Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 9: Line 9:
<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math>
<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math>


* Fermi-Dirac distribution function: <math> f(E) = [\exp^((E-\mu)/k_BT)+1]^{-1} </math>
* Fermi-Dirac distribution function: <math> f(E) = [\exp((E-\mu)/k_BT)+1]^{-1} </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>

Revision as of 14:16, 27 September 2012

Equilibrium

Expectation values

Density matrix of fermions in equilibrium

  • Fermi-Dirac distribution function:
  • Hamiltonian and its spectral decomposition:
  • function of Hamiltonian:

Charge density

  • charge density operator:
  • expectation value: (in some discrete representation these is just diagonal matrix element)

Density of states

  • local density of states:

Nonequilibrium

  • Expectation values:
  • Current operator:
  • Spin torque operator: