
Bulk Synthesis in CMMP

Phase Diagrams

• Starting point and necessary ingredient in materials 
synthesis

• Show phases that are stable under equilibrium 
conditions for some values of parameter range –
usually (x,T), but also pressure, magnetic field

• Binary alloy, ternary alloy phase diagrams
• Solid, liquid, vapor
• Often estimates and sometimes unexplored, even 

binary alloy



Bulk Synthesis in CMMP

Phase Diagrams

• Phase transitions occur by varying P, T (or x, T as it is usual) – by crossing the line at the diagram
• P – T phase diagram: Since G1=G2, ΔG = 0 = VdP – SdT dP/dT (slope) = ΔS/ΔV=ΔH/TΔV
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There are:
3 stable solid phases
Liquid phase
Vapor phase

Coexistence of phase 1 and 2:
G1 = G2

Peq is pressure corresponding
To vaporization line

ΔHm=TmΔSm (melting)
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Phase Diagram of Binary System

• Starting point in synthesis
• Estimates
• Extensive use in crystal growth
• Flux method

Pseudobinary possible

InAs GaAs
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Phase Diagrams
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• Two phase region: xl ≠ xs. G=G (T,P.x). Solid ss phase always rich in higher melting point 
element Ni relative to overall alloy composition x. Liquid phase always rich in Cu atoms. In 
the two phase region Cu1-xNix alloy: 

nsxs + nlxl = (ns + nl)x = nx x-Ni mole concentration
Solving for relative mole fraction:

Binary solid solution characteristics: 
1. Two elements soluble in each other for all x
2. Atoms can subsitute each other on the lattice sites
3. Same crystal structure for all x
4. Close match in lattice parameters ~ up to 15%
5. Should not form compounds with each other ~

same electronegativity
6. Should have the same valence

Hume – Rothery rules
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Phase Diagrams

• In ll and ss phase only alloys with any fixed x are possible – two degrees of freedom (x,l)
• In s+ls+l region for any fixed T there are only 2 values of x: xl and xs – one degree of freedom T
• A, B completely miscible if there is no preference for AA, AB or BB type of bonds and the 

energy of AB bond is the average of AA and BB: E(A-B) = <E> = [E(AA)-E(BB)]/2
• Then ΔHmix = 0 so ΔGmix = - TΔSmix. Entropy always randomizes the bonding.
• In reality, A and B are not identical E(AB) ≠ <E>, so the lower the T the weaker is S and so the lower the T the weaker is S and 

there is less miscibilitythere is less miscibility
• If E(A-B) > <E> compounds are formed; if E(A-B) < <E> there is a phase separation
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Rapid solidification: crystalline size is extremely small ~ few atoms – solids amorphous.

In practice phase diagram is inhomogeneous. Consider cooling from 
1450 ºC. 

When l+sl+s region is entered from ll phase, solidification of ss phase 
begins. Its composition is different from liquid. First to solidify are 
local clusters that contain more Ni. As solidification grows there will be 
less Ni and More Cu, so its composition will be different from initial. 

Composition gradients  are possible. Microstructure of solid alloy will 
consist of microcrystallites. Smaller crystallites correspond to higher 
cooling rates
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Binary Eutectic Alloys
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Make a sample of Pb

Consider chemicaly or physically different elements
∂G/∂x has several minima

Eutectic point
Lowest solidification point in the alloy system
Liquid phase undergoes isothermal reversible 
transformation into heterogeneous mixture of 
two solid phases. 

Make a sample of Pb – rich Pb1-xSnx alloy

Make a sample of Sn – rich Pb1-xSnx alloy

Make a sample of Sn
Can we make crystalscrystals of Pb and Sn?

Crystals are formed when liqiudus line is crossed at point LPb and LSn. 
They grow in number and size until eutectic line.

LPb

LSn
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Binary Phase Diagrams 

Eutectic lines can be much lower than melting points of end constituents

Eutectic point: liquid borders directly on solid phase

Usually formed with elements with different bonding preferences: 
covalent (Si), metallic (Au)

Extensive use in flux crystal growth

can be rather complex
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Spinoidal Decomposition 
problem in crystal growth

There is solubility or miscibility gap for some (x,T). 

Two new phases have same crystal structures but different compositions than
single phase alloy above miscibility gap

Within spinoidal region phase separation can occur spontaneously as T is lowered
without nucleation barrier. Small fluctuations of x lower G. Controlled by diffusion
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Melting

• Gsolid(T,P,V,x) = Gliquid(T,P,V,X) at Tm, but S = - (∂G/∂T)P, V = - (∂G/∂P)T and H change 
discontinuously (discontinuity in the first derivative - first order phase transition)

• At Tm (S         L) entropy increases by ΔSm and ΔHm = TmΔSm ≠ 0 (latent heat is released) since 
liquid phase has higher internal energy (disorder) but lower cohesive energy

• Melting occurs when the amplitudes of thermal vibrations of the atoms exceed a critical fraction fc
of NN distance d: (<u2>)1/2 = fcd

• Assume lattice potential harmonic, then:
<E> = C(fcd)2/2                              where C = mω2

• Total vibrational energy: 
<E> = mω2(fcd)2/2

• Since Tm > θD one can use classical result for a 3D harmonic oscillator <E> = 3kBTm

Amplitude of atomic vibrations around equilibrium positions increase due to increased T.
As a consequence, there is breakdown of long range order.

Changes in bonding also introduce changes in short range order, 
Change in arrangement and number of NN’s

Initiation of melting controlled by surfaces, grain boundaries, dislocations
Melting temperature determined by bonding strength (think In andMelting temperature determined by bonding strength (think In and B…)B…)
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Melting
• Generalization of Lindemann criterion for disordered materials in addition to thermal: 

crystalline to amorphous state transition will occur below Tm when sum of thermal and 
static disorder reaches fcd:

(<u2>th)1/2 + (<u2>st)1/2 = fcd

• Mechanism assumes that melting occurs homogeneously in the bulk of solid, but there 
are other approaches as well.

• More accurate approaches: melting occurs at the surface, then propagates into the bulk of 
crystal. Propagation velocity increases with temperature.

• What may occur during melting – solidification process is supercooling: formation of 
the critical nucleus of the solid as the liquid is cooled below meltin point Tm. That nucleus 
will survive thermal fluctuations and will continue growing.

• Surface can melt at T below the bulk, has lower θD. Surface film wets the solid – vapor 
interface and its thickness diverges at Tm. Surface will melt if its F/A=σ

σsv > σsl + σlv

• ΔHm (enthalpy change at melting) is only a few % of ΔHc (cohesive enthalpy), therefore:
considerable amount of cohesion or bonding remains in liquidconsiderable amount of cohesion or bonding remains in liquid

(important for crystal grow(important for crystal growth considerations)th considerations)

atomic displacements
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Structural Order and Disorder in Solids

• Spatial extent of the ordered regions (crystallites):
polycrystalline         microcrystalline          nanocrystalline amorphous
~ mm                        ~ μm                            ~ nm                       less than nm   

• Long range order – in ordered crystalline solids but also in ordered regions of disordered 
solids..

• Intermediate range order – when order extends to neighboring units beyond local atomic 
bonding unit (mixed bonding units, for example sp2, sp3 and hex rings of C in amorophous C)..

• Short range order – arrangements of NN’s are the same as in crystalline solids and bonding 
units are present, however bond lengths and angles are different.

• Composites – multiphase mixtures, usually some alloys in the matrix
• Colloids – aggregates of particles in nm or μm range, shapes depend on growth conditions, 

crystallinity (retain morphology of the ordered phase)
• Nanoclusters – agregates of particles in nm range – fullerenes C60
• Thin films, multilayers – 2D, interfaces exist
• Quasicrystals – have symmetries not found in crystalline solids (fivefold axes, icosahedral units 

that cannot fill space when packed together alone, do not have translational symmetry.

Deviation from periodicity
Structural (displacement from equilibrium) and Chemical (substitution)

Found in crystals
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Synthesis of polycrystalline metals - Steels

• Fe1-xCx where 0.002 < x < 0.06 (plain carbon 
steels), stainless steel up to 20% additional 
elements: Si, Ni, Mn, Cr, Mo, N…but also 
imurities such as O2, S2

• Ferrite (BCC α – Fe) – low T phase, 
Austenite (FCC γ – Fe) – high T phase

• But equilibrium is between Fe and Fe3C 
(cementite)

• Solubility depends on structure. Features of the 
crystal structure may favor occupation of certain 
interstitial octahedral sites in the space group 
(FCC) by extrinsic C or N atoms or substitution 
of Fe by larger atoms (transition metals).

most important group of metal alloys: mechanical properties

• Substitution by transition metals may require homogenization by annealing at 1200ºC since larger atoms (non –
interstitials) have lower diffusivities than smaller (C,N).

• Austenite – Ferrite phase transition for pure Fe at 912°C, volume increases by 1%
• Austenite coexists with Ferrite and Fe3C (cementite) on Fe – C phase diagram at eutectioid temperature Te = 727°C and 

x = 3.5% (at.).
• Cooling through Te from austenite (3.5at% C) yields pearlite, composite of ferrite (Fe0.999C0.001) and cementitite Fe3C
• Stainless steels: 13-26 wt% of Cr due to protective layer of Cr2O3

Not to be confused with eutectic

Peritectic
l+s=s (x=const)
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