Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
 
(3 intermediate revisions by the same user not shown)
Line 21: Line 21:
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>


* Green operators: <math> \hat{G}^{r,a} = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math>
* Green operators:  
 
<math> \hat{G}^{r,a}(E) = [E\hat{I}-\hat{H} \pm i\eta]^{-1} </math>
 
<math> \mathrm{Im} \hat{G}^r = (\hat{G}^{r} - \hat{G}^a)/2i </math>


===Charge density===
===Charge density===
Line 40: Line 44:


<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math>
<math> g(\mathbf{r},E) = -\frac{1}{\pi} \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle </math>
* total DOS using Green functions:
<math> g(E) = -\frac{1}{\pi} \mathrm{Tr}[ \hat{G}^r(E)] = -\frac{1}{\pi} \int d^3 \mathbf{r} \, \langle \mathbf{r} |\mathrm{Im} \hat{G}^r(E) | \mathbf{r} \rangle  </math>


==Nonequilibrium==
==Nonequilibrium==


*Expectation values:
===Expectation values===
 
<math> A = \mathrm{Tr}[\hat{\rho}_\mathrm{neq} \hat{A}] </math>


*Current operator:
*Current operators:

Latest revision as of 14:32, 27 September 2012

Equilibrium

Expectation values

Density matrix of fermions in equilibrium

  • using spectral decomposition:

  • using Green functions:

  • Fermi-Dirac distribution function:
  • Hamiltonian and its spectral decomposition:
  • function of Hamiltonian:
  • Green operators:

Charge density

  • charge density operator:
  • expectation value: (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition of total DOS: (with possible normalization factors like )
  • definition of LDOS:
  • LDOS using wavefunctions:
  • LDOS using Green functions:

  • total DOS using Green functions:

Nonequilibrium

Expectation values

  • Current operators: