|
|
(9 intermediate revisions by the same user not shown) |
Line 21: |
Line 21: |
| * function of Hamiltonian: <math> F(\hat{H}) = \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math> | | * function of Hamiltonian: <math> F(\hat{H}) = \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math> |
|
| |
|
| * Green operators: <math> G^{r,a} = [E-H \pm i\eta]^{-1} </math> | | * Green operators: |
| | |
| | <math> \hat{G}^{r,a}(E) = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math> |
| | |
| | <math> \mathrm{Im} \hat{G}^r = (\hat{G}^{r} - \hat{G}^a)/2i </math> |
|
| |
|
| ===Charge density=== | | ===Charge density=== |
Line 31: |
Line 35: |
| ===Density of states=== | | ===Density of states=== |
|
| |
|
| * definition: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>) | | * definition of total DOS: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>) |
| | |
| | * definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math> |
| | |
| | * LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(\mathbf{r},E) f(E) </math> |
| | |
| | * LDOS using Green functions: |
| | |
| | <math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> |
| | |
| | * total DOS using Green functions: |
|
| |
|
| * local density of states: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(r,E) f(E) </math>
| | <math> g(E) = -\frac{1}{\pi} \mathrm{Tr}[ \hat{G}^r(E)] = -\frac{1}{\pi} \int d^3 \mathbf{r} \, \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> |
|
| |
|
| ==Nonequilibrium== | | ==Nonequilibrium== |
|
| |
|
| *Expectation values:
| | ===Expectation values=== |
|
| |
|
| *Current operator:
| | <math> A = \mathrm{Tr}[\hat{\rho}_\mathrm{neq} \hat{A}] </math> |
|
| |
|
| *Spin torque operator: | | *Current operators: |
Latest revision as of 15:32, 27 September 2012
Equilibrium
Expectation values
Density matrix of fermions in equilibrium
- using spectral decomposition:
- Fermi-Dirac distribution function:
![{\displaystyle f(E)=1/[\exp((E-\mu )/k_{B}T)+1]}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/0042e1bba268303b9a4fbfc477c1b5adcea8be6f)
- Hamiltonian and its spectral decomposition:

- function of Hamiltonian:

Charge density
- charge density operator:

- expectation value:
(in some discrete representation these is just diagonal matrix element)
Density of states
- definition of total DOS:
(with possible normalization factors like
)
- definition of LDOS:

- LDOS using wavefunctions:
![{\displaystyle n(\mathbf {r} )=\mathrm {Tr} [{\hat {\rho }}_{\mathrm {eq} }|\mathbf {r} \rangle \langle \mathbf {r} |]=\sum _{\alpha }|\Psi _{\alpha }(\mathbf {r} )|^{2}f(E_{\alpha })=\int dE\left[\sum _{\alpha }|\Psi _{\alpha }(\mathbf {r} )|^{2}\delta (E-E_{\alpha })\right]f(E)=\int dE\,g(\mathbf {r} ,E)f(E)}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/2936de2e77327f4089b9e316053c48f293a681b0)
- LDOS using Green functions:
- total DOS using Green functions:
Nonequilibrium
Expectation values