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Nonlocal damping of spin waves in a magnetic insulator induced by normal, heavy,
or altermagnetic metallic overlayer: A Schwinger-Keldysh field theory approach
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Understanding spin wave (SW) damping and how to control it to the point of being able to amplify SW-
mediated signals is one of the key requirements to bring envisaged magnonic technologies to fruition. Even
widely used magnetic insulators with low magnetization damping in their bulk, such as yttrium iron garnet,
exhibit a 100-fold increase in SW damping due to inevitable contact with metallic layers in magnonic circuits,
as observed in very recent experiments [Bertelli et al., Adv. Quantum Technol. 4, 2100094 (2021)] mapping
SW damping in a spatially resolved fashion. Here, we provide a microscopic and rigorous understanding
of wave-vector-dependent SW damping using the extended Landau-Lifshitz-Gilbert equation with a nonlocal
damping tensor instead of conventional local scalar Gilbert damping, as derived from Schwinger-Keldysh
nonequilibrium quantum field theory. In this picture, the origin of nonlocal magnetization damping and thereby
induced wave-vector-dependent SW damping is the interaction of localized magnetic moments of a magnetic
insulator with conduction electrons from the three different types of metallic overlayers examined: normal,
heavy, and altermagnetic. Due to the spin-split energy-momentum dispersion of conduction electrons in the
latter two cases, the nonlocal damping is anisotropic in spin and space, and it can be dramatically reduced by
changing the relative orientation of the two layers when compared to the usage of normal metal overlayer.

DOI: 10.1103/PhysRevB.110.214432

I. INTRODUCTION

Spin wave (SW) or magnon damping is a problem of great
interest for both basic and applied research. For basic re-
search, its measurements [1–4] can reveal microscopic details
of boson-boson or boson-fermion quasiparticle interactions in
solids, such as magnon-magnon interactions (as described by
second-quantized Hamiltonians containing products of three
or more bosonic operators [5,6]), which are frequently en-
countered in antiferromagnets [4,5] and quantum spin liquids
[7,8], wherein they play a much more important role [9]
than boson-boson interactions in other condensed phases, like
anharmonic crystalline lattices or superfluids [5]; magnon-
phonon interactions [3], which are especially relevant for
recently discovered two-dimensional magnetic materials [2];
and magnon-electron interactions in magnetic metals [1,10–
14]. For the envisaged magnon-based digital and analog com-
puting technologies [15–19], understanding magnon damping
makes it possible to develop schemes to suppress [20] it and,
furthermore, achieve amplification of nonequilibrium fluxes
of magnons [21–24]. In fact, overcoming damping and achiev-
ing amplification is the key to enabling complex magnon
circuits in which, e.g., a logic gate output must be able to drive
the input of multiple follow-up gates.

Let us recall that the concept of a SW was intro-
duced by Bloch [25] as a wavelike disturbance in the
local magnetic ordering of a magnetic material. The quanta
[6] of energy of SWs of frequency ω behave as quasi-
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particles called magnons, each of which carries energy
h̄ω and spin h̄. In regard to terminology, we note that
in magnonics [15] a SW is often used for excitations
driven by antennas [26–29] and/or described by the clas-
sical Landau-Lifshitz-Gilbert (LLG) equation [10,11,30,31],
whereas a magnon is used for the quantized version of
the same excitation [5], or these two terms are used
interchangeably.

In particular, experiments focused on SW damping in
metallic ferromagnets have observed [1] its dependence on
the wave vector q, which cannot be explained by using
the standard LLG equation [30,31], ∂t Mn = −Mn × Beff

n +
αGMn × ∂t Mn (where ∂t ≡ ∂/∂t), describing the dynamics
of localized magnetic moments (LMMs) Mn at site n of a
crystalline lattice (also used in atomistic spin dynamics [30])
viewed as classical vectors of unit length. This is because αG,
as the Gilbert damping parameter [32,33], is a local scalar
(i.e., position-independent constant). Instead, various forms
of spatially nonuniform (i.e., coordinate-dependent) and non-
local (i.e., magnetization-texture-dependent) damping due to
conduction electrons have been proposed [10,11,34–36] or
extracted from first-principles calculations [37] to account for
observed wave-vector-dependent damping of SWs, such as
∝ q2 (q = |q|) measured in Ref. [1]. The nonlocal damping
terms require neither spin-orbit coupling (SOC) nor magnetic
disorder scattering, in contrast to αG, which is considered to
vanish [38] in their absence.

Thus, in magnonics, it has been considered [39] that
the usage of magnetic insulators, such as yttrium iron gar-
net (YIG) exhibiting ultralow αG � 10−4 (achieved on a
proper substrate [40]), is critical to evade much larger and/or
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nonlocal damping of SWs found in ferromagnetic metals.
However, very recent experiments [26–29] have observed a
100-fold increase of SW damping in the segment of a YIG
thin film that was covered by a metallic overlayer. Such
spatially resolved measurement [26] of SW damping was
made possible by the advent of quantum sensing based on
nitrogen vacancy (NV) centers in diamond [41], and it was
also subsequently confirmed by other methods [27–29]. Since
excitation, control, and detection of SWs require coupling
YIG to metallic electrodes [15], understanding the origin of
and means to control and suppress a large increase in SW
damping underneath a metallic overlayer is crucial for real-
izing magnonic technologies.

To explain their experiments, the authors of Refs. [26–29]
employed the LLG equation with ad hoc introduced terms
(such as effective magnetic field due to SW-induced eddy
currents within a metallic overlayer [26]) that fit their experi-
mental data (see Appendix B). This approach is nonuniversal
and unsatisfactory as it usually can only partially explain
experimental data [42]. For example, simple renormalization
of αG, as attempted in Ref. [26], cannot [36] properly capture
the wave-vector-dependence [1,11,26] of SW damping, while
postulating forms of spatially dependent nonlocal damping
[10,11,34–36] leads to many ambiguous choices [35]. A more
microscopic route was taken in Refs. [43,44] using the pic-
ture of spin angular momentum loss via spin pumping, but
the authors predicted only a modest �2-fold increase of SW
damping (see Appendix A) that is independent of the wave
vector at small q, thereby contradicting the 100-fold increase
found experimentally [26] and sensitive dependence on small
wave vector values.

In contrast, in this paper we employ the recently derived
extended LLG equation,

∂t Mn = −Mn × Beff
n + Mn ×

∑
n′

(αGδnn′ + λR ) · ∂t Mn′ ,

(1)
with all terms obtained [45] microscopically from Schwinger-
Keldysh nonequilibrium quantum field theory [46] and
confirmed [45] via exact quantum-classical numerics [47–50].
It includes nonlocal damping as the third term on the right-
hand side (RHS), where its nonlocality is signified by the
dependence on R = rn − rn′ , where rn is the position vec-
tor of lattice site n. The Schwinger-Keldysh field theory
(SKFT), commonly used in high-energy physics and cosmol-
ogy [51–53], allows one to integrate out unobserved degrees
of freedom, such as the conduction electrons in the setup
in Fig. 1, leaving behind a time-retarded dissipation kernel
[48,54,55] that encompasses electronic effects on the remain-
ing degrees of freedom. This approach then rigorously yields
an effective equation for only LMMs, such as Eq. (1) [45,55],
which bypasses the need for adding [1,26,42] phenomeno-
logical wave-vector-dependent terms to the standard LLG
equation. In our approach, the nonlocal damping is extracted
from the time-retarded dissipation kernel [45].

The paper is organized as follows. Equation (1) is applied
to a setup depicted in Fig. 1 in which conduction electron
spins from three different choices of metallic overlayers are
assumed to interact with LMMs of a ferromagnetic insulator
(FI) at the interface via sd exchange interaction of strength

FIG. 1. (a) Schematic view of bilayers where a metallic over-
layer covers the top surface of a magnetic insulator, as often
encountered in spintronics and magnonics [15,39]. Three different
energy-momentum dispersions of conduction electrons at the inter-
face are considered, with their Fermi surfaces shown in (b): a normal
metal (NM), a heavy metal (HM) with Rashba SOC [56,57], and
an altermagnetic metal (AM) [58,59], with the latter two being spin
split. The relative alignment of the layers is labeled by an angle θ

[58,59], meaning that the wave vector q of SWs within the FI is at an
angle θ away from the kx axis.

Jsd , as well as possibly underneath the top surface of the
FI because of an electronic evanescent wave function pene-
trating into it. Note that the FI/normal metal (NM) bilayer
directly models recent experiments [26] in which the FI was
a thin film of YIG, the NM was Au and SW damping within
the FI was quantified using quantum magnetometry via NV
centers in diamond. Next, a FI/heavy metal (HM) bilayer,
such as YIG/Pt [20,29], is frequently encountered in various
spintronics and magnonics phenomena [15,39]. Finally, due
to the recent explosion of interest in altermagnets [58,59],
FI/altermagnetic metal (AM) bilayers, such as YIG/RuO2,
have been explored experimentally1 to characterize RuO2 as a
spin-to-charge conversion medium [63].

II. SKFT-BASED THEORY OF SW DAMPING
IN FI/METAL BILAYERS

The nonlocal damping [45] λR in the third term on the
RHS of the extended LLG equation (1) stems from the back-
action of conduction electrons responding nonadiabatically
[48,64]—i.e., with the electronic spin expectation value 〈ŝn〉
always lagging behind the LMM which generates spin torque
[65] ∝ 〈ŝn〉 × Mn—to the dynamics of LMMs. It is, in gen-
eral, a nearly symmetric 3 × 3 tensor whose components are
given by [45]

λ
αβ

R = − J2
sd

2π

∫
dε

∂ f

∂ε
Tr[σαAnn′σβAn′n]. (2)

Here, f (ε) is the Fermi function, α, β = x, y, z, σα is the Pauli
matrix, and A(ε) = i[GR(ε) − GA(ε)] is the spectral func-
tion in the position representation obtained from the retarded
and advanced Green’s functions (GFs) GR/A(ε) = (ε − H ±
iη)

−1
. Thus, the calculation of λR requires only an electronic

1Note that recent experimental [60] and theoretical [61] scrutiny
finds RuO2 to be nonmagnetic in bulk form, but remains an AM
metal in the few-atomic-layer form [62]. Thus, these developments
do not affect our study focused on a bilayer structure, as well
as results for wave-vector-dependent SW damping due to generic
energy-momentum dispersion of an AM metal.
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Hamiltonian H as input, which makes the theory fully micro-
scopic (i.e., Hamiltonian based). In order to arrive at closed
expressions for the nonlocal damping tensor, we employ sim-
ple model Hamiltonians; nevertheless, realistic materials can
be treated by using the Hamiltonian input from first-principles
calculations (as explained in Ref. [45]). Although the SKFT-
based derivation [45] yields an additional antisymmetric term
not displayed in Eq. (2), this term vanishes if the system has
inversion symmetry. Even when this symmetry is broken, like
in the presence of SOC, the antisymmetric component is often
orders of magnitude smaller [55]; therefore, we neglect it. The
first term on the RHS of the extended LLG equation (1) is
the usual one [30,31], describing precession of LMMs in the
effective magnetic field Beff

n , which is the sum of both internal
and external (Bextez) fields. It is obtained as Beff

n = −∂H/∂Mn

where H is the classical Hamiltonian of LMMs:

H = −J
∑
〈nn′〉

Mn · Mn′ + K

2

∑
n

(
Mz

n

)2 − Bext

∑
n

Mz
n. (3)

Here, we use g = 1 for the gyromagnetic ratio, which simpli-
fies Eq. (1); J is the Heisenberg exchange coupling between
the nearest-neighbor sites, and K is the magnetic anisotropy.

When the nonlocal damping tensor λR is proportional to
the 3 × 3 identity matrix I3, a closed formula for the SW
dispersion can be obtained via hydrodynamic or linear spin
wave theory [66]. In this theory, the localized spins in Eq. (1),
Mn = (Re φn, Im φn, 1 − m)T , are expressed using complex
field φn and uniform spin density m � 1. Then, using the
SW ansatz φn(t ) = ∑

q Uqei(q·rn−ωqt ), we obtain the dispersion
relation for the SWs,

ωq = (Jq2 + K − B)[1 + i(αG + λ̃q)], (4)

where q is the wave vector and ω is the frequency. The
damping of the SW in the linear regime is then given by the
imaginary part of the dispersion in Eq. (4), �linear

q ≡ Im ωq.
It is composed of contributions from the local scalar Gilbert
damping αG and the Fourier transform of the nonlocal damp-
ing tensor, λ̃q = ∫

drn λrn eiq·rn .

III. RESULTS FOR A FI/NM BILAYER

We warm up by extracting �q for the simplest of the
three cases in Fig. 1, a one-dimensional (1D) FI chain under
a 1D NM overlayer with spin-degenerate quadratic elec-
tronic energy-momentum dispersion, εkσ = t0k2

x , where t0 =
h̄2/2m. The GFs and spectral functions in Eq. (2) can be
calculated in the momentum representation, yielding λ1D

R =
2J2

sd

πv2
F

cos2(kF R)I3, where vF is the Fermi velocity, R ≡ |R|, and
kF is the Fermi wave vector. Moreover, its Fourier transform,
λ̃q = 2J2

sd

v2
F

[δ(q) + δ(q − 2kF )/2], dictates additional damping
to SWs of wave vector q = 0,±2kF . Although the Dirac
delta function in this expression is unbounded, this unphysical
feature is an artifact of the low-amplitude, m � 1, approxima-
tion within the hydrodynamic approach [66]. The features of
such wave-vector-dependent damping in one dimension can
be corroborated via TDNEGF+LLG (TDNEGF stands for
time-dependent nonequilibrium GF [67]) numerically exact
simulations [47–50] of a finite-size nanowire, similar to the
setup depicted in Fig. 1(a) but sandwiched between two NM

FIG. 2. (a) Wave vector q of a SW generated by injecting
spin-polarized current in TDNEGF+LLG simulations of the NM
overlayer on the top of the 1D FI [Fig. 1(a)] as a function of
anisotropy K [Eq. (3)] for different electronic Fermi wave vectors
kF . (b) Maximum wave vector qmax of SWs that can be generated by
current injection [23,68] before wave-vector-dependent SW damping
becomes operative, as signified by the drop around kF in curves
plotted in (a).

semi-infinite leads. For example, by exciting SWs via injec-
tion of a spin-polarized current into the metallic overlayer of
such a system, as pursued experimentally in spintronics and
magnonics [23,68], we find in Fig. 2(a) that the wave vector q
of a thereby excited coherent SW increases with increasing
anisotropy K . However, the maximum wave vector qmax is
limited by kF [Fig. 2(b)]. This means that SWs with q � kF

are subjected to additional damping, inhibiting their genera-
tion. Although our analytical results predict extra damping at
q = 2kF , finite-size effects and the inclusion of semi-infinite
leads in TDNEGF+LLG simulations lower this cutoff to kF .

Since SW experiments are conducted on higher-
dimensional systems, we also investigate damping of SWs
in a two-dimensional (2D) FI/NM bilayer. The electronic
energy-momentum dispersion is then εkσ = t0(k2

x + k2
y ), and

the nonlocal damping and its Fourier transform are given by

λNM
R = k2

F J2
sd

2πv2
F

J2
0 (kF R)I3, (5)

λ̃NM
q = kF J2

sd�(2kF − q)

2πv2
F q

√
1 − (q/2kF )2

, (6)

where Jn(x) is the nth Bessel function of the first kind and
�(x) is the Heaviside step function. The nonlocal damping
in Eqs. (5) and (6) is plotted in Fig. 3(a), showing a realistic
decay with increasing R, in contrast to the unphysical infi-
nite range found in the 1D case. Additionally, SW damping
in Eq. (6) is operative for wave vectors 0 � q � 2kF , again
diverging for q = 0, 2kF due to artifacts of hydrodynamic
theory [66]. Therefore, the unphysical divergence can be re-
moved by going back to the discrete lattice and numerically
solving a system of coupled LLG equations (1) where λR
in two dimensions is used [45]. From the exponential decay
of the initial SW amplitude in such numerical solutions, we
extract the wave-vector-dependent SW damping �q, plotted
as solid curves in Fig. 3(e). Note that SW damping obtained
in this fashion includes nonlinear effects such as magnon-
magnon interaction. In this numerical treatment we use n =
1–100 LMMs; kF = 0.5a−1, where a is the lattice spacing;
k2

F J2
sd/2πv2

F = η = 0.1; K = 0; Bext = 0.1J; and αG = 0.1.
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FIG. 3. (a)–(d) and (f)–(h) Elements of the SKFT-derived nonlocal damping tensor in the 2D FI λR, where R = (X,Y, Z ) is the relative
vector between two sites within the FI, covered by a NM [Eq. (5)], HM [Eqs. (8)], or AM [Eqs. (9)] metallic overlayer. (e) Wave-vector-
dependent damping �q of SWs due to the NM overlayer, where the gray line is based on Eq. (6) in the continuous limit [66] and the other two
lines are numerical solutions of the extended LLG equation (1) for discrete lattices of LMMs within the FI. The dotted line in (e) is obtained
in the absence of nonlocal damping (η = 0), which is flat at small q.

IV. RESULTS FOR A FI/HM BILAYER

Heavy metals (such as often-employed Pt, W, and Ta)
exhibit strong SOC effects due to their large atomic number.
We mimic their presence at the FI/HM interface [56] by
using 2D energy-momentum dispersion εk = t0(k2

x + k2
y ) +

tSOC(σ xky − σ ykx ), which includes spin splitting due to the
Rashba SOC [56,57]. Using this dispersion, Eq. (2) yields

λHM
R =

⎛
⎜⎝

λxx
R λ

xy
R 0

λ
xy
R λ

yy
R 0

0 0 λzz
R

⎞
⎟⎠ (7)

for the nonlocal damping tensor. Its components are, in gen-
eral, different from each other:

λxx
R = J2

sd

4π

[(
kF↑
vF↑

J0(kF↑R) + kF↓
vF↓

J0(kF↓R)

)2

+ cos(2θ )

(
kF↑
vF↑

J1(kF↑R) − kF↓
vF↓

J1(kF↓R)

)2]
, (8a)

λ
yy
R = J2

sd

4π

[(
kF↑
vF↑

J0(kF↑R) + kF↓
vF↓

J0(kF↓R)

)2

− cos(2θ )

(
kF↑
vF↑

J1(kF↑R) − kF↓
vF↓

J1(kF↓R)

)2]
, (8b)

λzz
R = J2

sd

4π

[(
kF↑
vF↑

J0(kF↑R) + kF↓
vF↓

J0(kF↓R)

)2

−
(

kF↑
vF↑

J1(kF↑R) − kF↓
vF↓

J1(kF↓R)

)2]
, (8c)

λ
xy
R = −J2

sd sin(2θ )

4π

(
kF↑
vF↑

J1(kF↑R) − kF↓
vF↓

J1(kF↓R)

)2

,

(8d)

where kF↑ and kF↓ are the spin-split Fermi wave vectors
[Fig. 1(b)] and θ is the relative orientation angle [Fig. 1(b)]
between the SW wave vector q and the kx direction. Thus,
the nonlocal damping tensor in Eq. (7) generated by the HM
overlayer is anisotropic in spin due to its different diagonal
elements, as well as nonzero off-diagonal elements. It is also
anisotropic in space due to its dependence on the angle θ .
Its elements [Eqs. (8)] are plotted in Figs. 3(b), 3(c), 3(f),
and 3(g) using tSOC = 0.3t0 and reduce to the FI/NM case
if tSOC = 0. They may become negative, signifying the pos-
sibility of antidamping torque [23] exerted by conduction
electrons. However, the dominant effect of nearby LMMs and
the presence of the local scalar αG ensure that LMM dynamics
is damped overall. Although there is no closed expression for
the SW dispersion in the presence of anisotropic λHM

R , we can
still extract SW damping �q induced by an HM overlayer
from the exponential decay of the SW amplitude in numerical
integration of the extended LLG equation (1) using SW initial
conditions with varying q. For an HM overlayer with realistic
[56,57] tSOC = 0.1t0 the results in Fig. 4(a) are very similar
to those obtained for the NM overlayer with the same Fermi
energy. Also, the spatial anisotropy of λHM

R does not translate
into θ dependence of the SW damping.

V. RESULTS FOR A FI/AM BILAYER

Altermagnets [58,59] are a novel class of antiferromag-
nets with spin-split electronic energy-momentum dispersion
despite zero net magnetization or the lack of SOC. They
are currently being intensely explored as a new resource
for spintronics [63,69,70] and magnonics [71,72]. A sim-
ple model for an AM overlayer employs energy-momentum
dispersion εkσ = t0(k2

x + k2
y ) − tAMσ (k2

x − k2
y ) [58,59], where

tAM is the parameter characterizing anisotropy in the AM.
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FIG. 4. (a) Wave-vector-dependent damping �q of SWs under a
NM or HM overlayer with Rashba SOC of strength tSOC = 0.1t0.
(b) �q of SWs under an AM overlayer with tAM = 0.8t0 for dif-
ferent relative orientations of the FI and AM layers measured by
angle θ (Fig. 1). All calculations employ η = 0.1 and Fermi energy
εF = 0.25t0.

The corresponding λAM
R = diag(λ⊥

R, λ⊥
R, λ

‖
R ) tensor has three

components, which we derive from Eq. (2) as

λ⊥
R = J2

sd

4πA+A−

[
J2

0

(√
εF

t0
R+

)
+ J2

0

(√
εF

t0
R−

)]
, (9a)

λ
‖
R = J2

sd

2πA+A−
J0

(√
εF

t0
R+

)
J0

(√
εF

t0
R−

)
, (9b)

where A± = t0 ± tAM and R2
± = X 2/A± + Y 2/A∓ is the

anisotropically rescaled norm of R. They are plotted in
Figs. 3(d) and 3(h), demonstrating that λAM

R is highly
anisotropic in space and spin due to the importance of the
angle θ [69,73,74]. The components of the nonlocal damp-
ing tensor can also take negative values, akin to the case
of λHM

R . It is interesting to note that along the direction of
θ = 45◦ [gray dashed lines in Figs. 3(d) and 3(h)], λ⊥

R = λ
‖
R,

so the nonlocal damping tensor is isotropic in spin. The SW
damping �q induced by an AM overlayer is extracted from
numerical integration of the extended LLG equation (1) and
plotted in Fig. 4(b). Using a relatively large, but realistic [58],
AM parameter tAM = 0.8t0, the SW damping along θ = 0◦
for experimentally relevant small wave vectors is reduced
when compared to the one due to the NM overlayer by up to
65% [Fig. 4(b)]. Additional nontrivial features are observed
at higher |q|, such as being operative for a greater range of
wave vectors with maxima around |q| = 2

√
εF /t0 and |q| =

3
√

εF /t0. Remarkably, these peaks vanish for wave vectors
along the isotropic direction θ = 45◦ [Fig. 4(b)].

VI. CONCLUSIONS

In conclusion, using a SKFT-derived nonlocal damping
tensor [45], we demonstrated a rigorous path to obtain wave
vector damping of SWs in magnetic insulators due to interac-
tion with the conduction electrons of the metallic overlayer,
a setup often encountered in magnonics [15–19,39], where
such SW damping was directly measured in very recent exper-
iments [26–29]. Our analytical expressions [Eqs. (5), (7), and
(9)] for the nonlocal damping tensor—using simple models
of NM, HM, and AM overlayers as input—can be directly
plugged into atomistic spin dynamics simulations [30]. For
more complicated band structures of metallic overlayers, one

can compute λR numerically via Eq. (2), including a combi-
nation with first-principles calculations [37].

The interfacial Jsd coupling was estimated to be 50 meV
in YIG/Pt [75] and as high as 400 meV in YIG/Au [76],
accounting for the 100-fold increase [26–29] in SW damping
underneath a metallic overlayer (see Appendix A for more
details). This increase is incompatible with prior classical the-
ories of nonlocal damping [43,44], emphasizing the necessity
of the quantum mechanical foundations of our SKFT-based
approach. Since we find that λHM,AM

R is highly anisotropic
in spin and space, the corresponding SW damping �q thus
understood microscopically from SKFT allows us to propose
how to manipulate it (Fig. 4). For example, by using a HM or
AM overlayer and by changing their relative orientation with
respect to the FI layer, �q can be reduced by up to 65% for
small wave vectors q (Fig. 4), which could be of great interest
to magnonics experiments and applications.
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APPENDIX A: ESTIMATING THE MAGNITUDE OF SW
DAMPING FOR A REALISTIC YIG/Au BILAYER FROM

SKFT VERSUS FROM REFERENCE [43]

The strength of the SKFT-derived nonlocal damping that
gives rise to the wave-vector-dependent damping of SWs is
given by the dimensionless parameter

η = k2
F J2

sd a4
Au

2π h̄2v2
F

, (A1)

where Jsd is the interfacial sd exchange coupling; kF and vF

are the norm of the Fermi wave vector and Fermi velocity, re-
spectively; and aAu is the distance between nearest neighbors
(NNs) in Au. Reference [76], based on a many-body model,
estimated the Jsd coupling for a YIG/Au bilayer to be

Jsd = 0.33 × 2πt0aAu

√
g↑↓
s

, (A2)

where t0 is the NN hopping parameter of Au, g↑↓ is the
spin-mixing conductance at the interface, and s is the spin
quantum number of YIG. The latter is estimated to be s =
MsaYIGa2

Au/h̄γe, where Ms = 1.6 × 105 A/m is the saturation
magnetization of YIG, aYIG = 12 Å is the lattice constant
of YIG, and γe = 1.76 × 1011 rad s−1 T−1 is the gyromag-
netic ratio of the electron. The NN distance in Au is aAu =√

0.63/gsh, where gsh = 12 nm−2 is the Sharvin conductance
of Au. Therefore, the spin quantum number of YIG is approx-
imately s = 0.54, or about spin 1/2.

Next, the Au hopping parameter is estimated to be t0 =
εF /12, where εF = 5.5 eV is the Fermi energy of Au. This
allows us to determine t0 = 0.46 eV, as well as the norm of
the Fermi wave vector kF = 10.69 nm−1 and Fermi velocity
1.6 × 106 m/s. The spin-mixing conductance at the interface
g↑↓ is reported [76] to be between 1.2 and 6 nm−1: we
use the lower bound of g↑↓ = 1.2 nm−1. Plugging that into
Eq. (A2), we get a lower bound for Jsd = 0.44 eV. Then,
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FIG. 5. Schematic diagram of a classical precessing localized
magnetic moment in the YIG layer that induces eddy currents I
within an Au overlayer, as used in the theory of Ref. [26].

in turn, plugging that into Eq. (A1) yields η = 8.6 × 10−3.
Let us recall that the local scalar Gilbert damping of YIG
is ∼10−4, meaning that the effective damping under an Au
overlayer is predicted to be at least ∼80 times stronger than
in pure YIG. This is fully compatible with recent NV mag-
netometry measurements that observed a 100-fold increase.
In contrast, some theories based on classical electrodynam-
ics [43,44] predict a modest approximately twofold increase.
Crucially, these references employ the same spin-mixing con-
ductance of g↑↓ = 1.2 nm−1 as the key quantity to obtain the
result.

APPENDIX B: ESTIMATING THE MAGNITUDE OF SW
DAMPING FROM REF. [26] DUE TO BACKACTION OF

EDDY CURRENTS IN Au GENERATED BY DYNAMICAL
MAGNETIC MOMENTS OF YIG

The NV magnetometry experiments showing a dramatic
increase in SW damping [26] employ a classical electrody-
namics framework in which precessing magnetic moments in
YIG induce eddy currents in the Au overlayer. The eddy cur-
rents, in turn, generate a magnetic moment whose magnetic
field exerts a dampinglike torque on the localized magnetic
moments of the YIG. However, Ref. [26] left the damping as a
free parameter. Here, we compute the damping parameter of a
single classical precessing moment based on realistic material
parameters. The geometry we consider is depicted in Fig. 5:
a cube of YIG of thickness hYIG = 235 nm under a layer
of Au of thickness hAu = 200 nm. The magnetization of the
YIG cube is averaged to determine a single magnetic dipole
moment mYIG = Msh3

YIG that exhibits precessing motion ac-
cording to mYIG = mYIG(sin θ sin ωt, sin θ cos ωt, cos θ ). The
precession frequency is ω/2π = 2 GHz, and θ is the angle of
the magnetic moment with the z axis.

The magnetic field generated by a localized magnetic
dipole [77] is given by

B(r) = μ0

4π

[
er

(
er · ∂2

t m
) − ∂2

t m

rc2
+ 3er (er · M) − M

r3

]
,

(B1)

where c is the speed of light, er is the radial unit vector at
position r, M = m + r∂t m/c, and retardation effects can be
ignored since ωhAu/c ∼ 10−6. Assuming the Au layer is thin
enough, only the x component of the magnetic field radiated
by mYIG, Bx

YIG, contributes to the flux through the Au. This
component is obtained from Eq. (B1) as

Bx
YIG(x, y = 0, z = 0) = μ0mYIG

2πx3
sin θ cos ωt, (B2)

where terms of order ωx/c are neglected. Thus, the electro-
motive force ε induced in the Au is given by

ε = h2
YIG

∫
Au

dx ∂t B
x
YIG(x, y = 0, z = 0), (B3)

where the flux is integrated over the thickness of the Au
layer. Thus, the circulating eddy currents are I = ε/ρAu =
I0 sin ωt , where ρAu = 11 n� m is the resistivity of the Au
thin film at room temperature [78]. Such currents generate an
induced magnetic dipole mAu = I0h2

YIG sin ωtex, whose gen-
erated magnetic field at the location of the YIG magnetic
moment is obtained from Eq. (B1) as

BAu = 4μ0I0h2
YIG sin ωt

π (hAu + hYIG)3
ex. (B4)

The torque exerted by this field can be included in the LLG
equations for a precessing magnetic moment as an additional
term, yielding

∂t mYIG = −γemYIG × Bext + αGmYIG × ∂t mYIG

+ α1mYIG × (∂t mYIG · ex )ex, (B5)

where αG is the conventional Gilbert damping scalar and α1 =
γeBAu/ω is the additional damping due to the eddy currents.
This parameter is, approximately, α1 ≈ 0.012, compatible
with the experimental observations [26] and 100 times larger
than intrinsic αG = 10−4. However, Eq. (B5) is the usual LLG
equation with traditional uniform Gilbert damping, whose
value is anisotropically enhanced [second term on the right-
hand side of Eq. (B5)] by the eddy-current backaction. It has
been understood [10,36] that simple renormalization of the
Gilbert damping constant, which is the same for all SW modes
at different wave vectors, is insufficient to produce wave-
vector-dependent damping. Instead, wave-vector-dependent
SW damping requires a nonlocal damping term in the LLG
equation, which is coordinate and magnetization texture de-
pendent. Deriving such a nonlocal damping term cannot be
achieved using simple physical arguments leading to Eq. (B5);
instead, one needs more microscopic approaches [10,11,34–
36], one of which (perhaps the most rigorous due to being
benchmarked by numerically exact calculations [45,64]) is
provided by our SKFT-based formulation [45].
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