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Thermodynamic and Chemical Effects
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• Reactions (materials formation), free energy change is:

ΔG = ΔH - TΔS = ΔU + PΔV - TΔS    (p,T = const.)
or:

ΔG  = ΣG(products) - ΣG(“charges”)

Example:                 Si(s) + O2(g) ↔ SiO2(s)             sign of ΔG is important

ΔG < 0 exhothermic ΔG > 0 endothermic         ΔG =0 equillibrium → ΔH=TΔS
faster → (forward direction)       faster ← (reverse direction) equal rates  ΣG(products) = ΣG(“charges”)

ΔGmin is obtained through minimizing ΔH and/or maximizing ΔS

Number of particles   Ni
Chemical potential     μi=(∂G/∂Ni)T,P,NjGibbs free energyGibbs free energy:



Bulk Synthesis in CMMP

Thermodynamic and Chemical Effects

• Standard Gibbs free energy change:

ΔrG0(T) = ΔrH0(T) - TΔrS0(T)
Formation of material from elemental reactants in standard states (equillibrium at 300 K and 1 atm)

ΔrG0(T) =  - RTlnK(T) (R = 8.31 J/mole)

equillibrium constant

• Activity of a solid or a liquid:
For ideal gasses in standard states a = 1 (at 1 atm. of pressure). 
When not in standard state: a(ideal gas) = P(X)/1atm,
The activity of any solid or liquid at arbitrary conditions: a(X) = P(X,T)/Peq(X,T)

since vapor pressures of solids are close to equllibrium, a(X)solid~1
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Thermodynamic and Chemical Effects
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• What is Gibbs free energy change in materials formation?
ΔG = ΔrG0 + RTln Q = -RTlnK + RTlnQ = RTln[Q/K]

• For chemical reaction: bB+cC dD+eE

• Note that process is in equillibrium for Q = K so ΔG = ΣG(products) - ΣG(“charges”), 
therefore K is equillibrium value of Q

• Vaporization of Si and SiO2: Si(s) + SiO2(s)          2SiO(g) will be at equillibrium if:
μ[Si(s),T] + μ[SiO2(g),T] = 2μ[SiO(g),T]

• Equilibrium constant for this reaction is:

activity quotient
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For solid ↔ vapor or liquid ↔ vapor processes
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Kinetic Effects
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Rates and paths of thermodynamic processes are important

• “Higher” T, faster diffusion, lowest G can be realized more easily

Equilibrium condition for Chemical reaction: bB+cC dD+eE

kf,r = forward, reverse reaction rates, [X(T)eq] is concentration

THERMODYNAMIC AND CHEMICAL EFFECTS KINETIC EFFECTS

MATERIALS SYNHESISEquilibrium constant K(t)
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Kinetic Effects
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τ and n can be τ(T), n(T)

Rate of transformation: 

t0.5 is time for 50% conversion

Nucleation and growth of the new phase
is described by Avrami equation:

Time constant τ depends on density of nucleation sites 

n ~ (0.5 – 4)
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Kinetic Effects
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• Chemical reaction: bB+cC dD+eE

• Some processes (diffusion, vaporization) have activated reaction rates:

• When both forward and reverse processes are activated:

equillibrium constant
concentration ~ activity

Af = Af(T), 
Ar=Ar(T)
Eaf=Eaf(T)
Ear=Ear(T)

…..since ΔrG0(T) = ΔrH0(T) - TΔrS0(T) = - RTlnK(T)

Therefore enthalpy and entropy changes are:
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(NA=R/kB=6.022·1023mol-1)

Enthalpy changes (kinetic) effects dominant at low T
Entropy changes (thermodynamic) at high T

Connects 
thermodynamics
and kinetics
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Crystal Growth – Creation of a nucleus
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• System of N atoms of the same type in V in vapor (can be in melt) with n = N/V
• When Pgas > Pvapor at T = const., droplets will begin to nucleate (condensation)
• Vapor atom                                     Droplet atom

NV and μV ND and μD

• Gibbs free energy change in droplet formation (σ – surface energy) :

Gi = NVμV Gf = (NV – ND)μV + ND μD + 4πσr2

ΔG = ND(μD- μV) + 4πσr2

• Introducing ND = 4πr3/3Ω it is possible to estimate:

ΔG (ND)= - NDδμ + 4πσ[3Ω ND/4π]2/3 Extremum values:

transforms to

(no droplet, only vapor particles) (droplet, assumed spherical)(vapor)

(interface: sphere with radius r
and surface energy σ)

(Ω = volume of an atom in the droplet)
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There is some critical size for cluster formation

+

(δμ=μV-μD)
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Crystal Growth
• There is some critical size that a cluster of atoms must reach before it establishes itself as 

a nucleation site. If number of atoms in droplet is smaller, the cluster will shrink

Critical radius rc = 2σΩ/δμ

• Probability that thermal fluctuation will nucleate a particle of size corresponding to ND:

P = A exp [-βΔG(ND)]

In crystals after nucleation atoms are adsorbed on the surface of nucleated crystallite
Crystals grow in size, but adjust their shape (facets) to lowest Gibbs free energy

If the volume is fixed, in order to minimize surface energy polyhedral facets grow
Nucleation may be homogeneous (random throughout the melt) or heterogeneous (at surfaces, particles in the melt)

hi

Ai, σi
The net surface energy is: Es = ΣσiAi
Volume is sum of pyramidal volumes: V = ΣAihi/3
Minimizing surface energy in fixed volume:
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Surfaces with higher σ have higher growth velocities vi, smaller areas and are further from the center of mass

A = probability that ND particles are within critical radius from each other

Center of the mass of polyhedron

Consider a crystallite: 
(the higher the surface energy the more unstable the surface is)

λ=ES/V (Lagrange multiplier)
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Crystal Growth
• Early phase of crystal growth – crystals grow independently
• Later stages – crystallites compete for growth as the melt is depleted, smaller 

crystals shrink and supply atoms to larger crystals  (Ostwald ripening)
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• Consider two spheres with number of atoms N1 and N2.     N = N1 + N2

• Gibbs free energy for the pair is:

• G (N1, N2) has maximum for N1 = N2 = N/2

• If N1 > N2 crystal 1 will grow at the expense of crystal 2 until crystal 2 disappears 

• Final energy drops to: 

• Example – the difference in energy between having one combined and two spheres is:
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Slow cooling from high T favors larger grains. Rapid cooling freezes 
microstructure corresponding to thermodynamic and kinetic 
conditions at that time, grain size, their number, boundaries
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Annealing

• At high T rates of diffusion are high, there is high mobility of atoms
• Grains of new phases may be formed in the search for lowest G
• There are two types of processes:

a) Dislocation density decreases. Microcrystallites of new phase are formed. Driving force     
provided by residual elastic energy built up due to mechanical history

b) Drive towards thermodynamical equillibrium

search for the state of lowest free energy
heating close to the melting point and slowly cooling back to room T

Assume nucleation sites are set of spheres with Rj which grow by adding layer of thickness δ
and

Rj=δj, (j integer, number of layers)   Γ = rate of increase in the crystallites in the sample  Δ = time step  Ω = sample volume

At t = 0 there are no crystallites                        At t = jΔ there are N = jΓΔ crystallites with R1 ≤ r ≤ Rj

Total volume occupied is: V(t) = [4π/3]ΓΔ{δ3 + (2δ)3 + ……+ (jδ)3} ~ (π/3)ΓΔδ3j4 for j<<1

Since δ = ΔdR/dt, we have V = (π/3)Γ(dR/dt)3t4 and (dV/dt) = (4π/3) Γ[(dR/dt)t]3

If the volume space occupied by spherical nucleation sites is f, then 1-f is fraction of space not occupied 
and new spheres can grow only in the unoccupied space, therefore:
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Annealing
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Johnson – Mehl equation
dn/dt number density of new crystallites nucleating per unit time.

With increase of T, f(t) slows down. Nucleation 
rate and growth rate fall since they are 
proportional to supercooling which is measured 
relative to T of phase transition

1. Assume N spherical grains V=4πNR3/3 with  surface energy U = 4 πNR2γ
γ: energy per unit area of the grain – liquid interface

What is surface energy minimum in fixed volume, assuming changing number
of grains – large grains swallowing smaller or grains coalescing?

2. Assume system relaxing to the 
state of minimum surface energy by 
varying R.   Relaxation – set of 
irreversible processes, so we 
introduce viscous coefficient K:
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viscous coefficient

t1/3 growth rates can be expected for long times
For K →∞, R → R0 (radius at t=0)
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Diffusion

• Diffusion - thermally activated motion which reduces concentration gradients in the 
solid by mass transfer (defects, interstitials, dopant atoms….). Drive towards 
equilibrium

• Driving force is the increase of S when randomness is increased and concentration 
gradients are minimized

• Self diffusion – for example of Si in bulk Si
• Uphill diffusion – opposite to concentration gradients - in inhomogeneous solids (eg. 

binary alloys) atoms move towards sites where they are more tightly bound, towards 
energy minimum due to gradient of chemical potential

• Vacancy mechanism of diffusion – atoms move towards neighboring vacancies
• Interstitial mechanism of diffusion – for interstitial atoms when lattice atoms and 

interstitial atoms exchange places
• Direct interstitial mechanism of diffusion – jump from one interstitial site to adjacent 

interstitial site
• Diffusion not along lattice sites but via surface, grain boundaries, dislocations – usually 

have higher rates at low temperatures

Thermally activated process:
Rate R(T) = A exp [-Ea/kBT]

Examples: diffusion, vaporization, vacancies and point deffects
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Diffusion

• Atoms jump from one lattice plane at 
finite T with rate: 
R(T) = A exp [-Ea/kBT] 

~ fvib exp [-Ea/kBT] 
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N1 atoms per unit area

N2 < N1 atoms per unit areaa

Ea: activation energy for the jump

fvib

• The net flux of atoms moving between the two adjacent planes in homogeneous 
solids (Fick’s laws): 

J = [N1-N2]R/2 = - (aR/2) (dN/dx) = (a2R/2) (dC/dx) = - D(dC/dx)
or: 

since N2 = N1+a(dN/dx) and C(x) = N(x)/a (concentration gradient of atoms)

If the concentration gradient (dC/dx) is not constant in time:

diffusion coefficient D(T) = a2R(T)/2 = a2fvib/2 exp[-Ea/kBT]

J
t
C →

∇−=
∂
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Assume two adjacent planes in chemically homogeneous solid separated by a

fvib : atomic vibration frequency R/2 of jumps are to 1st plane and R/2 to 2nd

drift velocity mobility chemical potential
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Diffusion

• Net flux of atoms in one dimension

• In chemically homogeneous solid <X>=0, so we get Fick’s 2nd law where: 

• When ions diffuse in electric field <X>≠0 since they get drift velocity due to 
electric field E (electrical conduction): <v>=μ(mob)E so for equilibrium conditions: 

• In general it is activation process, D(T)=D0exp (-Ea/kBT) or for multiple defect 
species:
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Random movement of atoms from one lattice site to another – Random walk process

<X> – average net displacement of an atom over all possible paths
<v> = <X>/t  - mean drift velocity of an atom
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Vaporization

• Solid – vapor equilibrium exists if  
flux of vaporized = flux of desorbed atoms: 

Jvap = Jcon

where ΔrG = G(vapor) – G(solid), K(T)
is the equilibrium constant;  a(vapor) is 
normalized to P1atm, a(solid) = 0

Number of atoms in dV(gas) is dN = ndV (n – atoms per unit volume)
• The volume element dV = r2drdΩ = r2dΩvdt where dΩ is the solid angle surrounded by 

dV at dA(surface).
• The fraction f of atoms emanating from dV and striking dA is determined by solid angle

dΩ’ = dS/r2 ; dS is the projection of dA on the plane perpendicular to r, dS = dAcosθ
df = dAcosθ/4πr2
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Thermal excitation of atoms out of surface potential well into the vapor phase
Activated process, rate increases exponentially with T
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Vaporization
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Integrating over angle 0≤θ≤π/2 and using dΩ’=2πsinθdθ we get net flux 
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