Research Projects for High School Students: Difference between revisions

From phys660
Jump to navigationJump to search
Jalil (talk | contribs)
 
(13 intermediate revisions by 2 users not shown)
Line 25: Line 25:


*[[Media:Skyrmion_simulation_2.txt| More about Skyrmion Simulations and collision of Skyrmions]]
*[[Media:Skyrmion_simulation_2.txt| More about Skyrmion Simulations and collision of Skyrmions]]


===References===
===References===
F. Han, [https://www.worldscientific.com/worldscibooks/10.1142/8556#t=aboutBook A modern course in the quantum theory of solids ] (World Scientific, Singapore, 2013). (Chapter 7).
*Magnetic domain walls:  
*Domain Walls:  
** S. Woo, T. Delaney and G. Beach, ''Magnetic domain wall depinning assisted by spin wave bursts'', Nat. Phys. '''13''', 448–454 (2017). [https://doi.org/10.1038/nphys4022 [PDF]]
** S. Woo, T. Delaney & G, Beach, ''Magnetic domain wall depinning assisted by spin wave bursts''. Nat. Phys. '''13''', 448–454 (2017). [https://doi.org/10.1038/nphys4022 [PDF]]
** M. D. Petrović, U. Bajpai, P. Plecháč, and B. K. Nikolić, ''Annihilation of topological solitons in magnetism with spin wave burst finale: The role of nonequilibrium electrons causing nonlocal damping and spin pumping over ultrabroadband frequency range'', Phys. Rev. B '''104''', L020407 (2021). [https://wiki.physics.udel.edu/wiki_qttg/images/6/6c/Tdnegf_llg_dw_annihilation.pdf [PDF]]. <math> \Rightarrow </math>'''Supplementary Movie:''' [https://wiki.physics.udel.edu/wiki_qttg/images/2/2b/Dw_annihilation_tdnegf_llg_B100.mp4 Annihilation of two magnetic domain walls driven by an external magnetic field, which animates Fig. 2 in the paper.]
** Xi. Dong, Di. Bao, ''Investigations of the spin-waves excited by the collision of domain walls in nanostrips'', J. Magn. Magn. Mater '''539''', 0304-8853 (2021).  [https://doi.org/10.1016/j.jmmm.2021.168388 [PDF]]
** X. Dong and D. Bao, ''Investigations of the spin-waves excited by the collision of domain walls in nanostrips'', J. Magn. Magn. Mater '''539''', 0304-8853 (2021).  [https://doi.org/10.1016/j.jmmm.2021.168388 [PDF]]
*Skyrmions:
*Magnetic skyrmions:
** '''Introduction to Skyrmions and their dynamics:'''
** '''Introduction to Skyrmions and their dynamics:'''
** N. Nagaosa, Y. Tokura, ''Topological properties and dynamics of magnetic skyrmions'', Nature Nanotech '''8''', 899–911 (2013). [https://www.nature.com/articles/nnano.2013.243#citeas [PDF]]
** N. Nagaosa, Y. Tokura, ''Topological properties and dynamics of magnetic skyrmions'', Nature Nanotech '''8''', 899–911 (2013). [https://www.nature.com/articles/nnano.2013.243#citeas [PDF]]
Line 45: Line 43:
== Classical micromagnetics research projects: Magnon laser ==
== Classical micromagnetics research projects: Magnon laser ==


*[[Media:Magnon_laser.txt| Introduction to the Magnon-Laser theory]]
*[[Media:Magnon_laser.txt| Introduction to magnon laser theory]]


===References===
===References===
** A. Roldan-Molina, A. S. Nunez, ''Magnonic Black Holes'', Phys. Rev. Lett. '''118''', 061301 (2017). [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.061301 [PDF]]
* A. Roldan-Molina, A. S. Nunez, ''Magnonic Black Holes'', Phys. Rev. Lett. '''118''', 061301 (2017). [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.061301 [PDF]]
 
*R. J. Doornenbal, A. Roldán-Molina, A. S. Nunez, and R. A. Duine, ''Spin-wave amplification and lasing driven by inhomogeneous spin-transfer torques'', Phys. Rev. Lett. '''122''', 037203 (2019). [https://doi.org/10.1103/PhysRevLett.122.037203 [PDF]]
** J. L. Gaona-Reyes, D. Bermudez, ''The Theory of optical black hole lasers'', Ann. Phys. '''380''', 4916 (2017). [https://www.sciencedirect.com/science/article/abs/pii/S0003491617300830?via%3Dihub [PDF]]
*K. Nakayama, K. Kasahara, T. Inada, and S. Tomita, ''Resonant amplification of spin waves with analogue black-hole horizons'', Phys. Rev. Applied '''22''', 064086 (2024). [https://doi.org/10.1103/PhysRevApplied.22.064086 [PDF]]
 
** J. S. Harms, A. Ruckriegel and R. A Duine, Phys. Rev. B '''103''', 144408 (2021). [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.144408 [PDF]]

Latest revision as of 15:23, 17 January 2026

Introduction to computational physics

  • For an introduction to basic python libraries, review the first three notebooks from PHYS824 (JUPYTER notebooks for hands-on practice: [1] )

References

Introduction to Landau-Lifshitz-Gilbert equation for magentization dynamics

References

  • R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26, 103202 (2014). [PDF]

Classical micromagnetics research projects: Annihilation of topological solitons

References

  • Magnetic domain walls:
    • S. Woo, T. Delaney and G. Beach, Magnetic domain wall depinning assisted by spin wave bursts, Nat. Phys. 13, 448–454 (2017). [PDF]
    • M. D. Petrović, U. Bajpai, P. Plecháč, and B. K. Nikolić, Annihilation of topological solitons in magnetism with spin wave burst finale: The role of nonequilibrium electrons causing nonlocal damping and spin pumping over ultrabroadband frequency range, Phys. Rev. B 104, L020407 (2021). [PDF]. Supplementary Movie: Annihilation of two magnetic domain walls driven by an external magnetic field, which animates Fig. 2 in the paper.
    • X. Dong and D. Bao, Investigations of the spin-waves excited by the collision of domain walls in nanostrips, J. Magn. Magn. Mater 539, 0304-8853 (2021). [PDF]
  • Magnetic skyrmions:
    • Introduction to Skyrmions and their dynamics:
    • N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotech 8, 899–911 (2013). [PDF]
    • A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotech 8, 152–156 (2013). [PDF]
    • J. Iwasaki, M. Mochizuki & N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nat Commun 4, 1463 (2013).[PDF]
    • Skyrmion collision:
    • F. Zheng, N. S. Kiselev, L. Yang, V. M. Kuchkin, F. N. Rybakov, S. Blügel, and R. E. Dunin-Borkowski, Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet, Nat. Phys. 18, 863 (2022). [PDF]
    • A. A. Kovalev and S. Sandhoefner, Skyrmions and antiskyrmions in quasi-two-dimensional magnets, Frontiers in Physics 6, 98 (2018). [PDF]
    • M. Á. Halász and R. D. Amado, Skyrmion–anti-skyrmion annihilation with ω mesons, Phys. Rev. D 63, 054020 (2001). [PDF]

Classical micromagnetics research projects: Magnon laser

References

  • A. Roldan-Molina, A. S. Nunez, Magnonic Black Holes, Phys. Rev. Lett. 118, 061301 (2017). [PDF]
  • R. J. Doornenbal, A. Roldán-Molina, A. S. Nunez, and R. A. Duine, Spin-wave amplification and lasing driven by inhomogeneous spin-transfer torques, Phys. Rev. Lett. 122, 037203 (2019). [PDF]
  • K. Nakayama, K. Kasahara, T. Inada, and S. Tomita, Resonant amplification of spin waves with analogue black-hole horizons, Phys. Rev. Applied 22, 064086 (2024). [PDF]