Key equations from quantum statistical tools

From phys824
Jump to navigationJump to search

Equilibrium

Expectation values

A=Tr[ρ^eqA^]

Density matrix of fermions in equilibrium

  • using spectral decomposition:

ρ^eq=αf(Eα)|EαEα|=f(H^μI^)

  • using Green functions:

ρ^eq=1πdEImGrf(E)

  • Fermi-Dirac distribution function: f(E)=1/[exp((Eμ)/kBT)+1]
  • Hamiltonian and its spectral decomposition: H^=αEα|EαEα|
  • function of Hamiltonian: F(H^)=αF(Eα)|EαEα|
  • Green operators:

G^r,a(E)=[EI^H^±iη]1

ImG^r=(G^rG^a)/2i

Charge density

  • charge density operator: n^(𝐫)=|𝐫𝐫|
  • expectation value: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=𝐫|ρ^eq|𝐫 (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition of total DOS: g(E)=αδ(EEα) (with possible normalization factors like 2s/V)
  • definition of LDOS: g(E)=d3𝐫g(𝐫,E)
  • LDOS using wavefunctions: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=α|Ψα(𝐫)|2f(Eα)=dE[α|Ψα(𝐫)|2δ(EEα)]f(E)=dEg(𝐫,E)f(E)
  • LDOS using Green functions:

g(𝐫,E)=1π𝐫|ImG^r(E)|𝐫

  • total DOS using Green functions:

g(E)=1πTr[G^r(E)]=1πd3𝐫𝐫|ImG^r(E)|𝐫

Nonequilibrium

Expectation values

A=Tr[ρ^neqA^]

  • Current operators: