Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 11: Line 11:
* Fermi-Dirac distribution function: <math> f(x) = 1/[\exp(x/k_BT)+1] </math>
* Fermi-Dirac distribution function: <math> f(x) = 1/[\exp(x/k_BT)+1] </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* Function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>


===Charge density===
===Charge density===

Revision as of 12:59, 27 September 2012

Equilibrium

Expectation values

A=Tr[ρ^eqA^]

Density matrix of fermions in equilibrium

ρ^eq=αf(Eαμ)|EαEα|=f(H^μI^)

  • Fermi-Dirac distribution function: f(x)=1/[exp(x/kBT)+1]
  • Hamiltonian and its spectral decomposition: H^=αEα|EαEα|
  • function of Hamiltonian: F(H^)=αF(Eα)|EαEα|

Charge density

  • charge density operator: n^(𝐫)=|𝐫𝐫|
  • expectation value: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]

Density of states

Nonequilibrium

  • Expectation values:
  • Current operator:
  • Spin torque operator: