References

From phys824
Jump to navigationJump to search

Quantum Mechanics

  • C. Cohen-Tannoudji, B. Diu, and F. Laloe: Quantum Mechanics, 2 Volume Set (Wiley, Hoboken, 2006).

Statistical Mechanics

  • M. Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007).

Solid State Physics

  • G. Grosso and G. Pastori Parravicini, Solid State Physics (Academic Press, San Diego, 2013).
  • E. Canadell, M.-L. Doublet, and C. Iung, Orbital Approach to the Electronic Structure of Solids (Oxford University Press, Oxford, 2012).

Transport in semiconductor nanostructures

  • C. W. J. Beenakker and H. van Houten, Quantum transport in semiconductor nanostructures, arXiv:cond-mat/0412664 [PDF]
  • H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Coulomb-blockade oscillations in semiconductor nanostructures, arXiv:cond-mat/0508454 [PDF]
  • I. Knezevic, E. B. Ramayya, D. Vasileska, and S. M. Goodnick, Diffusive transport in quasi-2D and quasi-1D electron systems, Journal of Computational and Theoretical Nanoscience 6, 1725 (2009). [PDF]

Spintronics

Semiconductor spintronics

  • J. Fabian, A. Matos-Abiaguea, C. Ertlera, P. Stano, and I. Žutic, Semiconductor Spintronics, Acta Physica Slovaca 57, 565 (2007) [PDF].
  • B. K. Nikolic, L. P. Zarbo, and S. Souma, Spin currents in semiconductor nanostructures: A nonequilibrium Green function approach, Chapter 24 in The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances, Vol. I: Basic Aspects, edited by A. V. Narlikar and Y. Y. Fu. (Oxford University Press, Oxford, 2010). [PDF]

Metal spintronics

  • D. C. Ralph and M. A. Stiles, Tutorial on spin transfer torque, Journal of Magnetism and Magnetic Materials 320, 1190 (2008). [PDF] (the arXiv version linked here is corrected and contains additional material compared to officially published JMMM article).

Topological Insulators

  • M. Z. Hasan, C. L. Kane, COLLOQUIUM: Topological insulators, Rev.Mod.Phys. 82,3045 (2010). [PDF]

Advanced NEGF Computational Algorithms

Self-energies of semi-infinite electrodes

  • J. Velev and W. Butler, On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis, J. Phys.: Condens. Matter 16, R637 (2004). [PDF]
  • H. H. B. Sørensen, P. C. Hansen, D. E. Petersen and S. Skelboe, Krylov subspace method for evaluating the self-energy matrices in electron transport calculations, Phys. Rev. B 77, 155301 (2008). [PDF]
  • I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78, 035407 (2008). [PDF]

k-point sampling

  • M.-H. Liu and K. Richter, Efficient quantum transport simulation for bulk graphene heterojunctions, Phys. Rev. B 86, 115455 (2012). [PDF].

Recursive algorithms

Two-terminal devices

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
  • A. Lassl, P. Schlagheck, and K. Richter, Effects of short-range interactions on transport through quantum point contacts: A numerical approach, Phys. Rev. B 75, 045346 (2007). [PDF]
  • P. S. Drouvelis, P. Schmelcher, and P. Bastian, Parallel implementation of the recursive Green’s function method, J. Comp. Phys. 215, 741 (2006). [PDF]

Multiterminal devices

  • M. Wimmer and K. Richter, Optimal block-tridiagonalization of matrices for coherent charge transport, J. Comp. Phys. 228, 8548 (2009). [PDF]
  • K. Kazymyrenko and X. Waintal, Knitting algorithm for calculating Green functions in quantum systems, Phys. Rev. B 77, 115119 (2008). [PDF]

NEGF + DFT

  • D. A. Areshkin and B. K. Nikolic, Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing large number of atoms, Phys. Rev. B 81, 155450 (2010). [PDF].
  • A. Rocha, Theoretical and Computational Aspects of Electronic Transport at the Nanoscale (PhD thesis for SMEAGOL). [PDF]
  • M. Koentopp, Density Functional Calculations of Nanoscale Conductance (PhD thesis). [PDF]
  • S Kurth and G Stefanucci, Transport through correlated systems with density functional theory, J. Phys.: Condens. Matter {\bf 29}, 413002 (2017). [PDF]