Main Page: Difference between revisions

From so2015
Jump to navigationJump to search
No edit summary
No edit summary
 
(43 intermediate revisions by 2 users not shown)
Line 5: Line 5:
|-
|-
|style="width:280px;text-align:center;white-space:nowrap;color:#000" |
|style="width:280px;text-align:center;white-space:nowrap;color:#000" |
<div style="font-size:160%;border:none;margin: 0;padding:.1em;color:#000"> [[Image:CPTGA.png|left|100px]] Workshop on Topological Spintronics, October 7-9, 2015, Grenoble, France </div>
<div style="font-size:160%;border:none;margin: 0;padding:.1em;color:#000"> [[Image:CPTGA.png|left|100px]] '''Workshop on Topological Spintronics & Skyrmionics''' </div>
<div style="font-size:160%;border:none;margin: 0;padding:.1em;color:#000">  October 5-7, 2015 </div>
<div style="font-size:160%;border:none;margin: 0;padding:.1em;color:#000">  CNRS Grenoble, France </div>


|}<!-- Portals Follow -->
|}<!-- Portals Follow -->
Line 14: Line 16:
*[[Abstracts|Abstracts]]
*[[Abstracts|Abstracts]]
*[[Posters|Posters]]
*[[Posters|Posters]]
*[[Information|Information]]
*[[Practical Information|Practical Information]]
|}<!-- End Portals -->
|}<!-- End Portals -->
{|style="width:100%;background:none;margin:-.8em 0 -.7em 0"
{|style="width:100%;background:none;margin:-.8em 0 -.7em 0"
|style="font-size:95%;text-align:left;white-space:nowrap;color:#000"| [http://lpsc.in2p3.fr/schien/CPTGA/cptga.html Centre de Physique Théorique de Grenoble-Alpes]  
|style="font-size:95%;text-align:left;white-space:nowrap;color:#000"| [http://lpsc.in2p3.fr/schien/CPTGA/cptga.html Centre de Physique Théorique de Grenoble-Alpes] '''·''' [http://www.spintec.fr/ Spintec] '''·''' [http://www.grenoble.cnrs.fr/ CNRS Grenoble] '''·''' [http://www.cea.fr/le-cea/les-centres-cea/grenoble CEA Grenoble]
|style="font-size:95%;padding:10px 0;margin:0px;text-align:right;white-space:nowrap;color:#000"| [[Help:Contents|Help]] '''·''' [http://en.wikibooks.org/wiki/LaTeX WikiLaTeX] '''·''' [[Special:Categories|Categories]] '''·''' [[Special:Newimages|Media]] '''·''' [[Special:Allpages|A–Z index]]
|style="font-size:95%;padding:10px 0;margin:0px;text-align:right;white-space:nowrap;color:#000"| [[Help:Contents|Help]] '''·''' [http://en.wikibooks.org/wiki/LaTeX WikiLaTeX] '''·''' [[Special:Categories|Categories]] '''·''' [[Special:Newimages|Media]] '''·''' [[Special:Allpages|A–Z index]]
|}
|}
Line 26: Line 28:
! <h2 style="margin:0;background-color:#cef2e0;font-size:120%;font-weight:bold;border:1px solid #a3bfb1;text-align:left;color:#000;padding:0.2em 0.4em;"> Scope and Objectives</h2>
! <h2 style="margin:0;background-color:#cef2e0;font-size:120%;font-weight:bold;border:1px solid #a3bfb1;text-align:left;color:#000;padding:0.2em 0.4em;"> Scope and Objectives</h2>
|-
|-
|style="color:#000"|[[Image:ee_ti.jpg|left|400px]] The first-generation spintronic devices use the exchange interaction between conduction electron spins and local spins in magnetic materials to create spin-polarized currents or to manipulate nanomagnets by spin transfer from spin-polarized currents. One of the burgeoning areas of next-generation spintronics  exploits relativistic effects in nonmagnetic materials know as spin-orbit coupling (SOC)  to generate, detect or exploit spin-polarized currents. In particular, strong surface and bulk SOC effects can be introduced into heterostructures using recently discovered topological insulator (TI) materials. They possess a usual band gap in the bulk while also hosting metallic surfaces whose low-energy quasiparticles behave as massless Dirac fermions with spins locked to their momenta. The SOC can also give rise to strong Dzyaloshinskii-Moriya interaction (DMI) which competes with conventional exchange interaction to create chiral domain walls or skyrmions as swirling spin textures characterized by nanoscale size, topological stability against defects and impurities, and gyro-dynamics analogous to that of a charged particle under magnetic field.  
|style="color:#000"|[[Image:ee_ti.jpg|left|400px]]  
Spintronics explores phenomena intertwining electronic charge and spin. The ability of spintronics to re-energize itself in directions that germinate new subfields has made it one of the most fertile grounds for basic research aimed at future applications. One of the burgeoning areas of next-generation spintronics  exploits relativistic effects in nonmagnetic materials know as spin-orbit coupling (SOC)  to generate, detect or exploit spin-polarized or pure spin currents. Strong surface and bulk SOC can be introduced into spintronic heterostructures using recently discovered [http://dx.doi.org/10.1103/RevModPhys.82.3045 topological insulator] (TI) materials. They possess a usual band gap in the bulk while also hosting metallic surfaces whose low-energy quasiparticles behave as massless Dirac fermions with spins locked to their momenta. The SOC can also give rise to strong Dzyaloshinskii-Moriya interaction (DMI) which competes with conventional exchange interaction to create chiral domain walls or [http://www.nature.com/nnano/journal/v8/n3/full/nnano.2013.29.html skyrmions] as swirling spin textures characterized by nanoscale size, topological stability against defects and impurities, and gyro-dynamics analogous to that of a charged particle under magnetic field. In this workshop, we bring together experimentalists and theorists to review the current status of emerging phenomena where topology of skyrmions in real space or topology of Dirac electrons in ''k''-space, as well as their interplay, can be exploited for novel ultralow power memory and logic device that can potentially solve the heating and scaling issues associated with the conventional CMOS technology.  


In this workshop, we bring together experimentalists and theorists to review the current status of phenomena where topology of skyrmions in real space or topology of Dirac electrons in ''k''-space, as well as their interplay, can be exploited for novel ultralow power memory and logic device that can potentially solve the heating and scaling issues associated with the convetional CMOS technology.
'''Invited Speakers:'''
|-
|style="color:#000"|{{Invited Speakers}}
|-
|}<!-- Start of right-column -->
|}<!-- Start of right-column -->
|class="MainPageBG" style="width:45%;border:1px solid ##FFE680;background-color:#FFF2BF;vertical-align:top;color:#000"|
|class="MainPageBG" style="width:45%;border:1px solid ##FFE680;background-color:#FFF2BF;vertical-align:top;color:#000"|
Line 42: Line 37:
|-
|-
|style="color:#000"|{{News}}
|style="color:#000"|{{News}}
|-
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Organizers</h2>
|-
|style="color:#000"|{{Organizers}}
|-
|-
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Format</h2>
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Format</h2>
|-  
|-  
|style="color:#000"|{{Format}}
|style="color:#000"|{{Format}}
|-
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Organizers</h2>
|-
|style="color:#000"|{{Organizers}}
|-
|-
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Registration and Fees</h2>
! <h2 style="margin:0;background:#FFE680;font-size:120%;font-weight:bold;border:1px solid #a3b0bf;text-align:left;color:#000;padding:0.2em 0.4em;">Registration and Fees</h2>
Line 58: Line 53:
|}
|}


'''SPONSORS:'''  
'''SPONSORS:''' [[Image:Spintec.png|200px|link=http://www.spintec.fr]] [[Image:CNRS.png|link=http://www.alpes.cnrs.fr/]] [[Image:CEA.png|link=http://www.cea.fr/le-cea/les-centres-cea/grenoble]] [[Image:INAC.png|link=http://inac.cea.fr/en/]] [[Image:INPG.png|link=http://www.grenoble-inp.fr/welcome/]] [[Image:UJF.png|link=https://www.ujf-grenoble.fr/?language=en]] [[Image:SPSMS_RVB.jpg|100px|link=http://inac.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_service.php?id_unit=143]] [[Image:nanosciences-logo-trans.png|150px|link=http://www.fondation-nanosciences.fr/RTRA/en/1/homepage.html]] [[Image:logo-lanef.png|150px|link=http://www.grenoble-lanef.fr/]] [[Image:spot.jpg|150px|link=http://www.spot-research.eu]]
__NOTOC__ __NOEDITSECTION__
__NOTOC__ __NOEDITSECTION__
[[Category:Portal]]
== Wiki Getting Started ==
* [http://www.mediawiki.org/wiki/Manual:Configuration_settings Configuration settings list]
* [http://www.mediawiki.org/wiki/Manual:FAQ MediaWiki FAQ]
* [https://lists.wikimedia.org/mailman/listinfo/mediawiki-announce MediaWiki release mailing list]
Consult [http://meta.wikimedia.org/wiki/Help:Contents User's Guide] for information on using the wiki software.

Latest revision as of 17:28, 4 October 2015

CPTGA.png
Workshop on Topological Spintronics & Skyrmionics
October 5-7, 2015
CNRS Grenoble, France
Centre de Physique Théorique de Grenoble-Alpes · Spintec · CNRS Grenoble · CEA Grenoble Help · WikiLaTeX · Categories · Media · A–Z index

Scope and Objectives

Ee ti.jpg

Spintronics explores phenomena intertwining electronic charge and spin. The ability of spintronics to re-energize itself in directions that germinate new subfields has made it one of the most fertile grounds for basic research aimed at future applications. One of the burgeoning areas of next-generation spintronics exploits relativistic effects in nonmagnetic materials know as spin-orbit coupling (SOC) to generate, detect or exploit spin-polarized or pure spin currents. Strong surface and bulk SOC can be introduced into spintronic heterostructures using recently discovered topological insulator (TI) materials. They possess a usual band gap in the bulk while also hosting metallic surfaces whose low-energy quasiparticles behave as massless Dirac fermions with spins locked to their momenta. The SOC can also give rise to strong Dzyaloshinskii-Moriya interaction (DMI) which competes with conventional exchange interaction to create chiral domain walls or skyrmions as swirling spin textures characterized by nanoscale size, topological stability against defects and impurities, and gyro-dynamics analogous to that of a charged particle under magnetic field. In this workshop, we bring together experimentalists and theorists to review the current status of emerging phenomena where topology of skyrmions in real space or topology of Dirac electrons in k-space, as well as their interplay, can be exploited for novel ultralow power memory and logic device that can potentially solve the heating and scaling issues associated with the conventional CMOS technology.

News

Organizers

Format

The workshop will be arranged so that there will be a talks focusing on both the general directions of the field and the specific interests of the program participants. There will also be plenty of time set aside for informal discussions and collaborations since we hope that the workshop will be a venue where new connections can be made and real scientific progress can be achieved.

Registration and Fees

There is NO registration fee for invited and accepted participants. If you want to register for the workshop, please fill out this form. Deadline to register is September 30.

SPONSORS: Spintec.png CNRS.png CEA.png INAC.png INPG.png UJF.png SPSMS RVB.jpg Nanosciences-logo-trans.png Logo-lanef.png Spot.jpg