Conductance of single-molecule
From phys824
Jump to navigationJump to search
Using Tight Binding Method
import numpy as np
from ase.transport.calculators import TransportCalculator
import pylab
# onsite energies 0.0, nearest neighbor hopping -1.0, and
# second nearest neighbor hopping 0.2
H_lead = np.array([[ 0. , -1. , 0.2, 0. ],
[-1. , 0. , -1. , 0.2],
[ 0.2, -1. , 0. , -1. ],
[ 0. , 0.2, -1. , 0. ]])
H_scat = np.zeros((6, 6))
#Principal layers on either side of S
H_scat[:2, :2] = H_scat[-2:, -2:] = H_lead[:2, :2]
#Scatering region (hydrogen molecule) - onsite 0.0 and hopping -0.8
H_scat[2:4, 2:4] = [[0.0, -0.8], [-0.8, 0.0]]
#coupling to the leads - nearest neighbor only
H_scat[1, 2] = H_scat[2, 1] = H_scat[3, 4] = H_scat[4, 3] = 0.2
tcalc = TransportCalculator(h=H_scat, # Scattering Hamiltonian
h1=H_lead, # Lead 1 (left)
h2=H_lead, # Lead 2 (right)
energies=np.arange(-3, 3, 0.02))
T_e = tcalc.get_transmission()
pylab.plot(tcalc.energies, T_e)
pylab.title('Transmission function')
pylab.show()
tcalc.set(pdos=[2, 3])
pdos_ne = tcalc.get_pdos()
pylab.plot(tcalc.energies, pdos_ne[0], ':')
pylab.plot(tcalc.energies, pdos_ne[1], '--')
pylab.title('Projected density of states')
pylab.show()
h_rot, s_rot, eps_n, vec_nn = tcalc.subdiagonalize_bfs([2, 3])
tcalc.set(h=h_rot, s=s_rot) # Set the rotated matrices
for n in range(2):
print "eigenvalue, eigenvector:", eps_n[n],',', vec_nn[:, n]
pdos_rot_ne = tcalc.get_pdos()
pylab.plot(tcalc.energies, pdos_rot_ne[0], ':')
pylab.plot(tcalc.energies, pdos_rot_ne[1], '--')
pylab.title('Projected density of states (rotated)')
pylab.show()
h_cut, s_cut = tcalc.cutcoupling_bfs([2])
tcalc.set(h=h_cut, s=s_cut)
T_cut_bonding_e = tcalc.get_transmission()
pylab.plot(tcalc.energies, T_cut_bonding_e)
pylab.title('Transmission (bonding orbital cut)')
pylab.show()