|
|
Line 29: |
Line 29: |
| ! <h2 style="margin:0;background-color:#cef2e0;font-size:120%;font-weight:bold;border:1px solid #a3bfb1;text-align:left;color:#000;padding:0.2em 0.4em;"> Course Topics</h2> | | ! <h2 style="margin:0;background-color:#cef2e0;font-size:120%;font-weight:bold;border:1px solid #a3bfb1;text-align:left;color:#000;padding:0.2em 0.4em;"> Course Topics</h2> |
| |- | | |- |
| |style="color:#000"|[[Image:Nanoflyer.png|left|400px]] The course provides a hands-on experience for graduate students in sciences (physics, chemistry) and engineering (electrical, chemical, materials), as well as advanced undergraduates, to analyze electronic structure and transport properties of basic classes of carbon, semiconductor, and magnetic nanostructures explored at the current research frontiers. | | |style="color:#000"|[[Image:she_ishe.jpg|left|400px]] The course provides a hands-on experience for graduate students in sciences (physics, chemistry) and engineering (electrical, chemical, materials), as well as advanced undergraduates, to analyze electronic structure and transport properties of basic classes of carbon, semiconductor, and magnetic nanostructures explored at the current research frontiers. |
| |- | | |- |
| |style="color:#000"|{{Course Topics}} | | |style="color:#000"|{{Course Topics}} |
Revision as of 20:52, 29 August 2016
PHYS 824: Introduction to Nanophysics
|
|
|
Course Topics
|
The course provides a hands-on experience for graduate students in sciences (physics, chemistry) and engineering (electrical, chemical, materials), as well as advanced undergraduates, to analyze electronic structure and transport properties of basic classes of carbon, semiconductor, and magnetic nanostructures explored at the current research frontiers.
|
- Nanostructures in equilibrium: electronic structure of graphene and other two-dimensional materials, carbon nanotubes, topological insulators, magnetic multilayers.
- Nanostructure out of equilibrium: quantum transport effects, such as conductance quantization, signatures of quantum interference in conductance, spin-dependent tunneling, spin and quantum Hall effects, spin torque, I-V curves.
- Theoretical techniques: semi-empirical tight-binding models, density functional theory (DFT) for first-principles modeling, Landauer-Büttiker scattering formalism, nonequilibrium Green's functions (NEGF), NEGF+DFT techniques.
- Experimental techniques: scanning tunneling and atomic force microscopy.
- Applications: nanoelectronics, spintronics, thermoelectrics.
|
|
News
|
- Final Project is posted and due on Friday 12/16 as poster presentation in Sharp Lab 225 at 2:00PM.
|
Lecture in Progress
|
- Application of Landauer-Büttiker formula to quantum interference effects in electronic transport
|
Quick Links
|
|
Course Motto
|
- In teaching, writing, and research, there is no greater clarifier than a well-chosen example.
- Formalism should not be introduced for its own sake, but only when it is needed for some particular problem.
- Physics comes in two parts: the precise mathematical formulation of the laws, and the conceptual interpretation of the mathematics. However, if words of conceptual interpretation actually convey the wrong meaning of the mathematics, they must be replaced by more accurate words. (W. J. Mullin)
|
|
ACKNOWLEDGMENT: Portion of the course material is based upon work supported by the National Science Foundation under Grants No. ECCS 0725566 and ECCS 1202069. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.
Wiki Getting Started
Consult User's Guide for information on using the wiki software.