Lectures: Difference between revisions
From phys660
Jump to navigationJump to search
Line 1: | Line 1: | ||
== Lecture 1: Computation as a tool for discovery in physics == | == Lecture 1: Computation as a tool for discovery in physics == | ||
*[[Media:computational_tools.pdf|PDF]] | *[[Media:computational_tools.pdf|PDF]] | ||
*[http://www-e.uni-magdeburg.de/mertens/publications/cise.pdf Computational complexity for physicists] | *[http://www-e.uni-magdeburg.de/mertens/publications/cise.pdf Computational complexity for physicists] | ||
Revision as of 23:23, 19 February 2012
Lecture 1: Computation as a tool for discovery in physics
Lecture 2: Numerical methods for ordinary differential equations
- C. Moler, Numerical Computing with Matlab (SIAM, Philadelphia, 2004).
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: Numerical Recipes: The Art of Scientific Computing (CUP, Cambridge, 2007).
Lecture 3: Introduction to deterministic chaos
- T. Tél and M. Gruiz, Chaotic Dynamics (CUP, Cambridge, 2006).
Lecture 4: Vibrational eigenmodes: From glasses to Fermi-Pasta-Ulam Problem
Vibrational eigenmodes
- P. B. Allen and J. Kelner, Evolution of a vibrational wave packet on a disordered chain, Am. J. Phys. 66, 497 (1998). [PDF]
- J. Fabian, Decay of localized vibrational states in glasses: A one-dimensional example, Phys. Rev. B 55, R3328 (1997). [PDF]
50th Anniversary of the Fermi-Pasta-Ulam Problem
- Focus issue of "Chaos": THE "FERMI-PASTA-ULAM" PROBLEM-THE FIRST 50 YEARS.
- S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem, Am. J. Phys. 76, 453 (2008). [PDF].
- Fermi-Pasta-Ulam nonlinear lattice oscillations, T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.