Einstein's equation and time travel

From AAP
Jump to navigationJump to search


Question:

How is Einstein's equation (Gμν = 8πG Tμν) actually applied? And how does it support the theory of time travel.

Answer:

Many physicists refer to this as Einstein’s Equations (plural) because it's actually a set of several equations. The symbol Gμν denotes the "Einstein tensor," which is a measure of how much space-time is curving. The symbol Tμν denotes the "energy momentum tensor," which measures the density and flux of the energy and momentum of matter. The energy and momentum of matter causes space-time to curve in a way that is described by Einstein’s Equations. The curvature of space-time is what causes all the effects that we associate with "gravity."

There are many textbooks that explain how to apply Einstein’s Equations equations to various situations, but they require a very advanced background in physics and mathematics. I will therefore have to summarize things in words.

Before talking about time travel, let me first explain what a "world-line" is. Suppose that an object at a particular time is sitting at some particular point in space. At another time, it will be sitting at another point. Its locations at different times trace out a path through space-time, which is called the object’s world line. This path extends forward to points farther and farther in the future (until the object ceases to exist for some reason, at which point its world-line ends). But imagine that an object’s world-line bends around in a loop, so that at it arrives at a point in space-time where it had already been? For example, there may be a point on my world line that was me at my fifth birthday party at my parents’ home in New York City. Another point (farther along my world-line) is me now, aged 61, sitting in my office at the University of Delaware. If I continue farther and farther along my world line, might I end up again at my fifth birthday party in New York City in 1958? Could my five-year old self meet my much older self at that party? That is what most people mean by "time travel." In the jargon of physics, such a world line that bent around and intersected itself is called a "closed time-like loop" or "closed time-like curve."

The question is whether world-lines that are closed time-like loops are possible in the real world. It is comparatively easy to show that if space-time were not curved world-lines would definitely not be able to bend around to form closed time-like loops. But one might hope that gravity, by curving space-time, could bend some world-lines around to make closed loops. The way people have studied this question is to assume that Einstein’s equations correctly describe how the energy and momentum of matter curves space-time. Then they look for solutions of those equations where space-time curves in such a way as to make closed time-like loops possible, and therefore time-travel possible. No one has ever found such solutions. People have on occasion found what seemed to be such solutions, but on closer inspection it was found that when realistic conditions are imposed, no time travel is possible. An example is the Gödel Universe (or Gödel metric).

One kind of solution that would allow time travel is called a "Minkowski wormhole." A Minkowski wormhole would be like a tunnel that took you from one point in space-time to what seemed like a far distant point--a point far away in space, or in the past, or in the future. But people have shown that for a Minkowski wormhole to exist, there would have to be a type of matter whose energy and momentum were unlike any kind of matter ever seen and extremely unlikely to exist in the real world.

The great majority of experts believe that time travel is not allowed by the laws of physics. But no one has proved that rigorously. If you want to learn more, you could try to find discussions of closed time-like loops and Minkowski wormholes in books or on the internet.

-Stephen Barr