Conductance of topological insulators built from graphene nanoribbons: Difference between revisions

From phys824
Jump to navigationJump to search
(Created page with "zgnr_adatoms.py <pre> from math import sqrt import random import itertools as it import tinyarray as ta import numpy as np import matplotlib.pyplot as plt import kwant class...")
 
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
zgnr_adatoms.py
KWANT script below describes two-terminal device where central region of zigzag graphene nanoribbon is covered with randomly distributed In adatoms:
 
<pre>
<pre>
from math import sqrt
from math import sqrt
Line 131: Line 132:
         sys.attach_lead(lead)
         sys.attach_lead(lead)
     return sys
     return sys
def plot_bands(sys, params):
    fsys = sys.finalized()
    fig, (ax1) = plt.subplots(1, 1)
    ax1.set_title('left lead band structure')
    ax1.set_xlabel('$k$', size=20)
    ax1.set_ylabel('$E$', size=20)
    kwant.plotter.bands(fsys.leads[0], ax=ax1, args=(params,))
    fig.tight_layout()
    plt.show()


def plot_ldos(sys, Es, params):
def plot_ldos(sys, Es, params):
Line 163: Line 154:


if __name__ == '__main__':
if __name__ == '__main__':
#    params = dict(gamma=1., ep=0, mu=0.1, V_I=0.007, V_R=0.0165)  # Au adatoms
#    params = dict(gamma=1., ep=0, mu=0., V_I=0.017, V_R=0)        # Tl adatoms
#    params = dict(gamma=1., ep=0, mu=0., V_I=0.017, V_R=0)        # Tl adatoms
     params = dict(gamma=1., ep=0, mu=0, V_I=0.0032, V_R=0)        # In adatoms
     params = dict(gamma=1., ep=0, mu=0, V_I=0.0032, V_R=0)        # In adatoms

Latest revision as of 11:24, 7 December 2016

KWANT script below describes two-terminal device where central region of zigzag graphene nanoribbon is covered with randomly distributed In adatoms:

from math import sqrt
import random
import itertools as it
import tinyarray as ta
import numpy as np
import matplotlib.pyplot as plt
import kwant

class Honeycomb(kwant.lattice.Polyatomic):
    """Honeycomb lattice with methods for dealing with hexagons"""

    def __init__(self, name=''):
        prim_vecs = [[0.5, sqrt(3)/2], [1, 0]]  # bravais lattice vectors
        # offset the lattice so that it is symmetric around x and y axes
        basis_vecs = [[-0.5, -1/sqrt(12)], [-0.5, 1/sqrt(12)]]
        super(Honeycomb, self).__init__(prim_vecs, basis_vecs, name)
        self.a, self.b = self.sublattices

    def hexagon(self, tag):
        """ Get sites belonging to hexagon with the given tag.
            Returns sites in counter-clockwise order starting
            from the lower-left site.
        """
        tag = ta.array(tag)
        #         a-sites b-sites
        deltas = [(0, 0), (0, 0),
                  (1, 0), (0, 1),
                  (0, 1), (-1, 1)]
        lats = it.cycle(self.sublattices)
        return (lat(*(tag + delta)) for lat, delta in zip(lats, deltas))

    def hexagon_neighbors(self, tag, n=1):
        """ Get n'th nearest neighbor hoppings within the hexagon with
            the given tag.
        """
        hex_sites = list(self.hexagon(tag))
        return ((hex_sites[(i+n)%6], hex_sites[i%6]) for i in range(6))

def random_placement(builder, lattice, density):
    """ Randomly selects hexagon tags where adatoms can be placed.
        This avoids the edge case where adatoms would otherwise
        be placed on incomplete hexagons at the system boundaries.
    """
    assert 0 <= density <= 1
    system_sites = builder.sites()

    def hexagon_in_system(tag):
        return all(site in system_sites for site in lattice.hexagon(tag))

    # get set of tags for sites in system (i.e. tags from only one sublattice)
    system_tags = (s.tag for s in system_sites if s.family == lattice.a)
    # only allow tags which have complete hexagons in the system
    valid_tags = list(filter(hexagon_in_system, system_tags))
    N = int(density * len(valid_tags))
    total_hexagons=len(valid_tags)
    valuef=random.sample(valid_tags, N)
    return valuef

def ribbon(W, L):
    def shape(pos):
        return (-L <= pos[0] <= L and -W <= pos[1] <= W)
    return shape

## Pauli matrices ##
sigma_0 = ta.array([[1, 0], [0, 1]])  # identity
sigma_x = ta.array([[0, 1], [1, 0]])
sigma_y = ta.array([[0, -1j], [1j, 0]])
sigma_z = ta.array([[1, 0], [0, -1]])

## Hamiltonian value functions ##

def onsite_potential(site, params):
    return params['ep'] * sigma_0

def potential_shift(site, params):
    return params['mu'] * sigma_0

def kinetic(site_i, site_j, params):
    return -params['gamma'] * sigma_0

def rashba(site_i, site_j, params):
    d_ij = site_j.pos - site_i.pos
    rashba = 1j * params['V_R'] * (sigma_x * d_ij[1] - sigma_y * d_ij[0])
    return rashba + kinetic(site_i, site_j, params)

def spin_orbit(site_i, site_j, params):
    so = 1j * params['V_I'] * sigma_z
    return so

lat = Honeycomb()
pv1, pv2 = lat.prim_vecs
ysym = kwant.TranslationalSymmetry(pv2 - 2*pv1)  # lattice symmetry in -y direction
xsym = kwant.TranslationalSymmetry(-pv2)  # lattice symmetry in -x direction

# adatom lattice, for visualization only
adatom_lat = kwant.lattice.Monatomic(lat.prim_vecs, name='adatom')

def site_size(s):                                          
    return 0.25 if s.family in lat.sublattices else 0.35

def site_color(s): 
    return '#000000' if s.family in lat.sublattices else '#808080'

def create_lead_h(W, symmetry, axis=(0, 0)):
    lead = kwant.Builder(symmetry)
    lead[lat.wire(axis, W)] = 0. * sigma_0
    lead[lat.neighbors(1)] = kinetic
    return lead

def create_ribbon(W, L, adatom_density=0.2, show_adatoms=False):
    ## scattering region ##
    sys = kwant.Builder()
    sys[lat.shape(ribbon(W, L), (0, 0))] = onsite_potential
    sys[lat.neighbors(1)] = kinetic

    adatoms = random_placement(sys, lat, adatom_density)

    sys[(lat.hexagon(a) for a in adatoms)] = potential_shift
    sys[(lat.hexagon_neighbors(a, 1) for a in adatoms)] = rashba
    sys[(lat.hexagon_neighbors(a, 2) for a in adatoms)] = spin_orbit
    if show_adatoms:
        # no hoppings are added so these won't affect the dynamics; purely cosmetic
        sys[(adatom_lat(*a) for a in adatoms)] = 0

    ## leads ##
    leads = [create_lead_h(W, xsym)]
    leads += [lead.reversed() for lead in leads]  # right lead
    for lead in leads:
        sys.attach_lead(lead)
    return sys

def plot_ldos(sys, Es, params):
    fsys = sys.finalized()
    ldos = kwant.ldos(fsys, energy=Es, args=(params,))
    ldos = ldos[::2] + ldos[1::2] # sum spins
    kwant.plotter.map(fsys, ldos, vmax=0.1)

def plot_conductance(sys, energies,lead_i,lead_j, params):
    fsys = sys.finalized()
    data = []

    for energy in energies:
        smatrix = kwant.smatrix(fsys, energy, args=(params,))
        data.append(smatrix.transmission(lead_i,lead_j))

    plt.figure()
    plt.plot(energies, data)
    plt.xlabel("energy (t)")
    plt.ylabel("conductance (e^2/h)")
    plt.show()

if __name__ == '__main__':
#    params = dict(gamma=1., ep=0, mu=0., V_I=0.017, V_R=0)        # Tl adatoms
    params = dict(gamma=1., ep=0, mu=0, V_I=0.0032, V_R=0)         # In adatoms

    W=15
    L=30
    adatom_density=0.3

    sys = create_ribbon(W, L, adatom_density, show_adatoms=True)
    kwant.plot(sys, site_color=site_color, site_size=site_size)

    sys = create_ribbon(W, L, adatom_density, show_adatoms=False)
    plot_ldos(sys, 1e-5, params)
    
    Es = np.linspace(-1, 1, 100)
    plot_conductance(sys, Es, 1, 0, params)