Key equations from quantum statistical tools: Difference between revisions

From phys824
Jump to navigationJump to search
Line 6: Line 6:


===Density matrix of fermions in equilibrium===
===Density matrix of fermions in equilibrium===
*using spectral decomposition:


<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math>
<math> \hat{\rho}_\mathrm{eq}=\sum_\alpha f(E_\alpha)|E_\alpha\rangle \langle E_\alpha| = f(\hat{H} - \mu\hat{I})</math>
*using Green functions:
<math> \hat{\rho}_\mathrm{eq} = - \frac{1}{\pi} \int dE\, \mathrm{Im} G^r f(E) </math>


* Fermi-Dirac distribution function: <math> f(E) = 1/[\exp((E-\mu)/k_BT)+1] </math>
* Fermi-Dirac distribution function: <math> f(E) = 1/[\exp((E-\mu)/k_BT)+1] </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* Hamiltonian and its spectral decomposition: <math> \hat{H} = \sum_\alpha E_\alpha |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* function of Hamiltonian: <math> F(\hat{H}) =  \sum_\alpha F(E_\alpha) |E_\alpha \rangle \langle E_\alpha| </math>
* Green operators: <math> G^{r,a} = [E-H \pm i\eta]^{-1} </math>


===Charge density===
===Charge density===

Revision as of 14:24, 27 September 2012

Equilibrium

Expectation values

Density matrix of fermions in equilibrium

  • using spectral decomposition:

  • using Green functions:

  • Fermi-Dirac distribution function:
  • Hamiltonian and its spectral decomposition:
  • function of Hamiltonian:
  • Green operators:

Charge density

  • charge density operator:
  • expectation value: (in some discrete representation these is just diagonal matrix element)

Density of states

  • definition: (with possible normalization factors like )
  • local density of states:

Nonequilibrium

  • Expectation values:
  • Current operator:
  • Spin torque operator: