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The entanglement of many localized spins (LS) within solid magnetic materials is a topic of great
basic and applied interest, particularly after becoming amenable to experimental scrutiny where,
e.g., very recent neutron scattering experiments have witnessed macroscopic entanglement in the
ground state (GS) of antiferromagnets persisting even at elevated temperatures. On the other hand,
spintronics and magnonics studies assume that LS of antiferromagnets are in unentangled Néel GS,
as well as that they evolve, when pushed out of equilibrium by current or external fields, according
to the Landau-Lifshitz-Gilbert (LLG) equation viewing LS as classical vectors of fixed length. The
prerequisite for applicability of the LLG equation is zero entanglement in the underlying many-body
quantum state of LS. In this study, we initialize quantum Heisenberg ferro- or antiferromagnetic
chains hosing S = 1/2, S = 1 or S = 5/2 LS into unentangled pure state and then evolve them
by quantum master equations (QMEs) of Lindblad or non-Markovian type, derived by coupling
LS weakly to bosonic bath (due to phonons in real materials) or by using additional “reaction
coordinate” in the latter case. The time evolution is initiated by applying an external magnetic field,
and entanglement of the ensuing mixed quantum states is monitored by computing its negativity.
We find that non-Markovian dynamics never brings entanglement to zero, in the presence of which
the vector of spin expectation value changes its length to render the LLG equation inapplicable.
Conversely, Lindbladian (i.e., Markovian) dynamics ensures that entanglement goes to zero, thereby
enabling quantum-to-classical transition in all cases—S = 1/2, S = 1 and S = 5/2 ferromagnet or
S = 5/2 antiferromagnet—except for S = 1/2 and S = 1 antiferromagnet. Finally, we investigate
the stability of entangled antiferromagnetic GS upon suddenly coupling it to bosonic baths.

Introduction.—The fate of entanglement of many inter-
acting quantum spins, localized at the sites of crystalline
lattices of magnetic materials [1] or in optical lattices of
their quantum simulators [2], under finite temperature or
nonequilibrium conditions is a topic of great contempo-
rary interest. For example, recent experiments [3–5] have
succeeded to witness [6–8] multipartite entanglement [3,
9] of macroscopically large number of spins hosted by
antiferromagnetic insulators (AFIs) in equilibrium up to
surprisingly high temperature T ≲ 200 K [3]. Transient
entanglement in nonequilibrium AFIs could also be wit-
nessed via very recently proposed schemes [10, 11]. Due
to finite temperature and/or nonequilibrium, such sys-
tems inevitably generate mixed entangled states, also in
the focus of our study [Eq. (1)], that are far less under-
stood [12–16] than the pure [2] entangled ones. In com-
putational quantum physics, quantum spin systems are
a standard playground for developing algorithms, such
as tensor networks (TN) [17], that can efficiently en-
code ground states (GSs) containing low-entanglement—
however, entanglement growth in nonequilibrium [18]
poses significant challenge for these algorithms [19] and
the role of dissipative environment in limiting the so-
called “entanglement barrier” is intensely explored [20].
It is insightful to invoke a pedagogical example of an
entangled GS, such as that of AFI chain hosting lo-
calized spins (LS) S = 1/2, which has been realized
experimentally [21] and is described by the Heisenberg

Hamiltonian [22] ĤH = J
∑N−1

i=1 Ŝi · Ŝi+1. The GS is
entangled [9] as it cannot be expressed as the direct
product of multiple single-spin states in any basis, as

obvious from its form for N = 4 sites: |GS⟩AFI =
1√
12

(
2 |↑↓↑↓⟩+2 |↓↑↓↑⟩−|↑↑↓↓⟩−|↑↓↓↑⟩−|↓↓↑↑⟩−|↓↑↑↓⟩

)
.

Its energy, AFI⟨GS|Ĥ|GS⟩AFI = −2J , is lower than the
energy, ⟨Néel|Ĥ|Néel⟩ = −J of unentangeled Néel state
|Néel⟩ = |↑↓↑↓⟩, which is the precise meaning be-
hind “quantum spin fluctuations” [23] sintagma. Here
Ŝα
i = Î1 ⊗ . . .⊗ Sσ̂α ⊗ . . .⊗ ÎNAFI

acts nontrivially, as
the Pauli matrix σ̂α, in the Hilbert space of spin at site i;
Îi is the unit operator; and J > 0 is AF exchange interac-
tion. The expectation value of spin, ⟨Ŝi⟩ = ⟨GS|Ŝi|GS⟩ ≡
0, vanishes as a direct consequence [24–26] of non-zero
entanglement entropy of AFI GS.

In the case of ferromagnetic insulators (FIs), quan-
tum spin fluctuations [23] are absent [27] and both
classical ↑↑ . . . ↑↑ and its unentangled quantum coun-
terpart |↑↑ . . . ↑↑⟩ are GS of the respective classical
and quantum Hamiltonians. However, excited states
of FI chain—such as one-magnon Fock state [28, 29]

|1q⟩ = 1√
N

∑N−1
n=0 eiqxn |↑ . . .↑︸ ︷︷ ︸

n

↓ ↑ . . .↑︸ ︷︷ ︸
N − n − 1

⟩ where q is the

wavevector and xn = na is the x-coordinate along the
chain (with the lattice constant a)—is macroscopically
entangled [30, 31], as is the case of multi-magnon
states [32]. The robustness of entanglement of such
states has been studied for a long time in quantum
computing (using analogous multi-qubit states known as
W states) [16, 33], as well as more recently in “quan-
tum magnonics” [29] using quantum master equations
(QMEs) formulated in second-quantization [34, 35].

On the other hand, it is commonly assumed in an-
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tiferromagnetic spintronics [36–40] that GS of AFI is
unentangled Néel state; or that excited states (like
magnons [41, 42]) of either AFI or FI, as triggered exper-
imentally by injected current [40, 43, 44] or electromag-
netic radiation [45–47], are classical and governed [43, 48]
by the celebrated Landau-Lifshitz-Gilbert (LLG) equa-
tion [49–51]. It is also widely-believed that large spin
value S [24] and/or room temperature ensure applicabil-
ity of the LLG equation. This plausible notion is moti-
vated by the eigenvalue of Ŝ2

i operator being S2(1+1/S),
instead of S2, which suggests that quantum effects be-
come progressively less important for S > 1. However,
even for single quantum spin the required value of S
to match quantum and classical LLG dynamics can be
unrealistically large [52, 53] in the presence of magnetic
anisotropy (or any quadratic or higher order terms in spin
Hamiltonian) [54]. Also, quantum corrections persist for
all S < ∞ [52, 53], vanishing as (2S)−1 in the classical
limit [55]. Importantly, most of the standard magnetic
materials host LS with rather small S ≤ 5/2 [56].

The search for a rigorous proof that quantum dynamics
of a single spin can transition to classical LLG dynam-
ics, due to interaction with dissipative environment like
the bosonic bath and conditions imposed on it, has a long
history dating back to archetypical spin-boson model [57]
and recent generalizations [58] completing the proof while
also unraveling nature of quantum corrections to classical
LLG dynamics. However, such proofs [58] do not explain
how quantum dynamics of many spins can transition to
classical dynamics to be describable by a system of cou-
pled LLG equations [59], often applied without scrutiny
to both ferro- and antiferromagnets in spintronics [43]
and magnonics [60]. The key prerequisite for such a tran-
sition is the absence of entanglement [24, 25], i.e., the
underlying quantum state of many LS must remain un-
entangled pure |σ1(t)⟩ ⊗ |σ2(t)⟩ ⊗ · · · ⊗ |σN (t)⟩, or unen-
tangled mixed [12–16]

ρ̂(t) =
∑
n

pnρ̂
(1)
n (t)⊗ ρ̂(2)n (t) . . . ρ̂(N)

n (t), (1)

at all times t in order for time evolution of quantum-
mechanical expectation values ⟨Ŝi⟩ to be able to transi-
tion to the solutions [59] Si(t) of coupled LLG equations

⟨Ŝi⟩(t) 7→ Si(t). (2)

Otherwise, in the entangled quantum state the length of
vectors ⟨Ŝi⟩(t) is changing in time [61] which obviously
cannot be mimicked by Si(t) of fixed length [59] in the

LLG equation. In Eq. (1), ρ̂
(i)
n is the density matrix spin

at site i. We consider usage of the LLG equation in the
context of atomistic spin dynamics (ASD) [59], where
each atom of the lattice hosts one classical vector Si.
In this Letter, we view AFI and FI as open quantum

systems [62–64] by coupling them either: (i) weakly to a
bosonic bath, assumed to arise due to bosonic quasipar-
ticles in solids such as phonons, whose tracing out allows

one to derive [65] the universal Lindblad QME [Eq. (3)];
or (ii) strongly to a single bosonic mode which, in turn,
interacts weakly with the bosonic bath, so that tracing
over both allows us to derive non-Markovian QME within
the so-called “reaction coordinate” (RC) method [66].
We monitor the presence of entanglement in the den-
sity matrix of all LS ρ̂(t) via entanglement negativity
EN (t) [12–16], and we concurrently compare quantum

⟨Ŝi⟩(t) vs. classical Si(t) trajectories in Figs. 1–3.
Models and methods.—We consider FI (J < 0) or AFI

(J > 0) chain modelled by the Heisenberg Hamilto-
nian ĤH , which can include interaction with a homo-
geneous external magnetic field switching on for t ≥ 0,
Ĥ = ĤH −

∑
i gµBBext(t ≥ 0) · Ŝi, where g is the gyro-

magnetic ratio and µB is the Bohr magneton. We set
ℏ = 1 and kB = 1. These models of realistic magnetic
materials [3, 21] are made open quantum systems by cou-
pling them bosonic baths, so that the total Hamiltonian
becomes Ĥtot = Ĥ + Ĥbath + V̂ . Here Ĥbath models a
set of independent baths, one per each spin [65, 67], as

harmonic oscillators [57], Ĥbath =
∑

ik wikâ
†
ikâik, using

an operator âik(â
†
ik) which annihilates (creates) a boson

in mode k. The boson interacts with spin operator at
site i [62] via V̂ =

∑
k gk

∑
i Ŝi(âik + â†ik), where gk are

the coupling constants. By assuming small gk, QME
of the Lindblad type [68, 69] can be derived by trac-
ing out the bosonic bath and by expanding the resulting
equation to second order. Rather than relying on tra-
ditional approaches for the derivation of the Lindblad
QME—such as using Born, Markov and secular approxi-
mations [66, 68, 70]—we follow the procedure of Ref. [65]
for universal Lindblad QME which evades difficulties of
the secular approximation [71]. For example, for sys-
tems with (nearly) degenerate eigenstates, as is the case
of FI and AFI models considered, secular approximation
leads to improperly derived [70] Lindblad QME for LS
because of assuming that energy splitting is much bigger
than fluctuations due to the bath. The same problem was
addressed in a number of recent studies [72, 73], besides
the resolution offered in Ref. [65].

The universal Lindblad QME [65] considers a single
Lindblad operator L̂i for each spin, so that only N such
operators are needed to obtain

dρ̂/dt = −i[Ĥ, ρ̂] +

N∑
i

L̂iρ̂L̂
†
i −

1

2
{L̂†

i L̂i, ρ̂}, (3)

where we also ignore typically negligible Lamb-shift cor-
rections [66] to the Hamiltonian. The Lindblad QME
is time-local due to the assumption that bath-induced
changes to the system dynamics are slow relative to the
typical correlation time of the bath. We compute L̂i op-
erators as a power series (where we use cutoff NL ≤ 20)

L̂i =

NL∑
n=0

cn(adĤ)n[Ŝi], cn =
(−i)n

n!

∫ ∞

−∞
dtg(t)tn, (4)
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FIG. 1. Time-dependence of QME-computed ⟨Ŝα
1 ⟩(t) vs. classical-LLG-computed Sα

1 (t) of LS (a),(b) S = 1/2 or (c),(d)
S = 5/2 on site i = 1 of FI chain of N = 4 sites. (e)–(h) Time dependence of entanglement negativity [12] EN (t) between
two halves of FI chain in the case of quantum evolution (circles) in panels (a)–(d). The LS open quantum system evolution is
conducted using either Lindblad (i.e., Markovian) or RC (i.e., non-Markovian) QME with bosonic bath temperature T = |J |.

thereby evading the need for exact diagonaliza-
tion [65] of FI or AFI Hamiltonians. Here
adĤ [X] = [Ĥ,X] and the jump correlator func-
tion is defined via the Fourier transform of the spec-
tral function of the bath, J(ω) = 2π

∑
δ(ω − ωk), as

g(t) = 1√
2π

∫∞
−∞ dω

√
J(ω)e−iωt. For numerical calcula-

tions, we considered an Ohmic [58] spectral function with
a rigid ultraviolet cutoff

J(ω) =
Γω

ωm
nBE(ω)Θ(ωm − ω), (5)

where Γ is the reorganization energy representing the
magnitude of fluctuations and dissipation; ωm charac-
terizes how quickly the bath relaxes towards equilib-
rium; nBE(ω) the Bose-Einstein distribution; and Θ is
the Heaviside step function.

The Lindblad QME [Eq. (3)] is only valid for a weak
system-bath coupling, as it assumes a second order trun-
cation in gk. Since this is not always the case, sev-
eral approaches [62, 64] exist to treat strong system-bath

coupling, such as polaron, star-to-chain and thermofield
transformations [74], and the RC method [71]. The RC
method we employ is based on the Bogoliubov transfor-
mation, and it allows one to construct a new bosonic
mode b̂ called the RC. This mode is coupled strongly to
the system, but weakly to a residual bosonic bath, while
conserving the bosonic commutation relations. The new
Hamiltonian of the system then becomes

Ĥtot = Ĥ+λ
∑
i

Ŝi(b̂+ b̂†)+Ωb̂†b̂+ ĤRC-B+ Ĥbath, (6)

where λ is the strength of the coupling between the
RC and the system; Ω is the frequency of the RC;
ĤRC-B =

∑
k>1 g̃k(b̂+b̂†)(ĉk+ĉ†k) is the RC-bath coupling

Hamiltonian; and Ĥbath is the bosonic bath Hamiltonian
considered to be identical to the case used in derivation of
Eq. (3), but with one less bosonic mode and with properly
transformed coupling coefficients. Thus, the parameters
λ and Ω are expressed [75] in terms of the parameters

in Eq. (5), λ2 = 1
6π

√
5
3Γωm and Ω =

√
5
3ωm, while the

spectral function of the residual bath

J ′(ω) =
2
√

5/3πωω2
mnBE(ω)

3 [π2ω2 + 4ω arctanh(ω/ωm)(ω arctanh(ω/ωm)− 2ωm) + 4ω2
m]

, (7)

is independent of the original coupling strength Γ. This
allows us to derive QME which has the same form as
Eq. (3), but it uses Ĥ 7→ Ĥ + λ

∑
i Ŝi(b̂+ b̂†) + Ωb̂†b̂.

Since λ ∝
√
Γ, the coupling of the system to the RC can

be arbitrarily strong without affecting coupling to the
residual bath. Despite being time-local, this Lindblad
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FIG. 2. Panels (a)–(h) are counterparts of Fig. 1(a)–(h), but using AFI chain composed of N = 4 sites. Additional cases of
AFI or FI chains hosting S = 1 LS, or by including their additional interactions (such as easy-axis anisotropy, long-ranged
dipole-dipole interaction and Dzyaloshinskii-Moriya interaction) are provided in the SM [74].

QME including RC captures non-Markovian effects [76].
They, otherwise, require integro-differential QMEs with
time-retarded kernel [62–64]. In order to reduce compu-
tational complexity for many LS, an effective Hamilto-
nian was built by considering [76] only the lowest energy

states of the RC, i.e., the matrix representation of b̂ is
truncated to finite size 15× 15.

Results and discussion.—We solve Eq. (3) for Lind-
bladian dynamics, as well as for non-Markovian dynam-
ics when the RC is included in the Hamiltonian, for FI
and AFI chains composed of N = 4 sites with periodic
boundary conditions hosting spins S = 1/2 or S = 5/2,
as well as S = 1 in the Supplemental Material (SM) [77].
The two QMEs are solved using the fourth order Runge-
Kutta method, where |J | = 1 sets the unit of energy. For
Lindbladian dynamics we use Γ = 0.01|J |, while for non-
Markovian dynamics we use stronger coupling Γ = 0.1|J |,
and the cutoff frequency is chosen as ωm = 3|J |. Note
that choosing too large ωm brings entanglement of LS
to zero on a very short timescale. The initial condi-
tion for FI is unentangled pure state ρ̂(0) = |Σ⟩⟨Σ|, where
|Σ⟩ = |→→→→⟩ with all spins pointing along the x-axis.
The magnetic field applied for t ≥ 0, gµBBz = 0.8|J |, is
along the z-axis. The initial condition for AFI is unentan-
gled pure state ρ̂(0) = |Ω⟩⟨Ω|, where |Ω⟩ = |σ1σ2σ1σ2⟩
with ⟨σ1(2)|Ŝ1(2)|σ1(2)⟩ pointing along θ1 = 1/8 or θ2 =
π − 1/8 and ϕ1(2) = 0 in spherical coordinates.

In the course of time evolution, ρ̂(t) can become en-
tangled which is quantified by computing entanglement
negativity [12–16] between the left half (LH) and the
right half (RH) of the chain EN [ρ̂(t)] = ln ||ρ̂TRH ||1 =

ln
∑

n |λn| , where ||Â||1 = Tr
√

Â†Â is the trace norm

of the operator Â; λn are the eigenvalues of ρ̂TRH ; and

the matrix elements of the partial transpose with respect
to RH of the chain are given by

(
ρ̂TRH

)
iα;jβ

=
(
ρ̂
)
jα;iβ

.

While the standard von Neunmann entanglement entropy
SLH of half of the chain [7, 18] can be non-zero even for
unentangled mixed state in Eq. (1), non-zero EN neces-
sarily implies entanglement and genuine quantum corre-
lations between the two parts [12–16].

Initially, both FI and AFI exhibit dynamical build-
up of entanglement signified by EN > 0 in Figs. 1 and
2, respectively. However, Lindbladian dynamics quickly
brings EN → 0 in the FI hosting S = 1/2 [Fig. 1(e)],
S = 1 (Fig. S1(g) in the SM [77]), and S = 5/2 [Fig. 1(g)]
spins; as well as in the AFI hosting S = 5/2 [Fig. 2(e)]
spins. Establishing EN → 0 also makes it possible for
LLG classical trajectories Si(t) to track ⟨Ŝi⟩(t) in Figs. 1,
2 and S1 in the SM [77]. Details of how the LLG equation
is solved to obtain Si(t), while tuning the Gilbert damp-
ing parameter in order to enable comparison of Si(t) and

⟨Ŝi⟩(t), are given in the SM [77]. In the AFI case with
S = 1/2 [Fig. 2(e)] or S = 1 (Fig. S1(c) in the SM [77])
entanglement never vanishes, EN (t) > 0, even in the

long-time limit, thereby maintaining ⟨Ŝi⟩(t) ̸= Si(t).
Thus, we conclude that usage [36–39, 43] of the LLG
equation in spintronics with AFI layers hosting spins
S = 1/2 or S = 1 cannot be justified microscopically.
In the case of non-Markovian dynamics, EN (t) remains
non-zero (Figs. 1, 2 and S1 in the SM[77]) in FI and
AFI at all times and for S = 1/2, S = 1 and S = 5/2,

so that quantum-to-classical transition ⟨Ŝi⟩(t) 7→ Si(t) is
never achieved. This then provides an example of how
pronounced memory effects can lead to revival of genuine
quantum properties such as quantum coherence, correla-
tions, and entanglement [63].
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FIG. 3. Time dependence of: (a),(b) spin expectation values
at sites i = 1, 2; (c) entanglement negativity EN (t) [12] be-
tween two halves of AFI chain; and (d) overlap between the
chain density matrix ρ̂(t) and pure states in the Néel sub-
space. The AFI chain has N = 4 sites, as well as an impurity
introducing the z-axis anisotropy at site i = 1 [Eq. (8)]. The
Lindblad Eq. (3) evolves ρ̂(t) upon coupling AFI chain to the
bosonic bath at t = 0, starting from pure entangled GS but ex-
hibiting Néel “checkerboard” order ⟨Ŝz

i ⟩ = −⟨Ŝz
i+1⟩ ≠ 0 [26].

Finally, we examine the fate of entangled GS of AFI
upon suddenly coupling it to a bosonic bath and evolving
it by the Lindblad Eq. (3). Let us recall that a com-
mon trick employed in TN calculations on spin systems
to select the unentangled Néel state as the GS is to in-
troduce an external staggered magnetic field which al-
ternates in sign on atomic length scales [78]. However,
its microscopic justification is missing. Attempts to in-
troduce more realistic decoherence mechanisms, such as
repeated local measurements [79–81] that would disrupt
superposition in the GS and replace the need for con-
trived staggered field, are also difficult to justify in the
context of spintronic and magnonic devices. A handful
of recent studies have examined time evolution of entan-
gled GS of AFIs [67, 82] upon suddenly coupling their
spins to a dissipative environment, but with conflicting
conclusions about the fate of entanglement. Since the
“checkerboard” pattern of expectation values of ⟨Ŝi⟩ in
the Néel order is often reported experimentally [40], we
induce it as the initial condition at t = 0 by using GS of
slightly modified Heisenberg Hamiltonian

Ĥimp = ĤH − 0.2|J |Ŝz
1 , (8)

with an additional impurity at site i = 1. The im-
purity breaks rotational invariance of ĤH to generate
Néel order, ⟨Ŝz

i ⟩ = −⟨Ŝz
i+1⟩ ̸= 0, but not the Néel GS

|↑↓↑↓⟩ because entanglement entropy of true GS remains
nonzero [26] leading to ⟨Ŝz

i ⟩/S < 1. The Lindbladian
time evolution [Fig. 3] maintains entanglement EN (t) > 0

at low temperature T1 = 0.01|J | and, therefore, non-

classical dynamics of ⟨Ŝi⟩(t), while at high temperatures
EN → 0 is reached on short time scales. The overlap
Tr [ρ̂(t)P̂Néel] with states in the Néel subspace, whose
projector is P̂Néel = |↑↓↑↓⟩ ⟨↑↓↑↓| + |↓↑↓↑⟩ ⟨↓↑↓↑|, never
reaches 1 in the low temperature regime [black curve in
Fig. 3(d)]. In the high temperature limit, the overlap
becomes negligible [red curve in Fig. 3(d)] as the sys-
tem goes [82] into static ferrimagnetic ordering [blue and
orange flat lines in Figs. 3(a) and 3(b)].

In conclusion, we solve nearly a century old [49]
problem—“unreasonable effectiveness” of the classical
LLG equation in describing dynamics of many (for solu-
tion of the same problem for a single spin, see Ref. [58])
localized spins within a magnetic material—by show-
ing that it is justified microscopically only if Lindblad
open quantum system dynamics is generated by environ-
ment in the case of any ferromagnet, as well as for anti-
ferromagnets with sufficiently large value of their spin
S > 1. Thus, our findings exclude antiferromagnets
with S = 1/2 or S = 1 spins from possibility to model
them via classical micromagnetics or ASD [59, 60]. Our
analysis via rigorously constructed Markovian and non-
Markovian QMEs for many LS interacting with bosonic
bath could also be applied to other related problems, such
as fate of entanglement in quantum spin liquids [83].

This research was primarily supported by the US
National Science Foundation through the University of
Delaware Materials Research Science and Engineering
Center, DMR-2011824.
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[91] F. Queisser and R. Schützhold, Environment-induced
prerelaxation in the Mott-Hubbard model, Phys. Rev.
B 99, 155110 (2019).

[92] J. S. Lee and J. Yeo, Comment on “Universal Lindblad
equation for open quantum systems”, arXiv:2011.00735
(2020).

[93] F. Nathan and M. S. Rudner, High accuracy steady
states obtained from the universal Lindblad equation,
arXiv:2206.02917 (2022).
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This Supplemental Material provides eight additional Figs. S1–Fig. S8, as well as details of how the Landau-
Lifshitz-Gilbert (LLG) [1–3] equation is solved in order to obtain classical trajectories Si(t) of localized spins. We
also explain how to properly compare Si(t) with time-evolution of quantum expectation values of localized spins

⟨Ŝi⟩(t) while microscopically extracting in this process the Gilbert damping parameter from open quantum system
dynamics. Additional Figures S1–Fig. S8 cover cases of: different types of interactions (not studied in the main text)
acting on localized spins, such as easy-axis anisotropy [2, 4], dipole-dipole interaction [5–8] and Dzyaloshinskii–Moriya
interaction (DMI) [4, 9]; usage of a single global vs. many local independent (as employed in the main text, as well
as in other studies [10–14]) bosonic baths coupled to localized spins; exploration of wide range of temperatures of
bosonic baths; proximity [15, 16] of steady-state solution of the universal [10] Lindblad quantum master equation
(QME) in our problem to Gibbs density matrix describing thermal equilibrium; and scaling of entanglement with
increasing number of localizes spins in order to confirm that our conclusions are largely independent of the system
size. In all Figures S1–S8, the nonequilibrium dynamics of spin chains modeling antiferromagnetic insulator (AFI) or
ferromagnetic insulator (FI), and viewed as open quantum systems [17–19], is initiated in the same way as explained
in the main text.

I. FERRO- OR ANTIFERROMAGNETIC INSULATOR HOSTING LOCALIZED SPINS S = 1

Figure S1 is the counterpart of Figs. 1 and 2 in the main text, but considering S = 1 localized spins hosted by AFI
[Fig. S1(a)–(d)] or FI [Fig. S1(e)–(h)].

FIG. S1. Time-dependence of QME-computed ⟨Ŝα
1 ⟩(t) vs. classical-LLG-computed Sα

1 (t) of LS S = 1 on site i = 1 of (a),(b)
AFI chain and (e),(f) FI chain. Time dependence of entanglement negativity EN (t) measuring entanglement between two halves
of (c),(d) AFI chain or (g),(h) FI chain in the case of quantum dynamics (circles) in panels (a),(b) or (e),(f), respectively. The
localized spins within FI or AFI are evoloved as an open quantum system [17–19] using either Lindblad (i.e., Markovian) or
RC (i.e., non-Markovian) QME with bosonic bath temperature T = |J |, as discussed in details in the main text.
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II. SOLVING STOCHASTIC LANDAU-LIFSHITZ-GILBERT EQUATION AND EXTRACTING ITS
DAMPING MICROSCOPICALLY FROM OPEN QUANTUM SYSTEM DYNAMICS

The classical dynamics of localized spins Si is computed by the phenomenological LLG equation [1–3]

∂Si

∂t
= −gSi × (Beff

i +Bth
i ) + λSi ×

∂Si

∂t
. (1)

extended into its stochastic version [20] by the usage of a thermal magnetic field Bth
i (t) as random variable. Here λ is

the Gilbert damping parameter [3], in the context of atomistic spin dynamics [2] where each atom of the lattice hosts
one vector Si; g is the gyromagnetic ratio; and

Beff
i = − 1

µM

∂H
∂Si

, (2)

is the effective magnetic field obtained from the classical Heisenberg Hamiltonian,

H = J
∑

⟨ij⟩
Si · Sj −

∑

i

gµBBext(t ≥ 0) · Si, (3)

with µM being the magnitude of classical localized spins [2] and µB is the Bohr magneton. The thermal fluctuations
of classical localized spins Si(t) are represented by a stochastic Langevin process, where their Brownian motion is

simulated using Bth
i (t) as a Gaussian random variable [20] with zero mean in all Cartesian components, Bth,α

i (t) = 0,

and correlator Bth,α
i (t)Bth,β

i (t′) = 2Dδα,βδ(t− t′), where D = λ
1+λ2 kBT .

The LLG equation is solved using time step δt = 0.01ℏ/J within the stochastic generalization of the Heun method [2],
which is equivalent to the second order Runge-Kutta method and includes the stochastic nature Bth

i (t) [20]. For all
cases, we average over 100 independent simulations. The Gilbert damping parameter is obtained by minimizing the
root-mean-square of the difference between quantum and classical trajectories of localized spins when the latter is
computed using λ = 0. Thus, such a procedure effectively and microscopically extracts the Gilbert damping parameter
from open quantum system dynamics, yielding as the typical value λ = 0.02. This value, which is often encountered
in realistic magnetic materials [2], is then employed in Figs. 1–3 of the main text and in Fig. S1.

III. ROLE OF MAGNETIC ANISOTROPY, LONG-RANGED DIPOLE-DIPOLE AND
DZYALOSHINSKII-MORIYA INTERACTIONS

Commonly used effective spin Hamiltonians [2, 4] of bulk magnetic materials and their heterostructures often involve
interactions affecting localized spins that are additional to the Heisenberg exchange J (as the only considered one in
the main text). Examples of additional interactions are the easy-axis anisotropy [2, 4], dipole-dipole interactions [5–8],
and DMI [4, 9]. For example, it has been recently predicted [21] that distant localized spins within an anisotropic
FI can become entangled in the presence of magnons, with the amount of entanglement controlled by the external
fields and anisotropies. On the other hand, in spintronics [2] and magnonics [22], dynamics of localized spins for
respective extended [when compared to plain Heisenberg Hamiltonian in Eq. (3)] models is typically computed by
using a straightforward generalization of Beff

i in Eq. (2) and, therefore, tacitly assuming that many-spin entanglement
studied in the main text has somehow being brought to zero. To properly justify usage of classical LLG dynamics for
such extended models requires repeating calculations from the main text—of entanglement negativity EN (t) which

must vanish to enable quantum-to-classical transition ⟨Ŝi⟩(t) 7→ Si(t)—in the presence of these additional interactions.

As discussed in the main text, the presence of any genuine quantum property—such as quantum coherence, corre-
lations, and entanglement—automatically makes the classical LLG equation inapplicable. Since in the main text we
find that LLG equation can never mimic underlying quantum dynamics that is non-Markovian, precisely because its
pronounced memory effects can lead to revival [18] of genuine quantum properties including always present nonzero
entanglement, we limit our analysis in this Section to localized spins that are weakly [10] coupled to independent
bosonic baths and, therefore, describable by Markovian dynamics via the Lindlad QME. That is, we assume that the
correlation time of the bath is much shorter than the characteristic timescale of system-bath interactions, while not
requiring any restrictions on the internal energy level structure of the system itself, as assumed in the derivation of
the universal Lindblad QME [10] we employ here and in the main text.
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FIG. S2. The Lindblad QME-computed time dependence of entanglement negativity EN (t) for FI or AFI chain composed of
N = 4 sites hosting S = 1/2 localized spins with periodic boundary conditions and additional [Eq. (4)] easy-axis anisotropy.
The color of individual curves denotes different temperatures (color bar on the right) of bosonic baths in the units of Heisenberg
exchange coupling J between the localized spins.

A. Easy-axis anisotropy

We first consider an anisotropic Heisenberg Hamiltonian for localized quantum spins S = 1/2

Ĥ =
∑

i

J(Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1) + JzŜ

z
i Ŝ

z
i+1, (4)

where Jz ̸= J introduces anisotropy. Two different anisotropy values, Jz = 0.1J and Jz = 0.9J , are considered
for both FI and AFI chain out of equilibrium in Fig. S2. Similarly to the isotropic case considered in Fig. 2 of the
main text, the entanglement negativity of AFI [Fig. S2(b) and S2(d)] remains nonzero up to a temperature T ∼ J .
On the other hand, in the FI case [Figs. S2(a) and S2(c)] larger entanglement production is obtained, resulting in
nonvanishing entanglement negativity even for temperatures T ∼ 0.6J and high anisotropy Jz = 0.9J . Nevertheless,
one of the principal conclusions of the main text—that the LLG equations is applicable to FIs with arbitrary value of
localized spins, as long as they are coupled to Markovian dissipative environment—should hold as anisotropy [4] in
realistic magnetic materials is not as large as used in Fig. S2.

B. Long-ranged dipole-dipole interaction

To include long-ranged dipole-dipole interaction between localized quantum spins, we consider a dipolar XY model
Hamiltonian as given by [7, 8]

Ĥ = J
∑

ij

Cij(Ŝ
x
i Ŝ

x
j + Ŝy

i Ŝ
y
j ), (5)

where Cij = 1/|ri − rj |3 and ri is the position vector of site i. The distance between the nearest-neighbor sites is
set to 1, and we consider open boundary conditions. Figure S3 shows the entanglement build-up dynamics for FI
and AFI chains. Such entanglement eventually does go to zero, however at low enough temperatures (T < 0.2J) the
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FIG. S3. The Lindblad QME-computed time entanglement negativity EN (t) for FI or AFI chain composed ofN = 4 sites hosting
spin S = 1/2, using periodic boundary conditions and including additional long-ranged dipole-dipole interaction [Eq. (5)]. The
color of individual curves denotes different temperatures (color bar on the right) of bosonic baths in the units of Heisenberg
exchange coupling J between the localized spins.

decay is notably slower than for the cases without dipole-dipole interaction studied in the main text. This feature
can substantially delay quantum-to-classical, therefore also suggesting that quantum corrections should be taken into
as also found in very recent experiments on Rydberg atom array realizing a long-range dipolar XY model suggested
by previous studies [7, 8]. The existence of distinct decay scales in Lindbladian dynamics has also been reported
previously for solid-state platforms [11]. We also recall that dipole-dipole interaction has been discussed for a long
time as a mechanism which acts similarly to anisotropy in solid-state magnetic materials in equilibrium, even if real
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FIG. S4. The Lindblad QME-computed time dependence of logarithmic negativity of a spin-1/2 FI or AFI chain composed
of N = 4 sites with periodic boundary conditions and additional DMI of strength D (not considered in the main text), see
Eq. (S4). The color of individual curves denotes different temperatures (color bar on the right) of bosonic baths in the units of
Heisenberg exchange coupling J between the localized spins.
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anisotropy [Sec. III A] is absent [5, 6].

C. Dzyaloshinskii-Moriya interaction

Finally, we add DMI into the Heisenberg model, as described by the following quantum Hamiltonian of localized
spins

Ĥ =
∑

⟨ij⟩

[
J Ŝi · Ŝj +Dij · (Ŝi × Ŝj)

]
, (6)

where Dij = Dêz and D measures the strength of DMI [9]. Two different values for D are considered in Fig. S4,
D = 0.1J and D = J . For D = 0.1J and AFI case, we observe similar dynamics as in the main text or Fig. S1 where
entanglement does not vanish, despite Markovian dynamics, due to small value of spin S = 1/2. On the other hand,
FI case exhibits notably higher entanglement production, leading to nonvanishing entanglement value even in long
time limit and at low enough temperatures. Stronger DMI, D = J , favor the dynamical entanglement built-up, thus
making a transition to LLG classical dynamics impossible for temperatures up to T ∼ J for both FI and AFI. The
origin of this new features brought by DMI can be traced to the fact that such interaction favors noncollinearity [9]
of spin expectation values, which in systems of interacting quantum spins has been shown to favor entanglement
production [23].

IV. USAGE OF SINGLE GLOBAL VS. MULTIPLE LOCAL INDEPENDENT BOSONIC BATHS

The bath due to external or internal bosonic quasiparticles in solids, such as phonons, can be coupled to localized
spins either as a single global bath for all spins; or many independent local baths, one for each localized spin. The
latter choice was employed in the main text, as well as in numerous other studies [10–14]. It is well-justified in the
context of atoms or ions trapped in optical lattices as simulators of quantum magnets[24], where each localized spins is
far away from all others. This choice can still be valid even for solid-state magnetic materials realistically having only
one common bosonic bath, as long as the bath relaxation is fast enough and/or if the correlation length of phonons
is much larger than the lattice spacing of the material [11]. On the other hand, having a nonlocal coupling could
enhance the dynamical generation of entanglement [25].

In this Section, we consider a single global bosonic bath interacting with localized spins within FI or AFI chain.
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FIG. S5. Comparison of the Lindblad QME-computed entanglement negativity in FI chain of N = 4 sites hosting S = 1/2
localized spins which are coupled to: (a) a single global bosonic bath; or (b) many independent local bosonic baths, each
coupled individually to a respective localized spin (as used also in the main text). The color of individual curves denotes
different temperatures (color bar on the right) of bosonic baths in the units of Heisenberg exchange coupling J between the
localized spins.
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FIG. S6. The same information as in Fig. S5, but for AFI chain of N = 4 sites hosting S = 1/2 localized spins.

This requires to change the spins-bath coupling term in the main text to

V̂ =
∑

k

gk(âk + â†k) ·
∑

i

Ŝi. (7)

Figure S5 compares time dependence of entanglement negativity EN (t) for single global vs. many local independent
bosonic baths coupled to localized spins within FI chain. While both types of system-bath coupling lead to unentangled
state in the long-time limit, a considerably higher transient entanglement increase is obtained [Fig. S5(a)] in the case of
a single global bath (note also that this is an example of transient “entanglement barrier” discussed in tensor network
literature [26]). Nevertheless, quantum-to-classical transition in the case of FI is expected in both cases of system-
bath coupling and in wide range of temperatures because entanglement eventually vanishes [Fig. S5]. In the AFI
case [Fig. S6], there is little difference between two types of system-bath coupling—aside from the fact that a single
global bath tends to maintain nonzero entanglement at higher temperatures, thereby enabling quantum-to-classical
transition only when temperature is sufficiently high T ≳ 2J .

V. PROXIMITY OF STEADY-STATE SOLUTION OF LINDBLAD QME TO GIBBS DENSITY MATRIX

Standard derivations [17] of the Lindblad QME consider the bath correlation functions to satisfy the Kubo-Martin-
Schwinger condition, thus ensuring that limt→∞ ρ̂(t) = ρ̂SS becomes steady (i.e., time-independent) ρ̂SS in the long-

time limit and properly transitions toward the canonical Gibbs density matrix ρ̂SS ≡ ρ̂th = e−βĤ/Tr(e−βĤ) describing
thermal equilibrium. However, the universal Lindblad QME [10] we employ in the main text is derived via a different
route, so its steady-state can be slightly different from ρ̂th, as intenesely discussed in recent literature [15, 16].
Nevertheless, this difference is well-bounded and can be further reduced using proper correction techniques [16].

In this Section, we use AFI case example from the main text computed fidelity between our steady state and Gibbs
density matrix. Fidelity, measuring how close are two mixed quantum states to each other, between two arbitrary
density matrices ρ̂1 and ρ̂2 is defined as [27]

F (ρ̂1, ρ̂2) = Tr

[√√
ρ̂1ρ̂2

√
ρ̂1

]2
(8)

where trivially F (ρ̂1, ρ̂2) = 1 for ρ̂1 = ρ̂2. The steady-state ρ̂SS for our example of AFI chain is computed by solving
an algebraic equation

L̂ρ̂SS = 0, L̂ρ̂ = −i[Ĥ, ρ̂] +

NL∑

i

L̂iρ̂L̂
†
i −

1

2
{L̂†

i L̂i, ρ̂}, (9)

where L̂ is the Lindblad superoperator acting on the space of density matrices. Its fidelity [Fig. S7(a)] with the
corresponding Gibbs density matrix ρ̂th reveals that at low temperatures there is a slight mismatch [orange dots
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FIG. S7. (a) Fidelity [Eq. (8)] between steady-state solution ρ̂SS of universal [10] Lindblad QME, computed at time t = 5000ℏ/J
for our example of AFI chain composed of N = 4 sites hosting spins S = 1/2, and Gibbs density matrix ρ̂th describing thermal
equilibrium state of the same system. Two different versions of Lindblad operators are considered: orange dots are obtained
using Eq. (4) in the main text with truncation to the finite number of terms NL = 20; and magenta line is obtained using the
exact formula from Ref. [10]. (b) Entanglement negativity of steady state ρ̂SS computed at t = 5000ℏ/J of time evolution by
the Lindblad QME (blue solid line) vs. reaction-coordinate-based QME (red dashed line).

in Fig. S7(a)] between two mixed quantum states, F (ρ̂SS, ρ̂th) < 1, but this is actually an artifact of finite NL

truncating the series in Eq. (4) of the main text. This artifact can be removed by using the computationally more

expensive expression for the Lindblad operators from Ref. [10], Li =
∑

mn

√
2πJ(En − Em)Xi

mn|m⟩⟨n|, where |m⟩
is the eigenstate of the system Hamiltonian and Xi

mn = ⟨m|X̂i|n⟩ is the matrix element of the coupling operator
between the system and the bosonic bath. Note that such an expression can only be used for a few localized spins,
as it requires exact diagonalization of the system Hamiltonian in order to obtain its full eigenspectrum. The fidelity
of steady-state computed by this second route and Gibbs density matrices is much closer to one [magenta line in
Fig.S7(a)], but not exactly one as discussed extensively in recent literature [15, 16]. This proximity of steady-state
solution of the Lindblad QME and Gibs density matrix provides a straightforward way to check whether quantum-
to-classical transition, ⟨Ŝi⟩(t) 7→ Si(t), can be expected. That is, it is sufficient to compute entanglement negativity
of ρ̂SS to see if such mixed quantum state will become unentangled or not in the long-time limit as sine qua non for
quantum-to-classical transition.

In the case of strong system-bath coupling leading to non-Markovian dynamics, recent analyses [28] points out
that ρ̂SS can be far away from Gibbs density matrix of the system, as the thermal state of joint system + bath is
established. This is also the reason for strongly-coupled cases, studied in the main text using the “reaction coordinate”
method [29] to obtain non-Markovian dynamics, do not lead to quantum-to-classical transition, ⟨Ŝi⟩(t) 7→ Si(t), within
a wide interval of temperatures. Indeed, Fig. S7(b) confirms that entanglement negativity EN [ρ̂SS] remains finite
within a wider range of temperatures when using the “reaction coordinate” method and non-Markovian dynamics it
generates [29] than in the case of Lindbladian dynamics.

VI. FINITE-SIZE DEPENDENCE OF ENTANGLEMENT NEGATIVITY

To confirm that our conclusions are independent of the system size, we compute entanglement negativity of steady-
state solution [Sec. V], EN [ρ̂SS], of the Lindblad QME in the example of AFI chain as a function [Fig. S8] of its
number of sites N = 6–12 hosting localized spins S = 1/2. We extrapolate EN into the thermodynamic limit N → ∞
by plotting EN vs. 1/N and by using a polynomial (of maximum degree 2) fit that extends toward 1/N = 0 point.
This procedure, executed in Fig. S8 for several bosonic bath temperatures, demonstrates that entanglement remains
finite in the limit N → ∞, as long as T ≲ J . The fact that some of the fitting curves in Fig. S8 are even flat, i.e.,
independent of the system size, can be explained by the fact that system+bath is actually an infinite system already
where repeated computation by increasing number of spins N is unnecessary, as observed in similar setting localized
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spins + dissipative-environment of prior studies [30].
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