low-energy Hilbert space no longer involves fiieor f°, states. The object
left behind is a quantum top - a quantum mechanical objedt putrely spin degrees of freedom and a two
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dimensional Hilbert space

[, o), (o = +1/2).

Now the residual spin degrees of freedom still interact Withsurrounding conduction sea, for virtual charge
fluctuations, in which an electron temporarily migraté§ or onto the ion lead, to spin-exchange between
the local moment and the conduction sea. There are two steialMprocesses:

eT'*'fll(_’fz(_)el"'le
e+floe+re oe+fl

AE, ~ U +E;

A ~ —E; (15.86)

In both cases, spin exchange only takes place in the sirgeinel,S = 0 state. From second-order pertur-
bation theory, we know that these virtual charge fluctuatiaiil selectively lower the energy of the singlet
configurations by an amount of ord&E = —J, where

1 1 2[ 1 1 ]

—+ — =V |—+ .

AE;  AE, —-E¢ Ei +U
HereV is the size of the hybridization matrix element near the Faurface. The selective reduction in the
energy of the singlet channel constitutes fieaive antiferromagnetic interaction between the coridoct
electrons and the local moment. If we introdugf®) = Y\ C'kFosCs, Measuring the the electron spin
at the origin, then thefective interaction that lowers the energy of singlet coratioms of conduction and
f-electrons will have the forniess ~ J&(0) - St. The resulting low-energy Hamiltonian that describes the
interaction of a spin with a conduction sea is the deceptisihple “Kondo model”

J~V? (15.87)

Hint

H = 6t + ' (0F0(0) - S
ko

(15.88)

Kondo model

This heuristic argument was ventured in Anderson’s papetooal moment formation in 1961. At the
time, the antiferromagnetic sign in this interaction wasrely unexpected, for it had long been that ex-
change forces always induce a ferromagnetic interactiome®n the conduction sea and local moments. The
innocuous-looking sign élierence has deep consequences for the physics of local noatdotv temper-
atures, giving rise to an interaction that grows as the teatpee is lowered ultimately leading to a final
cross-over into a low-energy Fermi liquid fixed point. Theneening sections of the chapter are devoted to
following this process in detail.

15.4.3 Schrieffer-Wolff transformation

We now carry out the transformation that links the Andersah lilondo models via a canonical transforma-

tion, first introduced by Schriter and Woff[?, ?]. This transformation is a kind of one-step renormalizatio

7 In the simplest version of the Anderson model, the local momeasis- 1/2, but in more realistic atoms much large moments can
be produced. For example, an electron in a Cei@g#t ion atom lives in a 41 state. Here spin-orbit coupling combines orbital and
spin angular momentum into a total angular momjeat! — 1/2 = 5/2. The Cerium ion that forms thus has a spia 5/2 with a spin

degeneracy of P+ 1 = 6. In multi-electron atoms, the situation can become still moraplex, involving Hund's coupling between
atoms.
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process in which the valence fluctuations are integrateabtite Anderson model. When a local moment
forms, hybridization with the conduction sea induces vafttharge fluctuations. It's useful to consider divid-
ing the Hamiltonian into two terms

H=Hy+ 2V
whereA is an expansion parameter. Here,

Hy
Hi1 = Hpand + Hatomic = | —

0
0 IHy
is diagonal in the low energf* (H.) and the high energ§? or f° (Hy) subspaces, whereas the hybridization
term
0 |vF
YV = Hunix = ;[vpc*h, f,+Hc] = [V ‘F]
provides the @-diagonal matrix elements between these two subspacesidéheof the Schriger Wolff
transformation is to carry out a canonical transformatiat teturns the Hamiltonian to block-diagonal form:
Hefavi] . [H*
fu[—L L] I 0—]. (15.89)
AV | Hy 0 |H
This is a “renormalized” Hamiltonian, and the block-diagbpart of this matrixH* = P_H’P_ in the low
energy subspace provides afiective Hamiltonian for the low energy physics. If we sét = €°, then
U" = U = S (which impliesS' = -S is anti-hermitian). WritingS as a power series iy

S=S1+ %S +...,

then by using the identitg*Be ™ = B+ [A, B] + %[A, [A,B]] ..., (15.89) can also be expanded in powers of
A as follows

S(H1 + 1V)eS = Hy + A("V +[S., Hﬂ) P (%[sb [Sw.H]] +[S1.V] +[Sa. H1]) .

Since?V is not diagonal, by requiring
[S1.Hi] = =V, (15.90)

we can eliminate all f-diagonal components to leading ordentinTo second order
eS(Hl + /M/)e’s =Hy+ /lz(:*zL[Sl,(V] + [Sz, Hl]) +....

Since B1, V] is block-diagonal, we can satisfy (15.89 ) to second ordereguiringS; = 0, so that to this
order, the renormalized Hamiltonian has the form

H* = Hi + 22Hint
where

1
Hine = EPL[SLV] PL+...

is an interaction term induced by virtual fluctuations irtte high-energy manifold. Writing

0 —s'*]
0
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and substituting into (15.90), we obtaéh= —sH_ + Hys. Now since Hy)an = E5ap and Hu)ap = EX dap
are diagonal, it follows that

Vab _ Vi ab

(15.91)

From (15.91), we obtain

ViaVap
E - E!

1 j 1
(Hindap = ~5(V's+ S V)ap = 5 >
AeH)

.
[ V'aiVin .

Ej - Ef
Some important points about this result

e We recognize this result as a simple generalization of skcoder perturbation theory to encompass both
diagonal and fi-diagonal matrix elements.
e Hjy can also be written

1
Hint = é[T(Ea) + T(Ep)]
whereT is given by

. P
T(E) = PLV—"—VP_
—Hy

E
- 3 [La

_EH
AeH)y E-E]

(15.92)

is the leading order expression for the many-body scagéFimatrix induced by scatteringfoV. We
can thus relatdi,; to a scattering amplitude, and schematically represent & Beynman diagram,
illustrated in Fig. 15.13.

A

Hlep kel T-matrix representation of interaction induced between states |b) and |a) by integrating

December 1, 2011

out the virtual fluctuations into the high-energy states |1).

o |[f the separation of the low and high energy subspaces is,l#ngn the energy denominators in the above
expression will not depend on the initial and final st@esdb, so that this expression can be simplified
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to the form
VPV

Hint = - AE,

AelH)y

(15.93)

whereAE, = ET —El is the excitation energy in the high energy subspace lattsiadand the projector
P[] = Z\a)ew )@ .

We now apply this method to the Anderson model for which tlenét ground-state is a local moment
1 configuration. In this case, there are two high-energy inegfiate states corresponding 8 and f2
configurations. When a conduction electron or hole is exditegithe localized f-state to create these excited
state configurations, the corresponding excitation easrgieAE(f! — 0) = —E; andAE(f! — f?) =
Et + U. The hybridizationV = Y, [V(k)c*kgf{, + H.c] generates virtual fluctuations into these excited
states. Using (15.93), the interaction induced by theséufions is given by

VRV VATV
Ef +U —Ef

flre e f?

Hint =

flefOre

(15.94)

oo [ Cka F)(F0ks) | (F500) (€ f)
== Vk'V“[ E+U T “E; Poi-1

koK

wherePy,-1 = (nf; — ny,)? projects into the subspace of unit occupancy. Using thez fidentity? 260y0pp =
Sapbyy + Tup - 0y We may recast the spin exchange terms in terms of Pauli reatais follows

L (CupSry+Fap-try)

¥ T ¥ i TN
(ke fa)(F'50k8) = (Cia FI(F'5Cep) X (GayOiye)
= échuCk’u — (Cka ' PapCicp) - St (15.95)
and similarly
+ + 1. +
(F5Cep)(C i o) = ~5CaCka = (G Fapicp) - St (15.96)
(where we have replaced = 1 and dropped residual constants in both cases). The operato
g =i, (‘T;ﬁ) f (y=1) (15.97)
describes the spin of the f-electron. The renormalized Hanian then becomes
Hint = Z Jake € o GCig - S+ H
ka8
flreef?  floflie
. 1 1
Jkkr = Vk,Vk m + TEf ] (15.98)

8 This identity is obtained by expanding an arbitrary two disienal matrixA in terms of Pauli matrices. If we writédy,s =
%Tr[Ago},ﬂ + %Tr[A&] - #qp and read @ the codficients ofA inside the traces, we obtain the inequality.
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Notice how, in the low energy subspace, the occupancy of titaté is constrained t& = 1. This fermionic
representation (15.97) of the spin operator proves to beussaful. Apart from a constant, the second term

1 1 1

H =-2 % ViV =——— + = |Cc'krCko

2; K k[Ef+u * E,] koG
is a residual potential scattering tertf the local moment. This term vanishes for the particle-hpieraetric
caseEs = —(E¢ +U) and will be dropped, since it does not involve the internyalamics of the local moment.
Summarizing, theféect of the high-frequency valence fluctuations is to indutargiferromagnetic coupling
between the local spin density of the conduction electrostiae local moment:

H= Z &Cl G + Z Ik € e Cicg - St (15.99)

ko Kk

This is the famous “Kondo model”. For many purposes, kltependence of the coupling constant can be
dropped, so that the Kondo model takes the deceptively sifiopin

Hint

H= Z ek(koCkn + J(?’(O)< §f .
ko

(15.100)

Kondo model

wherey,(0) Y ¢, is the electron operator at the origin ant(0)¢*y(0) is the spin density at the origin. In
other words, there is a simple point-interaction betweensihin density of the metal at the origin and the
local moment.

15.4.4 “Poor Man” Scaling

We now apply the scaling concept to the Kondo model. This wagnally carried out by Anderson and
Yuval[?, ?, ?] using a method formulated in the time, rather than energgain. The method presented here
follows Anderson’s “ Poor Man's” scaling approa@hP], in which the evolution of the coupling constant is
followed as the band-width of the conduction sea is redutkd.Kondo model is written

H= Z EkC%k,,-Ck”- + H(I)
led<D
HO = J(D) Z ClkaapCis - St
le e <D

where the density of conduction electron states is taken to be constant. The Poor Man’s renormalization
procedure follows the evolution af(D) that results from reducin® by progressively integrating out the
electron states at the edge of the conduction band. In the\Paw's procedure, the band-width is not rescaled
to its original size after each renormalization, which dgahe need to renormalize the electron operators so
that instead of Eq. (15.81)(D’) = Hy.

(15.101)
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To carry out the renormalization procedure, we integratettoel high-energy spin fluctuations using the
t-matrix formulation for the induced interactidthy;, derived in the last section. Formally, the induced inter-
action is given by

1
SHIY = E[Tab(Ea) + Tan(Eb)]

where

TaolE) = ),

[OI0}
Hﬂwﬂ
AelH)

E-Ef

where the energy of state) lies in the rangel)’, D]. There are two possible intermediate states that can be
produced by the action ¢i(") on a one-electron state: (1) either the electron state isesed directly, or (11)

a virtual electron hole-pair is created in the intermedsga#ge. In process (l), the T-matrix can be represented
by the Feynman diagram

for which the T-matrix for scattering into a high energy éfen state is

1
E- €

TOE)po koo = ] I(0°0)3a(S*S)orer

& €[D-oD,D] [

1
~ J%p6D [ﬁ] (020°)3,(S*S?) e (15.102)

In process (Il),

the formation of a particle-hole pair involves a conductdectron line that crosses itself, leading to a negative
sign. Notice how the spin operators of the conduction seaatiterromagnet reverse their relative order in
process Il, so that the T-matrix for scattering into a higlergy hole-state is given by

1

2¢ b _a aghy |
E—(€k+€kr —€ku) J (0’ 7 )ﬂa(s S )(ru'

T )t = [
6 €[-D,-D+5D]

= -J%p5D [i

5| s,

(15.103)
where we have assumed that the energieside, are negligible compared with. Adding (Eq. 15.102) and
(Eq. 15.103) gives

A s J2psD
I 1
tog =T + T =-—p—
J2psD
=P FpaSocr

SHS [0®, 0], S2SP

(15.104)
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In this way we see that the virtual emission of a high energgtedbn and hole generates an antiferromagnetic
correction to the original Kondo coupling constant

6D
2 _—
)
High frequency spin fluctuations thasitiscreerthe antiferrromagnetic interaction. If we introduce thei-co
pling constang = pJ, we see that it satisfies

5 =Bl = 20 + O&).
This is an example of a negatigefunction: a signature of an interaction which is weak at Higlquencies,
but which grows as the energy scale is reduced. The local mibzoepled to the conduction sea is said to be
asymptotically freeThe solution to this scaling equation is

J(D') = I(D) +2J

N %
9D = T %5 In@/D) (15.105)
and if we introduce the scale

Tk = Dexp[—%] (15.106)
[o]

we see that this can be written

N 1
2000 = 57Ty

This is an example of a running coupling constant- a coupdimgstant whose strength depends on the scale
at which it is measured. (See Fig. 15.14).

Attractive
Fixed Point

Repulsive
Fixed Point

crossover

A 4
A
Y

» B
> Ll

g~ 0 weak coupling g ~ o strong coupling

perturbation in g perturbation in /g

Schematic illustration of renormalization group flow from a repulsive “weak coupling”
fixed point, via a crossover to an attractive “strong coupling” fixed point.

Were we to take this equation literally, we would say thakiverges at the scal®’ = Tk. This interpre-
tation is too literal, because the above scaling equatisnondy been calculated to ordg?, nevertheless,
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this result does show us that the Kondo interaction can oaliyrdéated perturbatively at energy scales large
compared with the Kondo temperature. We also see that onteveewritten the coupling constant in terms
of the Kondo temperature, all reference to the originalaffienergy scale vanishes from the expression. This
cut-of independence of the problem is an indication that the pbyafithe Kondo problem does not depend
on the high energy details of the model: there is only onevagieenergy scale, the Kondo temperature.

Itis possible to extend the above leading order renorntidizaalculation to higher order ig. To do this
requires a more systematic method of calculating highegresdattering ects. One tool that is particularly
useful in this respect, is to use the Abrikosov pseudo-fenmépresentation of the spin, writing

S= f*u(f) fs
2 B

np=1 (15.107)

This has the advantage that the spin operator, which doesatisty Wick’s theorem, is now factorized in
terms of conventional fermions. Unfortunately, the secombtraint is required to enforce the condition that
S? = 3/4. This constraint proves very awkward for the developmért Beynman diagram approach. One
way around this problem, is to use the Popov trick, whereleyftalectron is associated with a complex
chemical potential

T
p=—inz

The partition function of the Hamiltonian is written as arcanstrained trace over the conduction and pseud-

ofermion Fock spaces,

7= TrIefﬁ(HHﬂ%(nf*l))] (15.108)

Now since the Hamiltonian conserves, we can divide this trace up into contributions from tifed* and
d? subspaces, as follows:

Z = €727(1% + Z(Y) + e72Z(F?)
But sinceS¢ = 0 in the f2andd® subspace<Z(f°) = Z(f?) so that the contributions to the partition function

from these two unwanted subspaces exactly cancel. You sathte method by applying it to a free spin in
a magnetic field. (see exercise)

Hlepleilsi Diagrams contributing to the third-order term in the beta function. A “crossed”

propagator line indicates that the contribution from high-energy electrons with
energies |&| € [D — 6D, D] is taken from this line.

527

bk . pdf

December 1, 2011

Chapter 15. ©Piers Coleman 2011

By calculating the higher order diagrams shown in fig 15.15is straightforward, though laborious to
show that the beta-function to ordgtis given by

99 _ _ _om2 3 4
alnD—ﬁ(g)— 29° +29° + O(g")

One can integrate this equation to obtain

LA di__}g[ii ]
I%J_Emm_ZLmy”g+WJ

A better estimate of the temperatufg where the system scales to strong coupling is obtained binget
D’ = Tk andg = 1 in this equation, which gives

(15.109)

Tk 1 1
In (3) =5, * 22+ O, (15.110)
where for convenience, we have absorbed a faq@rinto the cut-df, writing D = D \/7—2{ Thus,
Tk = D /2o % (15.111)

up to a constant factor. The square-root pre-factoriris often dropped in qualitative discussion, but it is
important for more quantitative comparison.

15.4.5 Universality and the resistance minimum

Provided the Kondo temperature is far smaller than the flutdoen at low energies it is the only scale
governing the physics of the Konddfect. For this reason, we expect all physical quantities texpeessed
in terms of universal functions involving the ratio of thetjgerature or field to the Kondo scale. For example,
the susceptibility

T

1
XM = 7 F ) (15.112)
and the quasiparticle scattering rate
1 1. T
ﬁ = ?Og(ﬂ) (15.113)

both display universal behavior.
We can confirm the existence of universality by examinings¢hproperties in the weak coupling limit,
whereT >> Tk. Here, we find

1
= 273%pS(S + 1)n;, (S=2)

1
(T) 2
N

(M) = g [1-23)

wheren; is the density of impurities. Scaling implies that at lowemperaturesp — Jp + 2(Jp)?In 2, so
that to next leading order we expect

T%l') = ni%”S(s +1)[Jp +2(3p)?In %2, (15.114)
x(T) = % 1-2Jp - 4(3p)?In ? +0((Jp)°) (15.115)
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results that are confirmed from second-order perturbatieary. The first result was obtained by Jun Kondo.
Kondo was looking for a consequence of the antiferromagmetigraction predicted by the Anderson model,
so he computed the electron scattering rate to third ordénérmagnetic coupling. The logarithm which
appears in the electron scattering rate means that as tipetetare is lowered, the rate at which electrons
scatter & magnetic impurities rises. It is this phenomenon that giges to the famous Kondo “resistance
minimum” .

Since we know the form of, we can use this result to deduce that the weak coupling diftite scaling
forms. If we take equation (15.110), and replace the ¢ubythe temperatur® — T, and replace, by the
running coupling constam, — g(T), we obtain

1

T=——7—— 15.116
om 2In(L) +In2g(T) ( )
which we may iterate to obtain
2g(T) = lT 7"1('”(; / IK)). (15.117)
(%) 2 ()
Using this expression to make the replacemknt> g(T) in (15.114) and (15.115), we obtain
n; 1 1In(In(T/Tk)) ]
T)=—|1- -z +... 15.118
= 3 1= g 2 g 45118
1 _ nler(SJrl)[ ; 1 |n(|2(T/TK)) (15.119)
7(T) 2 In*(T/Tx)  In*(T/Tk)
From the second result, we see that the electron scattetedas the scale-invariant form
1 _n
W pg(T/TK). (15.120)

whereG(x) is a universal function. The pre-factor in the electrorttering rate is essentially the Fermi energy
of the electron gas: it is the “unitary scattering” rate, thaximum possible scattering rate that is obtained
when an electron experiences a resomg@tscattering phase shift. From this result, we see that aiates
zero, the electron scattering rate will rise to the va}(ré) = 25(0), indicating that at strong coupling, the
scattering rate is of the same order as the unitary scajtémit. We shall now see how this same result
comes naturally out of a strong coupling analysis.

15.4.6 Nozieres Fermi Liquid Theory of the Kondo Ground-state

The weak-coupling analysis tells us that at scales of ofteKbndo temperature, the Kondo coupling con-
stantg scales to a value of ord€X(1). Although perturbative renormalization group methoas not go past
this point, Anderson and Yuv&][?, ?]pointed out that it is not unreasonable to suppose that trel cou-
pling constant scales to a fixed point where it is large coegban the conduction electron band-widih
This assumption is the simplest possibility and if true, @ans that the strong-coupling limit is an attractive
fixed point, being stable under the renormalization groupdékson and Yuval conjectured that the Kondo
singlet would be paramagnetic, with a temperature indegreimdagnetic susceptibility and a universal linear
specific heat given by = VKTTT at low temperatures.

The first controlled treatment of this cross-over regime gasied out by Wilson using a numerical renor-
malization group method. Wilson’s numerical renormal@atmethod was able to confirm the conjectured
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renormalization of the Kondo coupling constant to infinitiis limit is called the “strong coupling” limit of
the Kondo problem. Wilson carried out an analysis of thergtrooupling limit, and was able to show that
the specific heat would be a linear function of temperatike,d Fermi liquid. Wilson showed that the linear
specific heat could be written in a universal form

Cv =»T,
72 0.4128+ 0.002
= (15.121)

Wilson also compared the ratio between the magnetic subdigptand the linear specific heat with the
corresponding value in a non-interacting system, computin

212
kg

3(#5)2] =2

_A )ﬁ( (15.122)

Yy
within the accuracy of the numerical calculation.

Remarkably, the second result of Wilson’s can be re-detiguly an exceptionally elegant set of arguments
due to Nozéresp] that leads to an explicit form for the strong coupling fixemig Hamiltonian. Nozéres
began by considering an electron in a one-dimensional @sailfustrated in Fig. 15.16. The Hamiltonian for
this situation is

0 1 2

O

—°

3

O
S

d

lllustrating the strong-coupling limit of the Kondo model

Hiattice = —t Z [cho(j + 1)6,(j) + H.cl + I¢T4(0)upCs(0) - St (15.123)

j=00
Nozieres argued that the strong coupling fixed point will be dbedrby the situatiod >> t. In this limit,
the kinetic energy of the electrons in the band can be trest@dperturbation to the Kondo singlet. The local
moment couples to an electron at the origin, forming a “Kosithglet” denoted by

1
GS) = — -
[GS) \E(l T =101

where the thick arrow refers to the spin state of the local ertrand the thin arrow refers to the spin state of
the electron at site 0. Any electron which migrates from $ite site O will automatically break this singlet

(15.124)
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state, raising its energy byJp4. This will have the fect of excludingelectrons (or holes) from the origin.
The fixed point Hamiltonian must then take the form

Hiatice = —t Z [+ (j + 1)c,(j) + H.c] + weak interaction
T

(15.125)

where the second-term refers to the weak-interactionscidiin the conduction sea by virtual fluctuations
onto site 0. If the wavefunction of electrons far from the imity has the formy(x) ~ sinkgx), wherekg is
the Fermi momentum, then the exclusion of electrons froeishas the féect of phase-shifting the electron
wavefunctions by one the lattice spacigo that nows(x) ~ sinkex— &) wheres = kra. But if there is one
electron per site, then 2(Ra/(2x)) = 1 by the Luttinger sum rule, so thist = 7/(2a) and hence the Kondo
singlet acts as a spinless, elastic scattering center wétitesing phase shift

5=n/2. (15.126)

The appearance ¢f= 7/2 could also be deduced by appealing to the Friedel sum rilighvstates that the
number of bound-electrons at the magnetic impurity si@(js‘",%l = 26/r, so thats = n/2. By considering
virtual fluctuations of electrons between site 1 and 0, Bies argued that the induced interaction at site 1

must take the form
4

Hint ~ REkuLT (15.127)

because fourth order hopping processes lower the enerdpe @liigly occupied state, but they do not occur
for the doubly occupied state. This is a repulsive intecec@mongst the conduction electrons, and it is
known to be a marginal operator under the renormalizationgrleading to the conclusion that thiéeetive
Hamiltonian describes a weakly interacting “local” Feriguid.

Nozieres formulated this local Fermi liquid in the language obanupancy-dependent phase shift. Sup-
pose theko- scattering state has occupamgy, then the the ground-state energy will be a functional of¢he
occupancie€[{n}]. The diferential of this quantity with respect to occupancies dsfimphase shifas
follows

oE

N
The first term is just the energy of an unscattered condueiectron, whiles({nq.}, &) is the scattering
phase shift of the Fermi liquid. This phase shift can be egdpdn

A
= &= —o(lNes ). &): (15.128)

(N} 6) = 5 +ala— ) + @Y N (15.129)

2 K
where the term with cdcient® describes the interaction between opposite spin statdedfermi liquid.
Nozieres argued that when the chemical potential of the cormtusta is changed, the occupancy of the
localizedd state will not change, which implies that the phase shifnigiiant under changes jn Now
under a shiftsu, the change in the occupandy, én, — dup, so that changing the chemical potential
modifies the phase shift by an amount

AS = (@ + Op)Au =0 (15.130)

so thate = —p®. We are now in a position to calculate the impurity contribato the magnetic susceptibility
and specific heat. First note that the density of quasipariates is given by

dN 198 a
P—E—Po*‘;&—l’o‘*; (15.131)
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so that the low temperature specific heat is giveilthy= (ybui + i) Wwhere

L5):
Yi=<el—( | =

15.132
3 | (15.132)

where the prefactor “2” is derived from the spin up and spim4d bands. Now in a magnetic field, the
impurity magnetization is given by
_ 67 6l

M= -2
noon

(15.133)

Since the Fermi energies of the up and down quasiparticteshafted toer, — e — 0B, we havey,, sny, =
opB, so that the phase-shift at the Fermi surface in the up and doattering channels becomes

w
0y = 5 + adery + qn(zk: SMier

= 7—2r +aoB - ®poB

= 12‘ +200B (15.134)

so that the presence of the interaction term doutblesize of the change in the phase shift due to a magnetic
field. The impurity magnetization then becomes

M; = xiB = 2(@),@3 (15.135)
w
where we have reinstated the magnetic moment of the eledttosis twice the value expected for a “rigid”
resonance, and it means that the Wilson ratio is
2|2
Xir kB
W= =2 15.136
$3ua (15139

15.4.7 Experimental observation of Kondo effect

Experimentally, there is now a wealth of observations tleatficm our understanding of the single impurity
Kondo dfect. Here is a brief itemization of some of the most importéservations. (Fig. 15.17.)

e A resistance minimum appears when local moments developniratarial. For example, ilNb;_xMoy
alloys, a local moment develops far> 0.4, and the resistance is seen to develop a minimum beyond
this point.?, ?]

e Universality seen in the specific he@y = %F(T/TK) of metals doped with dilute concentrations of
impurities. Thus the specific heat 6fu — Fe (iron impurities in copper) can be superimposed on the
specific heat o€u— Cr, with a suitable rescaling of the temperature sc&lg?]

e Universality is observed in thefiierential conductance of quantum d@sf] and spin-fluctuation resistiv-
ity of metals with a dilute concentration of impuritied.Actually, both properties are dependent on the
same thermal average of the imaginary part of the scatt@rimgtrix

pi = ni% fdw (—%) 2Im[T(w)]
G= %fdw(—%)nplmﬁ(w)].
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Puttingzp [ de (~ 35 ) ImT (w) = t(w/Tk, T/T), we see that both properties have the form
2né

pi = n.mt(T/TK)

G-= %t(T/TK) (15.138)

wheret(T/Tk) is a universal function. This result is born out by expenite

Exercises
|

Exercise 15.1 (a) Using the identitymf{r = n¢,, show that the atomic part of the Anderson model can be
written in the form

U U
Hatomic = (Ef + E)nf + i[mf - 1)2 - 1], (15.139)
What happens wheB¢ + U/2 = 0?
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(b) Using the completeness relation

[FOEORIF2)CF2 I+
—_—— ,—/r
S
- 2 —— =
(ng - 1) ‘587D 1. (S=1/2)

show that the interaction can also be written in the form
Hatomic = (Ef + %)nf - %Sz
which makes it clear that the repulsive U term induces a “raigrttraction” that favors formation of
a local moment.
(c) Derive the Hubbard Stratonovich decoupling for (16.54)
Exercise 15.2 By expanding a plane wave state in terms of spherical hacsoni

(k) = €7 = 4 3" 1 (kn) Vi, (K) Yim ()
I.m

(15.140)

show that the overlap between a stigtewith wavefunction(Xly) = R(r)Yim(f) with a plane wave is
given byV(K) = (KVI¥) = V(K)Yim(K) where

V(K) = 4ri™! f drr2V(r)R(r) i (kr) (15.141)
Exercise 15.3 (i) Show thats = cot™* (%) is the scattering phase shift for scatterirfjaresonant level at
positionEy.
(ii) Show that the energy of states in the continuum is stiiftg an amount-Aed(e)/x, whereAe is the
separation of states in the continuum.
(iiiy Show that the increase in density of states is give@®E = pq4(E). (See chapter 3.)
Exercise 15.4 Generalize the scaling equations to the anisotropic Konddelhwith an anisotropic inter-
action
H| = JaC.‘lk,lO'?karﬁ - Sad (15142)
lel.lew .a=(x.y.2)
and show that the scaling equations take the form
0Ja 3
=-2JpJ [o]@]
7InD bJep + O(J7),
where andd, b, ¢) are a cyclic permutation ok(y, ). Show that in the special case whdge= Jy = J,,
the scaling equations become

0,

— 3
aD =-23,0.p + O3,
2 _ 2 3
T 5 = ~20% + O, (15.143)

so that)? — J = constant. Draw the corresponding scaling diagram.
Exercise 15.5 Consider the symmetric Anderson model, with a symmetrialbstructure at half filling. In
this model, thed® andd? states are degenerate and there is the possibility of ageddtondo &ect”

when the interactiol) is negative. Show that under the “particle-hole” transfation
Cq = Cq. G —od
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G =~ d o —d, (15.144)

the positiveU model is transformed to the negatidemodel. Show that the spin operators of the local
moment are transformed into Nambu “isospin operators” vidiescribe the charge and pair degrees
of freedom of the d-state. Use this transformation to arpaéwhen U is negative, a charged Kondo
effect will occur at exactly half-filling involving quantum fltations between the degenerdfeand
d? configurations.
Exercise 15.6 What happens to the Schffier-Wolff transformation in the infinite U limit? Rederive the
Schrigfer-Wolff transformation for an N-fold degenerate version of the itéity Anderson model.
This is actually valid for Ce and Yb ions.
Exercise 15.7 Rederive the Nozires Fermi liquid picture for an SU (N) degenerate Kondo rhdgielain
why this picture is relevant for magnetic rare earth ionhsagCe** or Y.
Exercise 15.8 Check the Popov trick works for a magnetic moment in an ezldigld. Derive the partition
function for a spin in a magnetic field using this method.
Exercise 15.9 Use the Popov trick to calculate the T-matrix diagrams ferlgading Kondo renormaliza-
tion diagramatically.
Exercise 15.10 Derive the formula (15.66) for the conductance of a singhgigd resonance.
Exercise 15.11 1 Directly confirm the Read-Newn'’s gauge transformation41%
2 Directly calculate the “phase 8tiess”p, = —‘f—; of the largeN Kondo model and show that at
T=0.
_ N (sin(zq)
reg (50
Exercise 15.12 1 Introduce a simple relaxation time into the conductiortete propagator, writing
> V2
G(K, iwn) ™t = iwn + isgngn) /27 + Pt (15.145)

Show that the poles of this Greens function occur at

where

is the renormalized elestic scattering time.
2 The Kubo formula for the optical conductivity of an isotropne-band system is

Né& vﬁ TI(v)

o) = 3
K

iv
where we have used tiéfold spin degeneracy, afid(v) is the analytic extension of

M(ivy) =T Z G(K, iwm) [G(K.iwm + ivn) — G(K.iwm)]

where in our caséB(E, iwp) Is the conduction electron propagator. Using (16.59),apptoximating
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the momentum sum by an integral over energy, show that thér&mwency conductivity of the large

N Kondo lattice is given by
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Heavy electrons

16.1 Doniach’s Kondo lattice hypothesis

Although the single impurity Kondo problem was essentiatijved by the early seventies, it took a further
decade before the physics community was ready to accepbthmmrthat the same phenomenon could occur
within a dense lattice environment. This resistance to gbavas rooted in a number of popular misconcep-
tions about the spin physics and the Kondi@et.

At the beginning of the seventies, it was well known that loscagnetic moments severely suppress super-
conductivity, so that typically, a few percent is all thatésjuired to destroy the superconductivity. Conven-
tional superconductivity is largely immune to thets of non-magnetic disordémbut highly sensitive to
magnetic impurities, which destroy the time-reversal syatmgnnecessary for s-wave pairing. The arrival of a
new class of superconducting material containing densgsiof local moments took the physics community
completely by surprise. Indeed, the first observations peéstonductivity inU Be;3, made in 1973 [1] were
dismissed as an artifact and had to await a further ten yedoseéthey were revisited and acclaimed as heavy
fermion superconductivity. [2, 3]

Normally, local moment systems develop antiferromagnatiter at low temperatures. When a magnetic
moment is introduced into a metal it induces Friedel odilfes in the spin density around the magnetic ion,
given by

(M(®)) = =3y (% - X)(S(X))

wherelJ is the strength of the Kondo coupling and

X9 = ) (@)

q
=2y (W71
K

_ (16.1)
g~ &

is the the non-local susceptibility of the metal. If a sectowhl moment is introduced at locatici) then it

couples ta{M(x)) giving rise to a long-range magnetic interaction called‘RIKY[4] interaction, 2

Jrkky(X-X)

e e

Hriky = =92(X = X) S(x) - S(X). (16.2)

1 Anderson argued in his “dirty superconductor theorem” th@SBsuperconductivity involves pairing of electrons in esathat are
the time-reverse transform of one another. Non-magnetiadisaloes not break time reversal symmetry, and so the onelpartic
eigenstates of a dirty system can still be grouped into tievense pairs from which s-wave pairs can be constructedthBoreason,
s-wave pairing is largely utfizcted by non-magnetic disorder.

2 named after Ruderman, Kittel, Kasuya and Yosida
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Fig. 16.1 lllustrating how the polarization of spin around a magnetic impurity gives rise to
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Friedel oscillations and induces an RKKY interaction between the spins

The sharp discontinuity in the occupancies at the Fermaserproduces slowly decaying Friedel oscillations
in the RKKY interaction given by
cos Xgr
kerl®

wherep is the conduction electron density of states ansl the distance from the impurity, so the RKKY
interaction oscillates in sign, depending on the distaretevéen impurities. The approximate size of the
RKKY interaction is given byErkky ~ J%p.

Normally, the oscillatory nature of this magnetic inteiactfavors the development of antiferromagnetism.
In alloys containing a dilute concentration of magnetiogiion metal ions, the RKKY interaction gives rise
to a frustrated, glassy magnetic state known as a spin glaskich the magnetic moments freeze into a
fixed, but random orientation. In dense systems, the RKK¥rattion typically gives rise to an ordered
antiferromagnetic state with aéel temperaturéy ~ J%p.

