High Pressure Transport Methods

Matter at extreme conditions — particularly developed in Europe, Japan. See for example
http://www.issp.u-tokyo.ac.jp/labs/extreme/index-e.html

Piston cylinder type high pressure cells for resistivity measurements.
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“Russian alloy” hybrid pressure cell at ISSP
Cu-Be pressure cell for low T transport and University of Tokyo, Japan

magnetization studies (MST-10 LANL) Introduction to thermal and transport techniques J. Phys. Cond. Matter 14, 11291 (2002)



Sample Preparation for High Pressure Resistivity

In the usual arrangement inside of Cu-Be pressure cell hosts one sample with 4 pairs of leads for four probe resistivity
measurement and a piece of superconducting metal (Pb, Sn) which is used as a manometer (since dT/dP is known). The T
of manometer is measaured by winding pick up coil for ac susceptibility measurement, and applying excitation ac field
outside the pressure cell.

However, it is also possible to measure simultaneously resistivity and ac susceptibility of a sample in the pressure cell.
Black 1266 stycast is used to seal

wires in the feed through
4 pairs of wires

Two pick up coils inside a teflon cup of the pressure cell
are mounted: one for sample and one for manometer.
manometer is cut in the same shape as the sample

dth pair of wires

\]_/ voltage

_'____..-'-::Gntan::t

Between the voltage contacts pick up coil is placed.
Manometer has twofold purpose, pressure determination,
a caliper of the superconducting volume fraction of the
sample.

Three pairs of wires for current, voltage and Sn pick up coil
are Glued at the bottom of the plastic platform and the

contacts are moved up to the upper part of platform through
previously prepared platform holes. The fourth pair of wires

for the sample pick up coil is placed on the top of the sample ™ 3 pairs of wires sample /!

and fixed with a small quantity of the glue.

cutrent contacts
As a pressure transmitting medium, Flourinert-75 is used.

Sample environment for simultaneous resistivity,
Pressure is applied at room T. Introduction to thermal and transport techniques  ac susceptibility in piston cylinder pressure cell



Quantum Oscillations 1n High Magnetic Fields 1

Movement of conduction electrons in B is quantized (Landau):e(n, p,) =(n+1/2) pi)2m,

Magnetic field confines electrons to orbits of radius ry=p/eB in the plane 1B. Sié%ﬁ;ﬁggg (Tiséag)prs
Circumsference of this orbit is n-wavelength — discrete set of energy levels — in reciprocal space

states are on coaxial tubes with crossection area perpendicular to B:
S (n,py)=(n+1/2)2mheB
At T=0 e- fill up states up to .. With the increase of B, number of states on the largest Landau
tube which is still inside the FS decreases and = 0 when tube touches extreme crosssection of the
Fermi surface S_ . As B increases Landau tubes cross S_ . with period:
A( 1 j _ 2meh
B S

extr

extr® extr

— periodic variation in the F, p(¢), oscillations in M, o, B, C, ...From period of oscillations we car
determine S_ .. Most frequently used are dHvA for M~(JF/0B); and SdH ¢ (since o~p(gp)~

(m_B/S,_,.)*(0M/éB)) | .
Damping factors due to T, scattring (D)
Oscillatory part of M along B is given by Lifshitz-Kosevich formula: and Zeeman splitting (S)

1 . 3/2 1/2
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Sum of all harmonics, in practice r=1 is enough r S”=/(828/882)pB

[¢)

| F 1 T m_B'? : ; llations i
= Goz —a, cos 21| ——— |+ = [a ~—¢ . R, (r)R,(r)R,(r) D. Schoenberg: Magne.tlc osczllatzons in
B 2) 4 (S") Metals, Cambridge University Press (1984)

r=1 extr
For crosssection area S minimum and maximum  Introduction to thermal and transport techniques See also Chem. Rev. 104, 5737 (2004)




Quantum Oscillations 1n High Magnetic Fields 2

Take 1 harmonic, assume S, -S . ~0 and F=(S , -S . /4meh, AF=AS/2neh we get M :

M, . ~2M sin|2x £l cosS 27Z'£—£
B 2 2B 4

— By extracting fundamental frequencies F of oscillations we can estimate average crossection
area of the FS. We can also trace oscillations as a function of B orientation (think single crystals).

K=const~14.7T/K, p=m /m, | —=—
u(l'/ B)

— T damping factor of amplitude R - due to T smearing of Fermi function:R,(r) =

sinh(KruT / B)

I
For large arguments of the function, sinhx ~ exp(x)/2 —| R (7) ~ Ee (KruT | B)

We can get p from the slope In(M (?) or In(a (2) vs T — mass ratio can tell us about
interactions (e - e, e - ph,..)in the system when compared with bare band mass

— Scattering damping factor of amplitude R, - due to broadening of Landau levels (clean crystals

with long mean free path are important): Dingle T — Once we know p, we can
get T, and relaxation time from the

_ —mwmloxs _  —Krulp /B, . field dependence of the amplitude
R, (r)=e =e P =02k ,T)

— Zeman splitting of Landau subbands Ae~gu,B. For free e~ g=2 so Ae~hw, and they contribute
in phase to oscillations. In real metal Ae#ho_ so there is a phase shift due to contributions from
subbands with opposite spin and reduction of amplitude by R¢(r)~cos(nrgp/2) so we can get g

\»

(renormahzed by lnteraCtIOIlS) Introduction to thermal and transport techniques ‘ Sov. Physics JETP 2, 636 (1956)



Quantum Oscillations 1n Laboratory Fields...
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Introduction to thermal and transport techniques
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...or 1n High Fields
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Figure 2 | Hall resistance of YBa;Cuz0s 5. Ry as a function of magnetic

field B, for sample A, at different temperatures between 1.5 and 4.2 K. The
field is applied normal to the CuO; planes (B||¢) and the current is along the
a axis of the orthorhombic crystal structure (J|| a). The inset shows a zoom

on the data at T= 2K, with a fitted monotonic background {dashed line).
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Figure 3 | Quantum oscillations in YBCO. a, Oscillatory part of the Hall
resistance, obtained by subtracting the monotonic background (shown in
the inset of Fig. 2 for T =2 K}, as a function of inverse magnetic field, 1/B.
The background at each temperature is given in Supplementary Fig, 2.

b, Power spectrum { Fourier transform) of the oscillatory partfor the T=2 K
isotherm, revealing a single frequency at F= (530 + 20) T, which
corresponds to a k-space area A, = 5.1 nm 7, from the Onsager relation
F= (b, /2n")A,. . Note that the uncertainty of 4% on F is not given by the
width of the peak (a consequence of the small number of oscillations), but by
the accuracy with which the position of successive maxima in a can be
determined. ¢, Temperature dependence of the oscillation amplitude A,
plotted as In{A/T) versus T, The fit is to the standard Litshitz—Kosevich
formula, whereby A/T = [sinh{am*T/B)| ! which vields a cycotron mass
m* = (1.9 *0.1)my, where my is the free eleciron mass.

Nature 447, 565 (2007)
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