Specific Heat in Thermodynamics

Heat capacity: Specific Heat: ‘
(gj _C_dqg \\ V- dTV

m d T Per mass or usually “per mole”: C, and C,,

dO = dU +dW = dU+P/V:>C WY o-tis=c, T(aS) Csz(a—Sj
dT ), f oT ), oT ),

neglect the volume expansion when reversible system in equilibrium with its environment

solid is heated, dW ~ 0
, sum over all

n
_ ki possible states (i) S(Ti ) — J‘% dT

ke ith energies E,

Free energy: F=-k,TInZ Z-= Z

2 2. &
dF = d(U ~TS) = —SdT — PdV = C, T( 5‘9) _ _T[a fj
oT y oT Note lower boundary

V' On integration

dH = TdS = d0 = C, (de (@Hj
dT or ),

- Powerful method in materials characterization

* Modern time: high level of automatization (PPMS)

« Notice that what we calculate is C,, and what we measure is C,. T Oor isobaric conditions
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Simplest Example: 1D Monoatomic Lattice

Chain of N identical atoms with M: x, () =na+u, (t),ne N

1 MI/[ K( n+1 n)_K(un_un—l)’nEN {
V,o(q) =0
i(q;na—w;t) Di rd DOS
Search for harmonic solution: U, (f) = A ' cusp,max mm e e
Periodic boundary condition u,(t)=u, (1) — exp(iqNa)=1 /ﬁ)/ M
) ) !
g, = 7g ,] c N -m/a q o,
Na ]mcar
2 _ iq;
2 Mw;4;,=KA,(e V,o(q) = const.
6
22K K| : . . :
3 o= ﬁ(l —cosq;a) > w; =2 v ) velocity of excitations in the chain (group velocity):
¢, = 0w/0q = ccos(qa/2)sgn(q)
T . c,=0 at the zone boundary |q| = n/a = 2n/A (Bragg law)
E 1 values: =t—(j=— g ;
Xtremal values: 4, a ( ) — at the zone boundary lattice effects are strongest,
T atoms oscillate out of phase for |q|=n/a
First Brilluen zone: ¢, =| ——......
a

Number of possible q For low q — w(g) ~ |q|c,
values = N (number of (¢, ~ speed of sound)
unit cells in the system)

What is phonon density
of states in 1D chain?
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Simple example: Diatomic chain in 1D

n-1 n n+1
/ N ¥ ¥ N

/ T "| <— u,(na): displacement of atom n, 1
Spring K Spring G \

Coupled equations of motion: See textbook, also Aschroft/Mermin “Solid State Physics”

<+— u,(na): displacement of atom n,2

M u1 (na) = K[ul(na) u, (na)] G[ u,(na)—u,((n— 1)a)] K n G 1 8 8
||~ £ JK? +G* +2KGcosga
.. eﬁ' eff
M, u,(na)= —K[uz(na) —u, (na)]— G[uZ(na) —u,((n— l)a)
: . (k)
Optical branch. Atoms vibrate 5 !
against each other with their !
center of mass fixed ym B
+ : K
There are N _ 27 n Long wavelength modes can interact with M M
values of ¢ q= _ﬁ electromagnetic radiation (oppositely charged | 56
’ a ions can be excited by E of the light wave LE T
N={1...N}: l[ s
For each ¢, there are 2 solutions, Acoustic branch. Atoms and thei : f ;
total of 2N normal modes - phonons center of mass move together as i;\i\ :
acoustical vibration | % '
w~ck (sound waves) I 0 £
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General Case and Phonon Density of States

-1
|

Frequency { cm

w (k)

If there 1s s 10ns per unit cell and N cells, there will be
3Ns degrees of freedom and 3s normal modes for each q e B e
phonon. The lowest 3 branches are acoustic. Remaining
3(s-1) branches are optical.

Each mode has its own polarization vector:

paralel to g - longitudinal mode mixed excitations are -
perpendicular to ¢ - transverse mode ‘ of course possible
8l ) ) Phonon spectrum of real materials (diamond, s=2, 6 normal modes)

-
]

_‘
L1 =

include also interaction beyond nearest neighbors, electron — phonon
coupling, anharmonicity...

«—
1250

¢ Define phonon DOS: number of

extremal points of phonon .
states per energy interval:

dispersion curves in BZ

B
g

750

\;jc

(@)= Z [8(0-w, (@)%

DOS
=

(2)

500

a))d @ —» total number of modes in
infinitesimal range o+do
per total V

0 500 1000 1500

250 {
!
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—
e ‘-‘_\
\}.‘ .

] If ®, (¢,) = o then expand: group velocity v, (q,)

/ 12,00} 1,2.00
/4

|
N R S B D A B B DY S B S0 AN RN S AN AR a)(_'):a)(_')_i_(_'__'

0 02 04 0.6 08 12 10 08 06 04 02 0 0.2 0.4 H 4q u 9o 4= 4]
4 0.5 10

Reduced wavevector coordinates (1)

qu
'[ ) 4 2

van Hove singularity

Phonon dispersion relation by
INS:A, E match

dS, dw Vdow
2T p(e =) |
an)y(q) ( ) H w=0,(q9)
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Longitudinal and transverse modes

Frequency, o

dow
Group Velocity: Vo =——
dK
O66
N\
o
RS
®
\> -
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®\°6 \&\O -
NS \
=¥ £
v
&‘66
(\6
2\
n/a

Wave vector, K
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Linear oscillator in quantum representation

2
_p 1 . [ 2 z]
Consider harmonic oscillator: V=(1/2)kx? = (1/2)mw?x? — H = m +5ma) X = ' p” +(max)

1

\2hme

So that [a,a"]=1 (easy to show since [x,p;]=ind;) — aa’=I+afa

1

\2hme

Introduce raising and lowering operators: g T=

(— z'p+ma)x),a = (ip+ma)x)

dly,)=clv,. )= (v, |ady, )= (v, |eie v, ) =lel = el = (v, |aa +1)p, ) =n+1> ¢, =Jn+1
aT|l//n>: vi’l+1|l//n+1>
awV=d v, Y=, |aaly,y=n=(p, |dd v, )=ld[ =d, = d, =n
a|l//n>=\/;|%//n71>
Now we write Hamiltonian in terms of raising and lowering operators: H
; ; 2 2.2
aTa N — mg)n);)cf)lif —— B 2mla)h [p2 Hmox)”+imo(p - px)]z a)lh pm " me - n;f:ih]

‘H = ha)(c;a + lj = ha)(aaT— lj
2 2 energy of linear harmonic oscillator

of frequency o is quantized in ho
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Einstein Model of Lattice Specific Heat

Collection of uncoupled quantum oscillators, each vibrating with the same frequency o,
Number of oscillators is equal to number of degrees of freedom in the system

Average energy:

<n> = average quantum number for oscillator = [exp(BBm{l]'l (Bose-Einstein distribution)

- L —pnho N - pnho
Zn:(n+2jhwe hao znnha)e \ how 0 S puhe ho 0 1 ho ho 1
<E(T)>= © = + 0 = - 11'1 z e BN - 1 - pho = + -pho = <I’Z>+— ha}
z o~ o 2 o~ frho 2 0p K 2 0B/ 1-e 2 l-e 2
Zx” =(1-x)

n

7

Specific heat in Einstein approximation:

C, :(%}V :(—3N (E >j (—3N ((n >+—)ha)E

O — Einstein temperature

— 3NAkB @/ @ehwg/kgr
- (eha)E/kBT _1)2

High temperature limit (T>> ®;) — exponents are replaced with expansions and we get Dulong — Petit result:

2
C, =3R|1-[ 22| + . |~3r
207

Low temperature limit (T<<®) — predicts that specific heat should decrease to zero exponentially:

C, =3R(®,/T)e®'D

I Real materials: atoms are coupled, vibrate collectively at many different I
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Debye model of Lattice Specific Heat 1

For thermodynamic properties optical modes are irrelevant (low T).
We keep acoustic modes and replace them with purely linear mode with the same initial dispersion

Enter discrete nature of the solid: total number of vibrational modes is normalized to 3N,

=

Jmaximum (cutoff) frequency oy

Relation between w and wave vector
q is defined by Debuye approximation
for sound waves:

The number 3N, is large (102%), therefore we
consider vibrational levels as continuous and
write number of modes in o, o+do:

a]:p(wyw :3NA\

w=cd =

2

©

A

027 4T

L L

Volume in reciprocal space for each wavevector is (2nL)? — number of allowed values of q per unit volume of q space is (L/2m)* = V/8n?

e[i(qu+yqy+zqz)] _ e[i(x+L)qx+(y+L)qy+(Z+L)qz]

- qX’Qy’QZ

Number of allowed ¢ values is large, so g ~ continuous variable — number of modes with q or less is V/87* - volume of sphere with R = g:

87° 3 T do c’
Real‘soli‘d, elastic waves for each q have ,0( ) _ 127V > Total number of oscillators |12 7 g/ wldo - 9 N3 oldo
longitudinal component and 2 transverse: <c> in interval ®, ®+dw: <c> O
Cutoff frequency for vibrational spectrun m——) AN )
= (C 4
Introduction to thermal and transport techniques P < >( 4V

\/\
Periodic boundary conditions (L is the dimension of representative cube of continuum):
T

~sound velocity

9o




Debye model of Lattice Specific Heat 2

Specific heat in Debuye model (x=Aw/k,T, O,=hw /kp): 47415
- a i

.

w*dw

oU o 1 “° | he el kst 9N\
CV (aT )V - A7 _([p(a))(<n J.kB( j(eha)/kgT _1)2 ng

High temperatures: 7>>@, we replace exponential with

- . . . Low temperatures 7<<@,,, upper limit of integral is co and we get
series function and obtaig Dulong Petit result P p» UPP & &

N234R

3
C, = £ﬂ4R(®L] =BT =234 R0,T°| |9, (VN atoms) =3

D

Note that it holds for 1 atom in unit cell = 3 phonon branches
Usually good for T < (©,/10 - ©,/50). For T > Debuye region:

plo)y=aw’ +a,0' +a,w’+..= C, = T+ B,T° + BT +..

Physical significance: Debuye temperature is a measure of the stiffnes of the crystal: above ©, all modes are getting
excited, and below O, modes begin to be “frozen out”, marking rapid reduction in C,, with decreasing temperature.

Shortcoming of the model: 0, = 0,(T)
but at high T all vibrational modes are
excited so O =const. (classical result)
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Application of Debye Model

Debye model can be applied succesfully to many materials with more than one atom in

the unit cell.

Sometimes high temperature
range can also have C, ~ T3
which 1s unphysical.

At T > 0, the model 1s not valid.
Optical phonon mode contribution
is not negligible. Thermal
expansion may not be negligible

Debye temperatures of solids:

Aluminum 426K Platinum | 240K
Cadmium 186K Silicon 640K
Chromium 610K Silver 225K
Copper 344.5K Tin (white) | 195K
Gold 165K Titanium | 420K
o-Iron 464K Tungsten | 405K
Lead 96K Zinc 300K
o-Manganese | 476K Diamond | 2200K
Nickel 440K Ice 192K

0.4

S
2

Co/T (J/mol.K?)
S S
— N

0.0

0

7
100 200 300 400 500
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Specific Heat Dominated by ~ T° Phonon Contribution

10 "¢ S
. | [
10°} ]
o~ 5 Diamond
~ 10 E
I= Each atom has
S
O ot a thermal energy _:
g of 3kgT
T
A= , CocT?
é 10 Classical 3
2 Regime
10 %F 3
- O, =1860 K
1011 A A ......|2 A A ......|3 i ; 4
10 10 10 10

Temperature, T (K)
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Electronic specific heat

1
Gas obeying Fermi-Dirac statistics. Fermi Dirac distribution function: J (&) = RETRY

+1

At T=0 all energy levels with e<e; (~ Tr=¢/ky) are occupied, rest are vacant. At T>0 electrons with e~k,T of € have
sufficient thermal energy to become excited to vacant levels.

At T<T,, fraction of electrons with e~k,T is of the order of T/Ty, contributing to U ~ N, (T/T)k,T and to C ~ 2RT/T
Since Ty ~ (104 — 10°)K - C_ ~ 10-2R which is ~ 1% of lattice contribution (think Dulong Petit).

Internal energy of a system of N electrons is: U = j g (e)n(e)de where N = j f(e)n(e)de

Total density of states for both spin directions is n(¢), so that‘ 9 18 the number of energy levels in 1nterva1 g, etde

At very low temperatures T<<T}, we can write 0= gF = j gF n(s)dg

l Nonzero only in the vicinity of L.

For X, = -00
~ 112/3

We introduce x = (e-g;)/k;T and x, = -T/T

C = %n(gF)ij =

L Linear T dependence of electronic specific heat
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Free electron model

Simplest but rather useful approximation. Electrons move as free particles with dispersion:
2
LNV, [k2 vl 4]
2m
Periodic boundary conditions: k, = 21rn/L (1=x,y,z), (n=0, 1, £2....) > there is one allowed
value of k for each cell of (211/L)? = 8113/V — number of allowed wave vectors per unit V of
k space is V/813

The lowest energy state is obtained by placing pairs of electrons in states with smallest & |
occupying all states within sphere of radius kg:

3 2 2 D) 2/3
47k, e2-N=k, 372N :>5F:h 37°N
3 )8x° V 2m\ ¥V

(

Fermi energy and radius of Fermi sphere depend only on electron density N/V

Vo (2me)? dN _V (2m 12
. . . N — b n 8 — g
Number of states N with € < g 1s: - ( 2 j ,density of states: (€)= Je 27[2 72

ratio and V_ is the molar volume

. m | 3zN V Where z=N/N, is the conduction electron/at
Dens1ty ofstates at SF: n(gF): hz( A m} cre z AIS € conduction cliectron/atom
/Y,

T

2

2/3
Ce = %n(gF)ij =y, T =y, = Z_Z(ZNA)IB(;ZSV’” j ké'—l C./T in free electron model I
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Thermal Relaxation Calorimetry 1

Sample of unknown heat capacity C_ is attached to
a sample platform with a thermal grease (e.g.,
apiezone N grease).

Based on a measurement of thermal response
of a sample calorimeter assembly to a change
in heating conditins.

/ The platform consists of a thin sapphire or silicon
SEI'T'I[J|E Cy, Ty disc, which 'has high thermal conductivity. A thin-
film heater is evaporated onto the bottom of the
platform, and the platform temperature Tp is

Ko determined from a bare temperature sensor attached
to it.
/
Platform |C a .Tp Wires thermally link the platform to a copper heat

sink held at a constant temperature T,. They create
a thermal link between the bath and platform with a

Kt —— thermal conductance K,. They also provide
electrical connections to the temperature sensor and

AV A A A A A e heater.
To Heat Sink

Power P is applied to the platform via the thin-film
Heat flow diagram for a standard relaxation calorimeter ~ De€ater, and a system of differential equations is

Cryogenics 43, 369 (2003) solved
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Thermal Relaxation Calorimetry: Single t

Combined addenda HC < dT b
(platform, T sensor, heater, P = @ ” +@ (Tp — Tx) + Kl (Tp — T;))

and grease)
0= Cx dTl x @W Thermal conductance of
4

d sample — platform thermal link

Power P is applied to the heater, the platform sample assembly warms to a temperature T, + AT =
T, +P/K,. If the thermal connection sample - platform is very strong (K, >> K, T, =T)), we get:

dT,
dt

Power P is discontinued and the platform/sample assembly will cool to the bath temperature T,:

T (6)=T,+ATe "7 =(C, +Cx)/K1L\

For small AT (AT/T <<1), we can ignore T dependence of C,, C_ and K, and get C, viat

P:(Ca+cx) +K1(Tp_];))

In this method (using single 7) a steady state at constant P and T > T, followed by relaxation
to T, can be used to determine both K, and C,. K, 1is determined by measuring the temperature
change AT that results when power P is applied. , Addenda heat capacity C, can be determined
from a decay measurement with no sample attached to the platform. :

CI'yO genics 43, 369 (2003) Introduction to thermal and transport techniques



Thermal Relaxation Calorimetry: Double t

This method is applied when@ﬁ1 due to poor sample - platform thermal link. Therefore
T, # T,. Thermal decay of T is described using two exponentials:

T (6)=T,+ A" +Be '™ ‘

Time constant 1, is usually much shorter than the other. Thus, there are two relaxation times:

1. Shorter relaxation process (1,) between the sample and platform

2. Longer gradual process (t,) due to thermal relaxation between the platform/sample and the
heat-sink temperature bath.

By measuring decay curves it 1s possible to determine 1, 7,, K,, and C_ given known values for
C, and K. Series of decays cycles (10-100) can be averaged at each temperature to obtain data
scatter of less than 1%.

Drawbacks of the method:
1. Measurements can be time consuming and are becoming impractical for T, ~ 100s
2. Itis assumed that sample C, does not vary much during T, + AT, which may not be satisfied
near the phase transition. Better results are obtained using single t method near the phase
transition since near the phase transition C, >> C, and we get: T_T
0

VAT dt

C.T)=-K
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Quantum Design PPMS

4 o |

> PPMS Sampie Chamber

COuter wall of sampie chamber

Contact leads
sSampie

Sample puck

“Weyed” bottom connector

» Specialized pucks, 2.4 cm in diameter,
are used for different measuramen it

Introduction to thermal and transport techniques appiications.



PPMS Heat Capacity Option Hardware

PPMS Probe
W Magnet
l" Thermo meter

Sealed sample space

- L i) i
Cooling annulus

] Ll

L L
Puck

- Heaters and the rmometers | 2)
Dual impedance sy stem

> Mullipie thermometers accuratedy mon o

while heaters quickly control the system

temperatura.
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PPMS Heat Capacity Puck

sample grease

/ platform
(3x3 mm)

thermometer

After applying heat pulse P(t), thermal response of a system is:

dT (t ) —> Base temperature
Ctotal 7 = P(l;);@T(t)

Heat coupling through wires, thermal conductance

Ciorg = (sampletplatform+grease). Heater power P(t) 1s varied, and
T vs time ¢ 1s measured, minimizing the difference between
measured temperatures and the model. Here, 7, is the base
temperature, K, 1s the heat coupling through the wires.

We choose heat P(f) = R, (0<t<¢))
pulse as: 0 (t>1,)
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Quantum Design Two © Method

Temperature (K)

3457 Licatpuiseapplied | — Sample 1s not 100% thermally attached
"
sz Lo L ALl | to the platform, so we have to solve two
i i i | i : | i i coupled differential equations. The T(¢)
34.29 t -~ fi---1-——1—--P~<{ 7| then usually looks like the blue curve.
| | | | | | | |
| | | | | | | | |
3400 T A
| | | | | | | | |
B8 T T T T
| | | | | | | | |
BT T
Wy AN I S N S N S S N
0O 2 4 6 8 10 12 14 16 18 20
Time (sec) Sample, platform T
dT (t)
Coniom ——= PO-K,([,0~T, 1 K (1,(h-T,0))
C de (l‘) __x (T (t) T (l‘)) Thermal coupling sample — platform through grease
sample - g\l 4y
dt
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Data Fitting Procedure

dT(t)
Let’s consider first ideal case of 100% coupling: Ctot317 =P(t)-K, (T()-T,)
. B (0<1st,) L=,
For applied heat pulse: P(¢) = and boundary conditions:
0 (t>t,) 15, (%) = Ty (%),
I ()= R)r(l —e'" )/ Cow 1, (0<t<t))  Where:

We obtain 7(7): T(?) Z{

T (H)=Ptll—e™7 ™" /C_+T, (t>t) 7=Cyu/ K,
off 0 b 0

total

P,, t, are known.

All uknowns are obtained by minimizing the difference Z(T( £)— T.)2
between measured temperatures T, and those obtained < / 7N

from the model at the same time ¢..
model  measured

In the real case of non-ideal coupling, more unknowns are fitted at the same time. The
process is more extensive numerically. We fit only to the expression for 7, since the
thermometer in the system is on the platform, no thermometer is attached to the sample
and we assume T(sample) = T (platform) = T(wires).
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Schottky Anomaly 1

Consider system with discrete energy levels. When temperature is comparable to
level separation A, specific heat has a broad peak (Schottky anomaly).

Consider a general case of a system with multiple non-degenerate levels ¢, .....¢,..
Average thermal energy is:

2\
n " —A, < —A,
A o (8i/ksT) Azl_ ex i A, ex :
Zo © dU R Zo: Ak, Zo: kT
U=N,- . :>Csch0ttky=—=—2 - &
Ze_(Ai/kBT) dT T iexp _Ai Zn:eX _A,'
i=0 i=0 kBT i=0 p kBT

T, =A/kg
Level
separation

Now reduce this to a two level system with energies ;=0 and £,=A

with degeneracies g, and g;: S

N,gihe” 0 dUu g (/A)Y LSO in K
U= —(AlkyT) = Cschottky - d—T =R i ;k )
g +8€ g (k) [1+(g,/g)e® P
Low temperature limit (T<<T,): High temperature limit (T>>T,): Entropy:
*C
2 2 . schottky
C =R &(ij e_(TA/T) C =R 8081 (TA j Sschottky - I T dT
schottky — schottky B T )
g\ T (& +8&)

Introduction to thermal and transport techniques Sschottky — R lrl(1 + (g 1 / g 0 ))



Schottky Anomaly 2

Peak magnitude depends on ratio of g’s. It increases with degeneracy difference. Usually large
when compared with other contributions, and dominant if occurs at low temperatures:

C ~ R, other contributions ~ 10-2R

schottky

In everyday life presents a problem since separation of other contributions is non - trivial

0.4 | f hY —
| AFE In the simplest case of two-level system,

P \ ! | Cichotky ShOWs as an anomaly with
S - | maximum at ~ 0.4-AE. For a more

o ‘ \ ' complex level system, the Schottky
] S~ . specific heat is smooth function without

T any clear anomalies, but it can be fit with
exponential and ~ T-? terms

Nuclear Schottky anomaly — when interaction removes degeneracies of nuclear levels — could be
produced by external magnetic field, by hyperfine magnetic field from conduction electrons or by
CEF gradientS. Introduction to thermal and transport techniques



Schottky Anomaly Example

Given the Hund’s rule, groundstate multiplet J we would expect RIn(2J + 1) entropy
associated with the magnetic state. This is what we find for Gd: (S=7/2, L=0and J=7/2)
therefore S ~ R In(8). For other rare earths the spin-orbit coupling gives rise to crystalline

electric field (CEF) splitting.

e.g.. Ce (J =5/2) in cubic point symmetry

I
.

[—— ‘ ' _jmnm
10+ '—“55;5,.. ’_---ﬁ;::u&

: : A=18K - - g
This can be seen in the C as a . . o Rin(3)
Schottky anomaly. This is o | 990 PrAgsh, oo°

. . — NG 00 o
clearly shown at the right in S 6 S
: E +, AC, ~RIn(2)
PrAgSb,. C,is modeledasa = | b
o 4+
two level system. e,
2+ /. T

. A\ *go exp (4/T) - j/ LaAgSh, ___.-"
C Sch — R T — [I ; AT} 22 0 _._-_ﬁf-_-_-.-.-_l;l_l_!-!'.*- IR S

temperature (K)
K.D. Myers et al. [ Journal of Magnetism and Magnetic Materials 205 (1999) 27-52
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Heavy fermion superconductor PrOs,Sb,,

CIT(J molm K%

| sample:

SAITIphe

o Aok r::}%f

= Vollmer et al, |
+ Measson af al,

\ -

L
=

(2] .
rd .

10

T(K)

Introduction to thermal and transport techniques

Phys. Rev. B 73, 104503 (2006)



Specific Heat in Disordered Solids

Think of Schottky for two single level system with energy configurations +e:

2
Cschottky = kB (%} SE€C h2 (%)

Disordered solids ~ collection of two level systems characterized by =«:

Low T upper limit oo
2 - g
j sec h{kgTjdg ? 2k§E)Tjﬁse%hxd)c/'
B 0

Assume P(g)=const=P and x=¢/k,T

m2/12

C, =2k, | P(g)(

&
k, T

| Specific heat of disordered two level system has linear T contribution to heat capacity:
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Paramagnetic Metals at Low Temperatures

At low temperatures both electronic and vibrational excitations contribute:

C,=aT + bT3

Clean separation of a and b is usually done by plotting C/T versus T2.

As we have seen a 1s proportional to N(Eg) and b 1s proportional to the Debye temperature.

cl4yfp— ——————— T (El')|'|'|'|'|'|'|:,r

(b) . *J0.04
. . 3L LaAngg—.;,-’..' |
0.03 )
40.03 " I
3 . 3
NE ! - = 2L & -
x 3 ."l’..
= 40.02 v &
Q —»Lasz
0.01 7
40.01
0.00 T - Dy
0 10 20 30 40 15 124 16
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Eftective mass

60

50

40 Electronic specific heat coefficient y can

1 be estimated from the low-temperature
specific-heat data, where the lattice part

reduces to ~T3 dependence.

2
C/T (mJ/mol.K")

@j—v
%
Q
Q
@
>
@
A
2
A
A
A
Q
Q
|81
Q
o)

5600000000006 0 000000 00 0 0 In real metals, the y value 1s often different
| from that obtained by free electron model.

000000000000

0 20 40 60 80 100

C /T T2 T (K) We can introduce an effective mass m* to
p/ =Y +B account for this difference, since n(Ey) 1s
y (mJmol-'K=2): proportional to the carrier mass m..
Li Na K Fe Mn Cu Zn Ag Au Al Ga m* v
_ dexp
Freee (0.8 1.1 1.7 0.6 0.6 0.5 0.8 0.6 0.6 0.9 1.0 m _Y
€ f.e.

exp. (1.6 1.4 2.1 46152 0.7 0.6 0.6 0.7 1.3 0.6
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Heavy Fermions

The electronic specific heat can be used as a measure of the electron effective mass, based on
the free electron result of:

v = k2T -(mk,/302)

?ve—r
X SO0 T T T
L 450 H
ol Lg YbNi_B,C
Heavy Fermions are compounds with [ g 4P 4
exceptionally high values of y for ol g a0 Y
| E
T <Tg, the Kondo temperature. & | & 0} %
S gl © o .
= |
2
O

They are defined as compounds with
y > 100 mJ/mol-K2, about 100 times =
the value of g for Cu. Large y means

large electron mass, ergo, heavy ol L e
. 0 5 10 15 20 25 30
fermion.

T (K)
M. A. Avila.* S. L. Bud’ko, and P. C. Canfield PHYSICAL REVIEW B 66, 132504 (2002)
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Phase Transitions

G, (J/molK)

Specific heat can also be used to locate and characterize phase transitions. We can suppress
superconducting T, with an applied magnetic field, so the C feature can be more clearly seen
via comparison to the non-superconducting (in high applied magnetic field) compound.

10+ - i
\ Mgp_uBz P a
: e

Local moment ordering can be seen even more ool . Lot |

] ‘ ‘I.l-l' e, et
clearly (larger entropy). Shown here are a series R ]
of transitions in antiferromagnetic DyAgGe. 08¢ .,,..-"" o .
- et i
| e Jl---'h--

- ' . . I , J I . . : . i 0.7 ;.r::f;ﬁ--ﬁ' 4
3“? DyAgGe 12 osf |
25 : £ | | | |

s = 10t |
20 © MQHBE

L nak
15} 2 fmﬂ

I 08 . ant? _
T Jl.l-ii-ur.'i'.‘..-. r.\"-ll]\'.ﬁ.ﬂ'.lﬂ"hw ]

1 0.7s" A 1
5 y pt
| (©) L _ e
0 " . i e i F ! - i . 0.6% | | | | T
0 5 10 15 <0 s a0 97 3 3 1 # 2
T(K) T(K)
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First and Second Order Phase Transitions

2.5 —
8 I I I B
|
el uo, ? |~ _
= fi < st
£ := S
= ! £ I
S 47 ' 1T =
= ! =~ LOF
UQ , | i‘i | ®) L
¢ 0.5
0 m&ooooool'OO”’ I%* 0.0 |
2000 250 300 350 40( 0 4 g 12 16 20
T (K) T(K)
Not ideal § function but sharp anomaly. T can be determined e.g. by idealization of the
Clear identification of T,.. specific heat jump under the constraint of entropy
. C -7 oS conservation. Circles are real experimental points,
Think that €, = or ), red line is the idealization drawn in the way that
So if S has discontinuity, Cp will have sharper the yellow and green areas are equal to satisfy the
(like 0p/OT at magnetic transition) entropy conservation.
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Specific Heat and Critical Region

T (K)

00 02 04 06 08 10 12

_ (J/Imol K)

O 03

0.0 1
00 04 08
T (K)

FIG. 1. Specific heat vs temperature of CeColns. Closed sym-
bols—decay method, for indicated fields in Tesla: open sym-
bols—heat pulse method: { & 462 T (V)4 T2T. (< ) 477 T,
(<A)4B8T. (o) 487 T, () 4925 T Inset: calculated entropy §;
left to right: 4925, 48,475, 47, 46,and 4.5 T. Arrows indicate
steplike features in § at T, for H = 4.7 T.

Phys. Rev. Lett. 89, 137002 (2002)

- CP’V

Basic scaling in the critical region (near
critical temperature that corresponds to
order — disorder transition):

> ‘t‘_afor T>Tcand C, ) ~ ‘t‘_a' T<Te¢

T-T,

a 1s the critical exponent and ¢ =

)

Cc

Magnetic specific heat in Heisenberg
magnetic systems scales with o = o’ =
0.01 (Fe, Ni, EuO...)

Sometimes nature of transition may change
in magnetic field: Magnetic field induced
first order transition in heavy fermion
superconductor CeColn; detected by
specific heat measurement
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Specific Heat of Spin Waves 1

For T > 0 thermal excitations create spin waves in magnetically ordered materials that propagate due to
exchange coupling between neighboring spins. Heisenberg hamiltonian: Gyromagnetic ratio
n . Sum over all spins i and/all j of their NN’s
H=-2J Z SZ.S]. Each spin has associated magnetic moment
i, L5,

Consider spin oscillations along linear ferromagnet. Ground state: all spins are aligned along z with excitation:
- - 2 . . _—* Effective magnetic
-2JS / (S Tt S / +1) = M S Tt SI)1 )=—L, Be (exchange) field

—

Exchange field B, will induce a torque on spin S ¥ a(ns,) = th’l X Ee = ﬁ = Z?J gl X (51_1 + §z+1)

dt dt

With approximation of small spin deviation (good at low T) : §; = §,S7,S; << §

d(S*) 2JS d(S?)  2JS .. o o dSE
dl‘l = # (2Sly_Sly—1_Sly+1)97;:_7(2S1 _Sl—l_Sl+l)>7;:O

. . (et +1, (t+1
We look for wave solutions (a = lattice parameter): S Zx = fxe’( 40) S ly = f yel( 94)

4JS 4JS
And get new sets of equations: —i®&, +7(l —cosqa)§y = 0,7(1 —cosqa)éx +iwg, =0
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Specific Heat of Spin Waves 2

Nontrivial solutions if determinant is zero, we get spin wave dispersion relation:

4JS
—=(

) 4JS (qa)z B 2JSa2q2 At low T where low frequencies (long

= 7 - B wavelength dominate so (1-cosqa)=(1/2)(qa)?

1-cosga)~=

> 2| oa.-constant that depends on crystal structure
2JSa L D 2

Now in 3D in the small q limit this becomes:| = ¢ .o Works well in long wavelength limit for

metallic ferromagnets too.

. 2J 'Sazq Solutions doubly degenerate, Two
Antiferromagnets: | = o, e =——— ] >° yaes ’ (see Rev. Mod. Phys. 30, 1 (1950))

7 spin wave modes with o for each

h

//’ (long wavelength, small frequen(:les)

: hao h(() *d (x? = ¢?b/k,T
We can write: [J = Z GTE Tq) = Vi T /qu) 1 _ ‘3/2(kB])5/2I x'dx and bzzajsaz)
a)
el 1 2t g M 2 |
Sum over allowed values of q (1% BZ) Number of modes with q,q+dq is n(q)dq = (dN/dq)dq= g4dq
(Recall Debuye model)
dU kp TY : :
Specific heat is then]C,, =| — fN | —— For antiferromagnets:
, 2JS

3
c. (d_Uj :caNAkB( kT j
dT ), 2J'S

3 3/2 3 3/2 (see Rev. Mod. Phys. 30, 1 (1950))
C p= LT +0I C p= vl + BT + oI Hard to resolve lattice vs magnons,
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Entropy Associated with Magnetic Order

S =J(C/T)dT

For these local moment
systems S~R In D

We can determine how much entropy (change) is
associated with a given state. For magnetic systems we
need to use the magnetic C . In practice, this is done by
subtracting off the C (T) data from a non-magnetic
analogue (e.g. LuAgGe from TmAgGe).

18

16

14

C, (J/mol*K)
N O @O N

b

- (b)

Introduction to thermal and transport techniqu

Entropy S/ R

20 F

1.5

1.0

Entropy S/R

0.5

0.0

| In2

®) "

CeVSb,

N

C,, /T (J/K* mol)

-

N

C,/T (J/K* mol)

—_—



Specific Heat of BCS Superconductors

Attraction of electron pairs by virtual phonon exchange, leading to T — dependent gap 2A at the
Fermi level. At T = 0: 2A(0)=3.52kg T

Number of broken pairs as the temperature is increased is proportional to exp[-2A(0)/k;T], so
contribution to electronic specific heat in superconducting state is:

C,  (srir a=85b=144for25<TJT<6
- 9° a=26,b=1.62for 7<TJ/T < 12
7/ C Schrieffer, J. R. Theory of Superconductivity, Benjamin, New York 1965
Near T, there is abrupt discontinuity since gap vanishes at T.. No latent heat is released (second
order phase transition):

Cel(TC)_j/TC —1.43
b

Other complications may involve : strong coupling, gap anisotropy, presence of two distinct
energy scales (two gaps).
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Some Other Contributions to Specific Heat

Spin fluctuations (critically — damped spin waves) in nearly ferromagnetic systems when
exchange interaction is not strong enough to produce ordered state, for T << T

3
C = ]/T nyy l In i (Phys. Rev. Lett 17, 750 (1966))
Iy ) Uy
BCS superconductors with 1 . ' . . rr— 30 120
anisotropic gap have reduced - e
value of specific heat anomaly at Eﬂ_' Nb Se, ™| A 17
superconducting transition (see 40} t T .‘J — 20 80
Ann. Phys. 40, 268 (1966)): - P ..3 E
-~ Wi § e 241560
b / B
AC < — . g -
I 1.426(1 —4<a2>) E 2 | £ {1040
e 5’ 101 .‘- iy e 15 _20
. . 0 0
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Superconducting and Magnetic Entropy

Ndl_XCeXCoIn5
1.2 ! I T I | : | ' | ' T T
4 R [ @ T(C) ®m T() A T, () N A A A
i - @ T m T(C T (C
1.0 o x=09 C(P) c( ) M( ) A
S 0.8} ©ox=07 N
3 x=0.6 10F 110
3 L 206 - x=04 HEAVY FERMION
w - x=02 o e ]
_ 0.4 <=0 < | , _
Y = o
= LMM s o ! ¢
g
EQ — r ° ]
i MAGNETIC ORDER  supPEr
Q| CONDUCTOR]
8. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
00 01 0.2 0.3 04 05 06 0.7 0.8 09 1.0

1 T (K)
Phys. Rev. B 77, 165129 (2008)

X

Heat capacity and magnetic entropy of electronic
system that evolves from local moment magnetism
to heavy fermion supeconductivity via disordered
heavy fermion magnetic states
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Thermal Expansion in Thermodynamics

dQ oH
At T=0 C,=C, (entropy S = 0): C,= d—T = a—T
P P

At T #0 C, 1s always greater than C,, (heating with P = const for dT cost energy to do

work expanding against external pressure; if V = const, there is no work done):

General relation between C, and Cy, at T # 0 1s

1 (or 3( 0L
=3l o) -

P

2
c,—c, =Ll
p v
B
B (volumetric expansion) 1
o (linear expansion) B=——
V. (molar volume) — V

B (isothermal compressibility)

In practice, C, — C,, ~ 1% of C; at 0,/3 and 0.1% of C,, at 0/6 and is maximum (~ 10%) at

T, (melting temperature).
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Thermal Expansion of Anharmonic Crystals

Harmonic crystals do not expand when heated and do not shrink when cooled since average
interatomic spacing does not increase with T.

Real materials have non-parabolic U(r) so there is thermal expansion and C,, increases above
Dulong — Petit at T>0 / LN X« 1

35 -

30 =
harmonic sl _masaapast St
E 20+ .’{ Cu
anharmonic Ty e

1 L 1 L 1 ! I 1 L
o 200 400 600 800
T({K)

Energy
O

L3

Griineisen approximation: Aow/® ~yAV/V
Griineisen parameter is a measure of anharmonicity
oP

oV oP oS oU 1
I R ) e e I I (e e
LHarmomc—O s T Weget , Yoy =
p- [U D% Lo (an L (nas(q) }:ﬂ/ =12[—ihws(q) =09

oV (e -1) B

q,S

C, =D ho, (q)—n 4) B = 7Cy
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Thermal Expansion by Capacitive Dilatometry 1

Rev. Sci. Instr. 77, 123907 (2006)

In a capacitive dilatometer the dilation L of a sample of length L manifests as a change in the
gap D between a pair of capacitor plates. For an ideal parallel-plate capacitive dilatometer in
vacuum the relationship between the measured capacitance C and D is

£, = 8.854:10' pF/m

D A = area of capacitor plates

d T~m e 3)

0

1 m {x 3}
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&y A Thermal expansivity &=

[L(T) - L(0)]
L(0)

||~ Thermal expansion o = 1dL _d(nL)

Ldr dr

FIG. 1. A schematic of the capacitive
dilatometer. The left panel shows a
front “cut-away” wiew identifving
parts: (a) upper (fixed) capacitor plate,
(b) lower (mowvable] capacitor plate,
(c) BeCu spring, (d) sample, (e}
sample platform, (f) lock ring, (g) cop-
per shims, (h) electrical isolation (Sty-
cast 2850 FT and Kapton). (i) electri-
cal isolation (Kapton washers), (j)
upper guard ring, (k) lower guard ring,
(1) nut, {m) 0-80 copper screws (six in
total), (n) mounting plate, (o) main
flange, and (p) lower lange. The right
panel represents a side view of the
dilatometer.



Thermal Expansion by Capacitive Dilatometry 2

Rev. Sci. Instr. 77, 123907 (2006)

Commercial capacitance bridges have ~ 107 pF resolution at 1kHz — 3-10-3A for dilatometer
operation at 18 pF.

Part of calibration processs is to find an appropriate functional relationship between the
capacitor gap D and the measured capacitance C. This is done using a sample platform e long
enough to adjust the capacitor gap from its largest zero-force to its smallest shorted value.

A protractor (with an appropriately sized hole in its center)

1 1s attached to the main flange o. The dilatometer is inverted

| and the sample platform e is then rotated and tightened in

| small steps; after each step the angular position of the sample
platform (read off the protractor) and the capacitance C

| are measured. The capacitor gap is:

1 ¢ -
D @(em _h) = — =
Ve C ¢,4

1/C (100/pF)

Angle of dilatometer shorting

6,)-0)

0 20 30 40 50 860 80 Thread pitch, # threads/mm — #um/mm
9 (deg) Distance from straight to tilted plate
Deviation from linear behavior (" \ &4 | [ C C when they short
since plates are not perfectly - C— T @
parallel. Can be estimated as: !
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Thermal Expansion by Capacitive Dilatometry 3

Rev. Sci. Instr. 77, 123907 (2006)

Data acquisition process in temperature or magnetic field consists of two steps:

Since distance between plates

1. Measurement of reference sample (Cu) ||~ is T,H dependent but is independent
2. Measurement of unknown sample. 5 of length or nature of the sample

%in dilatometer
1 dL 1 d D —-D,
|+ ——F

When the reference Cu or Sample are mounted
r-b)la.
L d T L dT L

Cell effect, measurement with Cu standard installed

+a,,

For long samples with thermal expansion close to Cu [D.-D_]/L = 0, therefore (since dL = -dD):
Resolution ~ 0.03 — 0.11A

Ld_Ldi)
L dT L dT cell+sample
Depends on cryogenic

o dD 1| D,,—D, D.—D,, | system used and cell
Derivatives are evaluated as: d—T =— +

Dilatometer is surrounded by Cu can to provide electrical and thermal insulation.
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Thermal Expansion by Diffraction

Based on the measurement of unit cell by X-ray,

| v I ' ] 1 I | I I 1
1.000 |- &
| EeEEEEEEEEEmES L] : ; i ]
R L o) '
3 0895 I 5000000800000 )
8 [ A Lattice parameter
S 0890 |
) X & = a
= R AL o b
= D885 I naaaannss A e
Dm i 1 " 1 n 1 1 1 L " 1 1 n 1 1
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&
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L i
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neutron methods (will be discussed later in the course).

1.015

1.010

41.005

1.000

Bond distance ratio (long/short)

25

High resolution data are required. Resolution comparable or smaller

than for capacitive dilatometry. Advantage: bond length, angles, atomic

position information is available
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Thermal Expansion in CeColn;

172 CeColn .
5Tl e

% _%I-'Ttmﬂﬁn
r
[

a (107°K™)
B

FIG. 2 (color online). Temperature dependence of the linear
thermal expansion coefficient of CeColns at H = 5 T ( || ¢). The
line and arrow indicate e = /T and crossover temperature T,
defined as an upper limit for this T dependence, respectively.
Inset (a) displays data from the main part as /T vs T (on a
logarithmic scale). The line indicates T~' dependence. Inset
{(b) compares data from the main part in the low-temperature
regime with 5, 8, and 10 T data obtained from a second sample
{52). Lines display square-root behavior.
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FIG. 1 (color online). Phase diagram of CeColns for H || ¢ as
determined from thermal expansion. Superconducting phase n
gray with first-order boundary below 0.7 K indicated by thick
black line. Regions where thermal expansion follows 2D and 3D
quantum critical behavior are marked in blue (lighter gray) and
yvellow (lightest gray), respectively. The inset displays the evo-
lution of the crossover with Sn-doping in CeColns_,5n, at the
respective H ,(x).

Phys. Rev. Lett. 100, 136401 (2008)
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