Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 6: Line 6:


===Density matrix of fermions in equilibrium===
===Density matrix of fermions in equilibrium===
*using spectral decomposition:


<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math>
<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math>
*using Green functions:
<math> \hat{\rho}_\mathrm{eq} = - \frac{1}{\pi} \int dE\, \mathrm{Im} G^r f(E) </math>


* Fermi-Dirac distribution function: <math> f(E) = 1/[\exp((E-\mu)/k_BT)+1] </math>
* Fermi-Dirac distribution function: <math> f(E) = 1/[\exp((E-\mu)/k_BT)+1] </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* Green operators: <math> G^{r,a} = [E-H \pm i\eta]^{-1} </math>


===Charge density===
===Charge density===

Revision as of 14:24, 27 September 2012

Equilibrium

Expectation values

A=Tr[ρ^eqA^]

Density matrix of fermions in equilibrium

  • using spectral decomposition:

ρ^eq=αf(Eα)|EαEα|=f(H^μI^)

  • using Green functions:

ρ^eq=1πdEImGrf(E)

  • Fermi-Dirac distribution function: f(E)=1/[exp((Eμ)/kBT)+1]
  • Hamiltonian and its spectral decomposition: H^=αEα|EαEα|
  • function of Hamiltonian: F(H^)=αF(Eα)|EαEα|
  • Green operators: Gr,a=[EH±iη]1

Charge density

  • charge density operator: n^(𝐫)=|𝐫𝐫|
  • expectation value: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=𝐫|ρ^eq|𝐫 (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition: g(E)=αδ(EEα) (with possible normalization factors like 2s/V)
  • local density of states: n(𝐫)=Tr[ρ^eq|𝐫𝐫|]=α|Ψα(𝐫)|2f(Eα)=dE[α|Ψα(𝐫)|2δ(EEα)]f(E)=dEg(r,E)f(E)

Nonequilibrium

  • Expectation values:
  • Current operator:
  • Spin torque operator: