Conductance of annulene molecule between two graphene nanoribbon electrodes
From phys824
Jump to navigationJump to search
STEP 1: Relax the coordinates
from gpaw import * from ase import * from gpaw.transport.calculator import Transport from ase.io import read system = read('zgnr-annulene.xyz') # reading input file; *.traj format is also accepted system.cell = [28.0, 11.0, 44.9305] # assigning system cell size system.pbc=(1,1,1) # periodice along x, y and z #system.center() # centering in the box #view(system) # setting up the calculation calc = GPAW(h=0.2, # real-space grid spacing xc='PBE', # assigning exchange-correlation type basis='dzp', # assigning functional type kpts=(1,2,1), # assigning k-points occupations=FermiDirac(0.2, maxiter=2000), # 1st argument kBT, 2nd argument number of iterations mode='lcao', # using LCAO mode txt='zgnr_an_zgnr.txt', # output log file maxiter=300, # number of max scf-iterations poissonsolver=PoissonSolver(nn=2), # using Poisson solver mixer=Mixer(0.01, 5, weight=100.0)) # using pulley mixing # Set calculator system.set_calculator(calc) constraint=constraints.FixAtoms(mask=[i<18 or i >271 for i in range(290)]) # constrained to keep atoms fixed system.set_constraint(constraint) relax=optimize.BFGS(system,trajectory='zgnr_annulene_opt.traj') # assigning optimization solver type relax.run(fmax=0.03) # max force tolerance
STEP 2: Compute zero-bias transmission function using atomic coordinates from STEP 1
from gpaw import * from ase import * from gpaw.transport.calculator import Transport import numpy as np from ase.visualize import view name = 'zgnr' # Name of the output file # reading the input geometry in *.traj format; *.xyz format is also accepted system = io.read('zgnr_annulene_opt.traj') nn = np.argsort(system.get_positions()[:,2]) system = system[nn] # storing coordinates of the geometry to system R = system.get_positions() # storing indices of position Luc = R[36,2]-R[0,2] # computing length of electrode (which contains 36 atoms) along transport direction # Extend the scattering region left = system[:36].copy() # copying L-electrode to left right = system[-36:].copy() # copying R-electrode to right left.translate([0,0,-Luc]) # shifting coordinates to the left right.translate([0,0,Luc]) # shifting coordinates to the right C = system.cell # storing original cell size C[2,2] += 2*Luc # extend the cell size system = left + system + right # coordinates of the extended cell system.set_cell(C) system.set_pbc([1,1,1]) # repeating cell along 3-orthogonal coordinates; [1, 1, 1] means NO repetition system.center() # centering the cell into the box view(system) write('system.traj',system) # writing the extended cell lead_cell = np.diag(system.cell) # original length of the electrode lead_cell[2]=2*Luc # defining extended electrodes length pl_atoms1=range(72) # assigning atoms of the L-electrode pl_atoms2=range(290,362) # assigning atoms of the R-electrode pl_cell1= lead_cell # assigning L-elec size pl_cell2= lead_cell # assigning R-elec size basis= 'dz(dzp)' # assigning functional to be used # Defining the parameters/arguments to be used in transport calculation t = Transport( h=0.2, # grid space along x,y and z xc='PBE', # exchange functional basis=basis, # basis set kpts=(1, 1, 1), # No of k-points for the electrodes occupations=FermiDirac(0.1), # room temperature kBT = 0.025 eV mode='lcao', # using LCAO mode txt=name+'.txt', # output file poissonsolver=PoissonSolver(nn=2), mixer=Mixer(0.1, 5, weight=100.0), # using pulley mixing pl_atoms=[pl_atoms1, pl_atoms2], # setting up two electrodes pl_cells=[pl_cell1, pl_cell2], # setting up electrodes cells pl_kpts=[1, 1, 15], # k-points for the scatting region edge_atoms=[[0 , 71],[0 , 361]], # Defining edge atoms in the form [[L_i, R_f][C_i, C_f]] non_sc = True, # True = Normal DFT (default), False = NEGF-DFT mol_atoms=range(72, 290), # molecule atoms in the scattering part plot_energy_range = [-0.1,0.1], # min and max energy plot_energy_point_num = 201) # No of energy points system.set_calculator(t) t.negf_prepare() t.non_sc_analysis() # Calculating T(E=0)
STEP 3: Extract transmission function from the output file obtained in STEP 2
- python transmission.py '0*' > transmission.dat
from gpaw.transport.analysor import Transport_Plotter import numpy as np import sys from pylab import * if '*' in sys.argv[1]: fd=0 bias_step = int(sys.argv[1].split('*')[0]) else: fd=1 bias_step = int(sys.argv[1]) plotter=Transport_Plotter(fd) plotter.plot_setup() tc = plotter.tc(bias_step, s=0) #tc2 = plotter.tc(bias_step, s=1) ee=np.linspace(-1,1,201) #plot(ee, tc, 'b-o') #plot(ee, tc, 'r-') #plot(ee, tc2, 'b-') for n in range(201): print ee[n], tc[n] #, tc2[n]