In 1976 Andres, Ott and Graebner discovered the heavy fermietalCeAk. [?] This metal has the
following features:

Jriky(r) ~ =3% (16.3)

o A Curie susceptibilityy™* ~ T at high temperatures.

e A paramagnetic spin susceptibiliy~ constantat low temperatures.

¢ A linear specific heat capaci®y = yT, wherey ~ 160anJ/mol/K? is approximately 1600 times larger
than in a conventional metal.

e A quadratic temperature dependence of the low temperagsigtivityp = po + AT?

Andres, Ott and Grabner pointed out that the low tempergitoperties are those of a Fermi liquinlit one
in which the éfective masses of the quasiparticles are approximately E§€r than the bare electron mass.
The Fermi liquid expressions for the magnetic susceptjbiliand the linear specific heat dtieienty are

e NO
r= ("25)221 +F2
y="N() (16.4

whereN*(0) = r"W'N(O) is the renormalized density of states dflis the spin-dependent part of the s-
wave interaction between quasiparticles. What could be tigincof this huge mass renormalization? Like
other Cerium heavy fermion materials, the Cerium atomsigtietal are in &£&** (4f1) configuration, and
because they are spin-orbit coupled, they form huge locahemts with a spin ol = 5/2. In their paper,
Andres, Ott and Graebner suggested that a lattice versithredfondo &ect might be responsible.
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Fig. 16.2 (a) Single impurity Kondo effect builds a single fermionic level into the conduction sea,

which gives rise to a resonance in the conduction electron density of states (b) Lattice
Kondo effect builds a fermionic resonance into the conduction sea in each unit cell.
The elastic scattering off this lattice of resonances leads to formation of a heavy
electron band, of width T.

This discovery prompted Sebastian Doni&ghd propose that the origin of these heavy electrons derived
from a dense version of the Kondéect. Doniach proposed that heavy electron systems shouttbdeled
by the “Kondo-lattice Hamiltonian” where a dense array @fdlomoments interact with the conduction sea.
For a Kondo lattice with spin/R local moments, the Kondo lattice Hamiltoni@hfakes the form

H= Z 6C' 5 G, +J Z Sj- ¢y, (%) ﬂclz,ﬂei“z/"z’ A
Ko ] K

Doniach argued that there are two scales in the Kondo lattieeKondo temperatur€« and Erkky, given
by

(16.5)

Tk = DeV/?»

Erkky = I (16.6)

When Jp is small, thenErkky >> Tk, and an antiferromagnetic state is formed, but when the gond
temperature is larger than the RKKY interaction sc@le,>> Erkky, Doniach argued that a dense Kondo
lattice ground-state is formed in which each site resogatthtters electrons. Bloch’s theorem then insures
that the resonant elastic scattering at each site will forhigaly renormalized band, of widtk Tx. By
contrast to the single impurity Konddfect, in the heavy electron phase of the Kondo lattice thengtro

elastic scattering at each site acts in a coherent fashioind@es not give rise to a resistance. For this reason,

as the heavy electron state forms, the resistance of thersyditops towards zero. One of the fascinating
aspects of the Kondo lattice concerns the Luttinger sum fihés aspect was first discussed in detail by
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? Fermi
Liquid

TK< TRKKY TK> TRKKY

Fig. 16.3 Doniach diagram, illustrating the antiferromagnetic regime, where Tx < Trkky and the
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heavy fermion regime, where Tx > Trkky. Experiment has told us in recent times that
the transition between these two regimes is a quantum critical point. The effective
Fermi temperature of the heavy Fermi liquid is indicated as a solid line. Circumstantial
experimental evidence suggests that this scale drops to zero at the antiferromagnetic
quantum critical point, but this is still a matter of controversy.

Martin[5], who pointed out that the Kondo model can be regdras the result of adiabatically increasing the
interaction strengthy in the Anderson model, whilst preserving the valence of tagmetic ion. During this
process, one expects sum rules to be preserved. In the imhe scattering phase shift at the Fermi energy
counts the number of localized electrons, according to theglel sum rule

Z%:m:l

o

This sum rule survives to largd, and reappears as the constraint on the scattering phdsershied by
the Abrikosov Suhl resonance. In the lattice, the corredansum rule is the Luttinger sum rule, which
states that the Fermi surface volume counts the number cifefes, which at small is just the number of
localized (4f, 5f or 3d) and conduction electrons. Whéecomes large, number of localized electrons is
now the number of spins, so that

S
2(2,,)3 = Ne + Ngpins
This sum rule is thought to hold for the Kondo lattice Hantilem, independently of the origin of the localized

540

274



(©2011 Piers Coleman Chapter 16.

L L A L L L LA AL
ASOO -
x=0.09
GJ .
o 0.29
<§ 200 [ 0.5
% | 073 s .
€100 0.9
Q | 0.99 oo ’
| \'HHHH T T T I A Y

0.01 o1 1.0 10 100

(K)

Fig. 16.4 Development of coherence in heavy fermion systems. Resistance in Ce;_xLa,Cug

after Onuki and Komatsubara[?]

moments. Such a sum rule would work, for example, even ifpiessn the model were derived from nuclear

spins, provided the Kondo temperature were large enoughdragtee a paramagnetic state.
Experimentally, there is a great deal of support for the alpeture. It is possible, for example, to examine

the dfect of progressively increasing the concentratioB ein the non-magnetic hosaCus.(16.4 ) At dilute

concentrations, the resistivity rises to a maximum at lawgeratures. At dense concentrations, the resistivity
shows the same high temperature behavior, but at low temypesacoherence between the sites leads to a
dramatic drop in the resistivity. The thermodynamics ofdeese and dilute system are essentially identical,

but the transport properties display tHeets of coherence.

There are many indications that the Fermi surface of heagtrein systems has a volume which counts
both spins and conduction electrons. The most direct evildrrives from Fermi surface studies made from
accurate measurements of de Haas van Alphen oscillat®r. [Typically, in the heavy Fermi liquid, the
measured de Haas van Alphen orbits are consistent with Saackture calculations in which the f-electrons
are assumed to be delocalized. By contrast, the measuresksnatthe heavy electrons often exceed the
band-structure calculated masses of the narrow f-band loyder of magnitude or more. Perhaps the most
remarkable discovery of recent years, is the observatiahttie volume of the f-electron Fermi surface
appears to “jJump” to a much smaller value when the f-elestianti-ferro magnetically order, indicating that
once the Kondoféect is interupted by magnetism, the heavy f-electrons bedoralized agairt]]

Yet Doniach scenario for heavy fermion development is funelatally a comparison of energy scales: it
does not tell us how the heavy fermion phase evolves fromrttileromagnet, nor does it explain the nature
of the heavy f-electron. Amongst the early objections toiao's hypothesis and were of particular concern:

e Size of the Kondo temperatulg. Simple estimates of the value &f required for heavy electron behavior
give a valuelp ~ 1. Yet in the Anderson modelp ~ 1 would imply a mixed valent situation, with no
local moment formation.
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e Exhaustion paradox. The naive picture of the Kondo modebines that the local moment is screened
by conduction electrons within an energy range of the Fermi energy. The number of conduction
electrons in this range is of ord&k /D << 1 per unit cell, wher® is the band-width of the conduction
electrons, suggesting that there are not enough condweliatrons to screen the local moments.

The resolution of these two issues are quite intriguing.

Enhancement of the Kondo temperature by spin degeneracy

The resolution of the first issue has its origins in the laggie-®rbit coupling of the rare earth or actinide ions
in heavy electron systems. This protects the orbital amgodementum against quenching by the crystal fields.
Rare earth and actinide ions consequently display a latgedogular momentum degenerddy= 2j + 1,
which has the fect of dramatically enhancing the Kondo temperature. Takeskample the case of the
Cerium ion, where the # electron is spin-orbit coupled into a state wjtk: 5/2, giving a spin degeneracy
of N = 2j + 1 = 6. Ytterbium heavy fermion materials involve tNé : 4f*3 configuration, which has an
angular momentunj = 7/2, orN = 8.

To take account of these large spin degeneracies, we neethéoaize the Kondo model. This was done
in the mid-sixties by Cogblin and Schfier[6]. Cogblin and Schriger considered a degenerate version of
the infiniteU Anderson model in which the spin component of the electrans from—j to j,

H= Zekc"‘kr,cm +Ey Z|f1 CoXfliol+ ZV[C”'knlfOXP “ol+Hc).
ko o ko

Here the conduction electron states are also labeled byimsgices that run from-j to j. This is because
the spin-orbit coupled states couple to partial wave states of the conductionrelesin which the orbital
and spin angular momentum are combined into a state of deﬂrﬁiuppos%) represents a plane wave of
momentunk, then one can construct a state of definite orbital angulanembuml by integrating the plane
wave with a spherical harmonic, as follows:

Q. . -
Mmﬂ:ji?mmﬂb

When spin orbit interactions are strong, one must work withrtigl wave of definitg, obtained by combin-
ing these states in the following linear combinations. Tfaughe casg = | + 1/2 (relevant for Ytterbium
ions), we have

l+om+ oo

O 2 ham- 2T,
a+1 Km-2.3)

k) = Z

o=+1

An electron creation operator is constructed in a similay.Wais construction is unfortunately, not simulta-
neously possible at more than one site.

WhenE; << 0, the valence of the ion approaches unity apd- 1. In this limit, one can integrate out the
virtual fluctuationsf! = O + e~ via a Schrifer Wolff transformation. This leads to the Cogblin Scfige
model

Hes = ) aCiote +3 ) Ciglialup,
ko kk-ap

(ova.Bel-] D).
whereJ = V2/|E¢| is the induced antiferromagnetic interaction strengtlis Tteraction is understood as the
¢] g
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result of virtual charge fluctuations into tfié state,f* = f°+e". The spin indices run fromj to j, and we
have introduced the notation

Top = flafy=1f":axfh: pl

Notice that the charg® = n; of the f—electron, normally taken to be unity, is conserved by the-ggichange
interaction in this Hamiltonian.

To get an idea of how the Konddfect is modified by the larger degeneracy, consider the resloration
of the interaction, which is given by the diagram

(D) = IV ~ L “
D
-3+ NszIn(H) (16.7)

( where the cross on the intermediate conduction electrate stdicates that all states with enelgy €

[D’, D] are integrate over). From this result, we see (g} = dg(D)/dInD = —N¢?, whereg = Jp has an
N- fold enhancement, derived from theintermediate hole states. A more extensive calculatiomshbat
the beta function to third order takes the form

B(@) = -Ng + Ng’.

This then leads to the Kondo temperature

(16.8)

Tk = D(NJp)* exp

1
]
so that large degeneracy enhances the Kondo temperatume @xponential factor. By contrast, the RKKY
interaction strength is given Bhkkky ~ J%p, and it does not involve anlyl fold enhancement factors, thus in
systems with large spin degeneracy, the enhancement ofahédtemperature favors the formation of the
heavy fermion ground-state.

In practice, rare-earth ions are exposed to the crystakfigdheir host, which splits thi = 2j + 1 fold
degeneracy into many multiplets. Even in this case, theeldegeneracy is helpful, because the crystal field
splitting is small compared with the band-width. At enesdié large compared with the crystal field splitting
Ty, D’ >> Ty, the physics is that of aN fold degenerate ion, whereas at energ¥small compared with
the crystal field splitting, the physics is typically thatsoKramers doublet, i.e.

ag {—Ng2 (D>>Ty) (16.9)

anD | —2¢? (D<<Ty)

from which we see that at low energy scales, the leading oeserrmalization ofy is given by
1 1 D T,
—— = — —Nin|[= —2In(—X
9D) % (T) D’)
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where the first logarithm describes the high energy scregenith spin degeneraci, and the second loga-
rithm describes the low-energy screening, with spin degeye2. This expression is 0 whenD’ ~ Ty, the

Kondo temperature, so that
1 D T
0=——-NIn —)—Zln( x)
% (Tx T

from which we deduce that the renormalized Kondo tempeedtas the form[7]

1 \/D\**!
S

Here the first term is the expression for the Kondo tempeeaitia spin 12 Kondo model. The second term
captures the enhancement of the Kondo temperature conunmgtfre renormalizationféects at scales larger
than the crystal field splitting. Suppo$g ~ 100K, andD ~ 100K, andN = 6, then the enhancement factor
is order 100. This fect enhances the Kondo temperature of rare earth heavyofesystems to values that
are indeed, up to a hundred times bigger than those in ti@msitetal systems. This is the simple reason
why heavy fermion behavior is rare in transition metal syste[?] In short- spin-orbit coupling, even in the
presence of crystal fields, substantially enhances the &terdperature.

The exhaustion problem

Attemperature3 < T, alocal momentis “screened” by conduction electrons. Wbesdhis actually mean?
The conventional view of the Konddfect interprets it in terms of the formation of a “magneticesaring
cloud” around the local moment. According to the screenlngd picture, the electrons which magnetically
screen each local moment are confined within an energy rangeler 5e ~ Tk around the Fermi surface,
giving rise to a spatially extended screening cloud of disi@m = vg/Tx ~ a;—i, whereais a lattice constant
ander is the Fermi temperature. In a typical heavy fermion systéis,length would extend over hundreds
of lattice constants. This leads to the following two dileasn

1 It suggests that when the density of magnetic ions is gréagmp ~ 1/1%, the screening clouds will
interfere. Experimentally no such interference is obstre@d features of single ion Kondo behavior are
seen at much higher densities.

2 “The exhaustion paradox” The number of “screening”et@timper unit cell within energyx of the Fermi
surface roughlyTx /W, whereW is the bandwidth, so there would never be enough low eneegptrehs
to screen a dense array of local moments.

In this lecture | shall argue that the screening cloud pe&tfrthe Kondo &ect is conceptually incorrect.
Although the Kondo #fect does involve a binding of local moments to electronsbihding process takes
place between the local moment and high energy electrepanning decades of energy from the Kondo
temperature up to the band-width. (Fig. 16.5) | shall ardna the key physics of the Konddfect, both in
the dilute impurity and dense Kondo lattice, involves therfation of a composite heavy fermiéormed by
binding electrons on logarithmically large energy scalesto the band-width. These new electronic states
are injected into the conduction electron sea near the Ferargy. For a single impurity, this leads to a single
isolated resonance. In the lattice, the presence of a netiphetibf fermionic states at each site leads to the
formation of a coherent heavy electron band with an expaféeahi surface. ( 16.5)
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Fig. 16.5 Contrasting (a) the “screening cloud” picture of the Kondo effect with (b) the

composite fermion picture. In (a), low energy electrons form the Kondo singlet,
leading to the exhaustion problem. In (b) the composite heavy electron is a highly
localized bound-state between local moments and high energy electrons which injects
new electronic states into the conduction sea at the chemical potential. Hybridization
of these states with conduction electrons produces a singlet ground-state, forming a
Kondo resonance in the single impurity, and a coherent heavy electron band in the
Kondo lattice.

16.1.1 Large N Approach

We shall now solve the Kondo model, both the single impuritg the lattice, in the largl limit. In the early
eighties, Anderson] pointed out that the large spin degeneraty: 2j + 1 furnishes a small parametefN.
which might be used to develop a controlled expansion alh@ulimnit N — co. Anderson’s observation im-
mediately provided a new tool for examining the heavy fempeooblem: the so called “largé expansion”.
[8].

The basic idea behind the larfexpansion, is to take a limit where every term in the Hamidorgrows
extensively withN. In this limit, quantum fluctuations in intensive variahlesich as the electron density,
become smaller and smaller, scaling #N,1and in this sense,

— ~ T
N eff

behaves as arffective Planck’s constant for the theory. In this sense,geldrexpansion is a semi-classical
treatment of the quantum mechanics, but instead of expgradisund: = 0, one can obtain new, non trivial
results by expanding around the non trivial solvable Iiﬁpit 0. For the Kondo model, we are lucky, because
the important physics of the Konddfect is already captured by the larlydimit as we shall now see.
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Our model for a Kondo lattice or an ensemble of Kondo impesitocalized at sitepis

H=" 6,0+ 2 HilD) (16.10)
Ko j

where
Hi(D) = T ()

is the interaction Hamiltonian between the local moment emaduction sea. Here, the spin of the local
moment at sitg is represented using pseudo-fermions

Top(i) = i fip,
and

i) = Y. ¢l e R
K

creates an electron localized at sjte
There are a number of technical points about this model ed to be discussed:

e The spherical cow approximation For simplicity, we assume that electrons have a spin degenhl =
2j + 1. This is a theorists’ idealization- a “spherical cow apfimmation” which can only be strictly
justified for a single impurity. Nevertheless, the basiqamies of this toy model allow us to understand
how the Kondo fect works in a Kondo lattice. With aN-fold conduction electron degeneracy, it is
clear that the Kinetic energy will grow &(N).

e Scaling the interaction. Now the interaction part of the Hamiltoniath (j) involves two sums over the
spin variables, giving rise to a contribution that scale©@s¥?). To ensure that the interaction energy
grows extensively withN, we need to scale the coupling constanOgs/N).

e Constraint n = Q. Irreducible representations of the rotation group SU @djuire that the number of
f—electrons at a given site is constrained to equakte Q. In the largeN limit, it is sufficient to apply
this constraint on the averager) = Q, though at finiteN a time dependent Lagrange multiplier coupled
to the diferencens — Q is required to enforce the constraint dynamically. Withf —electrons, the spin
operatord ,, = f7,4f, provide an irreducibl@ntisymmetricrepresentation o U(N) that is described
by column Young Tableau witf boxes. AsN is made large, we need to ensure that Q/N remains
fixed, so thaQ ~ O(N) is an extensive variable. Thus, for instance, if we arergsied inN = 2, this
corresponds tq = n¢ /N = % We may obtain insight into this case by considering thed&fdimit with
q=1/2.

The next step in the large limit is to carry out a “Hubbard Stratonovich” transforn@ation the interaction.
We first write

N R
) =-5 (' i %i6) (F 0ia)
with a summation convention on the spin indices. We now fadhis[9, 10] as

ViV

HI(0) = HiV. i1 = Vi (0750 fia) + (Fiawie) Vi + N=5
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This is an exact transformation, provided the hybridizatiariablesV;(r) are regarded as fluctuating vari-
ables inside a path integral, so formally,

Z[AV]
Z= fD[V, A Tr[T exp|— f HIV, /l]l] (16.11)
0
where
HIV AL = ) 6,6 + D (HIDVG, T+ 006 (§) - Q1) (16.12)

Ko i
is exact. In this expressiom)[ V, 1] denotes a path integral over all possible time-dependenidg and;(7),
andT denotes time ordering. The important point for our disaussiere however, is that in the lartydimit,
the Hamiltonian entering into this path integral grows esteely with N, so that we may write the partition

function in the form
N f HIV, A]J
0

whereH[V, 1] = %H[V, 1] ~ O(1) is an intensive variable iN. The appearance of a large factérin the
exponential means that this path integral becomes dondifgtéts saddle points in the lardé limit- i.e, if
we choose

Z= fD[V, ATr[T exp (16.13)

Vj = Vo, Aj = 4o
where the saddle point valu¥s and.l, are chosen so that

aInZ[V, ] _anZ[v, A

=0
N Nver-is a1

Vi =Vo,dj=1o B
then in the largeN limit,
Z = TreAHVodol

In this way, we have converted the problem to a mean-fieldryhé&o which the fluctuating variableg;(r)
andJj(r) are replaced by their saddle-point values. Our mean-fielahiionian is then

_— . VoV,
Hyer = Z G + Z (" jatjoVo + Vou i + Aof ' jo i) + Nn( °J ° - /loq),
Ko Ja
where n is the number of sites in the lattice. We shall novsitiate the use of this mean-field theory in two
cases- the Kondo impurity, and the Kondo lattice. In the ferrthere is just one site; in the latter, translational
invariance permits us to s¥f =V, at every site, and for convenience we shall choose this valbe real.

16.1.2 Mean-field theory of the Kondo impurity

Diagonalization of MF Hamiltonian

The Kondo €ect is at heart, the formation of a many body resonance. Terstahd this phenomenon at
its conceptually simplest, we begin with the impurity mod&ke shall begin by writing down the mean-field
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Hamiltonian for a single Kondo ion

. : . NV2
H= ;5kc‘mcw+;v[0‘kﬁf¢+ Ho0] +4 ) Mg = 1Q+ =5~

(16.14)
By making a mean-field approximation, we have reduced thisl@noto one of a self-consistently determined
resonant level model. Now, suppose we diagonalize this Hamian, writing it in the form

. NV?
H= Z E,al,,a,, + 5 -1 (16.15)

yo

where the “quasiparticle operators; are related via a unitary transformation to the originalrapms

e = ) o+t (16.16)
k
commutinga’w with H, we obtain
[H a')] =E,a (16.17)
Expanding the right and left-hand side of (16.17) in termgl6f16) and (16.14), we obtain,
(EY —a)ak— VB =0
-V e+ (B - )p=0 (16.18)
k
Solving foray using the first equation, and substituting into the secongiéon, we obtain
2
E, -1- v =0 (16.19)
. E, — &

We could have equally well obtained these eigenvalue egusbiy noting the electron eigenvalugsmust
correspond to the poles of the f-Green functiGr(E,)™* = 0, where from an earlier subsection,

V2
Gl =|w-1-) ] (16.20)
X w — €
Either way, the one-particle excitation energigsmust satisfy
Ve
E =+ ; S (16.21)

The solutions of this eigenvalue equation are illustrategplically in Fig. (16.6). Suppose the energies of
the conduction sea are given by the 2liscrete values

ek:(k+%)Ae, ke{-M,...,M -1}

Suppose we restrict our attention to the particle-hole gdsen the f-state is exactly half filled, i.e. when
Q = N/2. In this situationd = 0. We see that one solution to the eigenvalue equation gamels toE, = 0.
The original band-electron energies are now displaced tio loaver and higher energies, forming a band of
2M + 1 eigenvalues. Clearly, thefect of the hybridization is to inject one new fermionic eigete into the
band. Notice however, that the electron states are dighgametrically either-side of the new bound-state

atg, = 0.
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Néw bound state ‘

() m

.

(@) Graphical solution of the equation y = — ¥ y‘f—; for eight equally spaced

conduction electron energies. Notice how the introduction of a new bound-state at
y = O displaces electron band-states both up and down in energy. In this way, the
Kondo effect injects new bound-state fermion states into the conduction sea. (b)
Energy dependence of the scattering phase shift.

Each new eigenvalue is shifted relative to the original cmtidn electron energy by an amount of order
Ae. Let us write

o.
E, =¢ - Ae;y

wheres € [0, 7] is called the “phase shift”. Substituting this into theaigalue equation, we obtain

y+M
7

E, =1+ —_—
i Ae(n - 2)

n=y+1-M

Now if M is large, we can replace the sum over states in the above@gbgtan unbounded sum

VB 1

E, =1+-2 §
Yy +AEn* (n_é)
sl 7

549

bk . pdf

December 1, 2011

Chapter 16. ©Piers Coleman 2011

Using contour integration methods, one can readily show tha

)

1
> e ik

N=—co
so that the phase shift is given by = 6(E,), where

npV2

tandfe] = 7
— €

where we have replaced= i as the density of conduction electron states. This can &seritten

5(e) = tan* (16.22)

i] =ImIn[Ad +iA - €]
A—€

whereA = npV2 is the width of the resonant level induced by the Konffe@. Notice that for = 0,6 = /2
at the Fermi energy.

e The phase shift varies from= 0 atE, = —o to 6 = 7 atE, = oo, passing through = 7/2 at the Fermi
energy.

e An extra state has been insertietb the band, squeezing the original electron states botimdand up
in energy to accommodate the additional state: states thetfea Fermi sea are pushed downwards,
whereas states above the Fermi energy are pushed upwavdsthe relation

Ae
E=¢- 75(E7)

we deduce that

de . Acdo(E)
de - T aE
-1+ 200 (16.23)

wherep = 1/Ae is the density of states in the continuum. The new densityaiésp*(E)is given by
p*(E)dE = pde, so that

d
P'(B) = p(O) 52 = p+pi(E) (16.24)
where
pi(E) = %—dd(E) -1 A (16.25)

dE ~ 7 (E- )2+ A2
corresponds to the enhancement of the conduction electmsitgl of states due to injection of resonant
bound-state.

Minimization of Free energy

With these results, let us now calculate the Free energy amichize it to self-consistently evaluateandA.
The Free energy is given by
NV2
— _ —BE,T _ ]
F= NTE In[1+e#5] - 1Q + T

Y

(16.26)
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In the continuum limit, where — 0, we can use the relatids, = €, — Ae% to write
—TIn[1 +e”&] = —T In[1 + e #&4D)]
—Fo
,—’T Ae .
=-TIn[1+e”9]-—6(g) f(e) (16.27)
s

wheref(x) = 1/(€® + 1) is the Fermi function. The first term in (16.27) is the Fraergy associated with a
state in the continuum. The second term results from thdadisment of continuum states due to the injection
of a resonance into the continuum. Inserting this resuit (#6.26), we obtain

F=Fo—N ; %5(57)&57) -2Q+ N;’g
=Fo—-N fm %f(e)é(e) -AQ+ N3/§ (16.28)
The shift in the Free energy due to the Kondkeet is then
AF:—meﬁf(e)lmln[g—e]—/1Q+M (16.29)
e T ndp

where we have introducefl= A + iA. This integral can be done at finite temperature, but for Baity let
us carry it out al = 0, when the Fermi function is just at step functidx) = 6(-x). This gives

AE = glm[({ —9in [%H: _a0+ N2

N ¢ D NA
= Nim¢1 fl—m |7“— ha 16.
”mlgn oD n s /lQ+”Jp (16.30)
where we have expanded ¢ D)In[2£] — DIn|2] + £InD to obtain the second line. We can further
simplify this expression by noting that
-1Q+ E - N|m [“n [e’»%*i"q”
7,

b

(16.31)
whereq = Q/N. With this simplification, the shift in the ground-state eyedue to the Kondoféect is

AE= g'm[{ln [eTfe”q]]

where we have dropped the constant term and introduced theddemperatur&y = De %. The stationary
pointdE/d¢ = 0 is given by

(16.32)

TK = VAZ + A2

- iA = imq
L= A+iA=Tgé {tan@rq) _ %

Notice that

e The phase shifé = nq is the same in each spin scattering channel, reflecting tiggesinature of the

ground state. The relationship between the filling of themesice and the phase stit= 3, % = N%

T
is nothing more than Friedel’s sum rule.
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e The energy is stationary with respect to small variations andA. It is only a local minimum once the
conditiondE/dA, corresponding to the constraiffit; ) = Q, or 4 = A cot(rq) is imposed. It is instructive
to study the energy for the special cage % A = 0 which is physically closest to tH& = 1/2, N = 2
case. In this case, the energy takes the simplified form

N
AE = 7|Aln
s

A
— 16.
eTK l ( 6 33)
Plotted as a function of, this is the classic “Mexican Hat” potential, with a minimuvheredE/dV = 0
atA = np|V[? = Tk. (Fig. 16.7)
e According to (16.24), the enhancement of the density oéstat the Fermi energy is

A
(A2 + 22)
sirf(rq)

JTTK

pPO)=p+

—p+ (16.34)

per spin channel. When the temperature is changed or a magdieddi introduced, one can neglect
changes im\ andJ, since the Free energy is stationary. This implies thatérlaihgeN limit, the suscep-
tibility and linear specific heat are those of a non-intérectesonance of width. The change in linear
specific heahCy = AyT and the change in the paramagnetic susceptihilityare given by

_[N2G _ [N sirf(rq)
AV—[ 3 ]Pu(o)—[T Tk
Ay = [N i+ 1)(9/15)2}17‘ ©) = [N i+ 1)(9/15)2} sirf(mq) (16.35)
3 3 Tk

Notice how it is the Kondo temperature that determines the @i these two quantities. The dimension-
less “Wilson” ratio of these two quantities is

,[ (kg)? ]A—Xfl

(que)?j(j+1)| Ay
At finite N, fluctuations in the mean-field theory can no longer be igthoféese fluctuations induce
interactionsamongst the quasiparticles, and the Wilson ratio becomes
1
W= —.

1-%

The dimensionless Wilson ratio of a large variety of heawctbn materials lies remarkably close to
this value.

16.1.3 Gauge invariance and the composite nature of the f—electron

We now discuss the nature of thieelectron. In particular, we shall discuss how

o thef-—electronis actually a composite object, formed from thelinig of high-energy conduction electrons
to the local moment.

o although the broken symmetry associated with the I&tgeean-field theory does not persist to finNe
the phase dfiness associated with the mean-field theory continues te fiifThis phase sfiiness is
responsible for the charge of the compoditelectron.
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Composite nature of the heavy f—electron

Let us begin by discussing the composite structure offthelectron. In real materials, the Kondffext we
have described involves spins formed from localized f- @lebtrons. Though it is tempting to associate the
compositef —electron in the Kondoféect with the thef —electron locked inside the local moment, we should
also bear in mind that the Konddfect could have occurred equally well with a nuclspin! Nuclear spins
do couple antiferromagnetically with a conduction eleatituut the coupling is far too small for an observable
nuclear Kondo ffect. Nevertheless, we could conduct a thought experimeatenv nuclear spin is coupled
to conduction electrons via a strong antiferromagnetigting. In this case, a resonant bound-state would
also form from the nuclear spin. The composite bound-stateédd in the Kondo féect clearly does not
depend on the origin of the spin partaking in the Konffea.

There are some useful analogies between the formation ebthgositef —electron in the Kondo problem
and the formation of Cooper pairs in superconductivity,althive shall try to draw upon. One of the best
examples of a composite bound-state is the Cooper paidd@ssuperconductor, pairs of electrons behave as
composite bosonic particles. One of the signatures of paindtion, is the fact that Cooper pairs of electron
operators behave as a single composite at low energies,

U (gL (X) = F(x-X)

The Cooper pair operator is a boson, and it behaves as a cemirabause the Cooper pairs condense. The
Cooper pair wavefunction is extremely extended in spaceneling out to distances of ordér~ vg/Te.

A similar phenomenon takes place in the Kondi@et, but here the bound-state i¢eamionand it does not
condense For the Konddfect the fermionic composite?( §(x))aﬁw/3(x) behaves as a single charged electron
operator. The analogy between superconductivity and thed&affect involves the temporal correlation
between spin-flips of the conduction sea and spin-flips ofdbal moment, so that at low energies

[@ap - SOB(E) ~ A=) ().

The functionA(t — t’) is the analog of the Cooper pair wavefunction, and it exsend to timesrk ~ 71/Tk.
To see this in a more detailed fashion, consider how theantiem term behaves. In the path integral we
factorize the interaction as follows

H|=%Wﬁ@wfﬁvw:m)+ﬁlwAV+N¥¥

By comparing these two terms, we see that the compositetop&ra(j)y.(j) behaves as a single fermi field:

\Y

A0 - (3) ()

Evidently, a localized conduction electron is bound to andfip of the local moment at the same site, cfe-
ating a new independeiférmionic excitation. The correlated action of adding adwtion electron with 4
simultaneous spin flip of the local moment at the same sit&tesea composité—electron

It is worth noting that this fermionic object only hybridievith conduction electrons at a single point: it is
thus localin space.
Let us now try to decompose the composite fermion in termb@gtectrons that contribute to the bound-
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state amplitude. We start by writing the local moment in #rerfionic representatiof,

1 1 1
Nrwﬁ‘//a = N ffplﬁa fo — *N(ffplﬁﬁ) fs

where we have replaced the bilinear product between theuctiod andf —electron by its expectation value.
We can evaluate this “bound-state amplitude” from the epoading Green-function

V_ Ly [Qe i
3= N(f 5@;)_[ - f(w)IMGy ¢ (w - i6)
dw 1 1
:Voff(w)7lm’;w—ek—i6w—m

where we have chosen the half-filled ca@¢N = 1/2, 4 = 0. In the large band-width limit, the main
contribution to this integral is obtained by neglecting phimcipal part of the conduction electron propagator
1/(w — & — 16) — in6(w — &), So that

1 .. &«
N” sYp) = ; f(fk)(m)

From this expression, we can see that the contribution ofend state in the Fermi sea to the bound-state
amplitude is given by

(16.36)

(16.37)

et = 10 25

2, A2
& + A

This function decays with the inverse of the energy, righttouhe band-width. Indeed, if we break-down
the contribution to the overall bound-state amplitude, e that each decade of energy counts equally. Let
us takeT = 0 and divide the band on a logarithmic scale intequal parts, where the ratio of the lower and
upper energies is> 1, then

Vo 0 —€ b 1
=2 =pV, de——— ~ pV, de=

D D/s D/s"t D/s") de
=pVo f + f +... f —
p/s Jp/ D/s" A €

.
Dsfn} (16.38)

:pvo{lns+lns+.“|ns+|n

This demonstrates that the composite bound-state inveleesrons on spread out over decades of energy

out to the band-width. If we complete the integral, we find tha
V, D 1
7" =pVoln = = A =De ¥ =Tk

as expected from the minimization of the energy. Another afagresenting this discussion, is to write the
composite bound-state in the time-domain, as

1

nNlesWe(® — At -1) () (16.39)

3 Important and subtle point: The emergence of a composite ferddes not depend on a fermionic representation of the spin. The
fermionic representation for the spin is simply the most comrgrbecause it naturally furnishes us with an operator énttieory
that represents the composite bound-state.
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where now
R
At-1) = 5<T' Oust)

This is the direct analog of Cooper pair bound-state wawfon, except that the relevant variable is time,
rather than space. If one evaluates the functi¢hh at a finitet, we find that

Alt-t) = Z f(fk)[ EkA ]e—isk(t—t’)

2 2
3 &+

Heuristically, the finite time cutsfbthe energy integral over the Fermi surface at an energy @frdrd, so
that
AG) N{ pv0|ng%) (t << %/T)
Voln(2)  (t>>1/Tk)

emphasizing the fact that the Kondfiezt involves a correlation between the spin-flips of the catidn
sea and the local moment over decades of time scales frorheheverse band-width up to the Kondo time
h/Tk.

From these discussions, we see that the Koritkzeis

o entirely localized in space.
o extremely non-local in time and energy.

This picture of the Kondoféect as a temporal, rather than a spatial bound-state isfwitelare to understand
the extension of the Konddfect from the single impurity to the lattice.

Gauge invariance and the charge of the  f—electron

One of the interesting points to emerge from the mean-fieddrhis that the energy of mean-field theory
does not depend on the phase of the bound-state amplitadiy|€”. This is analogous to the gauge invari-
ance in superconductivity, which derives from the cons@meof the total electronic charge. Here, gauge
invariance arises because there are no charge fluctuatitims site of the local moment, a fact encoded by
the conservation of the total f-char@e Let us look at the full Lagrangian for thie-electron and interaction
term
L =1, (0 - ), - H _
\'A%

— V(s t
Hi = V(0o fo) + (Flov) V4 N (16.40)
This is invariant under the “Read-Newns”[10] transforroati
f— fe?,
V - Vé?, - 0+¢),
94
A+ —. 16.41
A=+ o (16.41)

where the last relation arises from a consideration of thegyganvariance of the dynamic pairt(io; — 1) f

of the Lagrangian. Now i¥/(t) = [V(t)|¢"V, wherer(t) is real, Read and Newns observed that by making the
gauge choice(t) = —6(t), the resultingy = [V|€®9 = |V|is real. In this way, once the Konddfect takes
place the phase &f = [V|€" is dynamically absorbed into the constraint figldeffectively 1 = d,¢ represents
the phase precession rate of the hybridization field. Therglien of the phase of an order parameter into a
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dynamical gauge field is called the “Anderson Higg's” medkam[?] By this mechanism, once the Kondo
effect takes placey behaves as a real, and hence neutral object under gaugftraaons, this in turn
implies that the composité-electron has to transform under real electromagnetic gaagsformations, in
other words the Anderson Higgffect in the Kondo problem endows the compositelectron with charge.

E

Fig. 16.7 “Mexican Hat Potential” which determines minimum of Free energy, and
self-consistently determines the width of the Kondo resonance. The Free energy
displays this form provided the constraint 9F/dA = (n;) — Q = O is imposed.

There is a paradox here, for in the Kondfdeet, there can actually be no true broken symmetry, since
we are dealing with a system where the number of local degreézedom is finite. Neverthelesthe
phasep does develop a $thess- a stfness against variation in time, and the order parameterecoestly
develops infinite range correlations in time. There is adfiamalogy between the spatial phaséiséiss of a
superconductor and the temporal phasénsss in the Kondofiect. In superconductivity, the energy depends
on spatial derivatives of the phase

2

L, 1
Eo 25(Vp-20R2 = = o« ps
2 o

( where we have sét = 1.) Gauge invariance links this Stiess to the mass of the photon field, which
generates the Meissneffect; the inverse squared penetration depth is directly gtmmal to the phase
stiffness. In an analogous fashion, in the Kondlea, the energy depends on temporal derivatives of the
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16.1. DONIACH'S KONDO LATTICE HYPOTHESIS

Superconductivity Kondofeect
Bound State P (LX) = F(X=X) (@ - SEDp(t) = Alt - V) Fu(t)
Bosonic Fermionic

Characteristic energy

Te = wpe V@

Te = DyIperts

Energy range contributing E € [Te, wp) E € [Tk, D]

to bound state

Extended in space time
&~ Ve/Te T~ N/Tk

Conserved Quantity

Total electron charge

Charge of local moment

Long Range Order

LRd > 2
Powerlaw in spacd < 2

Powerlaw in time

Phase sfiness Ps Lo
Consequences of Meissnefezt Formation of charged
Phase sfiness heavy electron
(Anderson- Higgs) Z(Asza = Ne + Nspins
Quantity related %2 « ps & =p

Y

to phase sfiness
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phase and the phasefBiess is'
Ew 200

For a Kondo lattice, there is one independent Kondo phasedoh spin site, and the independent con-
servation ofQ at each site guarantees that there is no spatial phdsess associated with The temporal
phase sftness leads to a slow logarithmic growth in the phase -phaselation functions, which in turn
leads to power-law temporal correlations in the order patanv(z):

(GHEIY ~ o InGr— ), VEV()) ~ & HOND ()

In this respect, the Kondo ground-state resembles a twordiimeal superconductor, or a one dimensional
metal: it is critical but has no true long-range order. Ashie superconductor, the development of phase
stiffness involves real physics. When we make a gauge transfomftihe electromagnetic field,

ed(x,t) = ed(x,t) + dra(X, 1),
eA(x,t) — eA(x,t) + Va,

w(x) = y(x)e D (16.42)

Because of the Anderson - Higg'§ect, the hybridization is real and the only way to kéepnvariant under
the above transformation, is by gauge transformingfthelectron and the constraint field

fr () = fo (et

A - A+ o (16.43)

( Notice howA transforms in exactly the same way as the potestia)

The non-trivial transformation of the-electron under electromagnetic gauge transformationfiroothat
it has acquired a charge. Rigidity of the Kondo phase is thiirmately related to the formation of a composite
charged fermion. The gauge invariant form for the energyddpnce of the Konddfect on the Kondo phase
¢ must then be

E o (00 - e0)?

From the cofiicient of ®?, we see that the Kondo cloud has an intrinsic capacit@nee?p, (E ~ Cd?/2).
But since the energy can also be writtem(?/2C ~ U*nf/z we see that the $fhess of the Kondo phase
can also be associated with an interaction betweerfitedectrons of strength*, where

1

ﬁzc/ezzpm

16.1.4 Mean-field theory of the Kondo Lattice

Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity probléanthe lattice. Most of the methods
described in the last subsection generalize very natuiralty the impurity to the lattice: the mainficulty

4 Note that becausé ~ di¢, the phase sfiness is given by, = 9°F/94?
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is to understand the underlying physics. The mean-field Hanfén for the lattice[117] takes the form (a) (b)

\7 v, EK) L:ght small E

VAR + oVo electron FS

Hmer = Z ERCTR(TCE(T + Z (iju‘//jl(VO + Vo' jpfip + Aot o fiﬂ) + Nn( J /l°q) ’ A‘
Ko ja g

where n is the number of sites in the lattice. Notice, befoeebegin, that the composite f-state at each site

>

of the lattice is entirely local, in that hybridization ogstat one site only. Were the composite f-state to be in
any way non-local, we would expect that the hybridizatiooné f-state would involve conduction electrons
at different sites. We begin by rewriting the mean field Hamiltonamomentum space, as follows

Heavy fermion
“hole" Fermi surfac

_ i e v(& Vo\[c VoVo
HMFTka(Ck}r,fk}r)(Vo ﬂo)(f%)-‘—Nn( 3 — o0 y

P(E)

where (©)
1 "
1, = — fT-(,ék‘ﬁJ
. N

is the Fourier transform of the—electron field. The absencelof dependence in the hybridization is evident

that each composité—electron is spatially local. This Hamiltonian can be disgjared in the form /\

e ol )1

ko

wherea’; andb’, are linear combinations af ; and f; , playing the role of “quasiparticle operators”
of the theory and the momentum state eigenvakjgsof this Hamiltonian are determined by the condition

Fig. 16.8 (a) Dispersion produced by the injection of a composite fermion into the conduction

Det|E,. 1~ (\5/12 VU)J =0, sea. (b) Renormalized density of states, showing “hybridization gap” (Ag). ()
o Ao Transformation of the Fermi surface from a light electron Fermi surface into a heavy
which gives “hole”-like Fermi surface.
€+ |6 10)\? Nk
B = 2 * 2 +[Vol (16.44) e The Fermi surface volume expanidsresponse to the presence of the new heavy electron bahdselv

Fermi surface volume now counts the total number of pasicle see this note that
are the energies of the upper and lower bands. The dispetsgntibed by these energies is shown in Fig.
16.8 . A number of points can be made about this dispersion: o
P P Noot = () M) = €Ay + )
Ko

o \We see that the Konddfect injectsnew fermionic states into the the original conduction bafybridiza-
tion between the heavy electron states and the conductmtrehs builds an upper and lower Fermi
band separated by a “hybridization gap” of width = Eq4(+) — E4(-), such that energies in the range

whereng, = a'k,ans is the number operator for the quasiparticles apds the total number of
conduction electrons. This means

Eq¢(-) < E < Ao+ Eg(+) v
V2 Niot = N—> = .
Eg(#) = o 2° (16.45) hot = N5 s = Q# 1
are forbidden. HereD.. are the top and bottom of the conduction band. In the spezsa wherel, = 0, This expansion of the Fermi surface is a direct manifestaifdhe creation of new states by the Kondo
corresponding to half filling, a Kondiasulator is formed. effect. Itis perhaps worth stressing that these new stateshfamh, even if the local moments were nuclear in origin
e The dfective mass of the Fermi surface has the oppositetsigime original conduction sea from which it In other words, they are electronic states that have onlgnigpn the rotational degrees of freedom of
is built, so naively, the Hall constant should change sigemtoherence develops. the local moments.
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The Free energy of this system is then
F VvV
o BE A,
N> T;In[1+e k]+n5(‘] /lq)
+

Let us discuss the ground-state eneify, the limiting T — 0 of this expression. We can write this in the

form
ﬁ@'lipﬁﬁ+(a 1

where we have introduced the density of heavy electronsgpatg) = 3., 6(E — El(;)). Now the relationship
between the energy of the heavy electrdgsdnd the energy of the conduction electrog)si given by

V2
E-21
so that the density of heavy electron states related to théumion electron density of statedy

E=e+

€ 2
p'(E) = p% = p(l + (E\ii/l)z) (16.46)

The originally flat conduction electron density of statesasv replaced by a “hybridization gap”, flanked
by two sharp peaks of width approximatedy\V/? ~ T. With this information, we can carry out the integral

over the energies, to obtain
Eo D% fo - E %
N~ 2 + 7DdEpVVm 5 Aq (16.47)

where we have assumed that the upper band is empty, and teebawd is partially filled. If we impose the
constraim‘g—i = (n¢) — Q = 0 we obtain

A

Z _g=0

il q

so that the ground-state energy can be written
Eo _ A [ Ae
Nns 7 mqTk
whereTg = De ¥ as before.

Let us pause for a moment to consider this energy functiomalitatively. The Free energy surface has the
form of “Mexican Hat” at low temperatures. The minimum ofgfiinctional will then determine a familiy of
saddle point value¥ = Vo€?, whered can have any value. If we fiérentiate the ground-state energy with

respect to/2, we obtain
0= E In( A& )
n nqTk

(16.48)

or
q
A==T,
e2 K
confirming thatA ~ Tk.
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Composite Nature of the heavy quasiparticle in the Kondo lattice.
We now turn to discuss the nature of the heavy quasipariicltree Kondo lattice. Clearly, at an operational
level, the composité —electrons are formed in the same way as in the impurity madelat each site, i.e

000 = () 100

This composite object admixes with conduction electrorsssangle site- site j. The bound-state amplitude in
this expression can be written

V, 1 ..
_70 = N(f'ﬁlj//j) (16.49)

To evaluate the contributions to this sum, it is useful tdaeothat the conditioﬂE/aV = 0 can be written

1E _ o Vo
Nov, 3

Vo 0 E
= —+V, dEp——
30V [
where we have used (16.47) to evaluate the derivative. Finegmve see that we can write

Vo 0 1 1
3w [ (e w )

e
-vonlg]
opIN D

1 ..
+ N(“/ﬂ/’;})

(16.50)

(16.51)

It is clear that as in the impurity, the composite-electrons in the Kondo lattice are formed framgh
energyelectron states all the way out to the bandwidth. In a sinfdahion to the impurity, each decade
of energy betweeiix andD contributes equally to the overall bound-state amplit(ides above expression
only differs from the corresponding impurity expression (16.36pat ¢nergies, showing that low energy
electrons play a comparatively unimportant role in formihg composite heavy electron. It is this feature
that permits a dense array of composite fermions to co-#xistighout the crystal lattice.

These composité—electrons admix with the conduction electrons to producea electron band with
a density of states given by (16.46),

2
p'(E) =p% =p(l+ (5\17,1)2)

which becomes
q

p(0)=p+TfK

at the Fermi energy. The mass enhancement of the heavyogiesrthen

m
m Tk Tk

q ab

This large factor in theféective mass enhancement can be as much as 1000 in the mastysexeormalized
heavy electron systems.
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Consequences of mass renormalization

The dfective mass enhancement of heavy electrons can be dirdéstineed in a wide range of experimental
quantities including

e The large renormalization of the linear specific heatitoienty* ~ %y and Pauli susceptibility” ~ .

e The quadratic temperature (* A" ) cfiwient of the resistivity. At low temperatures the resisjivof a
Fermi liquid has a quadratic temperature dependgneep, + AT2, whereA ~ (%)2 ~ (%)2 ~92is
related to the density of three-particle excitations. Tiyeraximate constancy of the ratiyy? in heavy
fermion systems is known as the “Kadowaki-Woods” relafib2).

e The renormalization of thefiective mass as measured by dHvA measurements of heavyoeld@rmi
surfaces?, ?, 7]

e The appearance of a heavy quasiparticle Drude feature ifréqeency dependent optical conductivity

o(w). (See discussion below).
Ammv~whk?ij:::
g m

"Interband"
f. = Tne?
Y 2m

o(w)

ne2t

Fig. 16.9 Separation of the optical sum rule in a heavy fermion system into a high energy
“inter-band” component of weight f, ~ né?/mand a low energy Drude peak of weight
f1 ~ né/mr.

563

bk . pdf

December 1, 2011

Chapter 16. ©Piers Coleman 2011

The optical conductivity of heavy fermion metals desenyesal discussion. According to the f-sum rule,
the total integrated optical conductivity is determinedtny plasma frequency

< dw 7 (ne?
[ Fer=n=5(%)

wheren is the density of electron8.In the absence of local moments, this is the total spectragwinside
the Drude peak of the optical conductivity.

What happens to this spectral weight when the heavy elecuizhfirms? Whilst we expect this sum rule
to be preserved, we also expect a new “quasiparticle” Dradd po form in which

7 né m
fdmo’(m) = fzé? = flE
In other words, we expect the total spectral weight to divigento a tiny “heavy fermion” Drude peak, of
total weightf,, where
o(w) = ﬁil
T () l-iw
separatedfd by an energy of ordev ~ +/Tx D from an “inter-band” component associated with excitation
between the lower and upper Kondo bands.[13, 14] This setamu carries the bulk f; of the spectral
weight. (Fig. 16.9).

Simple calculations, based on the Kubo formula confirm thsibexpectation,[13, 14] showing that the
relationship between the original relaxation rate of thedetion sea and the heavy electron relaxation rate
s

m
(@)= E(T)? (16.52)
Notice that this means that the residual resistivity
m* m

Po= Ner T ner
is undfected by the fects of mass renormalization. This can be understood byrdhgethat the heavy
electron Fermi velocity is also renormalized by tligeetive massvy = 1, so that the mean-free path of the

m
heavy electron quasiparticles is tiieeted by the Kondofeect.
I" = VEt" = VeT

This is yet one more reminder that the Kondteet is local in space, yet non-local in time.
These basic features- the formation of a narrow Drude pewkiree presence of a hybridization gap, have
been seen in optical measurements on heavy electron sy8terfis?]

5 The f-sum rule is a statement about the instantaneous, ot-tamer diamagnetic response of the metal. At short tidggit =
(n€?/m)E, so the high frequency limit of the conductivitydgw) = % r}m But using the Kramer’s Kimig relation
dx (X

T X—w-ié

o(w) =

at large frequencies,
1 d
w(w) = —— f l(r(x)
J—iw n

so that the short-time diamagnetic response implies the f-siem r
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16.1.5 Summary

In this lecture we have presented Doniach’s argument tleaétihancement of the Kondo temperature over
and above the characteristic RKKY magnetic interactiorrgnéetween spins leads to the formation of a
heavy electron ground-state. This enhancement is thoogbé tgenerated by the large spin degeneracies
of rare earth, or actinide ions. A simple mean-field theoryhef Kondo model and Kondo lattice, which
ignores the RKKY interactions, provides a unified picturéneévy electron formation and the Kondieet,

in terms of the formation of a composite quasiparticle betwkigh energy conduction band electrons and
local moments. This basic physicdfect is local in space, but non-local in time. Certain anasgian be
struck between Cooper pair formation, and the formatiomefteavy electron bound-state, in particular, the
charge on thef —electron can be seen as a direct consequence of the tempas# ptiness of the Kondo
bound-state. This bound-state hybridizes with conduatientrons- producing a single isolated resonance in
a Kondo impurity, and an entire renormalized Fermi surfadhé Kondo lattice.

Exercises
|

Exercise 16.1 (a) Using the identityﬁ” = ny,, show that the atomic part of the Anderson model can be
written in the form

U U
Hatomie = (Er + 50N + = [(ny 17 - 1] (16.53)
What happens wheB¢ + U/2 = 0?
(b) Using the completeness relation
OO DDA
—_—— f——/;—
S
- 2 —_— = =
(ne -1 + S 1 (S=1/2)
show that the interaction can also be written in the form
U 2U
Hatomic = (Et + E)nf - ?Sz (16.54)

which makes it clear that the repulsive U term induces a “retigrttraction” that favors formation of
a local moment.
(c) Derive the Hubbard Stratonovich decoupling for (16.54)
Exercise 16.2 By expanding a plane wave state in terms of spherical hasoni

(r1ky = €57 = dr i (k) i (R) i)
I,m

show that the overlap between a stgtewith wavefunction(Xy) = R(r)Yim(f) with a plane wave is
given byV(K) = (KVI¥) = V(K)Yim(K) where
V(K) = 4ri™! fdrrzv(r)R(r)h(kr) (16.55)

Exercise 16.3 (i) Show thats = cot™* (%) is the scattering phase shift for scatterinffyaresonant level at
positionEy.
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(ii) Show that the energy of states in the continuum is stiifig an amount-Aed(e)/x, whereAe is the
separation of states in the continuum.
(iii) Show that the increase in density of states is give@®E = p4(E). (See chapter 3.)
Exercise 16.4 Generalize the scaling equations to the anisotropic Konddatwith an anisotropic inter-
action
H = JaCVrk[,(rzﬁCk»ﬁ - S%
lehle a=(xy.2)

(16.56)

and show that the scaling equations take the form
0da 3
3D - 2Jpdep + O(J°),

where and4, b, ¢) are a cyclic permutation ok(y, ). Show that in the special case whdge= J, = J.,
the scaling equations become

4d,. 3
all{'JD =-23,3,p + O(J),
C 2 3
FInD = 2W% + O(F). (16.57)

so that)? — J2 = constant. Draw the corresponding scaling diagram.

Exercise 16.5 Consider the symmetric Anderson model, with a symmetrialkstructure at half filling. In
this model, thed® andd? states are degenerate and there is the possibility of agetdtondo &ect”
when the interactiol) is negative. Show that under the “particle-hole” transfation

Ct — Ckps dy - d;

Cq = €y, d o -d) (16.58)

the positiveU model is transformed to the negatdemodel. Show that the spin operators of the local
moment are transformed into Nambu “isospin operators” tvkiescribe the charge and pair degrees
of freedom of the d-state. Use this transformation to arpaéwhen U is negative, a charged Kondo
effect will occur at exactly half-filling involving quantum flugations between the degenerdfeand
d? configurations.

Exercise 16.6 What happens to the Schffier-Wolff transformation in the infinite U limit? Rederive the
Schrigfer-Wolff transformation for an N-fold degenerate version of the itéity Anderson model.
This is actually valid for Ce and Yb ions.

Exercise 16.7 Rederive the Nozires Fermi liquid picture for an SU (N) degenerate Kondo rhdgielain
why this picture is relevant for magnetic rare earth ionhsasCe** or Y.

Exercise 16.8 Check the Popov trick works for a magnetic moment in an ezldield. Derive the partition
function for a spin in a magnetic field using this method.

Exercise 16.9 Use the Popov trick to calculate the T-matrix diagrams ferlgading Kondo renormaliza-
tion diagramatically.

Exercise 16.10 Derive the formula (15.66) for the conductance of a singhgigd resonance.

Exercise 16.11 1 Directly confirm the Read-Newn'’s gauge transformation41%
2 Directly calculate the “phase ftiess”"p, = —g% of the largeN Kondo model and show that at

T=0.
N (sin(nq))
po=_\"7 |

s TK
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Exercise 16.12 1 Introduce a simple relaxation time into the conductiortete propagator, writing

Dol ) V2
G(K, iwn) iwn + isgngn)/27 + o1 (16.59) References
Show that the poles of this Greens function occur at
i
w = Ek + P
where
o m*T [1] E.Bucher, J. P. Maita, G. W. Hull, R. C. Fulton, and A. Soper,Phys. Rev. Bvol. 11, pp. 440, 1975.
m [2] F. Steglich, J. Aarts, C. D. Bredl, W. Leike, D. E. Meshia Franz, and H. Sdifer, Phys. Rev. Lett
is the renormalized elestic scattering time. vol. 43, pp. 1892, 1976.
2 The Kubo formula for the optical conductivity of an isotropne-band system is [3] K.Andres, J. Graebner, and H. R. ORhys. Rev. Lettvol. 35, pp. 1779, 1975.
NE ne) [4] M. A. Ruderman and C. KittelPhys. Rewol. 78, pp. 275, 1950.
o) = 3 vﬁ - [5] R. M. Martin, Phys. Rev. Lettvol. 48, pp. 362, 1982.
k

[6] B. Cogblin and J. R. Schriter, Phys. Rey.vol. 185, pp. 847, 1969.
where we have used tiéfold spin degeneracy, ard(v) is the analytic extension of [7] M. Mekata, S. Ito, N. Sato, T. Satoh, and N. Salournal of Magnetism and Magnetic Materiaisl.
N o o . o 54, pp. 433, 1986.
MGivo) =T Zml G(K i) [BK i +ivn) - G(K i) [8] E.Witten, Nucl. Phys. Bvol. 145, pp. 110, 1978.
[9] C. Lacroix and M. Cyrot,Phys. Rev. Bvol. 43, pp. 12906, 1981.

where in our cas&(K, iwp) is the conduction electron propagator. Using (16.59),apptoximating [10] N. Read and D.M. Newnsl. Phys. Cvol. 16, pp. 3274, 1983.
the momentum sum by an integral over energy, show that théré&muency conductivity of the large [11] A. Auerbach and K. LevinPhys. Rev. Lettvol. 57, pp. 877, 1986.
N Kondo lattice is given by [12] K.Kadowaki and S. WoodsSolid State Compvol. 58, pp. 507, 1986.
o) = E 1 [13] A.J. Millis, Phys. Rev. Bvol. 48, pp. 7183, 1993.
T () l-iv’ [14] L. Degiorgi, F.Anders, G. Gruner, and European PhysScaiety, Journal B vol. 19, pp. 167, 2001.

[15] W. P. Beyerman, G. Gruner, Y. Dlicheouch, and M. B. Majitéys. Rev. Bvol. 37, pp. 10353, 1988.
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