Project 5
Propagation of Quantum Wave Packets in One and Two Dimensions
Introduction
This project explores tunneling of quantum wave packets in one dimension through a single potential barrier or a double barrier structure where resonant tunneling can be observed at special energies. In quasi-one-dimensional wire with the spin-orbit coupling one can observe spin precession and spin decoherence studied in current research on spintronics [1].
Part I for both PHYS460 and PHYS660 students: Quantum tunneling of spinless wave packets
By numerically solving the time-dependent Schrödinger equation
via the Crank-Nicholson algorithm for partial-differential equations in one spatial dimension, study reflection and transmission of a quantum wave packet from a barrier for which the potential energy is greater than the kinetic energy of the incident wave packet. For computer simulation the units should be chosen as and , and your discrete time and space grid should be defined using:
.
Take the incident wave packet to be of the form
with parameters
; \ x_0=0.3 </math>.
Let the height of the potential barrier be , the center of the wave packet is at and the barrier itself itself starts at . Plot the time evolution of the wave packet for .
Part II for PHYS660 students only: Spin dynamics of spin-polarized wave packet in Rashba quantum wires
References
- [1] D. D. Awschalom and M. E. Flatté, Challenges for semiconductor spintronics, Nature Physics 3, 153 (2007).
- [2] B. K. Nikolić, L. P. Zarbo, and S. Welack, Transverse spin-orbit force in the spin Hall effect in ballistic quantum wires, Phys. Rev. B 72, 075335 (2005).[PDF]
- [3] B. K. Nikolić, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24, page 814-866 in Volume I of The Oxford Handbook of Nanoscience and Technology: Frontiers and Advances, edited by A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010); also available as arXiv:0907.4122.
- [4] S. A. Crooker and D. L. Smith, Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields, Phys. Rev. Lett. 94, 236601 (2005). [PDF]