Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
(Created page with "==Equilibrium== * Expectation values: * Density matrix of fermions in equilibrium: * Charge density: ==Nonequilibrium== *Expectation values: *Current operator: *Spin to...")
 
 
(39 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Equilibrium==
==Equilibrium==


* Expectation values:
===Expectation values===


* Density matrix of fermions in equilibrium:
<math> A = \mathrm{Tr}[\hat{\rho}_\mathrm{eq} \hat{A}] </math>


* Charge density:
===Density matrix of fermions in equilibrium===
 
*using spectral decomposition:
 
<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math>
 
*using Green functions:
 
<math> \hat{\rho}_\mathrm{eq} = - \frac{1}{\pi} \int dE\, \mathrm{Im} G^r f(E) </math>
 
* Fermi-Dirac distribution function: <math> f(E) = 1/[\exp((E-\mu)/k_BT)+1] </math>
 
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
 
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
 
* Green operators:
 
<math> \hat{G}^{r,a}(E) = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math>
 
<math> \mathrm{Im} \hat{G}^r = (\hat{G}^{r} - \hat{G}^a)/2i </math>
 
===Charge density===
 
*charge density operator: <math> \hat{n}(\mathbf{r}) = |\mathbf{r} \rangle \langle \mathbf{r}| </math>
 
*expectation value: <math> n(\mathbf{r})  = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \langle \mathbf{r} | \hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle </math> (in some discrete representation these is just diagonal matrix element)
 
===Density of states===
 
* definition of total DOS: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>)
 
* definition of LDOS: <math> g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E) </math>
 
* LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\,  g(\mathbf{r},E) f(E) </math>
 
* LDOS using Green functions:
 
<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math>
 
* total DOS using Green functions:
 
<math> g(E) = -\frac{1}{\pi} \mathrm{Tr}[ \hat{G}^r(E)] = -\frac{1}{\pi} \int d^3 \mathbf{r} \, \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle  </math>


==Nonequilibrium==
==Nonequilibrium==


*Expectation values:
===Expectation values===


*Current operator:
<math> A = \mathrm{Tr}[\hat{\rho}_\mathrm{neq} \hat{A}] </math>


*Spin torque operator:
*Current operators:

Latest revision as of 14:32, 27 September 2012

Equilibrium

Expectation values

Density matrix of fermions in equilibrium

  • using spectral decomposition:

  • using Green functions:

  • Fermi-Dirac distribution function:
  • Hamiltonian and its spectral decomposition:
  • function of Hamiltonian:
  • Green operators:

Charge density

  • charge density operator:
  • expectation value: (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition of total DOS: (with possible normalization factors like )
  • definition of LDOS:
  • LDOS using wavefunctions:
  • LDOS using Green functions:

  • total DOS using Green functions:

Nonequilibrium

Expectation values

  • Current operators: