Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 31: Line 31:
===Density of states===
===Density of states===


* definition: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>)
* definition of total DOS: <math> g(E) = \sum_\alpha \delta(E-E_\alpha) </math> (with possible normalization factors like <math> 2_s/V </math>)


* local density of states: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\,  g(r,E) f(E) </math>
* definition of LDOS: g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E)
 
* LDOS using wavefunctions: <math> n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\,  g(r,E) f(E) </math>
 
* LDOS using


==Nonequilibrium==
==Nonequilibrium==

Revision as of 14:26, 27 September 2012

Equilibrium

Expectation values

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A = \mathrm{Tr}[\hat{\rho}_\mathrm{eq} \hat{A}] }

Density matrix of fermions in equilibrium

  • using spectral decomposition:

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})}

  • using Green functions:

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{\rho}_\mathrm{eq} = - \frac{1}{\pi} \int dE\, \mathrm{Im} G^r f(E) }

  • Fermi-Dirac distribution function: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(E) = 1/[\exp((E-\mu)/k_BT)+1] }
  • Hamiltonian and its spectral decomposition: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| }
  • function of Hamiltonian: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F(\hat{H}) = \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| }
  • Green operators: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{G}^{r,a} = [E\hat{I}-\hat{H} \pm i\eta]^{-1} }

Charge density

  • charge density operator: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{n}(\mathbf{r}) = |\mathbf{r} \rangle \langle \mathbf{r}| }
  • expectation value: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \langle \mathbf{r} | \hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle } (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition of total DOS: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(E) = \sum_\alpha \delta(E-E_\alpha) } (with possible normalization factors like Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2_s/V } )
  • definition of LDOS: g(E) = \int d^3 \mathbf{r} g(\mathbf{r},E)
  • LDOS using wavefunctions: Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n(\mathbf{r}) = \mathrm{Tr}[\hat{\rho}_\mathrm{eq}|\mathbf{r} \rangle \langle \mathbf{r}|] = \sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 f(E_\alpha) = \int dE \left[\sum_\alpha |\Psi_\alpha(\mathbf{r})|^2 \delta(E-E_\alpha)\right]f(E) = \int dE\, g(r,E) f(E) }
  • LDOS using

Nonequilibrium

  • Expectation values:
  • Current operator:
  • Spin torque operator: