Spin Hall effect in four terminal devices
From phys824
KWANT script describes four-terminal graphene device, with gold adatoms in the central square, which generates spin Hall current in the transverse leads as a response to injected longitudinal charge current . The script output is the spin Hall angle defined as <maht> \theta_\mathrm{SH} = I^S/I </math>.
from math import sqrt
import random
import itertools as it
import tinyarray as ta
import numpy as np
import matplotlib.pyplot as plt
import kwant
class Honeycomb(kwant.lattice.Polyatomic):
"""Honeycomb lattice with methods for dealing with hexagons"""
def __init__(self, name=''):
prim_vecs = [[0.5, sqrt(3)/2], [1, 0]] # bravais lattice vectors
# offset the lattice so that it is symmetric around x and y axes
basis_vecs = [[-0.5, -1/sqrt(12)], [-0.5, 1/sqrt(12)]]
super(Honeycomb, self).__init__(prim_vecs, basis_vecs, name)
self.a, self.b = self.sublattices
def hexagon(self, tag):
""" Get sites belonging to hexagon with the given tag.
Returns sites in counter-clockwise order starting
from the lower-left site.
"""
tag = ta.array(tag)
# a-sites b-sites
deltas = [(0, 0), (0, 0),
(1, 0), (0, 1),
(0, 1), (-1, 1)]
lats = it.cycle(self.sublattices)
return (lat(*(tag + delta)) for lat, delta in zip(lats, deltas))
def hexagon_neighbors(self, tag, n=1):
""" Get n'th nearest neighbor hoppings within the hexagon with
the given tag.
"""
hex_sites = list(self.hexagon(tag))
return ((hex_sites[(i+n)%6], hex_sites[i%6]) for i in range(6))
def random_placement(builder, lattice, density):
""" Randomly selects hexagon tags where adatoms can be placed.
This avoids the edge case where adatoms would otherwise
be placed on incomplete hexagons at the system boundaries.
"""
assert 0 <= density <= 1
system_sites = builder.sites()
def hexagon_in_system(tag):
return all(site in system_sites for site in lattice.hexagon(tag))
# get set of tags for sites in system (i.e. tags from only one sublattice)
system_tags = (s.tag for s in system_sites if s.family == lattice.a)
# only allow tags which have complete hexagons in the system
valid_tags = list(filter(hexagon_in_system, system_tags))
N = int(density * len(valid_tags))
total_hexagons=len(valid_tags)
valuef=random.sample(valid_tags, N)
return valuef
def cross(W, L):
def shape(pos):
return ((-W <= pos[0] <= W and -L <= pos[1] <= L) or # vertical
(-W <= pos[1] <= W and -L <= pos[0] <= L)) # horizontal
return shape
## Pauli matrices ##
sigma_0 = ta.array([[1, 0], [0, 1]]) # identity
sigma_x = ta.array([[0, 1], [1, 0]])
sigma_y = ta.array([[0, -1j], [1j, 0]])
sigma_z = ta.array([[1, 0], [0, -1]])
## Hamiltonian value functions ##
def onsite_potential(site, params):
return params['ep'] * sigma_0
def potential_shift(site, params):
return params['mu'] * sigma_0
def kinetic(site_i, site_j, params):
return -params['gamma'] * sigma_0
def rashba(site_i, site_j, params):
d_ij = site_j.pos - site_i.pos
rashba = 1j * params['V_R'] * (sigma_x * d_ij[1] - sigma_y * d_ij[0])
return rashba + kinetic(site_i, site_j, params)
def spin_orbit(site_i, site_j, params):
so = (1j/3.) * params['V_I'] * sigma_z
return so
lat = Honeycomb()
pv1, pv2 = lat.prim_vecs
ysym = kwant.TranslationalSymmetry(pv2 - 2*pv1) # lattice symmetry in -y direction
xsym = kwant.TranslationalSymmetry(-pv2) # lattice symmetry in -x direction
# adatom lattice, for visualization only
adatom_lat = kwant.lattice.Monatomic(lat.prim_vecs, name='adatom')
def site_size(s):
return 0.25 if s.family in lat.sublattices else 0.35
def site_color(s):
return '#000000' if s.family in lat.sublattices else '#de962b'
def create_lead_h(W, symmetry, axis=(0, 0)):
lead = kwant.Builder(symmetry)
lead[lat.wire(axis, W)] = 0. * sigma_0
lead[lat.neighbors(1)] = kinetic
return lead
def create_lead_v(L,W, symmetry):
axis=(0, 0)
lead = kwant.Builder(symmetry)
lead[lat.wire(axis, W)] = 0. * sigma_0
lead[lat.neighbors(1)] = kinetic
return lead
def create_hall_cross(W, L, adatom_density=0.2, show_adatoms=False):
## scattering region ##
sys = kwant.Builder()
sys[lat.shape(cross(W, L), (0, 0))] = onsite_potential
sys[lat.neighbors(1)] = kinetic
adatoms = random_placement(sys, lat, adatom_density)
sys[(lat.hexagon(a) for a in adatoms)] = potential_shift
sys[(lat.hexagon_neighbors(a, 1) for a in adatoms)] = rashba
sys[(lat.hexagon_neighbors(a, 2) for a in adatoms)] = spin_orbit
if show_adatoms:
# no hoppings are added so these won't affect the dynamics; purely cosmetic
sys[(adatom_lat(*a) for a in adatoms)] = 0
## leads ##
leads = [create_lead_h(W, xsym)]
leads += [create_lead_v(L,W, ysym)]
leads += [lead.reversed() for lead in leads] # right and bottom leads
for lead in leads:
sys.attach_lead(lead)
return sys
def plot_bands(sys, params):
fsys = sys.finalized()
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.set_title('left lead band structure')
ax2.set_title('top lead band structure')
for ax in (ax1, ax2):
ax.set_xlabel('$k$', size=20)
ax.set_ylabel('$E$', size=20)
kwant.plotter.bands(fsys.leads[0], ax=ax1, args=(params,))
kwant.plotter.bands(fsys.leads[1], ax=ax2, args=(params,))
fig.tight_layout()
plt.show()
def plot_ldos(sys, Es, params):
fsys = sys.finalized()
ldos = kwant.ldos(fsys, energy=Es, args=(params,))
ldos = ldos[::2] + ldos[1::2] # sum spins
kwant.plotter.map(fsys, ldos, vmax=0.1)
def plot_conductance(sys, energies,lead_i,lead_j, params):
fsys = sys.finalized()
data = []
for energy in energies:
smatrix = kwant.smatrix(fsys, energy, args=(params,))
data.append(smatrix.transmission(lead_i,lead_j))
plt.figure()
plt.plot(energies, data)
plt.xlabel("energy (t)")
plt.ylabel("conductance (e^2/h)")
plt.show()
if __name__ == '__main__':
params = dict(gamma=1., ep=0, mu=0.1, V_I=0.007, V_R=0.0165) # Au adatoms
W=16
L=32
adatom_density=0.15
sys = create_hall_cross(W, L, adatom_density, show_adatoms=True)
kwant.plot(sys, site_color=site_color, site_size=site_size)
plot_bands(sys, params)
sys = create_hall_cross(W, L, adatom_density, show_adatoms=False)
plot_ldos(sys, 1e-5, params)
Es = np.linspace(-0.1, 0.1, 100)
plot_conductance(sys, Es, 1, 0, params) # T01
plot_conductance(sys, Es, 2, 0, params) # T02