Key equations from quantum statistical tools: Difference between revisions
From phys824
Jump to navigationJump to search
(Created page with "==Equilibrium== * Expectation values: * Density matrix of fermions in equilibrium: * Charge density: ==Nonequilibrium== *Expectation values: *Current operator: *Spin to...") |
|||
(39 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Equilibrium== | ==Equilibrium== | ||
===Expectation values=== | |||
<math> A = \mathrm{Tr}[\hat{\rho}_\mathrm{eq} \hat{A}] </math> | |||
* Charge density: | ===Density matrix of fermions in equilibrium=== | ||
*using spectral decomposition: | |||
<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math> | |||
*using Green functions: | |||
<math> \hat{\rho}_\mathrm{eq} = - \frac{1}{\pi} \int dE\, \mathrm{Im} G^r f(E) </math> | |||
* Fermi-Dirac distribution function: <math> f(E) = 1/[\exp((E-\mu)/k_BT)+1] </math> | |||
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math> | |||
* function of Hamiltonian: <math> F(\hat{H}) = \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math> | |||
* Green operators: | |||
<math> \hat{G}^{r,a}(E) = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math> | |||
<math> \mathrm{Im} \hat{G}^r = (\hat{G}^{r} - \hat{G}^a)/2i </math> | |||
===Charge density=== | |||
*charge density operator: <math> \hat{n}(\mathbf{r}) = |\mathbf{r} \rangle \langle \mathbf{r}| </math> | |||
*expectation value: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \langle \mathbf{r} | \hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle </math> (in some discrete representation these is just diagonal matrix element) | |||
===Density of states=== | |||
* definition of total DOS: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>) | |||
* definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math> | |||
* LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(\mathbf{r},E) f(E) </math> | |||
* LDOS using Green functions: | |||
<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> | |||
* total DOS using Green functions: | |||
<math> g(E) = -\frac{1}{\pi} \mathrm{Tr}[ \hat{G}^r(E)] = -\frac{1}{\pi} \int d^3 \mathbf{r} \, \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math> | |||
==Nonequilibrium== | ==Nonequilibrium== | ||
===Expectation values=== | |||
<math> A = \mathrm{Tr}[\hat{\rho}_\mathrm{neq} \hat{A}] </math> | |||
* | *Current operators: |
Latest revision as of 14:32, 27 September 2012
Equilibrium
Expectation values
Density matrix of fermions in equilibrium
- using spectral decomposition:
- using Green functions:
- Fermi-Dirac distribution function:
- Hamiltonian and its spectral decomposition:
- function of Hamiltonian:
- Green operators:
Charge density
- charge density operator:
- expectation value: (in some discrete representation these is just diagonal matrix element)
Density of states
- definition of total DOS: (with possible normalization factors like )
- definition of LDOS:
- LDOS using wavefunctions:
- LDOS using Green functions:
- total DOS using Green functions:
Nonequilibrium
Expectation values
- Current operators: