
Introduction to thermal and transport techniques

Specific Heat in Thermodynamics
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BeZFree energy: 

neglect the volume expansion when
solid is heated, dW ~ 0

• Powerful method in materials characterization 

• Modern time: high level of automatization (PPMS)

• Notice that what we calculate is CV and what we measure is CP. 
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Simplest Example: 1D Monoatomic Lattice
Chain of N identical atoms with M:
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Number of possible q 
values = N (number of 
unit cells in the system)

4
For low q → ω(q) ~ |q|cs
(cs ~ speed of sound)

5

velocity of excitations in the chain (group velocity): 
cg = ∂ω/∂q = cscos(qa/2)sgn(q)
cg=0 at the zone boundary |q| = π/a = 2π/λ (Bragg law)
→ at the zone boundary lattice effects are strongest, 
atoms oscillate out of phase for |q|=π/a

6

What is phonon density 
of states in 1D chain?

Nntunatx nn ∈+= ),()(
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Simple example: Diatomic chain in 1D

nn-1 n+1

u1(na): displacement of atom n,1

n

u2(na): displacement of atom n,2
Spring K Spring G

Coupled equations of motion:
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See textbook, also Aschroft/Mermin “Solid State Physics”

Optical branch. Atoms vibrate
against each other  with their
center of mass fixed

Acoustic  branch. Atoms and their
center of mass move together as in
acoustical vibration

Long wavelength modes can interact  with
electromagnetic radiation (oppositely charged
ions can be excited by E of the light wave

ω~ck (sound waves)

There are N 
values of q, 
N={1…N}: 

N
n

a
q π2

=

For each q, there are 2 solutions,
total of 2N normal modes - phonons



Introduction to thermal and transport techniques

General Case and Phonon Density of States
If there is s ions per unit cell and N cells, there will be 
3Ns degrees of freedom and 3s normal modes for each 
phonon. The lowest 3 branches are acoustic. Remaining 
3(s-1) branches are optical.

Each mode has its own polarization vector:

paralel to    - longitudinal mode

perpendicular to     - transverse mode

Phonon spectrum of real materials (diamond, s=2, 6 normal modes)
include also interaction beyond nearest neighbors, electron – phonon 
coupling, anharmonicity…

qr

qr

qr
mixed excitations are
of course possible

3)2(
))(()(

π
ωωδωρ

μ
μ

kVdq
r

∑∫ −=

Define phonon DOS: number of
states per energy interval:
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van Hove singularity

extremal points of phonon
dispersion curves in BZ

Phonon dispersion relation by 
INS:λ, E match
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Linear oscillator in quantum representation

Consider harmonic oscillator: V=(1/2)kx2 = (1/2)mω2x2  → [ ]2222
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Einstein Model of Lattice Specific Heat
Collection of uncoupled quantum oscillators, each vibrating with the same frequency ωE

Number of oscillators is equal to number of degrees of freedom in the system

Average energy:
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Specific heat in Einstein approximation:
ΘE – Einstein temperature

High temperature limit (T>> ΘE) – exponents are replaced with expansions and we get Dulong – Petit result:
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Debye model of Lattice Specific Heat 1
For thermodynamic properties optical modes are irrelevant (low T). 

We keep acoustic modes and replace them with purely linear mode with the same initial dispersion

Enter discrete nature of the solid: total number of vibrational modes is normalized to 3NA

maximum (cutoff) frequency ωD∃

The number 3NA is large (10-24), therefore we
consider vibrational levels as continuous and
write number of modes in ω, ω+dω:
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Relation between ω and wave vector
q is defined by Debuye approximation
for sound waves:
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Periodic boundary conditions (L is the dimension of representative cube of continuum):
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Volume in reciprocal space for each wavevector is (2πL)3 → number of allowed values of      per unit volume of      space is (L/2π)3 = V/8π3qr qr

Number of allowed     values is large, so q ~ continuous variable  → number of modes with q or less is V/8π3 · volume of sphere with R = q:qr
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Debye model of Lattice Specific Heat 2
Specific heat in Debuye model (x=ħω/kBT, ΘD=ħωD/kB):
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series function and obtain Dulong Petit result
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Physical significance: Debuye temperature is a measure of the stiffnes of the crystal: above ΘD all modes are getting
excited, and below ΘD modes begin to be “frozen out”, marking rapid reduction in CV with decreasing temperature.

Shortcoming of the model: θD = θD(T) 
but at high T all vibrational modes are 
excited so θD=const. (classical result)

Note that it holds for 1 atom in unit cell = 3 phonon branches

3D β
R234)atoms (θ NN =
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Debye model can be applied succesfully to many materials with more than one atom in 
the unit cell. 

T 2(K2)
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Application of Debye Model

Sometimes high temperature
range can also have CP ~ T3

which is unphysical.

At T > θD the model is not valid. 
Optical phonon mode contribution
is  not negligible. Thermal 
expansion may not be negligible

Debye temperatures of solids:
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Specific Heat Dominated by ~ T3 Phonon Contribution
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Each atom has 
a thermal energy 
of 3kBT
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Electronic specific heat
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At T=0 all energy levels with ε<εF (~ TF=εF/kB) are occupied, rest are vacant. At T>0 electrons with ε~kBT of εF have 
sufficient thermal energy to become excited to vacant levels.

At T<TF, fraction of electrons with ε~kBT is of the order of T/TF, contributing to U ~ NA(T/TF)kBT and to C ~ 2RT/TF

Since TF ~ (104 – 105)K → Ce ~ 10-2R which is ~ 1% of lattice contribution (think Dulong Petit).
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For x0 = -∞
~ π2/3

TTknC
BFe γεπ

== 2
2

)(
3 Linear T dependence of electronic specific heat



Introduction to thermal and transport techniques

Free electron model
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Periodic boundary conditions: ki = 2πn/L (i=x,y,z), (n = 0, ±1, ±2….) → there is one allowed
value of k for each cell of (2π/L)3 = 8π3/V → number of allowed wave vectors per unit V of

space is V/8π3
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Where z=N/NA is the conduction electron/atom 
ratio and Vm is the molar volume
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Thermal Relaxation Calorimetry 1
Sample of unknown heat capacity Cx is attached to 
a sample platform with a thermal grease (e.g., 
apiezone N grease). 

The platform consists of a thin sapphire or silicon 
disc, which has high thermal conductivity. A thin-
film heater is evaporated onto the bottom of the 
platform, and the platform temperature Tp is 
determined from a bare temperature sensor attached 
to it. 

Wires thermally link the platform to a copper heat 
sink held at a constant temperature T0. They create 
a thermal link between the bath and platform with a 
thermal conductance K1. They also provide
electrical connections to the temperature sensor and 
heater. 

Power P is applied to the platform via the thin-film 
heater, and a system of differential equations is 
solvedCryogenics 43, 369 (2003)

Heat flow diagram for a standard relaxation calorimeter

Based on a measurement of thermal response 
of a sample calorimeter assembly to a change  
in heating conditins.
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Thermal Relaxation Calorimetry: Single τ

Cryogenics 43, 369 (2003)

Power P is applied to the heater, the platform sample assembly warms to a temperature T0 + ΔT =
T0 +P/K1. If the thermal connection sample - platform is very strong (K2 >> K1, Tx ≈ Tp), we get:
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Thermal conductance of
sample – platform thermal link

Combined addenda HC
(platform, T sensor, heater,
and grease)
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Power P is discontinued and the platform/sample assembly will cool to the bath temperature T0:

1
/

0 /)(;)( KCCTeTtT xa
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p +=Δ+= − ττ

For small ΔT (ΔT/T << 1),  we can ignore T dependence of Ca, Cx and K1 and get Cx via τ

In this method (using single τ) a steady state at constant P and Tp > T0 followed by relaxation
to T0 can be used to determine both K1 and Cx. K1 is determined by measuring the temperature 
change ΔT that results when power P is applied. , Addenda heat capacity Ca can be determined 
from a decay measurement with no sample attached to the platform. 
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Thermal Relaxation Calorimetry: Double τ

This method is applied when K2 >> K1 due to poor sample - platform thermal link.  Therefore 
Tx ≠ Tp. Thermal decay of Tp is described using two exponentials:

21 //
0)( ττ tt

p BeAeTtT −− ++=

Time constant τ2 is usually much shorter than the other. Thus, there are two relaxation times:
1. Shorter relaxation process (τ2) between the sample and platform 
2. Longer gradual process (τ1) due to thermal relaxation between the platform/sample and the 

heat-sink temperature bath. 

By measuring decay curves it is possible to determine τ1, τ2, K2, and Cx given known values for 
Ca and K1. Series of decays cycles (10–100) can be averaged at each temperature to obtain data 
scatter of less than 1%.

Drawbacks of the method:
1. Measurements can be time consuming and are becoming impractical for τ1 ~ 100s
2. It is assumed that sample Cx does not vary much during T0 + ΔT, which may not be satisfied 

near the phase transition. Better results are obtained using single τ method near the phase 
transition since near the phase transition Cx >> Ca and we get:

dtdT
TTKTCx /

)( 0
1

−
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Quantum Design PPMS
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PPMS Heat Capacity Option Hardware
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PPMS Heat Capacity Puck

sample grease
platform 
(3x3 mm)

heater thermometer
wires

vacuum T baseT 
ba

se

After applying heat pulse P(t), thermal response of a system is:
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Ctotal = (sample+platform+grease). Heater power P(t) is varied, and 
T vs time t is measured, minimizing the difference between 
measured temperatures and the model. Here, Tb is the base 
temperature, Kw is the heat coupling through the wires.

Base temperature

Heat coupling through wires, thermal conductance

We choose heat
pulse as: ⎩

⎨
⎧

>
≤≤

=
)(0

)0(
)(

0

00

tt
ttP

tP



Introduction to thermal and transport techniques

Time (sec)
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34.57 Heat pulse applied

Sample, platform T

Thermal coupling sample – platform through grease
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Sample is not  100% thermally attached 
to the platform, so we have to solve two 
coupled differential equations. The T(t) 
then usually looks like the blue curve.

Quantum Design Two τ Method
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Let’s consider first ideal case of 100% coupling: ))(()()(
total bw TtTKtP

dt
tdTC −−=

( )
( )⎩

⎨
⎧

>+−=
≤≤+−=

= −−−

−

)(/1)(
)0(/1)(

)(
0total

/)(/
0off

0total
/

0on
00 ttTCeePtT

ttTCePtT
tT

b
ttt

b
t

ττ

τ

τ
τ

⎩
⎨
⎧

>
≤≤

=
)(0

)0(
)(

0

00

tt
ttP

tP
),()(

)0(

0off0on

on

tTtT
TT b

=
=

For applied heat pulse: and boundary conditions:

We obtain T(t):
wKC /total=τ

Where:

P0, t0 are known. 

All uknowns are obtained by minimizing the difference
between measured temperatures Ti and those obtained
from the model at the same time ti.

( )∑ −
i

ii TtT 2)(

measuredmodel

In the real case of non-ideal coupling, more unknowns are fitted at the same time. The 
process is more extensive numerically. We fit only to the expression for Tp since the 
thermometer in the system is on the platform, no thermometer is attached to the sample 
and we assume T(sample) = T (platform) = T(wires).  

Data Fitting Procedure
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Schottky Anomaly 1
Consider system with discrete energy levels. When temperature is comparable to
level separation Δ, specific heat has a broad peak (Schottky anomaly).

Consider a general case of a system with multiple non-degenerate levels ε1…..εn.. 
Average thermal energy is:
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Now reduce this to a two level system with energies ε0=0 and ε1=Δ
with degeneracies g0 and g1:
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Schottky Anomaly 2
Peak magnitude depends on ratio of g’s. It increases with degeneracy difference. Usually large 
when compared with other contributions, and dominant if occurs at low temperatures:

Cschottky ~ R, other contributions ~ 10-2R 

In everyday life presents a problem since separation of other contributions is non - trivial 

Nuclear Schottky anomaly – when interaction removes degeneracies of nuclear levels – could be
produced by external magnetic field, by hyperfine magnetic field from conduction electrons or by
CEF gradients. 

ΔE In the simplest case of two-level system, 
Cschottky shows as an anomaly with
maximum at ~ 0.4·ΔE. For a more 
complex level system, the Schottky
specific heat is smooth function without
any clear anomalies, but it can be fit with
exponential and ~ T-2 terms
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Given the Hund’s rule, groundstate multiplet J we would expect   Rln(2J + 1) entropy  
associated with the magnetic state.  This is what we find for Gd:  (S = 7/2, L = 0 and J = 7/2) 
therefore S ~ R ln(8).  For other rare earths the spin-orbit coupling gives rise to crystalline 
electric field (CEF) splitting.

Δ = 18 K

e.g.:  Ce (J =5/2) in cubic point symmetry Δ

This can be seen in the Cp as a 
Schottky anomaly.  This is 
clearly shown at the right in 
PrAgSb2. CP is modeled as a 
two level system.

Schottky Anomaly Example
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Heavy fermion superconductor PrOs4Sb12

Phys. Rev. B 73, 104503 (2006)
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Specific Heat in Disordered Solids
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At low temperatures both  electronic and vibrational excitations contribute:

Cp = aT + bT3

Clean separation of a and b is usually done by plotting C/T versus T2.  

As we have seen a is proportional to N(EF) and b is proportional to the Debye temperature.

Paramagnetic Metals at Low Temperatures
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γ (mJmol-1K-2):
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We can introduce an effective mass m* to 
account for this difference, since n(EF) is 
proportional to the carrier mass me.

Electronic specific heat coefficient γ can 
be estimated from the low-temperature 
specific-heat data, where the lattice part 
reduces to ~T3 dependence.

In real metals, the γ value is often different
from that obtained by free electron model.

Effective mass
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γ = kB
2T ·(mkF/3ħ2)

The electronic specific heat can be used as a measure of the electron effective mass, based on 
the free electron result of:

Heavy Fermions are compounds with 
exceptionally high values of γ for 

T < TK, the Kondo temperature.

They are defined as compounds with 
γ > 100 mJ/mol-K2, about 100 times 
the value of g for Cu.  Large γ means 
large electron mass, ergo, heavy 
fermion.

Heavy Fermions
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Specific heat can also be used to locate and characterize phase transitions.  We can suppress 
superconducting Tc with an applied magnetic field, so the Cp feature can be more clearly seen 
via comparison to the non-superconducting (in high applied magnetic field) compound. 

Phase Transitions

Local moment ordering can be seen even more 
clearly (larger entropy).  Shown here are a series 
of transitions in antiferromagnetic DyAgGe.



Introduction to thermal and transport techniques

First and Second Order Phase Transitions
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So if S has discontinuity, Cp will have sharper
(like ∂ρ/∂T at magnetic transition)
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Basic scaling in the critical region (near 
critical temperature that corresponds to 
order – disorder transition):

for T > TC and                        T < TC

α is the critical exponent and                      )
c

c

T
TTt −

=

Magnetic specific heat in Heisenberg 
magnetic systems scales with α = α’ ≈
0.01 (Fe, Ni, EuO…)

Specific Heat and Critical Region

'
,

α−≈ tC Vp
α−≈ tC Vp,

Phys. Rev. Lett. 89, 137002 (2002)

Sometimes nature of transition may change
in magnetic field: Magnetic field induced
first order transition in heavy fermion
superconductor CeCoIn5 detected by
specific heat measurement
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Specific Heat of Spin Waves 1

For T > 0 thermal excitations create spin waves in magnetically ordered materials that propagate due to 
exchange coupling between neighboring spins. Heisenberg hamiltonian:

Consider spin oscillations along linear ferromagnet. Ground state: all spins are aligned along z with excitation:

Exchange field Be will induce a torque on spin      :
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We look for wave solutions (a = lattice parameter): 

And get new sets of equations: ( ) ( ) 0cos14,0cos14
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Specific Heat of Spin Waves 2

Nontrivial solutions if determinant is zero, we get spin wave dispersion relation:

Now in 3D in the small q limit this becomes: 
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Specific heat is then:  

h

222 qJSa
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αf -constant that depends on crystal structure

Works well in long wavelength limit for
metallic ferromagnets too.

Antiferromagnets: 
h

qSaJ
a

2'2
•=αω Solutions doubly degenerate, Two

spin wave modes with ω for each q (see Rev. Mod. Phys. 30, 1 (1950))

We can write: 

Sum over allowed values of q (1st BZ) Number of modes with q,q+dq is n(q)dq = (dN/dq)dq=(V/2π2)q2dq
(Recall Debuye model)

(long wavelength, small frequencies)
(x2 = q2b/kBT
and b=2αfJSa2)

For antiferromagnets:

In insulators: In metals:
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(see Rev. Mod. Phys. 30, 1 (1950))
Hard to resolve lattice vs magnons,
in metallic AFM linear term as well



Introduction to thermal and transport techniques

S = ∫(Cp/T)dT

We can determine how much entropy (change) is 
associated with a given state.  For magnetic systems we 
need to use the magnetic Cp.  In practice, this is done by 
subtracting off the Cp(T) data from a non-magnetic 
analogue (e.g. LuAgGe from TmAgGe).

For these local moment 
systems S ~ R ln D

Entropy Associated with Magnetic Order
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Specific Heat of BCS Superconductors

Attraction of electron pairs by virtual phonon exchange, leading to T – dependent gap 2Δ at the
Fermi level. At T = 0: 2Δ(0)=3.52kBTC

Other complications may involve : strong coupling, gap anisotropy, presence of two distinct 
energy scales (two gaps).

Number of broken pairs as the temperature is increased is proportional to exp[-2Δ(0)/kBT], so 
contribution to electronic specific heat in superconducting state is:

)/( TbT
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s
el Cae

T
C −=
γ

a = 8.5, b = 1.44 for 2.5 < TC/T < 6
a = 26, b = 1.62 for 7 < TC/T < 12

Near TC there is abrupt discontinuity since gap vanishes at TC. No latent heat is released (second
order phase transition):

43.1)(
=

−

C

C
s
el

T
TTCC

γ
γ

Schrieffer, J. R. Theory of Superconductivity, Benjamin, New York 1965
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Spin fluctuations (critically – damped spin waves) in nearly ferromagnetic systems when
exchange interaction is not strong enough to produce ordered state, for T << Tsf:

Some Other Contributions to Specific Heat
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αγ (Phys. Rev. Lett 17, 750 (1966))

BCS superconductors with 
anisotropic gap have reduced 
value of specific heat anomaly at
superconducting transition (see 
Ann. Phys. 40, 268 (1966)):
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Phys. Rev. B 75, 064517 (2007)
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Superconducting and Magnetic Entropy
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Phys. Rev. B 77, 165129 (2008)

Nd1-xCexCoIn5

Heat capacity and magnetic entropy of electronic
system that evolves from local moment magnetism
to heavy fermion supeconductivity via disordered
heavy fermion magnetic states
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Thermal Expansion in Thermodynamics

B
TVCC m

Vp

2β
=−

β (volumetric expansion)
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At T ≠ 0 CP is always greater than CV (heating with P = const for dT cost energy to do
work expanding against external pressure; if V = const, there is no work done): 
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Thermal Expansion of Anharmonic Crystals

Real materials have non-parabolic U(r) so there is thermal expansion and CV increases above
Dulong – Petit at T>θD
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Grüneisen approximation: Δω/ω ~ γΔV/V
Grüneisen parameter is a measure of anharmonicity

Cu
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interatomic spacing does not increase with T. 
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Thermal Expansion by Capacitive Dilatometry 1
Rev. Sci. Instr. 77, 123907 (2006)

In a capacitive dilatometer the dilation L of a sample of length L manifests as a change in the 
gap D between a pair of capacitor plates. For an ideal parallel-plate capacitive dilatometer in 
vacuum the relationship between the measured capacitance C and D is

D
AC 0ε

= ε0 = 8.854·1019 pF/m
A = area of capacitor plates

Thermal expansivity

Thermal expansion
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Ld
dT
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LTL
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Thermal Expansion by Capacitive Dilatometry 2
Rev. Sci. Instr. 77, 123907 (2006)

Commercial capacitance bridges have ~ 10-7 pF resolution at 1kHz → 3·10-3Å for dilatometer 
operation at 18 pF.

Part of calibration processs is to find an appropriate functional relationship between the 
capacitor gap D and the measured capacitance C. This is done using a sample platform e long 
enough to adjust the capacitor gap from its largest zero-force to its smallest shorted value.

A protractor (with an appropriately sized hole in its center)
is attached to the main flange o. The dilatometer is inverted
and the sample platform e is then rotated and tightened in 
small steps; after each step the angular position of the sample
platform  (read off the protractor) and the capacitance C 
are measured. The capacitor gap is:
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Thermal Expansion by Capacitive Dilatometry 3
Rev. Sci. Instr. 77, 123907 (2006)

Data acquisition process in temperature or magnetic field consists of two steps: 

1. Measurement of reference sample (Cu)
2. Measurement of unknown sample.
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Thermal Expansion by Diffraction
Based on the measurement of unit cell by X-ray, neutron methods (will be discussed later in the course).

High resolution data are required. Resolution comparable or smaller
than for capacitive dilatometry. Advantage: bond length, angles, atomic 
position information is available

Phys. Rev. B 72, 045103 (2005) 
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Thermal Expansion in CeCoIn5

Phys. Rev. Lett. 100, 136401 (2008)
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