Research Projects for High School Students
From phys660
Jump to navigationJump to search
Introduction to computational physics
- For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [1] )
- Introduction to differential equations for physicists
- Coupled differential equations: N-coupled nonlinear oscillators
References
- N. Giordano and H. Nakanishi: Computational Physics (2nd edition, Prentice Hall, New Jersey, 2005).
- H. Georgi: The physics of waves (Prentice Hall, Englewood Cliffs, 1993) Chapter 3.
Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics
- Introduction to LLG equations and the Heun algorithm
- One-dimensional LLG code
- Ubermag package for operate over existing micromagnetic simulation programs, such as OOMMF and mumax3.
References
- R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26, 103202 (2014). [PDF]
Classical micromagnetics research projects: Annihilation of topological solitons
References
- Magnetic domain walls:
- S. Woo, T. Delaney and G. Beach, Magnetic domain wall depinning assisted by spin wave bursts, Nat. Phys. 13, 448–454 (2017). [PDF]
- M. D. Petrović, U. Bajpai, P. Plecháč, and B. K. Nikolić, Annihilation of topological solitons in magnetism with spin wave burst finale: The role of nonequilibrium electrons causing nonlocal damping and spin pumping over ultrabroadband frequency range, Phys. Rev. B 104, L020407 (2021). [PDF]. Supplementary Movie: Annihilation of two magnetic domain walls driven by an external magnetic field, which animates Fig. 2 in the paper.
- X. Dong and D. Bao, Investigations of the spin-waves excited by the collision of domain walls in nanostrips, J. Magn. Magn. Mater 539, 0304-8853 (2021). [PDF]
- Magnetic skyrmions:
- Introduction to Skyrmions and their dynamics:
- N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotech 8, 899–911 (2013). [PDF]
- A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech 8, 152–156 (2013). [PDF]
- J. Iwasaki, M. Mochizuki & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun 4, 1463 (2013).[PDF]
- Skyrmion collision:
- F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. 18, 863 (2022). [PDF]
- A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics 6, 98 (2018). [PDF]
- M. Á. Halász and R. D. Amado, Skyrmion–anti-skyrmion annihilation with ω mesons, Phys. Rev. D 63, 054020 (2001). [PDF]
Classical micromagnetics research projects: Magnon laser
References
- A. Roldan-Molina, A. S. Nunez, Magnonic Black Holes, Phys. Rev. Lett. 118, 061301 (2017). [PDF]
- R. J. Doornenbal, A. Roldán-Molina, A. S. Nunez, and R. A. Duine, Spin-wave amplification and lasing driven by inhomogeneous spin-transfer torques, Phys. Rev. Lett. 122, 037203 (2019). [PDF]
- K. Nakayama, K. Kasahara, T. Inada, and S. Tomita, Resonant amplification of spin waves with analogue black-hole horizons, Phys. Rev. Applied 22, 064086 (2024). [PDF]