Subband structure of carbon nanotubes
From phys824
Jump to navigationJump to search
Tools
Metallic (7,0) CNT using LCAO
- cnt7-0_lcao.py:
from gpaw import GPAW, FermiDirac
from ase import Atoms
from ase.io import read, write
from gpaw import GPAW, PoissonSolver, Mixer
from ase.structure import nanotube
# -------------------------------------------------------------
# Bulk configuration
# -------------------------------------------------------------
cnt = nanotube(7, 0, length=1, bond=1.4, symbol='C')
cnt.center()
write('cnt.traj', cnt)
# Make self-consistent calculation and save results
calc = GPAW(h=0.18,
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=(1,1,9),
occupations=FermiDirac(width=0.05, maxiter=2000),
mixer=Mixer(beta=0.010, nmaxold=8, weight=100.0),
poissonsolver=PoissonSolver(eps=1e-12),
txt='band_sc.txt')
cnt.set_calculator(calc)
cnt.get_potential_energy()
calc.write('band_sc.gpw')
# Calculate band structure along Gamma-X
from ase.dft.kpoints import ibz_points, get_bandpath
G = (0, 0, 0)
X = (0, 0, 0.5)
kpts, x, X = get_bandpath([G, X], cnt.cell, 60)
calc = GPAW('band_sc.gpw',
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=kpts,
txt='band_harris.txt',
fixdensity=True,
parallel={'domain': 1},
usesymm=None,
convergence={'bands': 'all'})
if calc.input_parameters['mode'] == 'lcao':
calc.scf.reset()
calc.get_potential_energy()
ef = calc.get_fermi_level()
calc.write('band_harris.gpw')
calc = GPAW('band_harris', txt=None)
import numpy as np
eps_skn = np.array([[calc.get_eigenvalues(k,s)
for k in range(60)]
for s in range(1)]) - ef
# Write the results to a file e.g. for plotting with gnuplot
f = open('bands.dat', 'w')
for n in range(66):
for k in range(60):
print >>f, k, eps_skn[0, k, n]
print >>f
Semiconducting (7,7) CNT using LCAO
- cnt7-7_lcao.py:
from gpaw import GPAW, FermiDirac
from ase import Atoms
from ase.io import read, write
from gpaw import GPAW, PoissonSolver, Mixer
from ase.structure import nanotube
# -------------------------------------------------------------
# Bulk configuration
# -------------------------------------------------------------
cnt = nanotube(7, 7, length=1, bond=1.4, symbol='C')
cnt.center()
write('cnt.traj', cnt)
# Make self-consistent calculation and save results
calc = GPAW(h=0.18,
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=(1,1,9),
occupations=FermiDirac(width=0.05, maxiter=2000),
mixer=Mixer(beta=0.010, nmaxold=8, weight=100.0),
poissonsolver=PoissonSolver(eps=1e-12),
txt='band_sc.txt')
cnt.set_calculator(calc)
cnt.get_potential_energy()
calc.write('band_sc.gpw')
# Calculate band structure along Gamma-X
from ase.dft.kpoints import ibz_points, get_bandpath
G = (0, 0, 0)
X = (0, 0, 0.5)
kpts, x, X = get_bandpath([G, X], cnt.cell, 60)
calc = GPAW('band_sc.gpw',
mode='lcao',
xc='PBE',
basis='szp(dzp)',
kpts=kpts,
txt='band_harris.txt',
fixdensity=True,
parallel={'domain': 1},
usesymm=None,
convergence={'bands': 'all'})
if calc.input_parameters['mode'] == 'lcao':
calc.scf.reset()
calc.get_potential_energy()
ef = calc.get_fermi_level()
calc.write('band_harris.gpw')
calc = GPAW('band_harris', txt=None)
import numpy as np
eps_skn = np.array([[calc.get_eigenvalues(k,s)
for k in range(60)]
for s in range(1)]) - ef
# Write the results to a file e.g. for plotting with gnuplot
f = open('bands.dat', 'w')
for n in range(66):
for k in range(60):
print >>f, k, eps_skn[0, k, n]
print >>f