Lectures: Difference between revisions
From phys660
Jump to navigationJump to search
Line 18: | Line 18: | ||
===Vibrational eigenmodes=== | ===Vibrational eigenmodes=== | ||
* P. B. Allen and J. Kelner, ''Evolution of a vibrational wave packet on a disordered chain'', Am. J. Phys. '''66''', 497 (1998). [http://math.mit.edu/~kelner/Publications/Docs/KAAJP.pdf PDF] | * P. B. Allen and J. Kelner, ''Evolution of a vibrational wave packet on a disordered chain'', Am. J. Phys. '''66''', 497 (1998). [http://math.mit.edu/~kelner/Publications/Docs/KAAJP.pdf [PDF]] | ||
* J. Fabian, ''Decay of localized vibrational states in glasses: A one-dimensional example'', Phys. Rev. B '''55''', R3328 (1997). [http://link.aps.org/doi/10.1103/PhysRevB.55.R3328 PDF] | * J. Fabian, ''Decay of localized vibrational states in glasses: A one-dimensional example'', Phys. Rev. B '''55''', R3328 (1997). [http://link.aps.org/doi/10.1103/PhysRevB.55.R3328 [PDF]] | ||
===50th Anniversary of the Fermi-Pasta-Ulam Problem=== | ===50th Anniversary of the Fermi-Pasta-Ulam Problem=== |
Revision as of 21:42, 5 February 2012
Lecture 1: Computation as a tool for discovery in physics
Lecture 2: Numerical methods for ordinary differential equations
- C. Moler, Numerical Computing with Matlab (SIAM, Philadelphia, 2004).
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: Numerical Recipes: The Art of Scientific Computing (CUP, Cambridge, 2007).
Lecture 3: Introduction to deterministic chaos
- T. Tél and M. Gruiz, Chaotic Dynamics (CUP, Cambridge, 2006).
Lecture 4: Vibrational eigenmodes: From glasses to Fermi-Pasta-Ulam Problem
Vibrational eigenmodes
- P. B. Allen and J. Kelner, Evolution of a vibrational wave packet on a disordered chain, Am. J. Phys. 66, 497 (1998). [PDF]
- J. Fabian, Decay of localized vibrational states in glasses: A one-dimensional example, Phys. Rev. B 55, R3328 (1997). [PDF]
50th Anniversary of the Fermi-Pasta-Ulam Problem
- G. P. Berman and F. M. Izrailev, The Fermi-Pasta-Ulam problem: 50 years of progress, nlin.CD/0411062.
- P. Dauxois, M. Peyrard, and S. Ruffo, The Fermi-Pasta-Ulam "numerical experiment": history and pedagogical perspectives, nlin.PS/0501053.
- Focus issue of "Chaos": THE "FERMI-PASTA-ULAM" PROBLEM-THE FIRST 50 YEARS
- S. Flach, M. V. Ivanchenko, O. I. Kanakov, and K. G. Mishagin, Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem, Am. J. Phys. 76, 453 (2008). PDF.
- Fermi-Pasta-Ulam nonlinear lattice oscillations, T. Dauxois and S. Ruffo (2008), Scholarpedia, 3(8):5538.